Snapshots of a Quantum Bouncing Ball realized with the qBounce gravity spectrometer

Martin Thalhammer

AYNN 17.05.2016 JLL-Grenoble

DOKTORATSKOLLEG PI

Outline

Motivation

Theory

Experimental results

Conclusion

Motivation

qBounce

unique quantum mechanical experiment to explore gravity at short distances (µm)

contribute to questions on Dark Matter, Dark Energy, ← **T.Jenke et al., PRL,112 (2014)** Fifth Forces, Large extra dimensions, Torsion, WEP, ...

Einstein equivalence principle (EEP)

History of EP: Aristotle, Galileo, Newton

 $m_i a = m_g g$ **General Relativity and EEP** observer can not distinguish between an accelerated reference frame and an reference frame in an gravitational field

UFF or WEP

Weak Equivalence Principle $\eta = (0.8 \pm 1.8) \times 10^{-13}$ Eötvösh parameter, classical test

LLI

Local Lorentz invariance tested to a level 10^{-16} S. Herrmann et al. PRL,95 (2005)

LPI Local position invariance tested to a level 10⁻⁵,10⁻⁶ R. Vessot et al. PRL,45 (1980) T. Fortier et al. PRL98, (2007)

Quantum mechanical tests of EEP

COW-Experiment

gravitationally induced phase is about 0.8% lower than expected value K.S.Litrell, B.E.Allman and S.A.Werner, 1997

Köster

$$\gamma = rac{m^2}{m_i m_g} rac{g_{loc}}{g_n}$$
 $1 - \gamma = (1.1 \pm 1.7) imes 10^{-4}$

J. Schmiedmayer, NIM A 284, (1989) 59

R.Colella, A,W.Overhauser and S.A. Werner (COW), 1975

FIG. 1. Principle of the neutron gravity refractometer. K_1, \ldots, K_5 : slits and stopper for the neutron beam L.Koester, 1976

Test object neutron

Ultra-cold neutrons:

kin. energy $< 300 \text{ neV} \Leftrightarrow \text{velocity} \le 8m/s$ total reflection at any angle of incidence

Gravitationally bound quantum states

 E_0

Schrödinger equation

$$\begin{pmatrix} -\frac{\hbar^2}{2m_i}\frac{\partial^2}{\partial z^2} + m_g gz \end{pmatrix} \phi_n(z) = E_n \phi_n(z)$$

b.c. $\phi_n(0) = 0$
 $\phi_n(z) = a_n Ai \left(\frac{z}{z_0} - \frac{E_n}{E_0}\right)$
 $z_0 = \sqrt[3]{\frac{\hbar^2}{2m_i m_g g}}, E_0 = m_g gz_0, t_0 = \frac{\hbar}{E_0}$

Gravitationally bound quantum states

additional upper mirror:

b.c.
$$\psi_n(0) = 0$$
 $\psi_n(l) = 0$
 $\psi_n(z) = c_1 Ai(\frac{z}{z_0} - \frac{E_n}{E_0}) + c_2 Bi(\frac{z}{z_0} - \frac{E_n}{E_0})$

Gravity Resonance Spectroscopy

Rabi-experiment

 $\Delta E_{pq} = h \cdot \nu_{pq}$

 $\begin{array}{l} |1>\rightarrow|3>:465~\mathrm{Hz} \\ |1>\rightarrow|4>:648~\mathrm{Hz} \end{array}$

G.Cronenberg, Diss., 2015

Gravity Resonance Spectroscopy

Results GRS measurement 2012 PF2/UCN ILL Gunther Cronenberg et. al

Quantum Bouncing Ball

Time evolution movie

Movie

Experimental setup

Track detector

$$n + {}^{10}B \rightarrow \alpha + {}^{7}Li^* \rightarrow \alpha + {}^{7}Li^{3+} + \gamma$$
(94%)
$$n + {}^{10}B \rightarrow \alpha + {}^{7}Li^{3+}$$
(6%)

D. Stadler, Diplomarbeit, 2009

Roughness $r_z = 3 \ \mu m$

 $|\Psi_{I}(z, t_{1})|^{2} = \sum_{n} |C_{n}(t_{1})|^{2} \cdot |\psi_{n}(z)|^{2}$ $|c_{1}|^{2} = 45\%$ $|c_{2}|^{2} = 36\%$ $|c_{3}|^{2} = 18\%$ preliminary

51 mm

@ 30 µm step

@ 20 µm step

Preliminary results

$$z_0 = \sqrt[3]{\frac{\hbar^2}{2m_i m_g g}}, \quad E_0 = m_g g z_0$$
$$m_g = \frac{E_0}{g z_0}, \quad m_i = \frac{\hbar^2}{2z_0^2 E_0}$$
$$\frac{m_g}{m_i} - 1 = \text{insert final value}$$

Conclusion

- qbounce gravity tests at short distances
- WEP, tests of WEP
- Gravity Resonance Spectroscopy
- Quantum Bouncing Ball
- first precision measurement of a Quantum Bouncing Ball
- preliminary results

Team

T. Putz

M. Stöger

P. Geltenbort Thank you!

H. Abele

H. Filter