
Using FullProf  to analyze Time of Flight Neutron Powder Diffraction data  

 
Juan Rodríguez-Carvajal, Laboratoire Léon Brillouin (CEA-CNRS),  Dec. 2003 
(Draft)-dec. 2003 
 
Introduction 
 
A reorganization of the subroutines calculating the peak shape function and derivatives for time of flight neutron 
powder diffraction has been performed. The result of the new implementation is a better stability for the 
refinement of instrumental parameters. In this document we provide the detailed mathematical expressions of the 
peak shape functions used presently in FullProf . From the point of view of the input of the PCR file nothing has 
changed except the values of some parameters. The third function for TOF, convolution of the Ikeda-Carpenter 
function with a pseudo-Voigt, is now working thanks to the work performed by Laurent Chapon who wrote the 
corresponding subroutine.  
Another important aspect of the modifications performed recently in FullProf is the use of external files 
containing the instrumental resolution function (IRF). Most of the instrumental parameters can be read from an 
external IRF file and the corresponding values in the PCR file have to be set to zero. The refinable parameters of 
the PCR file are additive with respect to the instrumental values. After giving the mathematical expressions 
corresponding to the different functions we provide some examples with and without the use of IRF files.  
At present, only the TOF data that have been corrected from the incident spectrum can be safely analyzed with 
FullProf. The correction of the incident spectrum is included but not tested sufficiently. It is not recommended 
to use raw data, instead use one of the conversion programs existing in the spallation neutron source centers to 
get the appropriate files. The program can read some of the GSAS input files but not all formats (see manual and 
fp2k.inf for details). If the data of different detector banks are in a single file it suffices to give the same 
name for the data file of each pattern. This option works with some GSAS input files (INSTRM=12) and with X-
Y-Sigma files (INSTRM=14) as recently adopted at most ISIS instruments. 
 
 

Peak-shape functions for Neutron Time of Flight in FullProf . The cases NPROF=9, 10. 

 
The profile function  for TOF corresponds to the control variable NPROF=9, 10, 13. The peak shape in the 
first two cases (NPROF=9, 10) is the same but the TOF position of the Bragg peaks are calculated in different 
ways for the two functions. This peak-shape is the same as that corresponding to TOF profile function 4 in 
GSAS, except that the Gaussian and Lorentzian components of the Voigt functions have different models for 
anisotropic strain and size broadening. The third case will be treated in the next paragraph. The peak shape for 
NPROF=9, 10 is a convolution of a pseudo-Voigt function with a pair of back-to-back exponentials. If we take 
the origin of time (t) at the Bragg position of a particular peak we have: 
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The parameter α corresponds to the rising time constant and β to the decay constant. Both parameters have a 
dependency with the d-spacing (total time of flight). We will discuss this point later. The argument x corresponds 
to the shift in microseconds with respect to the Bragg position: x=Ti –Th. The result of the convolution is: 
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Where erfc is the complementary error function and E1 is the exponential integral with complex argument. The 
function Im corresponds to the imaginary component of its argument.  
The complementary error function and the exponential integral are defined, respectively, as: 
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The actual values
of σ G and γL are 
FullProf.  Gsize
of these two functions are performed using an approximated formula for the complementary 
de based  on that given in Numerical Recipes, ) and an algorithm based in continuous fractions 
l integral (based in code provided in Computation of Special Functions, by Shanjie Zhang and 
n Wiley and Sons Inc., 1996). The calculation of exponentials in the function of Panel 3 are 
timized partitions in multiplicative factors in order to avoid intermediate over-floats and 
sults. 

 the different functions in Panel 3 are: 

t function has a Gaussian and a Lorentzian components with the same FWHM, so that σ and H 
y: H2=γ2=8ln2 σ2. Both η and H are functions of the Gaussian and Lorentzian components of 
n (σ G and γL, see the Thompson-Cox-Hasting relations in the manual) that have the following 
d-spacing: 
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 of η and H (or σ) are calculated from σ G and γL by using the TCH relations. The coefficients 
called sig-0 ( 2

0σ ), sig-1 ( 2
1σ ), sig-2 ( 2

2σ ), gam-0 ( 0γ ), gam-1 ( 1γ ), and gam-2 ( 2γ ), within 
 is a Gaussian size parameter, DST2 is the contribution of the anisotropic strain, ζ is the 



Lorentzian strain fraction and F(SZ) represents a Lorentzian anisotropic size contribution. See the microstructure 
section of the manual for details. 
The difference between the functions NPROF=9 and NPROF=10 are related to the dependence of the decay and 
rise constants with d-spacing. For the function NPROF=9, the TOF corresponding to a Bragg peak of d-spacing 
dh is simply quadratic: 
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For the function NPROF=10, the 
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e of the above instrumental parameters and those written in the PCR file. 
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It must be remembered that the units of parameters entering in the expressions of the rise, α, and decay, β, time 
constants for NPROF=10 are reciprocal of those corresponding to the function NPROF=9. The rise and decay 
time constants, as defined in Panel 2, have units of reciprocal microseconds, so the constants 0α , 0β  have also 

the same units, however the constants  , , t
0α , t

0β , have units of microseconds. 
 

Peak-shape functions for Neutron Time of Flight in FullProf . The case NPROF=13. 

 
The third TOF peak shape function, NPROF=13, has been developed, according to the GSAS manual, by W.I.F. 
David and R.B. Von Dreele (unpublished) and incorporates the moderator pulse shape of S. Ikeda & J.M. 
Carpenter, Nuc. Inst. and Meth., A239, 1985, 536-544. The calculation method in FullProf is different of that 
used in GSAS but the results should in principle be the same. We use similar algorithms to those used for 
calculating the previous function (NPROF=9, 10). 
The Ikeda-Carpenter function is composed of a convolution of two functions; the first represents the slowing 
down spectrum from the moderator and the second is a mixing of a δ-function and an exponential decay:  
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The two parts describe the leakage of fast and slow neutrons from the moderator and have fast and slow decay 
constants, α and β, respectively, which are related to the moderator material and dimensions. The mixing 
coefficient, R, is related to the moderator temperature. Both functions are defined only for t > 0; for t < 0 both 
are zero. The result of the convolution is the Ikeda-Carpenter function.  
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The direct convolution of the above functions is analytical and gives the result: 
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Where the symbol [ ] around the exponential function within the integral symbol means that we are taking an 
exponential function e )t− for τ < t , and zero for τ > t and for τ < 0. This explains the change of integration 
limits. 
 
The profile function NPROF=13 corresponds to the convolution of the above function with a pseudo-Voigt using 
the TCH approximation to the Voigt function. Using the same simplification for the Ikeda-Carpenter function as 
that used in GSAS, we have: 
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The convolution of the Ik function with the pseudo-Voigt function is slightly more complicated than the 
functions considered in previous section. However, there are no major changes in the mathematics and the same 
special functions (complementary error function and exponential integral function) are used in the program.  
 
Definition of the parameters used in the function (Laurent Chapon): Here the variable called x in previous 
functions has been replaced by dt= Ti –Th. In the present paragraph the variable x has another meaning as 
summarized in the following panels: 
Panels 13: 
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Gaussian part of the function ΩG (Panel 14): 
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Lorentzian part of the function ΩL (Panel 15): 
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The complete function is then obtained as (Panel 16): 
 { }LGN Ω+Ω−=Ω .).1( ηη 
 
The profile parameters concerning the Lorentzian and Gaussian broadening are the same as those in the previous 
functions. The dependence of the fast and slow decay constants and the mixing coefficient R with wavelength is 
given by: 
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If an IRF file is provided to treat TOF data (Res = 5, 6) the values of the major part of parameters are added to 
those given in the PCR file. Only fixed parameters, like the 2θ angle of a detector bank (called 2ThetaBank), 
will substitute the value provided in the PCR file. An example of IRF file that is valid for NPROF=9 (for 
NPROF=13 the place of kappa is that of  beta1) is given below: 

 
\The
simu
step
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Ano
IRF of TOF of GPPD at IPNS (Argonne)(from NBS-Si) ireso: 5
! Test of the IRF for TOF in FullProf. RES=5 
! This is a comment 
# This is also a comment 
# IRF valid for profile function number 9 in FullProf 
!       Tof-min(us)    step      Tof-max(us) 
TOFRG   2500.0000      5.0000    29995.0000 
!      Dtt1_i      Dtt2_i 
D2TOF  7476.910   -1.040 
!     TOF-TWOTH of the bank in degrees 
TWOTH    144.845 
!        Sig-2_i     Sig-1_i      Sig-0_i 
SIGMA      0.000      31.973        0.000 
!        Gam-2_i     Gam-1_i      Gam-0_i 
GAMMA      0.000       2.513        0.000 
!         alph0_i     beta0_i     alph1_i     beta1_i 
ALFBE     0.00000    0.040675    0.584103    0.011220
 first line of this file is always considered as a title. The keyword  TOFRG is only for informative or for 
lation purposes. The TOF at each channel is read with the input data and it is not needed to have a fixed 

. The keyword  TWOTH fixes the value of 2ThetaBank to the given numerical value (twoth-given). 
 corresponding value in the PCR file is replaced with twoth-given. 

 keyword  D2TOF introduces two instrumental parameters that do not substitute those given in the PCR file. 
ad the effective parameter used within FullProf  to calculate the TOF for a particular d-spacing is: 

 
TOF = ZERO + (dtt1+dtt1_i) d + (dtt2+ dtt2_i) d2   

re dtt1 and dtt2 are refinable parameters given within the PCR file. So, if the IRF parameters are good 
gh the values to be put in the PCR file are 0! Notice that the global zero-shift is not accepted as an 
umental parameter. The user may refine it directly. 
 same procedure is used for the rest of instrumental parameters. For instance the Gaussian variance is 
ulated as 

iance=(Sig-2_i+sig-2+ Gsize)d4 +(Sig-1_i+sig-1+ XST2)d2+(Sig-0_i+sig-0) 

re XST2 represents the anisotropic strain contribution (see Panel 6). The rest of profile parameters follow the 
e pattern as that of sigma and dtt-values. 

ther example of IRF, appropriate for NPROF=10, is the following: 

  IRF of GPPD at IPNS (Argonne)  Res: 6
! Test of the IRF for TOF in FullProf. RES=6 Jason Hodges' TOF vs d 
! This is a comment 
# This is also a comment 
# IRF valid for profile function number 10 in Fullprof 
!       Tof-min(us)    step      Tof-max(us) 
TOFRG   2500.0000     10.0000    30000.0000 
!        Dtt1_i     Unused 
D2TOF  7478.332       0.0  
!        Dtt1t_i    Dtt2t_i  x-cross_i  Width_i 
D2TOT  7459.7754    19.9522    1.2640    2.3630 
!     TOF-TWOTH of the bank 
TWOTH    144.845 
!       Sig-2_i     Sig-1_i     Sig-0_i 
SIGMA     0.000      32.000       0.000 
!       Gam-2_i     Gam-1_i     Gam-0_i 
GAMMA     0.000       0.000       0.000 
!        alph0_i     beta0_i     alph1_i     beta1_i 
ALFBE   1.470500    2.483000   -0.853300    9.298000 
!       alph0t_i    beta0t_i    alph1t_i    beta1t_i 
ALFBT   7.387000   27.180000    4.012400    4.733000 
 



 
 
The first line of this file is always considered as a title and the rest of keywords provide parameters that are 
additive with respect to those given in the PCR file. 
 
In the near future, new values of the variable RES will be introduced in order to manage complicated 
dependence of the peak shape instrumental parameters. In principle a look-up table for interpolating the peak 
shape parameters close to a particular TOF value will be introduced in order to handle the most complex 
situations. 
 



 

Examples of simple Neutron Time of Flight refinements using FullProf 

 
In the examples subdirectory of the FullProf  suite directory there are several cases using refinement of TOF 
data coming from different sources.  
The best way to start the data treatment of a TOF neutron powder pattern is by modifying a previous PCR file 
that works with a standard sample passed in the same instrument. It is still better to get an IRF file appropriate to 
the instrument on which the measurements has been performed. If this is the case, the user may take advantage 
of the GUI EdPCR that allows importing an external CIF/Shelx/Ascii file containing the structural parameters 

and an IRF file for profile parameters. The number of clicks for doing this task is only 4. First start EdPCR from 
WinPLOTR or from a DOS console, the aspect is that of the figure 1. After selecting Simple Calculations from 
the Templates menu, the following windows is opened: 

 
 
Figure 1 : Aspect of EdPCR when pointing with the mouse on the menu 
Templates/Simple calculations. 

After selecting 
by browsing hi
window in Figu
Figure 2: Simple calculation template window. 

the type of job (T.O.F.) and importing a CIF file (for instance), the user should select an IRF file 
s(her) directory tree. Clicking the OK button terminates the procedure and one comes back to the 
re 1. Clicking on the save button a PCR file is automatically created. FullProf can now be run to 



calculate the diffraction pattern according to the values for instrumental parameters given in the IRF file and the 
crystal structure imported from the CIF file. 
The user can create (modify) his(her) own IRF file by selecting, from the Templates menu, the Instrumental 
resolution file item. This open a windows like that of Figure 3: 
 

 Figure 3: Template to create/modify an IRF file. Here a file has been loaded and 
all the items adequate to the profile function NPROF=10 are accessible to be 
modified 

 
An example that illustrates another interesting feature recently introduced in FullProf (the treatment of special 
reflections. See fp2k.inf) is the case of data collected in OSIRIS on the compound Na2Ca3Al2F14 (NAC for 
short: nac-osiris.dat) . The  files nac-osiris.pcr and nac-osirisn.pcr  refine the structure of 
NAC considering the profile function NPROF=9. In the second case shifts of individual reflections are allowed 
improving considerably the fit (see figure 4.  
The second phase is the impurity CaF2 that was present in the sample. The third phase is Cd coming from the 
sample holder. This phase is treated using JBT=3, the relative intensities are fixed and read from the input files 
nac-osiris3.hkl and nac-osirisn3.hkl  because the texture prevents a normal Rietveld treatment by 
calculating the structure factors. 
 
Other cases, treating TOF data, exist  in the “examples” subdirectory of the FullProf suite directory. A 
provisional list is the following (the data file name is the same as that of the PCR file): 
 
arg_si.pcr :   Corrected TOF data of Si from SEPD at Argonne    
cecoal.pcr  and cecual.pcr:   TOF data from POLARIS at ISIS – Intermetallic compounds  (O. Moze) 
CeO2-PEARL.pcr :  CeO2 data collected at PEARL (ISIS)  (Bill Marshall) 
lamn_pol.pcr: LaMnO3 data collected at RT on POLARIS     
nac-osiris.pcr  and  nac-osirisn.pcr:  NAC data collected on OSIRIS. 
hrpd.pcr :  CeO2 (Round Robin) data collected on HRPD (ISIS). 
 
This list will be updated progressively. 



 
 

 
Figure 4: Refinement of the crystal structure of the standard compound Na2Ca3Al2F14 using 
OSIRIS (ISIS) data. Here the profile function NPROF=9 has been used, so a quadratic 
relation exists between the TOF and d-spacing. Notice that some high-d peaks are shifted in 
opposite directions with respect to the position calculated with the cell parameters. 

 
Figure 5: As in Figure 4, but an independent shift has been refined for few reflections 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


