
Tutorial:   Ho2BaNiO5  

Magnetic Structure Determination: Commensurate Magnetic Structure with k≠0. 

Propagation vector determination using the k-search program. 

Ho2BaNiO5 

Powder data collected at ILL on the diffractometer D1B (old D1B) with =2.52 Å. 

The space group is S.G.= Immm, the cell parameters are a≈ 3.754 Å, b≈ 5.732 Å and c≈ 11.271 Å 

at RT. 

The structural parameters could be obtained from the input CIF file.  

The main structural feature is the presence of one-dimensional (1D) chains of NiO6 octahedra 

along the a-axis. The octahedra are strongly distorted with a very short Ni-Oapical distance (≈ 1.88 

Å), and a longer Ni-Obasal distance (≈ 2.18 Å).The basal angle O-Ni-O (≈ 78º) is also much smaller 

than expected for a regular octahedron (90º).  

The magnetic structures of the family of compounds Ho2BaNiO5 have been studied in the past 

and can be consulted on https://doi.org/10.1051/epjconf/20122200010 

Input files: 

hobk.dat (collected below TN) 

The format of the data corresponds to Ins = 3 in FullProf 

Instrument resolution parameters: U= 1.61, V=-1.04, W= 0.35. 

Ho2BaNiO5.cif  

The standard magnetic structures determination using neutron powder diffraction (NPD) data 

follow these steps: 

1) Plot the NPD pattern above and below the magnetic order temperature. 

2) Refine the crystal structure, using the collected data, and get all the relevant structural 

and profile parameters. 

3) Normally additional magnetic peaks appear in the low temperature diffraction pattern 

(below order temperature). Index the new reflection to determine the propagation vector. 

A trial and error method or the K-SEARCH program, included in the FullProf suite, can be 

used.  

4) Determine the possible irreducible representations (irreps) of the paramagnetic space 

group corresponding to the experimentally obtained propagation vector. The program 

BASIREPS can be used to get the basis vectors of the irreducible representations of the 

propagation vector group (Gk). The Shubnikov group and the appropriate magnetic 

symmetry operators, or, alternatively, the basis vectors of the irreps, can be used to refine 

the experimental data.  

5) Alternatively simulated annealing refinement can also be done (no information about the 

magnetic symmetry is needed) 



6) Refine against the data the different models and check the output files to discard 

incompatibilities or inconsistences.  

 

1) Create a working directory; do not use space or special characters in the path.  

a. Copy in this folder all the input files. 

 

2) Create an initial PCR file (follow the steps described on LaMnO3 example). 

3) Modify the PCR file according to the current example (follow the steps described on 

LaMnO3 example).  

4) Fix all the parameters and compare the experimental data with the initial model. 

a. Load into the FP toolbar the created PCR file, in our case “nuclear.pcr”. This can be 

done by clicking on Search Input files icon. Be sure that the PCR file and the data file 

are in the same folder.  

 
 

b. Now you can click on the FullProf icon and run. Observe that the result is clearly non-

satisfactory. Do not forget that, for the moment, all the parameters are fixed.  

 
 

c. In this example, we will check only the nuclear contribution to the total pattern. 

Therefore, we refine only the “Scale” factor (refinement > Profile). The next parameters 

will be the zero (refinement > instrumental) and the unit cell (refinement > Profile). After 

refining, we can see that only some reflections are nicely fitted. However, there are 

reflections that are not fitted by the crystallographic model. The unfitted reflections are 

due to the magnetic contribution.  



 
 

5) Propagation vector determination 

a. Open the refined pattern using Winplotr-2006. The blue line (difference between 

observed and calculated patters) can be taken as a reference for the determination of 

magnetic reflections positions.  

 

 

b. Click on Calculations > Peak detection > Enable  

c. Click on Calculations > Peak detection > Insert Peak (you can use satellite detection 

for an automatic peak detection) 

Insert a new peak into each non-fitted reflection. You can zoom in/out with the left/right 

mouse button.  

 



 
  

d. Click on Calculations > Peak detection > Save Peaks > K-search program 

 
 

e. The appearing dialog windows is pre-filled, but you can modify some parameters if you 

think that is needed. NB: In the first run, you can use only special k-vectors 

(commensurate) and if the program is not able to index the peaks, you can unclick this 

option to search incommensurate propagation vectors.  



 
 

f. Click on OK, save the input file for the k-search program (k_search.sat) and click on 

YES to run the program. The program will provide you a list with the best solutions in 

this particular case 11 satellites have been included on the input file. A detailed output 

“k_search.kup” can be consulted for more details.  

 
 

g. From the indexing with k-search, we obtain a propagation vector k = (½, 0, ½). 

 

6) Adding a second phase to fit the magnetic reflections. 

a. We are going to use the EdPCR program for doing this task. Open nucl_mag1.pcr file 

and click on Phases > add change the Name of phase to “magnetic contribution, without 

model” in calculation select “Profile Matching with constant scale factor”. Click on 

contribution to Patterns, select the options showed here below and click on OK. 

The “Satellite reflections are generated automatically from Space group symbol” is 

particularly useful for those magnetic structures with k different of 0. 



 

Click on symmetry and add I -1 space group. NB: the space group in FP should be written 

with a space between elements (I -1, in this particular case). We use the lattice type of the 

paramagnetic space group and just the triclinic group to generate all possible satellite 

reflections. Click on Symm. Op. Automatic and on OK and save in the main window of 

EdPCR. 

 
 

b. Now we need to fill in the dialogs for the phase 2, the unit cell the scale, U, V, W, X, Y, 

SL and DL. You can use the EdPCR or edit the “nucl_mag1.pcr” file with a text editor 

and copy the parameters from phase 1 to phase 2.  

c. Now we can run FP and start to refine parameters. Change AUT from 0 to 1 and be 

sure that those parameters from phase 1 and phase 2 that should be the same have 

identical refinement codes. 



To add constraints you can use the same code into the PCR file (see the next figure as 

an example) or you can use the EdPCR clicking on Constraints > Profiles Parameters 

(U, V, W, a, b, c, X, Y…). In a first step create a new constraint relation and secondly 

add a second parameter to constraint. In that case, factor 1 means that if U in phase 1 

increase one unit, U in phase 2 increase the same unit. Negative values means that 

one parameter increase while the second decrease. 

 

d. Run FP and check that all magnetic reflections are properly fitted with the propagation 

vector k = (½, 0, ½). 

 

7) Calculation of Irreducible representations. 

a. For the irreps calculation, we are going to use the BasIreps program. Click on the 

BasIreps icon on the FP toolbar. Fill the information, code of file, the working directory 

the paramagnetic space group, the propagation vector (in this case k = (½, 0, ½)), 

remember than magnetic moments are axial vectors. The number of atoms within the 

unit cell can be provided explicitly or the program can calculate the different orbits using 

the space group symmetry. In this case with Immm space group with Ni atoms in the 

2a Wyckoff position, forming a single sublattice with the atoms in the (0, 0, 0) and 

symmetry related positons. The Ho atoms on the 4j Wyckoff positions, forming two 

sublattices in the primitive cell, the first one at (½, 0, z) and the second at (-½, 0, -z). 

As the system is I-centred, The other atoms of the conventional unit cell are related to 

those already given by the centring translation tI = (½,½,½).  

 

 
 



 
 

b. From the output of BasIreps, we can verify than K is equivalent to –K and that the star 

of K is formed by two vectors k1=(½, 0, ½) and k2=(-½, 0, ½). 

c. The list of the irreducible representations (all of them of dimension 1) can be consulted 

on the output of BasIreps.  

 
 

d. Check the BasIreps output (filename.fp). As in this example there is two different sites, 

you should check both independently. In a first approach, we can assume that both 

sites are ordered at the same moment following the same irrep. The mag  reducible 

representation for the site 1 (Ni) is decomposed in irreps as the direct sum:  

1 3( ) 1 2mag Ni      

While for the second site (Ho), mag is decomposed in irreps as the direct sum:  

1 2 3 4( ) 1 2 2 1mag Ho          

Where the pre-number is the number or times the irrep is contained in mag . This 

number is related with the number of terms (i.e. number of basis vectors) in this irrep. 



So, only 1 and 3  irreps are present in both sites. Now we can combine 1 for both 

sites to create a block to paste into the PCR file. 

 
Irrep(1) Site 1: 

I -1                           <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas  

     1     1     1    -1     1 

! Real(0)-Imaginary(1) indicator for Ci 

  0 

SYMM x,y,z                                                        

BASR   0  1  0 

BASI   0  0  0 

 
Irrep(1) Site 2: 

 

I -1                           <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas  

     2     1     1    -1     1 

! Real(0)-Imaginary(1) indicator for Ci 

  0 

SYMM x,y,z                                                        

BASR   0  1  0 

BASI   0  0  0 

SYMM -x,y,-z                                                      

BASR   0  1  0 

BASI   0  0  0 

 

Irrep(1) both sites: 

 

I -1                           <--Space group symbol for hkl generation 

! Nsym Cen Laue Ireps N_Bas  

     2         1      1      -2         1  ! the -2 means that each SYMM 

have two components 

! Real(0)-Imaginary(1) indicator for Ci 

  0 

SYMM x,y,z                                                        

BASR   0  1  0      ! BASR and BASI correspond to site 1 

BASI   0  0  0 

BASR   0  1  0      ! BASR and BASI correspond to site 2 

BASI   0  0  0 

SYMM -x,y,-z                                                      

BASR   0  0  0      ! BASR and BASI correspond to site 1 

BASI   0  0  0 

BASR   0  1  0      ! BASR and BASI correspond to site 1 

BASI   0  0  0 

 

 

 

The same approach should be done by irrep(3). 
 

Irrep(3) both sites: 

 

I -1                           <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas  

     2         1       1      -2        2 

! Real(0)-Imaginary(1) indicator for Ci 



  0  0 

SYMM x,y,z                                                        

BASR   1  0  0   0  0  1 

BASI   0  0  0   0  0  0 

BASR   1  0  0   0  0  1 

BASI   0  0  0   0  0  0 

SYMM -x,y,-z                                                      

BASR  0  0  0   0  0  0 

BASI  0  0  0   0  0  0 

BASR  1  0  0   0  0  1 

BASI  0  0  0   0  0  0 

 
 

8) Including the IR into the PCR file (follow the LaMnO3 example). 

a. Rename the previous PCR file, in our case nucl_mag_bv.pcr (BV corresponding to 

basic vectors. 

b. Open the new PCR with the EdPCR and click on phases and click NEXT to move to 

the phase 2. Here you can change the type of calculation from “Profile Matching with 

constant scale factor” to “Magnetic Phase (Rietveld Method)” or “Magnetic Phase with 

magnetic moments in spherical mode (Rietveld Method)”. In our case we are going to 

use the first one. In order to use spherical modes the PCR file should contain MSYM 

operators instead of basis vectors. 

A detail explanation of how derive those MSYM operators from the basis vectors obtained 

from the BasIreps program is included in the Annexe 1. 

c. Click on symmetry and select “Basis functions of the irreducible representations of the 

propagation vector group”. Here you can add the “magnetic/displacement” and the 

“irreducible representation” using the boxes. However, the easy way is to copy this 

information from the .FP file (BasIreps).  



In order to create the lines into the PCR file we can add only one basis function and 

one IR. Click on OK and save from the main window of EdPCR. 

 
 

d. Edit the PCR file and replace the basis vector by the previous created block. 

e. Using EdPCR we need to include the magnetic atoms into the PCR file. Click on 

“refinements > phase 2 > atoms” add a new atom. Click on OK and save the PCR.  

 
NB: The 1 or 2 in the Mag. Rot box is related with the application of the symmetry operators. Each 
symmetry is applied to a couple of BASR and BASI vectors. If the number is 1, the used vectors 
are those defined by the first couple (site 1), while if the number is 2, those vectors used 
correspond to the second couple (site 2). 

 



f. Now you can run the PCR file. If you want to refine the magnetic structure you can 

refine from C1 to C2. NB: start with a value close to 1B from Ni and 7B to Ho atoms.  

g. Refine the two possible magnetic models, modifying the PCR file, and determine which 

is the correct. NB: is a good idea rename the PCR file to specify in the name which IR 

you are using.  

 
 

h. After running FullProf, a mcif will be automatically created with the magnetic structure. 

You can use VESTA program to plot the different magnetic models.  

NB: Check always the output file from FullProf, there is plenty of useful information that 

can help you to understand the results. 

 
 

9) PCR file using the Shubnikov magnetic space group. 

a. In order to determine the possible Shubnikov space group compatible with our system 

we can use the BasIreps as was shown in the previous sections. Using the Bilbao 



Crystallographic Server we can create a list of mcif (one for each Shubnikov S.G.), that 

can be transformed into a PCR file with a single click. 

Open a web browser and write http://www.cryst.ehu.es/ 

Click on Magnetic Symmetry and Applications 

 
Click on MAXMAGN, fill the boxes and click on submit. 

 

Upload a structural model (cif file). If there is not errors in your cif file the program will 

ask for the magnetic atoms. Select the Ni and Ho atom and click on submit.  

 

The program gives a list of maximal magnetic space groups compatible with the 

propagation vector. In addition, the transformation to the standard setting is provided.  

 
 

The two proposed space groups correspond to two magnetic structures with the 

magnetic moments placed perpendicularly one with respect to the other. In the first 

case Cc2/c (#15.90), the magnetic moment lies on the ac-plane for both sites, while in 

http://www.cryst.ehu.es/


the second case Cc2/m (#12.63) the magnetic moment of both sites are pointing along 

the b-axis. 

 

Download the mcif files and create a PCR file for each case (the detailed procedure is 

described on LaMnO3 example). 

Change the JOB = 3 to JOB = 1 and include all the information related with your 

instrument and with the measurements; Lambda, background, muR, zero, U, V, W, unit 

cell and Scale. All this information can be obtained from the previous PCR file.  

b. The nuclear and magnetic part are in the same phase (JBT = 10), so only one phase 

is needed.  

c. The code VARY mxmymz, active automatically the refinement of the magnetic moment 

components, which are compatible with the symmetry. If the user wants to fix one 

component this code should be removed.  

d. In the FullProf toolbar select the PCR file and refine. 

 
 

e. Plot the mcif file using VESTA; in this case as nuclear and magnetic structures were 

refined in the same phase so both are included into the mcif file. 

 
 



f. Repeat the procedure using the second Shubnikov space group and compare the 

results. 

g. The structure was solved on the Cc2/c magnetic space group, which is a subgroup of 

the orthorhombic paramagnetic space group. Therefore, the final magnetic structure is 

monoclinic. However, there is an open question, as the system present a k-vector 

formed by a star of two arms k1=(½, 0, ½) and k2=(-½, 0, ½), is there a combination of 

these two vectors providing a higher symmetry multi-k solution?   

10) Multi-k symmetry analysis 

a. In order to explore this option we are going to use the k-Subgroupsmag utility from the 

BCS. 

(http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl) 

 

b. We fill the different boxes, clicking on “Choose the whole star of the propagation vector” 

after click, the whole star(s) of the propagation wave-vectors will be used in the 

calculation of all groups and subgroups.  

 
 

c. Click on submit and, in order to reduce the list of possible magnetic space group, 

include the structure of the parent phase. From the list of 10 items, we are interested 

on those of orthorhombic symmetry, the first four; the others are already subgroups of 

the previously determined magnetic space group (Cc2/c).  

http://www.cryst.ehu.es/cgi-bin/cryst/programs/subgrmag1_k.pl


 
 

d.  Click on submit and upload a cif file. Click on Ni and Ho as magnetic atoms and submit. 

Four possible magnetic subgroups with at least one site with moment different from 

zero are shown.  

 
 

e. Click on show on the Magnetic structure box, and verify that both sublattices are 

different from zero. From the four magnetic space groups only the Camma (#67.509) 

magnetic space group allow non-zero magnetic moments on both sublattices. 

Therefore, this will be the only solution that will be refined against the data.  

From the symmetry analysis carried out by BCS, we observe that the magnetic 

moments of Ni and Ho sites, there are two Wyckoff sites for each atom, are 

perpendicular between them. Therefore, this model is not consistent with the magnetic 

structure previously solved (Cc2/c). However, just to confirm that this magnetic structure 



is not correct, we are going to create a PCR file from the mcif of the Camma (#67.509) 

magnetic space group. 

 
 

f. Download the mcif of the Camma (#67.509) magnetic space group and create a PCR. 

Change the JOB = 3 to JOB = 1 and include all the information related with your 

instrument and with the measurements; Lambda, background, zero, U, V, W, unit cell 

and Scale. All this information can be obtained from the previous PCR file.  

 

g. Refine the data and check the convergence.  

In order to avoid problems during the refinement, refine only the scale and the magnetic 

moments.  



 
 

h. The values of the Bragg R-factor and RF-factor are comparable, even slightly better, 

than those values obtained with the Cc2/c magnetic space group. This is an example 

of the degeneracy of solutions that is common in magnetic structure determination 

and refinement using neutron powder diffraction. However, if we check the output file 

we can observe than the refined values of the different atomic orbits are quite different, 

moreover some of those parameters are physically inconsistent. The magnetic 

moment of Ho(III) should not be larger than 10B and based on the nuclear structure 

there is no reason to think that one orbit is close to zero while the other (with the same 

environment) have a magnetic moment above 10B. 

 

Rx = Ni(1) =  0.8(2) B 

Rz = Ni(2) =  1.81(7)B 

Rx = Ho(1) = -0.21(9)B 

Rz = Ho(2) = -12.61(8) B 

 

Moreover, if we try to refine the atomic positions of the oxygen atoms, the refinement 

does not converge, while with the Cc2/c the refinement is stable even if the oxygen 

positions are refined.  

Annexe 1. 
Some simple rules for using MSYM operators instead of basis vectors in magnetic 

refinements of commensurate structures with FullProf 

The use of spherical components for describing the orientation of magnetic moments (or Fourier 

components of magnetic moments) is done simply by changing the sign of the indicator JBT in 

the PCR file. If we use directly the basis vectors as output by BasIreps, we cannot use spherical 

components. For that, you have to provide MSYM operators. This is not done directly in BasIreps, 



however you can obtain these operators in cases you have Fourier coefficients of the form: Sk(1) 

=(u, v, w) in BasIreps, because the coefficients of the linear combination of basis vectors like  

  Sk(1)= u(1,0,0)+v(0,1,0)+w(0,01) =(u, v, w)  and  

  Sk(2)= u(1,0,0)+v(0,-1,0)+w(0,0-1) =(u,-v,-w)   

can also be interpreted as rotational operators and in the above case you can write two rotational 

operators acting on the Fourier coefficient Sk(1). The first one is the identity MSYM u,v,w,0.0   and 

the second one is MSYM u,-v,-w,0.0. The phase 0.0 has only a sense for incommensurate 

magnetic structures. 

In BasIreps, the operators are not explicitly given but they can be easily constructed. If for instance 

you have provided a special position for an atom you may obtain something like: Sk(i)=(u,-u,0). 

Of course, this is only valid for an atom in a special position and this is NOT the expression of a 

MSYM operator. You should run BasIreps for an atom in a general position to obtain no constraint 

in the Fourier coefficients Sk, and only when you describe in the PCR file the components of the 

Fourier coefficients you can put the constraints using codes like 191.0 -191.0  0.0 for the three 

components of the Fourier coefficients. 

Suppose that you have an Fe-atom occupying the position (0.0, 0.23456, 0.5) in the space group 

Cmcm and you obtain a magnetic structure with propagation vector k=(0,0,0). When you run 

BasIreps, you obtain 8 irreps of dimension 1. For instance for irrep=2 you obtain in the *.bsr file 

the following basis vectors: 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 => Basis functions of Representation IRrep( 2) of dimension  1 contained 2 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

              SYMM  x,y,z   -x,-y,z+1/2   -x,y,-z+1/2   x,-y,-z    

              Atoms:      Fe_1              Fe_2              Fe_3              Fe_4             

 BsV( 1, 1: 4):Re (    0    1    0) (    0   -1    0) (    0    1    0) (    0   -1    0)  

 BsV( 2, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0   -1) (    0    0   -1)  

  

        

       The general expressions of the Fourier coefficients Sk(j) of the atoms non-related  

       by lattice translations are the following: 

 

       SYMM x,y,z                                       Atom: Fe_1      0.0000  0.2346  0.5000 

       Sk(1): (0,u,v) 

 

       SYMM -x,-y,z+1/2                                 Atom: Fe_2      0.0000 -0.2346  1.0000 

       Sk(2): (0,-u,v) 

 

       SYMM -x,y,-z+1/2                                 Atom: Fe_3      0.0000  0.2346  0.0000 

       Sk(3): (0,u,-v) 

 

       SYMM x,-y,-z                                     Atom: Fe_4      0.0000 -0.2346 -0.5000 

       Sk(4): (0,-u,-v) 

 

Of course, the expression of the Fourier coefficients cannot be converted to proper operators, but 

if you run another time BasIreps for the same case but putting the Fe-atom in an arbitrary general 

position you obtain for the same irrep: 

              SYMM  x,y,z   -x,-y,z+1/2   -x,y,-z+1/2   x,-y,-z    
             Atoms:     Fe_1              Fe_2              Fe_3              Fe_4             

 BsV( 1, 1: 4):Re (  1    0    0) (   -1    0    0) (   -1    0    0) (    1    0    0)  

 BsV( 2, 1: 4):Re (  0    1    0) (    0   -1    0) (    0    1    0) (    0   -1    0)  

 BsV( 3, 1: 4):Re (  0    0    1) (    0    0    1) (    0    0   -1) (    0    0   -1)  

  

              SYMM  -x,-y,-z   x,y,-z+1/2   x,-y,z+1/2   -x,y,z    

              Atoms:      Fe_5              Fe_6              Fe_7              Fe_8             

 BsV( 1, 5: 8):Re (   -1    0    0) (  1    0    0) (    1    0    0) (   -1    0    0)  

 BsV( 2, 5: 8):Re (    0   -1    0) (  0    1    0) (    0   -1    0) (    0    1    0)  

 BsV( 3, 5: 8):Re (    0    0   -1) (  0    0   -1) (    0    0    1) (    0    0    1)  



  

 

The general expressions of the Fourier coefficients Sk(j) of the atoms non-related  

by lattice translations are the following: 

 

       SYMM x,y,z                                Atom: Fe_1      0.1230  0.2346  0.4560 

       Sk(1): (u,v,w) 

 

       SYMM -x,-y,z+1/2                          Atom: Fe_2     -0.1230 -0.2346  0.9560 

       Sk(2): (-u,-v,w) 

 

       SYMM -x,y,-z+1/2                          Atom: Fe_3     -0.1230  0.2346  0.0440 

       Sk(3): (-u,v,-w) 

 

       SYMM x,-y,-z                              Atom: Fe_4      0.1230 -0.2346 -0.4560 

       Sk(4): (u,-v,-w) 

 

       SYMM -x,-y,-z                             Atom: Fe_5     -0.1230 -0.2346 -0.4560 

       Sk(5): (-u,-v,-w) 

 

       SYMM x,y,-z+1/2                           Atom: Fe_6      0.1230  0.2346  0.0440 

       Sk(6): (u,v,-w) 

 

       SYMM x,-y,z+1/2                           Atom: Fe_7      0.1230 -0.2346  0.9560 

       Sk(7): (u,-v,w) 

 

       SYMM -x,y,z                               Atom: Fe_8     -0.1230  0.2346  0.4560 

       Sk(8): (-u,v,w) 

 

Here you can put all this information in form of MSYM operators and write the PCR file for a 

magnetic phase as: 

 

 

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 

!------------------------------------------------------------------------------- 

 Test artificial structure with C m c m space group, k=0 and Fe at (0.0, 0.23456, 0.5) 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 1.0 1.0   1   0  -1   0   0          0.000   0   5   0 

! 

C -1                     <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   8   1   3   1 

! 

SYMM x,y,z 

MSYM u,v,w,0.0 

SYMM -x,-y,z+1/2 

MSYM -u,-v,w,0.0 

SYMM -x,y,-z+1/2 

MSYM -u,v,-w,0.0 

SYMM x,-y,-z 

MSYM u,-v,-w,0.0 

SYMM -x,-y,-z 

MSYM -u,-v,-w,0.0 

SYMM x,y,-z+1/2 

MSYM u,v,-w,0.0 

SYMM x,-y,z+1/2 

MSYM u,-v,w,0.0 

SYMM -x,y,z 

MSYM -u,v,w,0.0 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rx      Ry      Rz 

!     Ix     Iy     Iz    beta11  beta22  beta33    MagPh 

Fe    MFE3   1  0  0.00000 0.23456 0.50000 0.00000  0.50000   0.000   1.200   3.400 

                      0.00    0.00    0.00    0.00     0.00    0.00    1.00    1.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

   1.308       0.000000   0.0000   0.00000   0.00000   0.00000       0 

. . . . . . . .    

 



With this formulation, only two parameters are refinable:  Ry and Rz. The atom position of Fe is 

the Wyckoff site 8f, so Occ=0.5 because we provide all the symmetry operators. The lattice 

centring is given in the symbol to generate reflections. The magnetic space group is easily 

obtained in this case because k=0 and the representations are of dimension 1, just looking at the 

table of the representations we have just to associate the time inversion with an operator when 

the character is -1. The irrep 2 corresponds to the magnetic space group Cm’c’m’. 

If you want to use spherical components, you should keep in mind that magnetic moments are 

given with respect to the Cartesian system related to the crystallographic basis. In this case is 

trivial x//a, y//b and z//c. Therefore, in spherical components, the constraint (0, Ry, Rz) means 

that the “Phi” angle should be fixed to 90 and “Theta” and the modulus of the moment are free. 

The only changes are: JBT should be put equal to -1 to select spherical components and the 

ordering of parameters is:  Moment, Phi and Theta, so the changes to be applied are put in bold 

is the new version of the PCR file: 

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 

!------------------------------------------------------------------------------- 

 Test artificial structure with C m c m space group, k=0 and Fe at (0.0, 0.23456, 0.5) 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 1.0 1.0  -1   0  -1   0   0          0.000   0   5   0 

! 

C -1                     <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   8   1   3   1 

! 

SYMM x,y,z 

MSYM u,v,w,0.0 

SYMM -x,-y,z+1/2 

MSYM -u,-v,w,0.0 

SYMM -x,y,-z+1/2 

MSYM -u,v,-w,0.0 

SYMM x,-y,-z 

MSYM u,-v,-w,0.0 

SYMM -x,-y,-z 

MSYM -u,-v,-w,0.0 

SYMM x,y,-z+1/2 

MSYM u,v,-w,0.0 

SYMM x,-y,z+1/2 

MSYM u,-v,w,0.0 

SYMM -x,y,z 

MSYM -u,v,w,0.0 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rm      Rphi  Rtheta 

!     Im     Iphi   Itheta    beta11  beta22  beta33    MagPh 

Fe    MFE3   1  0  0.00000 0.23456 0.50000 0.00000  0.50000   3.605  90.000  19.440 

                      0.00    0.00    0.00    0.00     0.00    1.00    0.00    1.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

   1.308       0.000000   0.0000   0.00000   0.00000   0.00000       0 

. . . . . . . .    

 
In cases of representations with dim > 1, the situation is more complicated because what BasIreps 

outputs is the most general (lower symmetry) case for Fourier coefficients. There is no 

correspondence between one irrep and one magnetic group, for dim >1 there are many possible 

magnetic groups. The different symmetries are obtained by making zero some of the coefficients 

of the linear combinations of basis vectors.  Let us use the following example: Fe-atom in a 

general position of the group Pmma and propagation vector k=(1/2,1/2,0). In this case, there are 

two 2D irreps and the output of BasIreps for the first irrep is: 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 => Basis functions of Representation IRrep( 1) of dimension  2 contained 6 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 



              SYMM  x,y,z   -x+1/2,-y,z   -x,y,-z   x+1/2,-y,-z    

              Atoms:      Fe_1              Fe_2              Fe_3              Fe_4             

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (    0    0    0) (    0    0    0)  

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0    0    0) (    0    0    0)  

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0    0) (    0    0    0)  

 BsV( 4, 1: 4):Re (    0    0    0) (    0    0    0) (   -1    0    0) (    1    0    0)  

 BsV( 5, 1: 4):Re (    0    0    0) (    0    0    0) (    0    1    0) (    0   -1    0)  

 BsV( 6, 1: 4):Re (    0    0    0) (    0    0    0) (    0    0   -1) (    0    0   -1)  

 BsV( 7, 1: 4):Re (    0    0    0) (    0    0    0) (   -1    0    0) (   -1    0    0)  

 BsV( 8, 1: 4):Re (    0    0    0) (    0    0    0) (    0    1    0) (    0    1    0)  

 BsV( 9, 1: 4):Re (    0    0    0) (    0    0    0) (    0    0   -1) (    0    0    1)  

 BsV(10, 1: 4):Re (    1    0    0) (    1    0    0) (    0    0    0) (    0    0    0)  

 BsV(11, 1: 4):Re (    0    1    0) (    0    1    0) (    0    0    0) (    0    0    0)  

 BsV(12, 1: 4):Re (    0    0    1) (    0    0   -1) (    0    0    0) (    0    0    0)  

  

              SYMM  -x,-y,-z   x+1/2,y,-z   x,-y,z   -x+1/2,y,z    

              Atoms:      Fe_5              Fe_6              Fe_7              Fe_8             

 BsV( 1, 5: 8):Re (    0    0    0) (    0    0    0) (    1    0    0) (   -1    0    0)  

 BsV( 2, 5: 8):Re (    0    0    0) (    0    0    0) (    0   -1    0) (    0    1    0)  

 BsV( 3, 5: 8):Re (    0    0    0) (    0    0    0) (    0    0    1) (    0    0    1)  

 BsV( 4, 5: 8):Re (   -1    0    0) (    1    0    0) (    0    0    0) (    0    0    0)  

 BsV( 5, 5: 8):Re (    0   -1    0) (    0    1    0) (    0    0    0) (    0    0    0)  

 BsV( 6, 5: 8):Re (    0    0   -1) (    0    0   -1) (    0    0    0) (    0    0    0)  

 BsV( 7, 5: 8):Re (   -1    0    0) (   -1    0    0) (    0    0    0) (    0    0    0)  

 BsV( 8, 5: 8):Re (    0   -1    0) (    0   -1    0) (    0    0    0) (    0    0    0)  

 BsV( 9, 5: 8):Re (    0    0   -1) (    0    0    1) (    0    0    0) (    0    0    0)  

 BsV(10, 5: 8):Re (    0    0    0) (    0    0    0) (    1    0    0) (    1    0    0)  

 BsV(11, 5: 8):Re (    0    0    0) (    0    0    0) (    0   -1    0) (    0   -1    0)  

 BsV(12, 5: 8):Re (    0    0    0) (    0    0    0) (    0    0    1) (    0    0   -1)  

  

 

       The general expressions of the Fourier coefficients Sk(j) of the atoms non-related  

       by lattice translations are the following: 

 

       SYMM x,y,z                           Atom: Fe_1      0.1230  0.2346  0.4560 

       Sk(1): (u+d,v+e,w+f) 

 

       SYMM -x+1/2,-y,z                     Atom: Fe_2      0.3770 -0.2346  0.4560 

       Sk(2): (-u+d,-v+e,w-f) 

 

       SYMM -x,y,-z                         Atom: Fe_3     -0.1230  0.2346 -0.4560 

       Sk(3): (-p-a,q+b,-r-c) 

 

       SYMM x+1/2,-y,-z                     Atom: Fe_4      0.6230 -0.2346 -0.4560 

       Sk(4): (p-a,-q+b,-r+c) 

 

       SYMM -x,-y,-z                        Atom: Fe_5     -0.1230 -0.2346 -0.4560 

       Sk(5): (-p-a,-q-b,-r-c) 

 

       SYMM x+1/2,y,-z                      Atom: Fe_6      0.6230  0.2346 -0.4560 

       Sk(6): (p-a,q-b,-r+c) 

 

       SYMM x,-y,z                          Atom: Fe_7      0.1230 -0.2346  0.4560 

       Sk(7): (u+d,-v-e,w+f) 

 

       SYMM -x+1/2,y,z                      Atom: Fe_8      0.3770  0.2346  0.4560 

       Sk(8): (-u+d,v-e,w-f) 

There are 12 basis vectors so in total 12 coefficients: u, v, w, p, q, r, a, b, c, d, e, f.  

Obviously, for each atom we need a maximum of three coefficients.  We can construct MSYM 
operators by systematically nullifying coefficients and regrouping atoms. Remember that the 
symmetry operators are referred to the standard basis of the parent group Pmma. If we group the 
atoms having the coefficients u, v and w nullifying all the others (d, e, f) we obtain: 

                  SYMM x,y,z 
       Sk(1): (u,v,w) 

       SYMM -x+1/2,-y,z 

       Sk(2): (-u,-v,w) 

       SYMM x,-y,z 

       Sk(7): (-u,v,-w) 

       SYMM -x+1/2,y,z 

       Sk(8): (u,-v,-w)   

If we group the rest of atoms, we see that in all of them there are the coefficients p, q, r. Let us 

nullify the accompanying coefficients (a, b, c). We obtain: 



     SYMM -x,y,-z 

     Sk(3): (-p,q,-r) 

     SYMM x+1/2,-y,-z 

     Sk(4): (p,-q,-r) 

     SYMM -x,-y,-z 

     Sk(5): (p,q,r) 

     SYMM x+1/2,y,-z 

     Sk(6): (-p,-q,r) 

It is easy to see that the operators are the same as above changing -x,-y,-z  x,y,z. If we apply 
the centre of inversion and re-order the above list we obtain: 

 SYMM -x,-y,-z       SYMM x,y,z           

 Sk(5): (p,q,r)    Sk(5): (p,q,r) 

 SYMM x+1/2,y,-z    SYMM -x+1/2,-y,z 

 Sk(6): (-p,-q,r)    Sk(6): (-p,-q,r) 

 SYMM -x,y,-z    SYMM x,-y,z 

 Sk(3): (-p,q,-r)    Sk(3): (-p,q,-r) 

 SYMM x+1/2,-y,-z    SYMM -x+1/2,y,z 

 Sk(4): (p,-q,-r)    Sk(4): (p,-q,-r) 

The right part is identical to the first list of operators if we replace p, q, r by u, v, w.  This particular 
selection of coefficients of the linear combination of basis vectors gives rise to a splitting of the 
Fe atoms in two independent sites so the relevant part of the PCR file corresponding to this case 
in spherical coordinates is: 
 

 
!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern# 

!------------------------------------------------------------------------------- 

 Test artificial structure with Pmma k=(1/2,1/2,0) space group and Fe at (0.0, 0.23456, 0.5) 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   2   0   0 0.0 1.0 1.0  -1  -1  -1   0   0          0.000   1   5   0 

! 

P -1                     <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   4   1   3   1 

! 

SYMM x,y,z 

MSYM u,v,w,0.0 

SYMM -x+1/2,-y,z 

MSYM -u,-v,w,0.0 

SYMM x,-y,z 

MSYM -u,v,-w,0.0 

SYMM -x+1/2,y,z 

MSYM u,-v,-w,0.0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rm      Rphi  Rtheta 

!     Im     Iphi   Itheta    beta11  beta22  beta33    MagPh 

Fe1    MFE3   1  0  0.1230  0.2346  0.4560 0.00000  0.50000   3.605  23.000  19.440 

                      0.00    0.00    0.00    0.00     0.00   41.00    1.00    1.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Fe2    MFE3   1  0 -0.1230 -0.2346 -0.4560 0.00000  0.50000   3.605  47.000  19.440 

                      0.00    0.00    0.00    0.00     0.00   41.00    1.00    1.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

   1.308       0.000000   0.0000   0.00000   0.00000   0.00000       0 

. . . . . . . . 

  0.5    0.5   0.0              <- Propagation vector 

  0.0    0.0   0.0    
. . . . . . . .    

 
We have explicitly used a constraint not coming from symmetry: the equality of moments 
m(Fe1)=m(Fe2). In principle, the magnetic moment of the atoms Fe1 and Fe2 are independent 
because the initial site is split in two independent atoms.  



Using other ways of selecting the coefficients one obtains other symmetries. For instance a more 
symmetric solution is obtained imposing p=u, q=v and r=w and nullifying all the other coefficients. 
In such a case, one have a single site 
 
In cases like this, it may be easier to use directly Shubnikov groups (magnetic space groups). For 
such cases it is convenient to use the Bilbao Crystallographic Server that provides the possible 
Shubnikov groups for a given space group and propagation vector (using the programs 
MAXMAGN or K-SUBGROUPSMAG). These programs can generate mCIF files that can be 
converted to PCR files by the program mCIF_to_PCR. The description in terms of Shubnikov 
groups does not consider the concept of propagation vector, instead the magnetic unit cell with a 
crystallographic description (symmetry operators associated or not with time inversion) of atom 
positions and magnetic moment is used. 
 


