Study of the dynamics in superfluid ⁴He by inelastic neutron scattering

Ketty Beauvois

3rd year PhD student - ILL (TOF group), Institut Néel - CNRS (ULT group) and UGA

<u>ILL Supervisors</u> Björn Fåk (ToF group) Jacques Ollivier (ToF group)

<u>CNRS Supervisor</u> Henri Godfrin (ULT group)

Ketty Beauvois, "All you need is neutrons" seminar, November 10th 2015

Ingredients

Neutron source ILL reactor

Superfluid ⁴He

Very-low temperature Dilution refrigerator

I. Liquid ⁴He

- Properties
- Motivation
- Dispersion relation in superfluid ⁴He

II. Experimental results about the dynamics in superfluid ⁴He

- Inelastic neutron scattering
- Comparison of the experimental data with the theoretical data
- The experimental multiple scattering issue

 $2\pi\hbar^2$

Quantum fluid

• de Broglie wavelength $\lambda_T =$

 \rightarrow order of magnitude of the interatomic distances at low T

Motivation

Why is it interesting to study liquid helium ?

Model system to study interacting particles in condensed matter physics

How to study the interaction in liquid helium ?

Fundamental description

- Ground state
- Dynamic response to a perturbation

Free ⁴He atom excitations

Single collective excitations in superfluid ⁴He

- Phonon
 Density collective mode
- View of a phonon in a crystal:

Single collective excitations in superfluid ⁴He

Single collective excitations in superfluid ⁴He

Is there life elsewhere ?

Contour map of the multi phonon excitations at T = 500 mK, P = 20 bar K.H. Andersen et al. *J. Phys. Condens. Matter* **6**, 821 (1994) M. R. Gibbs et al. *J. Phys. Condens. Matter* **11**, 603 (1999)

Energy range of ours collective excitations ~ meV

Time of Flight Spectrometer

IN5: A high precision Time of Flight spectrometer

IN5: A high precision Time of Flight spectrometer

IN5: A high precision Time of Flight spectrometer

$$S(Q,\omega) = S_1(Q,\omega) + S_M(Q,\omega)$$

Results: What is happening beyond the phonon-roton curve

Inelastic neutron scattering experiment

14.91 7 Energy transfer ω (meV) 1.8 1.5 (Q,ω) (meV⁻¹) 0.5 0.12 0.08 0.075 0.5 Ś 0.032 0.025 0 0.5 1.5 2 2.5 0 Wavevector transfer Q ($Å^{-1}$)

Dynamic Many Body Theory (DMBT)

Takes into account dynamic correlations

C. E. Campbell, E. Krotscheck, T. Lichtenegger *Phys. Rev. B.* **91**, 184510 (2015)

K. Beauvois, C. E. Campbell, B. Fåk, H. Godfrin, E. Krotscheck, H. J. Lauter, T. Lichtenegger, J. Ollivier, A. Sultan. Superfluid 4He dynamics beyond quasiparticle excitations. *In preparation*.

Mode-mode coupling

Ghost Phonon
 Phonon-Phonon coupling

Mode-mode coupling

• Roton-Roton coupling

Mode-mode coupling

• Maxon-Roton coupling

$S(Q,\omega)$ at selected constant Q

Ghost phonon

Multiple scattering

Multiple scattering

Multiple scattering

Monte Carlo simulations Method

- McStas Instrument Template TOF (E.Farhi) Sample - Component Isotropic_Sqw (E.Farhi)
- MScat (J. R. D. Copley (1974 and 1986))

Input

- S(Q,ω)
- $\sigma_{coh} = 1.34 \text{ b}$
- $\sigma_{inc} = 0$
- $\sigma_{abs} \simeq 0$
- Number density = 2.18×10²² Atoms/cm³
- $\lambda_i = 4.8 \text{ Å} (E_i=3.55)$
- T = 2.7 K (only Stokes scattering)
- Dimensions of the cell
- Parameters for the source and the detectors

Multi-excitations are only 1 % of the total intensity

Multiple scatterings

Flat incoherent Sample

Remark Ratio multiple scattering intensity / total intensity - 2.45 % for a 3D cell - 0.13 % for a 2D cell (0.01×0.75 cm)

0.5

0.0

-100

-50

0

Angle (°)

50

100

Multiple scattering

Results

- Multiple scattering non negligible at low Q
- No multiple scattering in the ghost phonon region
- McStas problem at low Q but similar multiple scattering shapes with McStas and Mscat.
- Ratio multiple scattering intensity / total intensity = 1 % (in agreement with a Sears's type calculation 1.5 %)

Well-defined multi-excitations

Good agreement between

Multi-excitations are an essential part of the <u>dynamic</u> response of the interacting liquid helium

This study could be extended to other interacting systems

Multiple scattering calculation necessary and performed

Ketty Beauvois, "All you need is neutrons" seminar, November 10th 2015

Ketty Beauvois, "All you need is neutrons" seminar, November 10th 2015