print

Neutron investigation into self-assembling solar harvesting films reveals new low cost tool for 3D circuit printing

21.02.2013

Scientists from Imperial College London, working at the Institut Laue-Langevin, have presented a new way of positioning nanoparticles in plastics, with important applications in the production of coatings and photovoltaic material that harvest energy from the sun.  The study, presented in Advanced Materials (cover article), used neutrons to understand the role that light – even ambient light – plays in the stabilisation of these notoriously unstable thin films. As a proof of concept the team have shown how the combination of heat and low intensity visible and UV light could in future be used as a precise, low-cost tool for 3D printing of self-assembling, thin-film circuits on these films.

Thin films made up of long organic molecule chains called polymers and fullerenes (large football-shaped molecules composed entirely of carbon) are used mainly in polymer solar cells where they emit electrons when exposed to visible or ultraviolet sun rays. These so-called photovoltaic materials can generate electrical power by converting solar radiation into direct electrical current.

Polymer solar cells are of significant interest for low-power electronics, such as autonomous wireless sensor networks used to monitor everything from ocean temperature to stress inside a car engine. These fullerene-polymer mixtures are particularly appealing because they are lightweight, inexpensive to make, flexible, customisable on the molecular level, and relatively environmentally-friendly.
However current polymer solar cells only offer about one third of the efficiency of other energy harvesting materials, and are very unstable. 
In order to improve science’s understanding of the dynamics of these systems and therefore their operational performance, the team carried out neutron reflectometry experiments at the ILL, the world’s flagship centre for neutron science, on a simple model film made up of pure fullerenes with a flexible polymer. Neutron reflectometry is a non-destructive technique that allows you to ‘shave’ layers off these thin films to look at what happens to the fullerenes and the polymers separately, at atomic scale resolution, throughout their depth.

Whilst previous theories suggested that thin film stabilisation was linked to the formation of an expelled fullerene nanoparticle layer at the substrate interface, neutron reflectometry experiments showed that the carbon “footballs” remain evenly distributed throughout the layer. Instead, the team revealed that the stabilisation of the films was caused by a form of photo-crosslinking of the fullerenes. The process imparts greater structural integrity to films, which means that ultrathin films, (down to 10000 times smaller than a human hair) readily become stable with trace amounts of fullerene. 

The implications of this finding are significant, particularly in the potential to create much thinner plastic devices which remain stable, with increased efficiency and lifetime (whilst the smaller amount of material required minimises their environmental impact). 
The light sensitivity also suggests a unique and simple tool for imparting patterns and designs onto these notoriously unstable films. To prove the concept the team used a photomask to spatially control the distribution of light and added heat. The combination causes the fullerenes to self-assemble into well-defined connected and disconnected patterns, on demand, simply by heating the film until it starts to soften. This results in spontaneous topography and may form the basis of a low-cost tool for 3D printing of thin film circuits. Other potential applications could include patterning of sensors or biomedical scaffolds.
In the future, the team is looking to apply its findings to conjugated polymers and fullerene derivatives, more common in commercial films, and industrial thin film coatings.

Quotes

Dr João Cabral, from Imperial College London, said: “Using just light we can ask specific parts of the film to segregate or connect, stabilise and function for photovoltaic purposes. After this it is not difficult to create on-demand, self-assembling complex patterns on these films by the simple addition of heat. If replicated for more complex compositions, this would represent a major advance in their commercial application in electronics as well as in energy harvesting of low power sources.”

Helmut Schober, Science Director at the Institut Laue-Langevin said: “Dr Cabral and his team’s use of accurate models to strip a physics problem back to its bare bones is an approach we see delivering results time and again at the ILL. With our laboratories on-site and in partner institutes, the ILL is able to work with scientists to create highly realistic and representative models in areas as diverse as human biology and microelectronics, delivering new scientific understanding to tackle real world problems.”


Instrument:  D17 - Neutron reflectometer with horizontal scattering geometry


Re.:Advanced Materials Volume 25, Issue 7, pages 985–991

Contact: Mr James Romero  +44 8456801866


Notes to editors

  1. The Institut Laue-Langevin (ILL) is an international research centre based in Grenoble, France. It has led the world in neutron-scattering science and technology for almost 40 years, since experiments began in 1972. ILL operates one of the most intense neutron sources in the world, feeding beams of neutrons to a suite of 40 high-performance instruments that are constantly upgraded. Each year 1,200 researchers from over 40 countries visit ILL to conduct research into condensed matter physics, (green) chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany is an associate and major funder of the ILL.
  2. Imperial College London