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Why would you want to simulate your sample
when you have the best neutron source ?



“Neutrons tell us where atoms are and what they do”

Bertram N. Brockhouse and Clifford G. Shull, 1994



i.e. Neutrons sample the Van Hove distribution
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Example: What is this ?
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The interpretation of the data depends on
the proper modeling of structural and
dynamic properties of the system



It would be nice if we could use a computer
to sample the Van Hove distribution...



This is exactly what a simulation is about



Correlations in the Motion of Atoms in Liquid Argon™

A. Ranman
Argonne National Laboratory, Argonne, Illinots

molecular dynamics in solids, liquids, and gases.! The
following is a description of a computer experiment on
liquid argon (using the CDC 3600) to study the space
and time dependence of two-body correlations which
determine the manner in which slow neutrons are
inelastically scattered from the liquid. If neutron
scattering data of unlimited accuracy and completeness
was available, then the kind of work presented here
would serve the useful though unexciting purpose of
confirming the results already obtained with neutrons.
At present, however, the situation is that theorists are
trying to build models for these two-body dynamical
correlations to account for the observed neutron
spectra; the current interest in the work presented here
is thus to throw some light on the validity of these
models, and to suggest the manner in which some
improvements can be made.



We need some r;(t) to feed our equations



Example: molecular dynamics

Idea:

1. construct your system in a simulation cell, chose
PT..

2. define interactions between parts of your system

3. solve equations of motion and save 7(t) at
various times

4. compute observable



Integrating Newton's equations of motion

Discretisation of time:
look for {r"} = {F(t,)}, t"=nAt,n=0,...,N

now %(t) = limg—o W = V(t) becomes:
on _ rn+1 _—
At
Same for v, find:
Fn _ m‘7n+1 —_yn



Integrating Newton's equations of motion 2

Solve for time n+ 1 and find:
=7 VAL

vl = 4 ?”At/m



Computing observables

We can now use the r/’, v{" to compute observables.
What we can usually obtain is a discretized version, ie
integrals of § functions become histograms.
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Improving the model of G(7, t) for liquids
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Modelling the interactions
(Force-Field) REAL SYSTEM

Construction of the cell:
system of N particles

SIMULATION
v
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Good, but how do | get the forces ?
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Roadmap

Atomistic Hard spheres Soft spheres Topological  Single particle

0.1 nm 1nm 10 nm 10 nm 100 nm

Molecular Langevin Brownian Smoothed particle
Dynamics Dynamics Dynamics hydrodynamics

J. T. BRIELS, W.J. PADDING, J. PHYS.: CONDENS. MATTER 23 (2011)



Langevin Dynamics

m— = F | AtN(Ol)

Newton Friction Thermal Noise
Momentum I 3kpT
T, = ~ 0.1 ns : v2) =
Relaxation Time: [ 6mns R Average speed: g 2m

dv mv \/QkBTm |




Langevin dynamics

© Simple and straightforward to implement, but because friction and thermal
forces are coupled directly to « background »,

AN _ .
Q@ Momentum conservation violated locally,

J'\
( (a @) ,‘ Hydrodynamic interaction lost,

Impossible to observe complex flow patterns
such as shear-bands.

»Upgrade: Dissipative Particle Dynamics



Dissipative Particle Dynamics

. QkBme(nj)

dV mw(TEJ) (1'1' v, )1'13 4 N3(0 1)

m—:F—

Friction and Thermal forces act between
neighbouring particle pairs, no fictious
« background » needed.

Local momentum conservation &

Weight function: w(nj) =€ i/
hydrodynamics recovered.

P. ESPANOL AND P. WARREN 1995 EUROPHYS. LETT. 30 191




Momentum relaxation time

10
Viscous drag: .

d
md—z = F — 6mnsRv

F F
t 4+ Af) = 1) — —67ns RAt/m
vit+ AD) (V( ) 67T?73R) ‘ " 672

speed




Brownian dynamics
(GmR)dX F+\/2(6m75R)kBTN3(O )

Overdamped Thermal Noise
Newton

67, R*
Ty = ~ 10 s © Very big time step
kpT
21 ® Unresolved momentum
Td s ~ 10° ® No hydrodynamics
Tm  pkpT



Hydrodynamic Interaction

Incompressible ov 2
— = v —-—VP+F(r.t
Navier-Stokes ot g +F(r.?)

(k1) = / v(r, e iy

In Fourier domain
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Fig. 3.6. The hydrodynamic interaction. The force acting on the particle m

creates a velocity field and causes the motion of other particles. Momentum Incompressibility
relaxation

M. DOI AND S.F. EDWARDS, THE THEORY OF POLYMER DYNAMICS, 1986



Transport properties (ex. viscosity)

Definition of
stress

<A -l Microscopic
shear stress

(o)

Green-Kubo
Fig. 3.3. (a) Example of measured values of a certain physical quantity A as a

function of time. (b) A typical behaviour of the time correlation function r‘elation
Caalt) = (A(1)A(0)). The correlation time is denoted by r..

M. DOI AND S.F. EDWARDS, THE THEORY OF POLYMER DYNAMICS, 1986



Externally applied shear

Y

=
£

Green-Kubo Sinusoidal transverse force

-

/ / Lees-Edwards
boundary conditions,

/ / 1972

Momentum reservoirs Homogeneous shear
Figure 1.1 Mecthods of determining the shear viscosity

D.J. EVANS AND G. MORRISS, STATISTICAL MECHANICS OF NONEQUILIBRIUM LIQUIDS, 2008




Slip-links

a)

Figure 10. Schematic representation of a primitive chain network model. (a) The motion of slip-links (rings) is influenced by the tension in
the chain segments (arrows) and an osmotic force. (b) The motion of the monomers through the slip-links (arrows) results in repetitive
motion. (Picture kindly provided by Y Masubuchi.)

J. T. BRIELS, W.J. PADDING, J. PHYS.: CONDENS. MATTER 23 (2011)




LS
Self-Consistent Field Theory U350

Y4

1
qT(r, s) = W fdro qT(r, ro, s)

J
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M.W. MATSEN, SELF-CONSISTENT FIELD THEORY AND ITS APPLICATIONS, 2006
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ABC triblock
copolymer melt study

with Self-Consistent
Field Theory

q)B ¢B+¢C

Figure 5. Isosurfaces for ¢a, ¢s, and ¢s + ¢c, from left to right, for an idealized triblock copolymer in the G phase with fy = 0.27, fz = 0.55,
and fc = 0.18. The isosurfaces are shown for a value of 0.50 for each of these volume fractions. The values of the volume fractions within the
1sosurfaces indicate that B and C monomers are completely mixed deep within the matrix and that the A/B interface is quite diffuse.
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C.A. TYLER, J. QIN, F.S. BATES, AND D.C. MORSE, MACROMOLECULES 2007, 40




Fluctuating Navier-Stokes

+3%

Fluctuating Navier-Stokes Equations

+2%

Space

@ We will consider a binary fluid mixture with mass concentration
¢ = p1/p for two fluids that are dynamically identical, where
p = p1+ p2 (e.g., fluorescently-labeled molecules).

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

Ov+v-Vv=—Vr+1Vv+ V. (\/21/,0—1 kBTW)

dic+v-Ve=yV?c+V- (\/2mxp—1 c(1—rc) W(C)) ,

+1%

0%
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Earth

-2%

Relative varation of shadowgraph intensity

-3%

Experimental results by A. Vailati et al. from a microgravity environment
[2] showing the enhancement of concentration fluctuations in space (box

where the kinematic viscosity v = . and 7 is determined from . ) i .
y n/p scale is macroscopic: 5mm on the side, Imm thick).

incompressibility, V -v = 0.
@ We assume that VW can be modeled as spatio-temporal white noise
(a delta-correlated Gaussian random field), e.g.,

Simulation
Wii(r, OWiE (K ) = (0ikdj + 0idji) 6(t — t)d(r — r').

A. Donev (CIMS Giant. Fluct. 11,2012 8 / 38

ALEKSANDAR DONEV ET AL., COURANT INSTITUTE & NEW YORK UNIVERSITY, 2012




Conclusion

Figure 1.1 Connection between the numerical simulations, theories and

experiments. The connection is very important in conducting scientific

investigations. In the connection, the numerical simulation is playing an
increasingly important role.

G.R. LIU AND M.B. LIU, SMOOTHED PARTICLE HYDRODYNAMICS, 2003




