Development of new methods to study molecular dynamics with neutron scattering

Dominik Zeller1,2,3, M. Johnson2, V. Garcia Sakai3, J. Peters1,2

1Université Grenoble Alpes, LiPhy
2Institut Laue Langevin
3ISIS Facility

Seminar: All you need is neutrons, April 5, 2016
Motivation

Why incoherent neutron scattering with bio-molecules?

- see atomic motions
 ⇒ information about internal dynamics
- high scattering cross section of H ($\sigma_{inc} \approx 80$ barn)
 ⇒ $\approx 50\%$ of biological sample & homogenously distributed
- high contrast in comparison to D ($\sigma_{inc} \approx 2$ barn)
- neutron scattering \Rightarrow no destruction of bio. samples

\Rightarrow Elastic (EINS) and quasi-elastic (QENS) incoherent neutron measurements of bio-molecules
Motivation

- Difference between myoglobin powder which is hydrated and in trehalose environment

- Mean force constant
 \[\langle k \rangle = k_B \left(\frac{d\langle 3x^2 \rangle}{dT} \right)^{-1} \]
 \[\rightarrow \] measure of resilience

\[\langle 3x^2 \rangle : \text{harmonic mean square fluctuation from equilibrium} \]

Zaccai, Science, 2000
Neutron scattering - structure factor $S(Q, \omega)$

$\left(\frac{\sigma_{\text{total}}}{d\Omega dE} \right) = \frac{1}{4\pi} \frac{k}{k_0} N \left(\sigma_{\text{coh}} S_{\text{coh}}(Q, \omega) + \sigma_{\text{inc}} S_{\text{inc}}(Q, \omega) \right)$

$S_{\text{coh}}(Q, \omega) = \frac{1}{N} \frac{1}{2\pi\hbar} \sum_{j,j'} \int_{-\infty}^{\infty} \langle e^{-iQR_{j'}(0)} e^{iQR_j(t)} \rangle e^{-i\omega t}$

$S_{\text{inc}}(Q, \omega) = \frac{1}{N} \frac{1}{2\pi\hbar} \sum_{j} \int_{-\infty}^{\infty} \langle e^{-iQR_{j}(0)} e^{iQR_j(t)} \rangle e^{-i\omega t}$

- coherent: measure of structure
- incoherent: measure of dynamics

σ: scattering cross section
$R_j(t)$: location of atom j at time t
Q: $k_0 - k$: momentum transfer (in units of \hbar)
N: # atoms
$\hbar\omega$: energy transfer
Incoherent neutron scattering

\[S_{inc}(Q, \omega) = S_{inc}^{el}(Q) \delta(\omega) + S_{inc}^{in}(Q, \omega) \]
Motivation

- Gaussian approximation (Rahman et al., *Phys. Rev.*, 1962) for EINS only uses low Q values

\[I_{\text{inc}} \propto \frac{I}{I_0} \propto \text{EISF} \propto \exp \left(-\frac{1}{6} Q^2 \langle r^2 \rangle \right), \text{ for } Q_{\text{max}}^2 \langle r^2 \rangle \leq 2 \]

\[\langle r^2 \rangle : \text{mean square fluctuation} \]
• Gaussian approximation (Rahman et al., Phys. Rev., 1962) for EINS only uses low Q values

\[l_{\text{inc}} \propto \frac{l}{l_0} \propto \text{EISF} \propto \exp \left(-\frac{1}{6} Q^2 \langle r^2 \rangle \right), \text{ for } Q^2_{\text{max}} \langle r^2 \rangle \leq 2 \]

• many data points are neglected for evaluation

⇒ extract more information by using all obtained information

\(\langle r^2 \rangle \): mean square fluctuation
• which Q range should be fitted (e.g. bound water at low Q)
Aim

• which Q range should be fitted (e.g. bound water at low Q)

IN16 Acetylcholinesterase (AChE)

AChE data measured and published by J. Peters et al., 2012, M. Trapp et al., 2012 and M. Trovaslet et al., 2013
• which Q range should be fitted (e.g. bound water at low Q)

IN16 Acetylcholinesterase (AChE)

AChE data measured and published by J. Peters et al., 2012, M. Trapp et al., 2012 and M. Trovaslet et al., 2013
Aim

- which Q range should be fitted (e.g. bound water at low Q)

IN16 Acetylcholinesterase (AChE)

AChE data measured and published by J. Peters et al., 2012, M. Trapp et al., 2012 and M.Trovaslet et al., 2013
Aim

- which Q range should be fitted (e.g. bound water at low Q)

IN16 Acetylcholinesterase (AChE)

AChE data measured and published by J. Peters et al., 2012, M. Trapp et al., 2012 and M.Trovaslet et al., 2013
Aim

- which Q range should be fitted (e.g. bound water at low Q)

IN16 Acetylcholinesterase (AChE)

AChE data measured and published by J. Peters et al., 2012, M. Trapp et al., 2012 and M. Trovaslet et al., 2013
Aim

- which Q range should be fitted (e.g. bound water at low Q)
- can we characterize Q ranges where certain effects are more pronounced
- what do we actually see at high Q values
Aim

- which Q range should be fitted (e.g. bound water at low Q)
- can we characterize Q ranges where certain effects are more pronounced
- what do we actually see at high Q values

⇒ need for

- different samples
- conditions (hydration level, pressure)
- different instruments
- simulations
Different models - Elastic Incoherent Neutron Scattering

1. Heterogeneity

 → dominant non-Gaussian contribution to the EISF due to motional heterogeneity and "true" non-Gaussian effects are small
Different models - Elastic Incoherent Neutron Scattering

1. Heterogeneity
 → dominant non-Gaussian contribution to the EISF due to motional heterogeneity and "true" non-Gaussian effects are small
 → Gaussian approximation for individual atoms, but representing the distribution of atomic position fluctuations by a gamma distribution
Different models - **Elastic Incoherent Neutron Scattering**

1. Heterogeneity

 \[\text{dominant non-Gaussian contribution to the EISF due to motional heterogeneity and ”true” non-Gaussian effects are small} \]

 \[\text{Gaussian approximation for individual atoms, but representing the distribution of atomic position fluctuations by a gamma distribution} \]

 \[\text{correction term to describe heterogeneity} \]
 \[\sigma^2 = \frac{1}{N} \sum_{\alpha=1}^{N} (\langle \Delta r_{\alpha}^2 \rangle - \langle \Delta^2 \rangle)^2 \]
Different models - Elastic Incoherent Neutron Scattering

1. Heterogeneity

 \[\Rightarrow \text{dominant non-Gaussian contribution to the EISF due to motional heterogeneity and "true" non-Gaussian effects are small} \]

 \[\Rightarrow \text{Gaussian approximation for individual atoms, but representing the distribution of atomic position fluctuations by a gamma distribution} \]

 \[\Rightarrow \text{\(q^4\sigma^2\) correction term to describe heterogeneity} \]
 \[\left(\sigma^2 = \frac{1}{N} \sum_{\alpha=1}^{N} (\langle \Delta r_{\alpha}^2 \rangle - \langle \Delta r^2 \rangle)^2 \right) \]
 \[\Rightarrow \text{using entire Q range and solving problem of heterogeneity} \]
2. No isotropy

 → solving problem of different motions on different directions ($\langle u^2 \rangle \neq 1/3(\langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle)$)
Different models - Elastic Incoherent Neutron Scattering

2. No isotropy

 → solving problem of different motions on different directions
 \[\langle u^2 \rangle \neq 1/3(\langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle) \]

3. Long-Time Mean Square Displacements

 → solving problem of instrument resolution
Different fitting models

- Gaussian approximation:
 \[\propto \exp\left(-\frac{1}{6} Q^2 \langle r \rangle^2 \right) \]

- Peters and Kneller, 2012:
 \[\propto \frac{1}{\left(1 + \frac{Q^2 \langle r \rangle^2}{\beta} \right)^\beta} \]

- Yi et al., 2012:
 \[\propto \exp\left(-\frac{1}{6} Q^2 \langle r \rangle^2 \right) \left(1 + \frac{Q^4}{72} \sigma^2 \right) \]
Example - AChE IN6, 50 μeV $\rightarrow t_{obs} \approx 20$ ps

Fits:
Example - AChE IN6, 50 μeV \rightarrow $t_{obs} \approx 20$ ps

Fits:

MSD:
Example - AChE IN13, $8 \mu eV \rightarrow t_{obs} \approx 100 \text{ ps}$

Fits:
Example - AChE IN13, $8 \mu \text{eV} \rightarrow t_{\text{obs}} \approx 100 \text{ ps}$

Fits:

MSD:
Example - AChE IN13, $8 \mu eV \rightarrow t_{obs} \approx 100 \text{ ps}$

Fits:

MSD:
Example - AChE IN16, $0.9 \mu eV \rightarrow t_{obs} \approx 1 \text{ ns}$

Fits:
Example - AChE IN16, 0.9 μeV $\rightarrow t_{\text{obs}} \approx 1$ ns

Fits:

MSD:
Example - AChE IN16, 0.9 μeV \rightarrow $t_{obs} \approx 1$ ns

Fits:

Zoom 300K:

MSD:
Example - AChE IN16, 0.9 μeV $\rightarrow t_{obs} \approx 1$ ns

Fits:

Zoom 300K:

MSD:
Example - AChE IN16, 0.9 μeV $\rightarrow t_{\text{obs}} \approx 1$ ns

Fits:

MSD:
Example - AChE IN16, 0.9 \(\mu \text{eV} \rightarrow t_{\text{obs}} \approx 1 \text{ ns} \)

Fits:

MSD:
Problems with experimental data:

- Bragg peak of surrounding water, sample holder (coherent scattering)
Problems

Problems with experimental data:

- Bragg peak of surrounding water, sample holder (coherent scattering)
- QENS offset for elastic peak (EINS)
Problems

Problems with experimental data:

- Bragg peak of surrounding water, sample holder (coherent scattering)
- QENS offset for elastic peak (EINS)
- Effects of normalization, corrections
- Multi-scattering effects at low Q values
Problems

Problems with experimental data:

- Bragg peak of surrounding water, sample holder (coherent scattering)
- QENS offset for elastic peak (EINS)
- effects of normalization, corrections
- Multi-scattering effects at low Q values

Problems with models:

- stable fitting routine
- distinguish between fitting artefacts and real behaviour

⇒ comparison to simulations are needed
Outlook

- Further investigation of AChE → simulations
- "Complete" study of α-lactalbumin (4 instruments, Simulations, diff. hydration)
- gathering data of already measured system, e.g. β-lactoglobulin
- investigation of other small protein systems, e.g. insulin
 ⇒ Developing new methods to characterize data and populate nDDB (neutron Dynamics Data Bank\(^1\))

\(^{1}\)Rusevich et al., *Eur. Phys. J. E*, 36, 80, 2013