Magnetoelastic effects in frustrated magnets Investigation of $LiGa_x In_{1-x}Cr_4O_8$ "breathing" pyrochlores

Rafal Wawrzynczak

Supervisors: Martin Böhm Tom Fennell Michel Kenzelmann Gøran Nilsen

November 10, 2015

э

・ロット (雪) () () () ()

Table of contents

"Breathing" pyrochlores

Techniques Powder diffraction

 $LiInCr_4O_8$

 $LiGaCr_4O_8$

 $LiGa_{0.95}In_{0.05}Cr_4O_8$

Future perspectives

Pyrochlore lattice

Pyrochlore lattice composed of corner-sharing tetrahedra formed by cations.

Most important examples of compounds realizing pyrochlore lattice are:

- pyrochlores A₂B₂X₇, where A and B sites form the tetrahedra
- spinels AB₂X₄, where B site displays a pyrochlore lattice

"Breathing" pyrochlore

LiGa_xIn_{1-x}Cr₄O₈(spinel) antiferromagnetic exchange interaction between Cr³⁺ spins($S = \frac{3}{2}$) placed on the corners of tetrahedra. A site

populated by Li⁺, Ga³⁺ or In^{3+} cations.

Okamoto et al., 2013 Nilsen et al., 2015

r'_{Cr-Cr}

(a)

Cations are placed alternatively to minimize electrostatic energy.

"Breathing" pyrochlore

Exchange interactions between Cr^{3+} cations are very sensitive to the distance between the ions.

Composition	r'/r	$B_f = J'/J$
LiGaCr ₄ O ₈	1.03	0.6
LiInCr ₄ O ₈	1.05	0.1

Okamoto et al., 2013 Nilsen et al., 2015

FOR SCIENCE

Cations are placed alternatively to minimize electrostatic energy.

Our main objectives are to determine:

- crystalline structure
- magnetic structure
- structural and magnetic phase transitions
- role of spin-lattice coupling

in $LiGa_x In_{1-x} Cr_4 O_8$ "breathing" pyrochlores.

A D F A B F A B F A B F

Powder diffraction(CW) HRPT(PSI)

Bragg's condition:

 $\lambda = 2d_{hkl}\sin\theta$

Figure : Source: [1].

Figure : Layout of HRPT diffractometer at PSI. Source: [2].

Powder diffraction(CW) D20(ILL)

Bragg's condition:

$$\lambda = 2d_{hkl}\sin\theta$$

Figure : Source: [1].

Figure : Layout of D20 diffractometer at ILL. Source: [3].

<ロト <回ト < 注ト < 注ト

э

Powder diffraction(TOF) WISH(ISIS)

Bragg's condition:

Powder diffractometry

Constant wavelength vs time-of-flight

Constant wavelength

- peaks are simpler to model
- incident beam is better characterized
- smipler data storage and reduction
- straightforward absorption and extinction correction
- fine tuning of the resolutionduring the experiment

OR SCIENCE

Time-of-flight

- whole incoming beam spectrum is utilized
- data are collected to large Q-values(small d-spacings)
- very high resolution can be achieved by long flight paths
- resolution is constant across whole pattern
- possibility of reducing parasitic scattering from sample environment

A D F A B F A B F A B F

Powder diffractometry

Constant wavelength vs time-of-flight - asymmetry

Constant wavelength

Figure : Asymmetry of Bragg peaks in CW powder diffraction. Source: [1].

FO

Figure : Shape of the peaks in TOF powder diffraction pattern.

$$FWHM^{2} = U \tan^{2} \theta + V \tan \theta + W \quad \frac{\Delta d}{d} = \left[\Delta \theta^{2} \cot^{2} \theta + \frac{\Delta t^{2}}{t^{2}} + \frac{\Delta L^{2}}{L^{2}} \right]$$

Time-of-flight

Previous results

Magnetic susceptibility and heat capacity

LiInCr₄O₈:

- rapid decrease of χ above 65 K - opening of a spin gap
- energy gap estimated as close to 4.9 meV
- \blacktriangleright structural phase transition at \sim 16 K
- \blacktriangleright magnetic phase transition at \sim 14 K

Okamoto et al., 2013

Previous results

LiInCr₄O₈:

- 1/T₁ suggest a singlet ground state with a gap of 2.7 meV
- second order AFM transition at 13 K preceded by structural transition releasing frustration

Tanaka et al., 2014

HRPT - PSI(20-24/07/15)LilnCr₄O₈

イロト 不得 ト イヨト イヨト 三日

HRPT - PSI(20-24/07/15)LilnCr₄O₈

HRPT, LiInCr4O8, corefinement 1.886A 1.494A 2K normalized CELL: 8.40470 8.40470 8.40470 90.0000 90.0000 90.00

HRPT - PSI(20-24/07/15)LilnCr₄O₈

Figure : Temperature dependence of a phase fractions retrieved from Rietveld refinement.

D20 - ILL(28-29/07/15) LilnCr₄O₈

NEUTRONS

FOR SCIENCE

Previous results

Magnetic susceptibility and heat capacity

LiGaCr₄O₈:

- \blacktriangleright broad peak at ≈ 45 K -development of AFM short range order
- \blacktriangleright steep decrease at \approx 14 K $_{-} long$ range order sets in
- sharp peak in heat capacity at 13.8 K indicating structural phase transition

Okamoto et al., 2013

Previous results

LiGaCr₄O₈:

- first order AFM transition
- in the vicinity of tricritical point

HRPT - PSI(20-24/07/15)LiGaCr₄O₈

HRPT - PSI(20-24/07/15)LiGaCr₄O₈

HRPT, LiInCr4O8, corefinement 1.886A 1.494A 2K normalized CELL: 8.40470 8.40470 8.40470 90.0000 90.000 90.00

D20 - ILL(28-29/07/15) LiGaCr₄O₈

Figure : Temperature dependence of low-angle features from pattern gathered with $\lambda = 2.41$ Å. Two peaks were indexed as corresponding to (1/8,0,0) *k*-vector.

UNI BASEL

MS BEAMLINE - PSI(27-29/10/15)LiGaCr₄O₈

Previous results

$\label{eq:LiGa0.95} LiGa_{0.95} In_{0.05} Cr_4 O_8:$

 second order AFM transition

Tanaka et al., not published.

WISH - ISIS(11-12/10/15) $LiGa_{0.95}In_{0.05}Cr_4O_8$

MS BEAMLINE - PSI(27-29/10/15)

 $LiGa_{0.95} In_{0.05} Cr_4 O_8$

- determine ordered low T magnetic structure in LiGaCr₄O₈
- AC magnetic susceptibility measurements on LiGa_{0.95}In_{0.05}Cr₄O₈ sample to confirm presence of spin glass phase
- perform single crystal experiments as soon as such a samples will be available

[1] E.H. Kisi, C.J. Howard, *Applications of neutron powder diffraction*, Oxford University Press, Oxford, 2008.

[2] http://www.psi.ch/

[3] http://www.ill.eu/

Magnetoelastic effects in frustrated magnets Investigation of $LiGa_x In_{1-x}Cr_4O_8$ "breathing" pyrochlores

Rafal Wawrzynczak

Supervisors: Martin Böhm Tom Fennell Michel Kenzelmann Gøran Nilsen

November 10, 2015

э

・ロット (雪) () () () ()