PROGRAM: GLOpSAnn

Author: Juan Rodriguez-Carvajal (ILL) Created: October 2008. Last updated (JRC): April 2020

Documentation for GLOpSAnn Program

The program **GLOpSAnn** was conceived as an example of using **CrysFML**. It has been in the repository for a long time without being publicized. We are now distributing executables within the FullProf Suite. An old version of the source code is public and may be found in the **CrysFML** repository:

http://forge.epn-campus.eu/projects/crysfml/repository/show/Program_Examples/Structures_GlobalOptimization

The input of the program is a CFL file containing the operating instructions, information about the crystallographic parameters and the data files. The program uses Simulated Annealing (SAnn) for global optimization. The program tries to find structural parameters that minimizes a particular (or composite) cost function (CF) that may be formed by differences between observed and calculated intensities, distances, valences, etc. The available cost functions at present are the following:

"F2obs-F2cal"	Cost(F2obs-F2cal)	:	Optimization	of	С0	=Sum F2obs-F2cal /Sum F2obs	
"Fobs-Fcal"	Cost(Fobs-Fcal)	:	Optimization	of	C1	=Sum Fobs-Fcal /Sum Fobs	
"dis-restr"	Cost(dis-restr)	:	Optimization	of	C2	=Sum{w(dobs-dcal)^2}, w=1/var(d)	
"Ang-restr"	Cost(Ang-restr)	:	Optimization	of	C3	=Sum{w(Ang_obs-Ang_cal)^2}, w=1/var(Ang)	
"Tor-restr"	Cost(Tor-restr)	:	Optimization	of	C4	=Sum{w(Tor_obs-Tor_cal)^2}, w=1/var(Tor)	
"bond-valence"	Cost(bond-valence)	:	Optimization	of	C5	=Sum{ q-BVS /tot_Atoms}	
"bvs_coulomb"	C5 + Cost(Coulomb)	:	Optimization	of	С6	=Sum{qi qj/dij}	
"FoFc-Powder"	Cost(FoFc-Powder)	:	Optimization	of	C7	=Sum Gobs-Sum(Fcal) /Sum Gobs	
"Coordination"	Cost(Coordination)	:	Optimization	of	С8	=Sum Coord-Efcn /Sum Coord	
"Anti_Bump"	Cost(Anti_Bump)	:	Optimization	of	С9	=Sum{(dmin/d)**power}	
"Powder_Profile"	Cost(Powder_Profile)	:	Optimization	of	C1(D=Sum{ yiobs-yicalc / yiobs }	
"Powder_WProfile"	Cost(Powder_WProfile)	:	Optimization	of	C11	l=Sum{w{yiobs-yicalc}^2/(N-P)} Equivalent to) Chi2

The names between quotes are used for identification in the input control file. Different CFs may be combined in the optimization with a weight that has to be provided by the user.

We provide here only some hints for running the program with a minimalistic description of the input file. The structure of the CFL file is free format and very simple. For running **GLOpSAnn** some instructions should be given in the CFL file. We will take an example and we will describe the need of the different parts. The example we are taking for description corresponds to an optimization in which we provide a list of integrated (overlapped) neutron powder intensities. The full file is the following:

```
Title PbSO4 (experimental Jvi=-11 |F|) Neutrons
                                                                                    С
                                                    b
                                                                                                  alpha beta
 а
                                                                                                                                                 gamma
 Cell 8.485454 5.402319 6.964360 90.000 90.000 90.000
 !
              Space Group
 Spgr Pnma
                                                                                                                                                                  Spin Charge
 !
                                                 х
                                                                                              Z
                                                                                                                     В
                                                                                                                                               occ
                                                                         V

      Image: Normal Sector Pb
      PB
      0.18797
      0.25000
      0.16754
      1.35290
      0.50000
      0.0
      2.0
      #color 0 0 1 1

      Atom
      S
      S
      0.06467
      0.25000
      0.68300
      0.89361
      0.50000
      0.0
      6.0
      #color 1 1 0 1

      Atom
      O1
      O
      0.90712
      0.25000
      0.59675
      0.57221
      0.50000
      0.0
      -2.0
      #color 0 1 1 1

      Atom
      O2
      O
      0.18635
      0.25000
      0.54278
      0.99996
      0.50000
      0.0
      -2.0
      #color 1 0 1 1

      Atom
      O3
      O
      0.08021
      0.02965
      0.81211
      1.07399
      1.00000
      0.0
      -2.0
      #color 1 0 0 1

 ! Codes for refinement
 Vary xyz 0 1 0 1
 1
HKL-OBS pb neu.int
MIN-DSPACING 1.5
```

```
WAVE 1.912
RADIATION NEUTRONS
FST CMD conn S O 0.0 1.8 ; poly S
OPTIMIZE bond-valence 0.15 FoFc-Powder 0.85
LOCAL_OPTIMIZATION
! Simulated Annealing conditions
SIM ANN
      Name of the cost function
!
CostNam FoFc_Pow+BVS
! T_ini anneal num_temps
TemParM 3.0 0.95 80
! Nalgor Nconf nm_cycl num_therm accept%
Algor_T 0 6 120 0 10.0
! Value of Seed (if SeedVAL = 0, random seed)
SeedVAL 0
!
Threshold 25.0
! Treatment of initial configuration
InitCON RAN
```

The reserved keywords (case insensitive) are in **bold face** and **red**. We will describe each one of them for this particular case.

Title	This keyword is followed by whatever comment
Cell	Followed by 6 real numbers corresponding to cell parameters (in Å) and angles (in degrees)
SpGR	Followed by the symbol or the number of the space group
Atom	Followed by two alphanumeric symbols (<i>label</i> and <i>species</i> for determining the scattering factor) and up to 7 real numbers that have the following meaning (the order is important): x, y, z (fractional coordinates or the atom), <i>Biso</i> (isotropic temperature factor), <i>occ</i> occupation factor (proportional to multiplicity of the site/multiplicity of the general position), <i>spin</i> (magnetic moment, in Bohr magnetons) and formal charge. Information after the symbol # may be passed to the program FullProf Studio (or VESTA)
Vary	This keyword symbols and numbers. Example: Vary xyz 0 1 0 1 means that we vary the coordinates of all the atoms between 0 and 1 (inside the unit cell), the second 0 may be substituted by a step value (depending on the algorithm used for optimizing) and the last 1 means that the values satisfy periodic boundary conditions (if in a particular point one variable goes outside the limits, e.g. 1.3214 takes the value 0.3214). Related instructions: FIX and EQUAL . Examples: fix x_Fe y_04; Equal y_Fe y_P 0.25; fix xyz La1 La2 La3 Mn1 Mn2 Mn3 Mn4 Sr

Hkl-Obs	Followed by the name of the file containing integrated intensities. Only needed in the case experimental diffraction data are provided.
PROFILE-OBS	Followed by the name of the file containing profile intensities. The profile intensities file is that generated by FullProf with extension <i>.spr</i> . Only needed in the case experimental diffraction data are provided.
Min-Dspacing	Followed by the value d_{min} for which reflections with d_{hkl} below d_{min} are not used in the optimization procedure. Only needed if reflection intensities are provided.
Wave	Followed by the value of the radiation wavelength. Only needed if diffraction intensities are provided.
Radiation	Followed by type of radiation used: <i>Neutrons</i> , <i>X-rays</i> or <i>Electrons</i> . For electrons the only cost function options are Fobs-Fcalc or F2obs-F2calc for intensities obtained from precession images.
FST_CMD	Followed by commands for visualization programs FullProf Studio or VESTA . Example: FST_CMD <i>conn S O 0.0 1.8 ; conn Pb O 0.0 2.6</i> .
OPTIMIZE	Followed by the names and weight of the cost functions to be optimized E.g.: <i>bond-valence 0.15 FoFc-Powder 0.85</i>
Ref_Within	If this keyword is present, followed by a real number (<i>ref_within delta</i>), the program performs an optimization (local or global) of coordinates within a parallelepipedic box around the initial atom positions of size <i>delta</i> along each direction <i>x</i> , <i>y</i> , <i>z</i> . The size is given in angstroms. E.g.: <i>ref_within 0.2</i>
Local_Ref	If this keyword is present, followed by an integer, the program performs a local optimization instead of a global optimization E.g. <i>Local_Ref n_points</i> , where n_points is the number of random starting points. This is an alternative to simulated annealing (see below) when we want to obtain the local minimum closest to the initial configuration. This option should be used together with Ref_within and the n_points starting points of the algorithm are generated within the box defined in Ref_Within .
Local_Optimization	If this keyword is present after Optimize the program performs a local optimization if the value of the cost function is just below a threshold value provided by the user (see below)
SIM_ANN	This keyword starts a series of lines constituting the information needed for making a simulated annealing optimization.
CostNam	This keyword is followed by the username of the cost function. E.g. FoFc_Pow+BVS

TemParM	This keyword is followed by three real numbers, T_{ini} , anneal, num_temps representing the initial temperature, the annealing factor and the maximum number of temperatures for the simulation.
Algor_T	This keyword is followed by four integer numbers, <i>Nalgor</i> , <i>Nconf</i> , <i>nm_cycl</i> and <i>num_therm</i> representing the type of algorithm (0/1 for Corana algorithm. Other values: conventional (fixed step)), the number of configurations considered for each temperature (if <i>Nconf</i> > 1 parallel SAnn is performed), the maximum number of Monte Carlo cycles per temperature, the number of thermalization cycles before counting averages. And, finally, a real number <i>accept%</i> that tells to the program a convergence criterion: if the percentage of accepted configurations is lower than the given value, the program has converged and stop.
SeedVAL	This keyword is followed an integer value. If zero the seed of the random generator is taken according to the system clock. Otherwise the same sequence of random number is conserved from run to run.
Threshold	This keyword is followed a real number representing the value of the const function below which a local optimization is applied.
InitCON	This keyword tells to the program how to generate initial configuration. If the keyword is followed by RAN, the initial configuration is taken at random but respecting the symmetry constraints given in the initial coordinates. For instance if an atom is placed in a special position the fixed coordinates are not moved in the algorithm. In all other cases the initial configuration is that provided by the user in the list of atoms.

Examples of OPTIMIZE instructions

The weight factors in **OPTIMIZE** instructions are normalized to 1.0 inside the program.

Distance restraints combined with list of observed structure factors:

OPTIM	IIZE	dis-r	estr	1	
OPTIM	IIZE	Fobs-	Fcal	1.0	dis-restr 1.0 ang-restr 1.0
DFIX	3.196	520 0.	00000	Ni	Ni 3.545
DFIX	2.902	276 0.	00000	Ni	Fe ^{-1.554}
DFIX	2.067	756 0.	00000	Ni	01 2.455
DFIX	2.130)13 0.	00000	Ni	02
DFIX	2.042	270 0.	00000	Ni	04_4.554
DFIX	3.087	789 0.	00000	02	04 2.455
DFIX	2.808	303 0.	00000	02	04_4.554
AFIX	57.0)99	0.123	Fe	03 1.556 03 7.556
AFIX	55.6	518	0.068	Ρ	Li Li 3
AFIX	56.0	016	0.087	Ρ	Li Fe ⁻¹ .554
AFIX	50.8	353	0.084	Ρ	Fe 1.554 Li

The list of distances (or angles) for restraints may be provided inside the CFL file or in a separated file that is accessed by the keyword: **RESTR_FILE** followed by the name of the restraint file containing **DFIX** and/or **AFIX** instructions. If only distance restraints are provided we do not need intensity of reflections at all and all the corresponding parameters and keywords need not to be provided. A list of

angle and distance restraints in the appropriate format may be generated by using the program **Bond_STR** from the **FullProf Suite**.

OPTIMIZE dis-restr 2.0 bvs_coulomb 1.0 1.0 coordination 4.0

Notice that the cost function **bvs_coulomb** has two weight factors corresponding to the BVS and to the Coulomb potential. The charges of ions (provided in the **Atom** instructions) are needed for this kind of cost function.

When **coordination** cost function is to be optimized the program need a coordination instruction of the form:

COORDINATION n1 n2 n3 n4 . . . nt

Where the integer numbers $n1 n2 \dots up$ to the total number of atoms nt in the asymmetric unit are the expected coordination numbers. If some of them are zero, the restraint is not applied to the corresponding atom.

OPTIMIZE dis-restr 1.0 anti bump 1.0 Fobs-Fcalc 4.0

When **anti_bump** cost function is to be optimized the program need a series of Anti-Bump instructions that adopt the following form: *Damin Element1 Element2 distance n*, where *n* is the power exponent of the penalty function: $(d_{amin}/d)^n$. The instructions are written inside the CFL file as:

```
!Anti-Bump instructions
```

damin	La	La	3.6	2
damin	Mn	Mn	2.8	2
damin	Mn	La	3.2	2
damin	0	0	2.5	2
damin	La	0	2.2	2
damin	Mn	0	1.6	2

Powder profile intensities may be used for solving a crystal structure. In such a case two intensity files are needed provided with the keywords: **HKL-OBS** and **PROFILE-OBS**. The intensity files are those generated by **FullProf** after a Le Bail fit with output for Simulated Annealing (*ctrl*.int and profile intensities (*.spr).

```
OPTIMIZE Powder_Profile 1.0
Or
OPTIMIZE Powder_WProfile 1.0 dis-restr 1.0
```

In the FullProf distribution there is a subdirectory of the Examples directory containing files ready to run and test **GLOpSAnn**.