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Abstract

The uncertainty principle is one of the cornerstones of quantum mechanics. It expresses the

inability to jointly assign precise, definite values to two incompatible physical quantities. The

best known form of this principle is expressed for the observables position and momentum mostly

formulated by the product of standard deviation σ(Q̂)σ(P̂ ) ≥ ~
2 . This expression conveys the

complementary trade-off between statistical dispersions, which can be accessed by repetitions

of measurements on identically prepared system states. This inequality does not treat the

restriction of simultaneous determinability by an intervening quantum-mechanical measurement

apparatus. The present dissertation deals with the experimental investigations of two new

theories, which aim to confirm and establish new measurement uncertainty relations. The test

object is the spin of neutrons for which no joint determination of different spin directions is

possible. A new theory of Ozawa based on mean squared deviations of operators and entropic

variants based on the Shannon information are being tested. Special features of this thesis

include the treatment of error correction procedures and the study of the influence of mixed

states and non-projective measurements. The results show that the new relations hold up to

scrutiny, albeit the determination of minimal uncertainty presents great challenges.





Kurzfassung

Die Unschärferelation zählt zu den Grundpfeilern der Quantenmechanik. Sie drückt das Un-

vermögen aus zwei inkompatiblen physikalischen Größen gleichzeitig präzise, definite Werte

zuzuordnen. Das bekannteste Beispiel dieses Prinzips ist gegeben durch die Observablen Ort

und Impuls, meistens formuliert durch das Produkt von Standardabweichungen σ(Q̂)σ(P̂ ) ≥ ~
2 .

Dieser Ausdruck vermittelt den komplementären Austausch an statistischer Streuung, welche

durch ständige Repetition an immer gleich präparierten Systemen gemessen wird. Was diese

Ungleichung nicht beschreibt ist, wie sehr der Eingriff eines quantenmechanischen Messappa-

rates die gleichzeitige Bestimmbarkeit begrenzt. In dieser Dissertation geht es um die experi-

mentellen Nachforschungen von zwei neuen Theorien, die sich zur Aufgabe machen neue Mes-

sunschärferelationen zu etablieren. Als Testobjekt wird der Spin von Neutronen herangezogen,

dessen unterschiedliche Richtungen nicht gemeinsam gemessen werden können. Getestet werden

eine Theorie von Ozawa, basierend auf mittleren quadratischen Abweichungen von Operatoren,

und entropische Varianten, beruhend auf der Shannon-Information. Zu den Besonderheiten

zählen die Behandlung von Fehlerkorrekturprozeduren und die Studie des Einflusses gemischter

Zustände und nicht projektiver Messungen. Die Ergebnisse zeigen, dass die neuen Relatio-

nen bestehen können, wobei die minimale Unschärfe zu bestimmen große Herausforderungen

darstellt.
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CHAPTER 1

Preface

The appearance of the uncertainty principle is closely related to the development of quantum

mechanics and introduced a new concept to hitherto unknown physics. In 1925 Heisenberg

achieved a first reformulation of the kinematic relationship of the Hamilton equation of motion

which, after cooperation with Born and Jordan, led to the founding of matrix mechanics [1]. A

consequence of the use of matrices is that interchanging the sequence of multiplication is in most

cases not irrelevant. This non-commutation only dissolves when both matrices have the same

system of eigenvectors, in other words can be determined at the same time. Purely mathemat-

ically, the uncertainty principle is due to the linear structure of Hilbert spaces, where vectors

can be represented as linear combinations of eigenvectors of another operator or matrix, and

thus the representation is ‘uncertain’ with respect to different bases. But apart from purely the-

oretical consequences, there are groundbreaking physical implications arising from this principle.

In Heisenberg’s paper [2] “Über den anschaulichen Inhalt der quantentheoretischen Kinematik

und Mechanik” published in 1927, the physical concept of the impossibility to simultaneously

determine certain observables was conceptually introduced. Heisenberg’s work was primarily

concerned with demonstrating the trade-off of accuracies in measurements of incompatible ob-

servables, using understandable and tangible thought experiments. The textbook example is

the gamma-ray microscope: in order to be able to measure the location of an electron, it must
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be illuminated with light, which is then reflected and registered afterwards. The shorter the

wavelength of the light used, the more accurate the location measurement will be. But with

shorter wavelengths, the energy increases as well, thereby increasing the momentum that a

photon gives to the electron. Heisenberg’s explains this as a consequence of the commutator

relation [P̂ , Q̂] = i~ and argues the accuracy of the measurement of the electron position q1 and

the ‘discontinuous change’ p1 caused by the Compton effect gives a trade-off relation q1p1 ∼ h.

The article escapes a specification of the indeterminacy and only qualitatively suggests that q1

and p1 correspond to ‘some mean error’. This is all the more surprising because this relation

is also conceived explicitly for a Gaussian probability distribution, therefore an identification

with the standard deviation is somewhat obvious.

The uncertainty principle was a completely new phenomenon at that time which had not been

known in classical physics before. At the end of the manuscript [2] is a comment that refers to

reviews by Bohr which prompted Heisenberg to make revisions [3] and add another perspective

to his discovery. Bohr himself has used the concept of complementarity in many ways without

attempting to systemize or clarify it rigorously. For him, the principle of uncertainty was no

more than a special case of the principle of complementarity. Similar to how the wave and par-

ticle description exclude each other, the uncertainty was due to a complementarity where the

experiment decides which image (particle or wave) is chosen. Heisenberg, influenced by Bohr,

agrees with his considerations and tolerates the ontic perception as being a valid alternative

of his originally epistemological standpoint: observations are meaningful only in relation to an

experiment and only by measurement can a value be assigned to the momentum. Historically,

this can be considered as the first fork in the road of uncertainty principles. The concept of

limited joint determinability of individual quantum objects and full knowledge acquisition is

extended by the concept of joint definability, i.e. only above a specific range can a measurement

give the system a real meaning much in agreement with the Copenhagen interpretation, but

position and impulse cannot be equally well-defined [4].

The uncertainty principle quickly became a cornerstone of quantum physics. It is not surprising

that a more rigorous expression was derived soon after by E.H. Kennard [5], i.e. the uncer-

tainty principle given by the product of standard deviations of position and momentum. This

inequality was soon regarded as a conformable representation of the uncertainty principle, even
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by Heisenberg himself, who regarded the mathematical rigor a confirmation of his heuristic ar-

gumentation. This rooted in a confusion and misinterpretation of the matter over the next few

decades, for this inequality reflects a different idea. It is not so much the validity of this relation

that is questionable, but that there is no obvious connection to the microscope example. The

standard deviation requires only one wave function and the corresponding operators, whereas

Heisenberg’s idea is based on the force exerted by the initial photon affecting the electron’s

position and the subsequent observation of a disturbed state. Equation and model are not

compatible.

In the following years, the standard deviation was the preferred measure for quantifying the

uncertainty principle. Between 1927 and 1933, in addition to Kennard, Weyl [6], Hardy [7],

Robertson [8] and Schrödinger [9] developed a quantum mechanical and mathematical descrip-

tion of Heisenberg’s uncertainty principle, the latter two in particular for arbitrary observables

Â and B̂, that are not necessarily related to each other by a Fourier transformation.

The unfortunate mixture of different concepts lead to problems in the interpretation and raised

criticisms early on. Popper [10] was one of the first to criticize the validity of the uncertainty

principle on the level of individual particles since statistical laws are not directly transferable

to single events. Looking at the uncertainty principle in its statistical form, one finds the fol-

lowing situation: using the wave function and an observable, one of many possible events in the

system will occur. Random samplings provide a probability function, which will be scattered

around a mean by frequent repetition of the same measurement. Ergo, an equally large number

of identically prepared copies of the same quantum state is necessary to have an estimate of

the appropriate distribution. The hypothetical value would then be obtained if infinite many

samples are taken. Whether a well-defined position, momentum or energy is assigned to the

individual particle, cannot be answered with such a formulation. This uncertainty is more con-

cerned with the measured widths of distribution that results from many identically prepared

ensembles. This type of uncertainty principle has hence got the name preparation uncertainty

relation in today’s scientific literature.

A change of perspective from joint measurements to the stochastic nature of statistically inde-

pendent measurements persisted in the next decades after 1940. The standard deviation was
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explored and questioned as a meaningful stochastic measure to represent statistical dispersions

of probabilistic events. The first redefinitions altered the measures of concentration of a distri-

bution [11] or relied on information entropies, first for position and momentum [12–14], later

also for finite Hilbert [15, 16] spaces.

Since the standard formulation has little to do with a measurement inaccuracy and the associ-

ated disturbance of the conjugated quantity, consistent definitions of the measurement uncer-

tainty principle was missing for a long time. Perhaps the first work dealing with joint measure-

ments and the implication for the uncertainty principle is that of Arthurs and Kelly [17]. In their

derivation, probe systems for coupling with position and momentum are taken into account and

thus a joint measurement is modeled on both observables. As a measure of the inaccuracy, a

noise operator is used to measure the quantum error. The work is later generalized by Arthurs

and Goodman [18]. The problem of common measurability and the associated inaccuracies of

incompatible observables is therefore only formed at this time with enough mathematical rigor.

However, consideration of measurement disturbance are still missing at that time.

Approximately with the beginning of the new millennium the focus intensified on Heisenberg’s

originally conceptualized quantum principle, nowadays subsumed as measurement uncertainty

relation. On the one hand this category of uncertainty includes the joint indeterminacy, on

the other hand how much a variable is disturbed by the exact measurement of another. These

categories are therefore often referred to as noise/error and disturbance uncertainty relations.

The Arthurs-Kelly relation can be regarded as one of the first joint measurement inaccuracy

trade-offs which served as an important template for establishing inaccuracy-disturbance trade-

offs given by Appleby [19], Ozawa [20, 21] or Hall [22]. As has been the case for decades, debates

and scientific controversies emerged on how meaningful or faithful these definitions based on

operator differences are. As a result other concepts and methodologies have been developed

which in turn brought forth a myriad of physical quantities that can be used to quantify un-

certainty relations. For measurement uncertainty relations the most prominent alternatives are

probabilistic distances [23–25] and different types of entropies [26–28].

Nowadays, there are many aspects to consider when forming uncertainty relations. The el-

ementary components that make up quantum mechanical measurements are quantum states,
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channels, and observables, whose properties can be modified which in turn can influence the

inaccuracy of measurements. For quantum states, one must consider pure and mixed states or

entangled and separable states. In turn, quantum channels can have noise or finite capacities,

interact with the environment and alter correlations. With observables one can distinguish

whether they are finite or infinite, sharp or fuzzy, existent as operators or not (time for ex-

ample has no genuine operator representation). The uncertainty relations may ultimately be

different in the number of considered observables (two or more) or can be state dependent or

not, i.e. changing continuously depending on the state or remaining invariant for all input

states. Perhaps the greatest challenge is to find an optimal estimate of inequalities as it is often

of significant interest to show under which conditions the measurement inaccuracies are minimal.

The research on uncertainty relations is not only of purely academic interest, but also important

for current topics in quantum physics. The relevance of the uncertainty principle for quantum

cryptography is probably the most obvious since security protocols contain joint measurements

of correlated states. The quality of the secrecy of a key distribution corresponds to high good-

ness of the parameter estimation. Uncertainty relations and error corrections pose natural limits

to the assessment of the measurement quality. In the review [29] a long list of closely related

topics are mentioned for which quantum indeterminacy play an important role, e.g. quantum

randomness, quantum key distribution, two-party cryptography, entanglement witnessing and

many more.

This thesis deals with experimental tests of new uncertainty relations in the field of neutron

optics. Thermal neutrons outside the nucleus have low-energy (meV), are neutral and massive

particles which makes them attractive for studying foundations of quantum mechanics. They can

be described as matter waves according to the Schrödinger equation and share many phenom-

ena with light optics. Experimental investigations with neutrons have therefore a long tradition

in quantum physics comprising large areas of current and ongoing scientific topics [30, 31], in-

cluding tests of complementarity [32] and position-momentum uncertainty relations [33–35]. In

2012, Erhart et al. [36] published a paper with the new findings testing Ozawa’s theory in the

two-dimensional case using the spin of the neutron. This is exactly the starting point of the

studies described in this thesis, bringing together the progress that has been made since then.

One focus here is on Ozawa’s theory for which definitions, the first measurement procedures
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and results will be presented in detail. In addition, the theoretical advancements that improve

the lower limits for correction and mixed qubit states will be investigated. The other focus will

be on the experimental analysis of the information-theoretic formulations defined via condi-

tional Shannon entropies. On the one hand, an entropic noise-disturbance uncertainty relation

is tested for this purpose, which is shown to be optimal in the case of projective measurements,

while for more general observables measurable violations of the considered inequality are possi-

ble. Therefore, a less complex noise-noise inequality is analyzed as well that will highlight the

importance of POVMs (positive operator valued measures) for the investigation of uncertainty

relations.

The work is structured as follows. In chapter 2 necessary mathematical terms are introduced,

followed by chapter 3 in which important quantum physical prerequisites are presented. Some

of the terms encountered in these chapters are not analyzed in detail but rather illustrated by

examples. Since only finite quantum systems are considered, the theory is presented almost

exclusively in the finite case. Subsequently, in chapter 4, a brief overview of neutron optics can

be found for the readers who are unfamiliar with the matter. Chapter 5 gives an overview of

preparation uncertainty relations, which are quantified by means of the standard deviation and

entropic quantities. Important intermediate results are presented here. At the heart of this

thesis are chapter 6, which deals with Ozawa’s root mean square (rms) error and disturbance

and chapter 7, which uses conditional entropies. Everything is rounded off in the concluding

chapter 8.
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CHAPTER 2

Basics of probability and information theory

This chapter provides a quick overview of the elementary notions of convexity, probability and

information theory that are indispensable for the understanding of theories introduced later on.

Convex geometry will be encountered quite often since building a convex linear combination

of states and operations is the most rudimentary property in quantum physics. Probability

theory itself is a convex theory. Uncertainties or inaccuracies are in principle studies of joint

probabilities, distributions and stochastic metrics, which need to be introduced as prerequisite.

Furthermore, the relation of probabilities to Shannon and similar entropies is shown. Major

sources for the following sections are [37–40].

2.1 Convex sets

A subset K of a real or complex vector space is called convex if for every pair of points (x1,x2 ∈

K) within the set the straight line, parametrized by λ ∈ R, that joins them is also within the

set, ergo

x = λx1 + (1− λ)x2 ∈ K , 0 ≤ λ ≤ 1 . (2.1)

Illustrations of a two dimensional convex and non-convex set is given in Fig. 2.1, in which the

17
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pure

mixed

x1

x2

(a) A convex set.

x1

x2

(b) Not a convex set.

Fig. 2.1: Examples of two dimensional sets, which are either convex or not. The line segment

is color-coded green when it remains within the region of the set and red when it is outside.

Changing the boundary indicated by the blue dashed lines encloses the area and gives the

convex hull.

two points x1 = x(λ = 0) and x2 = x(λ = 1) are elements of the set. The connection x is

also called mixture and must be entirely within the set to be convex as shown on the left side

in Fig. 2.1(a), otherwise the set is not convex as shown in Fig. 2.1(b). A point that is not an

interior point of any line segment lying entirely in the subset K is called extreme point or pure.

Regular polygons like the triangle are all examples of two dimensional convex bodies. In three

dimensions concrete examples of convex bodies would be the Platonic solids, whose extremal

points are vertices, but also the ball whose pure points make up the entire sphere.

Consider a finite set of points in the plane, then the convex hull is the smallest convex polygon in

which all points are contained, see Fig. 2.1(b). For a mathematically more rigorous explanation

the term convex combination needs to be introduced first, which for the vectors x1,x2, ...,xn is

defined by the sum of the form

x =

n∑
i

λixi , 0 ≤ λi ≤ 1 ,
∑
i

λi = 1 . (2.2)

For the line segment of Eq.

x =
∑n

i λixi , 0 ≤ λi ≤ 1 ,
∑

i λi = 1 .

(2.1) the point x is on the line and can be written as a convex

combination of it’s endpoints x1,x2. For the triangle Fig. 2.1(a) any point x in the set can be

written as a convex combination of its three vertices x1,x2 and x3. The convex hull conv(S) of

18
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Epigraph

x1 x2

-4 -2 0 2 4

0

2

4

6

8

10

x

f(
x)

Fig. 2.2: Example of a convex function. The shaded area above the function is called the

epigraph and is a convex set. Additionally, a secant from f(x1) to f(x2) is drawn, which is

always above the function except for the endpoints and gives a visual interpretation of the

convexity condition of functions Eq.
f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) , x1, x2 ∈ K , λ ∈ [0, 1] .

(2.4).

a set S is identical to the set of all their convex combinations

conv(S) =

{
n∑
i

λixi

∣∣∣∣∣xi ∈ S, n ∈ N,∑
i

λi = 1, λi ≥ 0

}
. (2.3)

The term convex and concave function is linked to the shape of the epigraph, the area above

the function. A function f(x) is convex if the epigraph is a convex set or, mathematically more

precise, for a function f : K → R if the line λf(x1) + (1− λ)f(x2) is always above or equal to

the corresponding value of the function

f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) , x1, x2 ∈ K , λ ∈ [0, 1] . (2.4)

An illustration of a convex function is given in Fig. 2.2 with a visualization of the convexity

criterion of Eq.
f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) , x1, x2 ∈ K , λ ∈ [0, 1] .
(2.4). Since the coefficients λi have to be positive numbers between 0 and 1 and

sum to unity the convexity of sets is linked to probability theory.
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2.2 Some aspects of probability theory

Quantum physics makes statements about the probability for the occurrence of events or about

the physical laws of quantum mechanical expectation values. Accordingly, it is necessary to

introduce some stochastic entities. The definition of probability was axiomatized in 1931 by

the Kolmogorov axioms [41] and is closely interlinked with the notion of measure or measurable

space . The necessity for the terms can be motivated by a problem called the Banach-Tarski

paradox [40, 42]. The mathematical technicalities of its nature are irrelevant here, but the

quintessence of the paradox is important: it is possible to take a solid ball in R3, slice it into

pieces, reassemble the pieces by using rigid transformations only, and end up with two balls of

precisely the same size and shape. The conclusion is that sets can be counter-intuitive to the

natural understanding of areas or volumes, since in the paradox it appears that a new object is

being created out of nothing.

Mathematically, there exist non-measurable sets without any meaningful ‘size’. A measurable

set is therefore a set that very much complies with the common sense of divisible bodies and a

measure is the mapping µ(X) that attributes a number like a volume, weight or a probability

to an object X indicating the ‘intensity’ of that particular property. To define a measure a few

termini are required first. A power set P (X) of a set X is the set of all subsets of X.

Example 2.2.1. The power set P (X) of the set containing three elements X = {a, b, c} is

P (X) = {{∅}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. ♦

The next necessary definition is that of a σ-algebra. Let X be a set and Σ ⊂ P (X). The

subset Σ is a σ-algebra on X if and only if

1. X ∈ Σ,

2. it is closed under complementation: Y ∈ Σ, then so is its complement Y c = X\Y ,

3. it is closed under countable unions: Yi ∈ Σ, then
⋃∞
i Yi ∈ Σ.

Example 2.2.2. For a die with the six usual outcomes X = { , , , , , } the following

examples are typical σ-algebras

1. Σ1 = {∅, X},
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2. Σ2 = {∅, { , , }, { , , }, X},

3. Σ3 = P (X).

The first example is called the trivial σ-algebra. The example Σ2 allows to conclude whether

the outcome of the die roll has an even or odd number of pips, it is however not possible to

measure a specific event, unlike for the power set Σ3, the largest possible σ-algebra on X with

which every individual outcome is inquirable. ♦

The pair (X,Σ) consisting of the set X and the σ-algebra Σ over X is called a measurable

space. Given a measurable space (X,Σ) a function µ is called a measure, if it is

1. non negative for all Yi ∈ Σ, µ(Yi) ≥ 0,

2. the empty set gives µ(∅) = 0,

3. it is σ-additive , that is, for all pairwise disjoint {Yi} ∈ Σ the measure fulfills µ (
⋃∞
i=1 Yi) =∑∞

i=1 µ(Yi).

The triple (X,Σ, µ) is referred to as measure space. Let Ω be the sample space, i.e. the set of

all possible outcomes, F be called the event space (the sigma-algebra) and p be a measure with

p(Ω) = 1, then p is called the probability (measure) in the probability space (Ω,F , p).

2.2.1 Joint, conditional and marginal probabilities

Naturally, it is possible to ask for the likeliness of two events or how a particular outcome depends

on another result. From the probability axioms it can be deduced that for two subspaces A,B

of the event space the following holds

p(A ∪B) = p(A) + p(B)− p(A ∩B) , (2.5)

a fact that is easily comprehensible by looking at the Venn diagram shown in Fig. 2.3. The

union in Eq.
p(A ∪B) = p(A) + p(B)− p(A ∩B) ,

(2.5) is logically related to combined events, i.e. ‘either/or’ relations, while

the intersection corresponds to joint events of A ‘and’ B. For joint probabilities the usage of

commas p(A∩B) = p(A,B) is more common and will be applied frequently from now on. From

Eq.
p(A ∪B) = p(A) + p(B)− p(A ∩B) ,
(2.5) a law called the subadditivity of the probability measure is attainable

p(A ∪B) ≤ p(A) + p(B) . (2.6)
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A

B

A⋂B

(A ⋃ B)

Fig. 2.3: Simple Venn diagram with two sets A,B and their intersection A∩B enabling simple

illustration of probability relations. The space created by merging the disks is given by the

union A ∪B .

The combined probability is less or equal to the sum of the single probabilities where equality

only holds if the last term in Eq.
p(A ∪B) = p(A) + p(B)− p(A ∩B) ,
(2.5) vanishes, i.e. when the events are mutually exclusive.

Given the same two events with the assumption p(B) > 0 it is possible to define the conditional

probability

p(A|B) :=
p(A,B)

p(B)
, (2.7)

where event A is said to be conditioned on B. It is to be understood as the probability that

event A occurs given the fact that B has occurred or that its outcome is known. The definition

is chosen such that if two events are statistically independent , i.e. p(A,B) = p(A)p(B), then

p(A|B) = p(A), which indicates that no matter the outcome of B, the probability of A is

unaffected by it. From the symmetry of the intersection A ∩ B = B ∩ A (or (A,B) = (B,A))

in Eq.

p(A|B) := p(A,B)
p(B)

(2.7) a very useful formula, called Bayes’ theorem, can be deduced

p(B|A) =
p(A|B)p(B)

p(A)
. (2.8)
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p(Bc) p(B)

p(Bc|Ac) p(Bc|A) p(B|Ac) p(B|A)

start
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c

B

A
c

p(Ac,Bc)

A

p(A,Bc)

A
c

p(Ac,B)

A

p(A,B)

Fig. 2.4: Binary tree diagram with the root and all events colored in red and the probabilities

leading to the events colored in blue. The definition of the conditional probability appears

naturally as the connecting branches.

In case p(A,B) 6= p(A)p(B) the events are statistically dependent on each other and are called

either correlated p(A,B) > p(A)p(B) or anti-correlated p(A,B) < p(A)p(B). For the condi-

tional probability this implies, that knowledge of the outcome B can therefore both increase

and decrease the probability of the occurrence of A. Joint and conditional probabilities can be

nicely illustrated by tree diagrams which describe mutually exclusive events. As an example, a

binary tree diagram is shown in Fig. 2.4.

Assuming there are two discrete events, where
⋃k
i Bi = Ω partitions the sample space into

pairwise mutually exclusive sets, then the joint probability is given by p(A,Bi). It is often of

interest to remove the dependency of one set of events from the probability function. In that

case, averaging over these events relinquishes the dependency on it and the probability received

thereby is called the marginal probability , given as

p(A) =
k∑
i

p(A,Bi) . (2.9)
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2.2.2 Random variables and distributions

A real valued random variable X : Ω → R is a measurable function on a probability space

(Ω,F , p) that assigns a real number to elements ωi ∈ Ω.

A real random variable does not describe the actual outcome of a particular experiment, but

rather demands that events are quantified in the domain of real numbers. It is more suitable

in many ways to ask for the outcome of the random variable than asking in terms of sets cor-

responding to the result. For a coin with A = {‘heads’, ‘tails’} natural choices for real valued

random variables would be {0, 1} or {−1, 1}.

A probability mass function fX(xi) of a discrete random variable X with possible value xi is

defined as

fX(xi) = p(X = xi) = p({ωi ∈ Ω|X(ωi) = xi}) , (2.10)

while for a continuous random variable the probability density function fX(x) is related to the

probability by

p(X ∈ [a, b]) =

∫ b

a
fX(x)dx . (2.11)

The finite outcomes n of a random variables X can be put together into the probability vector

pX = (p(X = x1), p(X = x2), ..., (X = xn)) = (p1, p2, ..., pn), which is commonly referred to as

discrete probability distribution.

The mean or expected value of a random discrete variable X with possible values xi is defined

as

E(X) = 〈X〉 =

N∑
i

xip(xi) , (2.12)

The expected value weights all {xi} with the respective probabilities p(xi). For a uniform dis-

tribution p(xi) = 1/N it coincides with the arithmetic mean 〈X〉 = X̄. The expected value is

monotone X ≤ Y → E(X) ≤ E(Y ) and linear E(aX + bY ) = aE(X) + bE(Y ).

Another important statistical measure is the variance. The variance var(X) is a measure of the

width of a distribution. It is non-negative and can only be zero if X equals exactly the expected
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value 〈X〉. The square root of the variance is named standard deviation σ(X)

σ(X) =
√

var(X) =
√
〈(X − 〈X〉)2〉 =

√
〈X2〉 − 〈X〉2 . (2.13)

The area E(X) − σ(X) < X < E(X) + σ(X) is regarded as the confidence interval of 1σ in

a normal distribution. While the variance gives the deviation around a mean, the root mean

square error (rms) indicates how well a function curve or a prediction x̃i deviates on average

from the actual observed values xi

rms =

√√√√ 1

n

n∑
i

(x̃i − xi)2 . (2.14)

Example 2.2.3. A random variable X is Poisson distributed if for λ > 0

p(X = k) =
λk

k!
e−λ , k ∈ N0 . (2.15)

The expected value and its square yield

〈X〉 =
∞∑
k=0

k

(
λk

k!
e−λ
)

= λ, 〈X2〉 =
∞∑
k=0

k2

(
λk

k!
e−λ
)

= λ2 + λ . (2.16)

Utilizing Eq.

σ(X) =
√

var(X) =
√
〈(X − 〈X〉)2〉 =

√
〈X2〉 − 〈X〉2 .

(2.13) it turns out that for the Poisson distribution the variance var(x) = 〈X〉 = λ

is equal to the expected value. This distribution is particularly important for the counting

statistic of a particle detector. ♦

The variance of a linear combination of random variables does not generally yield the sum of

the single variances. Instead the rule is var(aX + bY ) = a2var(X) + 2 ab cov(X,Y ) + b2var(X),

which also contains a mixed term known as covariance

cov(X,Y ) = E(X − E(X))E(Y − E(Y )) . (2.17)

The covariance is a measure of the statistical independence of two event spaces and gives,

when normalized, the so-called (Pearson) correlation. It is possible to combine variance and

covariance with the notation cov(X,X) = var(X). Assuming that Xi are random variables,
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each with a well-defined variance then the covariance matrix is

Σij = cov(Xi, Xj) . (2.18)

The n-th moment of a distribution1, where n ∈ N, is calculated in close resemblance to Eq.

E(X) = 〈X〉 =
∑N

i xip(xi)

(2.12)

by

E(Xn) = 〈Xn〉 =
∑
i

xni p(xi) . (2.19)

The variance of a random variable is therefore given as the difference between the second mo-

ment and the square of the first moment of the distribution. This term will also be encountered

later as the n-th moment operator in quantum physics.

2.2.3 Majorization

Assuming there are two probabilistic vectors p and q, it is natural to ask which of the two

vectors is less uniform, more precisely which events are more equally distributed and which

are more unbalanced. A comparison of standard deviations provides one option, an alternative

method is offered by majorization. For that purpose an order relation must be introduced: let

p = (p1, ..., pm)T be the original distribution of size m, then

p↓ = (p↓1, ..., p
↓
m) , p↓1 ≥ p

↓
2 ≥ .... ≥ p

↓
m (2.20)

is the vector with the same entries but sorted in descending order from largest to smallest. The

order on probability vectors allows to characterize the degree of their randomness by majoriza-

tion
k∑
i=1

p↓i ≤
k∑
i=1

q↓i , ∀k ∈ [1,m] . (2.21)

If the inequality holds, then the equivalence relation is written as p ≺ q and one says that q

majorizes p. Consequently, Eq.

∑k
i=1 p

↓
i ≤

∑k
i=1 q

↓
i , ∀k ∈ [1,m] .

(2.21) is a measure of uncertainty, which implies that a vector

1The word moment is very fitting as the quantity is reminiscent of the moments of inertia in classical mechanics.
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Fig. 2.5: Visualization of majorization, where the blue curve majorizes the yellow one, while

no such relation can be given for the green curve, making this distribution incomparable by

means of majorization. Here m is the sample size and k the index of summation.

is less spread out if it preserves the partial order at every step

p↓1 ≤ q
↓
1

p↓1 + p↓2 ≤ q
↓
1 + q↓2

...

m∑
i=1

p↓i =
m∑
i=1

q↓i = 1 .

(2.22)

Example 2.2.4. For the three probability vectors p2 = (0, 1, 0)T , p2 = (1
2 ,

1
6 ,

1
3)T and p3 =

(1
3 ,

1
3 ,

1
3)T a quick test shows that p2 � p1 � p3. Generally, a distribution consisting only of a

single certain event majorizes every other distribution, while the uniformly distributed events

are majorized by every other probability vector. ♦

If the partial sums in definition Eq.

∑k
i=1 p

↓
i ≤

∑k
i=1 q

↓
i , ∀k ∈ [1,m] .

(2.21) are represented by the points ( km ,
∑k

i=1 p
↓
i ) as coor-

dinates, where the upper bound of summation k goes from 0 to m, and points are connected

by straight lines, then the curve obtained that way graphically indicates majorization. As illus-

trated in Fig. 2.5 a distribution that is constantly below the other one is accordingly majorized,
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while a curve that is intersected between the endpoints is not.

Note the following immensely important attribute related to majorization: a function f : Rd → R

for all x,y ∈ Rd is called Schur concave when it satisfies

f(x) ≥ f(y) , if x ≺ y . (2.23)

So f is Schur concave means: the less spread out the distribution x is compared to y, the larger

the value of the function gets. The standard deviation is an example of a Schur convex function.

If x ≺ y, then the standard deviation is also smaller σ(x) ≤ σ(y).

2.2.4 Statistical distances

For a comparison of two probability distributions the distance between the two stochastic objects

can be regarded. In mathematics, a metric on a non-empty set X is a distance d : X ×X → R

between a pair of elements x and y if the following conditions for x, y, z ∈ X hold

1. d(x, y) ≥ 0 with equality d(x, y) = 0 for x = y.

2. d(x, y) = d(y, x), the metric is symmetric.

3. d(x, z) ≤ d(x, y) + d(y, z), the triangular inequality is satisfied.

In close analogy to the p-norm of vector spaces there exits an Lp metric [43] for probability

measures p(x), q(x) which, for a finite set with p ≥ 1, are given by

(
∑
x

|p(x)− q(x)|
1
p ) . (2.24)

This metric for p = 1 is twice the total variation distance dTV (p,q) = 1
2‖p−q‖1, which gives the

maximum difference between the two discrete probability distributions. The Hellinger distance

is related to the L2-difference for the square root of the probability distributions
√

p,
√

q

dH(p,q) =
1√
2
‖√p−√q‖2 =

√
1− BC(p,q) , (2.25)

where BC(p,q) =
∑n

i

√
piqi is known as Bhattacharyya coefficient or fidelity. The list of

stochastic distances is much longer than the few presented just now, but those mentioned here
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have in a generalized form found their way into quantum physics.

Another common statistical distance is called the Wasserstein metric. For its motivation the

transportation problem, formalized by French mathematician Gaspard Monge, shall be regarded.

Assume there is a certain amount of earth excavated from the ground from a wide area X. For

further processing the soil is locally put into many piles x and transported to different facto-

ries F . The original question is: how must the transport be set-up, so that the monetary costs

for the delivery are the lowest. If the transport is given by a one-to-one map T : X → F from

each pile of earth x ∈ X to each facility T (x) and the particular cost function for the deliveries

is c(x, T (x)), then one seeks to minimize the total cost
∑

x∈X c(x, T (x)).

The transport problem was later rigorously formalized in measure theory and therefore has im-

mediate significance to probability measures. Given two (separable, metric) probability spaces

(X,µ) and (Y, ν) and a cost function c : X × Y → R, Monge’s optimal transport is given as the

infimum

inf

(∫
X
c(x, T (x))dµ(x)

)
(2.26)

for all transport plans. The issue with Eq.

inf
(∫
X c(x, T (x))dµ(x)

)
(2.26) is that the map T does not in general exist.

The problem was simplified by Kantorovich who considered the probability measure π to be

from the product space X × Y such that π admits µ and ν as marginals: for all measurable

sets A ⊂ X, B ⊂ Y ; π(A × Y ) = µ(A), π(X × B) = ν(B). The collection of probability

measures π with marginals µ, ν is said to the set of all admissible transference plans and is

denoted by Π(µ, ν). This additional requirement obviates the problem that a transported unit

of mass is not splittable. Monge’s transport problem Eq.

inf
(∫
X c(x, T (x))dµ(x)

)
(2.26) is then recast to

inf

(∫
X×Y

c(x, y)dπ(x, y) |π ∈ Π(µ, ν)

)
. (2.27)

The Wasserstein p-distance between two probability measures appears as the optimal transport

cost from one to the other, when the ‘cost’ to be minimized is the distance function

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
X×Y

d(x, y)pdπ(x, y)

) 1
p

. (2.28)

So, the Wasserstein 2-distance is a measure of the most efficient way to transport one probability
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distribution onto the other, where the measure of cost to be minimized is the Euclidean distance.

At the end of chapter 6 an uncertainty relation is treated briefly, which uses the Wasserstein

2-metric as an accuracy measure. Although it is not a topic of the thesis, it should be noted

that there are other classical distances for the purpose of quantifying uncertainty relations, see

for example [44].

2.3 Entropy in information theory

Information is a frequently used term in everyday life. Many have a good understanding what

information is, however, scientifically it remains very vague in itself without a rigorous math-

ematical formalism. Information must explain different ideas like transference, acquisition and

communication of knowledge and assess some quality to the data, e.g ordered or disordered,

new or outdated, copied, compressed, redundant or knowledgeable. The following subsections

introduce the basics of information theory.

2.3.1 Self-information

Information is naturally related to probability theory. When a person receives news the reac-

tion usually depends on the value of the content. So, if someone replied to a new message for

example with “that doesn’t come as a surprise” that person basically expresses that there is

almost no gain of information because the event was highly expected or very probable, while

an opposite reaction would indicate that the imparted facts are very useful as a consequence of

being unlikely.

Putting it mathematically, if p(xi) is the probability for the event xi and I(xi) the information,

then

1. I(xi) should be non-negative,

2. approach zero for the certain event p(xi)→ 1⇒ I(xi)→ 0,

3. increase for p(xi)→ 0 and

4. for x1 6= x2, less probable events p(x1) < p(x2) should be more informative I(x1) > I(x2).
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These features can be modeled by making information a continuous function of the probability

I(x) = f(p(xi)). Another property usually demanded is that the total information associated

with statistically independent joint events p(x1, x2) = p(x1)p(x2) should be additive, i.e.

p(x1, x2) = p(x1)p(x2) ⇒ I(x1, x2) = I(x1) + I(x2) . (2.29)

But, because of the functional relation to the probability the following equation has to hold

f(p(x1, x2)) = I(x1, x2) = I(x1) + I(x2) = f(p(x1)) + f(p(x2)) . (2.30)

The function that has the property f(x y) = f(x) + f(y) is the logarithm. The so-called self-

information or surprisal I(x) is therefore defined as

I(xi) = − log(p(xi)) , (2.31)

where the minus guarantees that information remains a positive quantity. The choice for the

logarithmic base is arbitrary, but by convention the base is 2 making 1 bit the basic unit of

information. To understand the implication of the base choice, the following example is of help.

Example 2.3.1. For a fair coin the information of getting heads or tails is I(heads) = I(tails) =

− log2(1/2) = 1 bit and for a particular singular outcome xi of a die I(xi) = − log2(1/6) ≈ 2.585

bits. The second result seems a bit odd, but it tells us that the result can be coded by a string

of 3 bits. On the other hand for the base six I( ) = − log6(1/6) = 1 the result is a nice integer,

but in that case all elementary information must be coded by six different symbols instead of

only 0’s and 1’s. ♦

2.3.2 Shannon entropy

In sec. 2.2.2 the expected value and standard deviation were introduced as two important means

of condensing usually large data and information about the distributions to a few characterizing

numbers. Consequently, such procedures also exist for I(x) and indeed the renown Shannon

entropy H(X) is nothing but the weighted average of the self-information:
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H(X) = 〈I(xi)〉 = −
N∑
i=1

p(xi) log(p(xi)) . (2.32)

The resemblance with Eq.

E(X) = 〈X〉 =
∑N

i xip(xi)

(2.12) is apparent. It is good to know the properties of the Shannon

entropy H(X) of one random variable

• The entropy vanishes H = 0 for the certain event p(xi) = 1 and likewise for the im-

possible event, p(xi) = 0 for ∀xi ∈ X, the second case being consistent with the limit

lim
p→0+

p log(p) = 0. If there is no uncertainty about the outcome of an event there is no

gain of information.

• The highest value Htop is attained for the uniform distribution p(xi) = 1/N and is identical

to the self-information in that case: Htop = −
∑N

i=1
1
N log(1/N) = log(N) = I(xi), where

N is the number of elements of the sample space. Consequently, the entropy is a positive,

continuous function with 0 ≤ H(X) ≤ log(N).

• The entropy does not depend on the sequence with which the probabilities occurH(pi, pj) =

H(pj , pi) and is also invariant under expansion by impossible events H(p1, ..., pN , 0) =

H(p1, ..., pN ).

• Schur Concavity. The entropy inherits the properties of majorization (see sec. 2.2.3). If

the probability distribution x is ‘less spread out’ than y, to be more accurately x ≺ y,

then its Shannon entropy will be larger H(x) ≥ H(y).

• The binary entropy function describes the entropy for a random variable with only two

possible outcomes p(X = 1) = x and p(X = 0) = (1 − x) and is mostly written as

H̃b(x) = −x log(x)− (1− x) log(1− x). An alternative, more symmetric parametrization

of the binary entropy for p(X = 1) = 1+x
2 and p(X = −1) = 1−x

2 is given by

Hb(x) = −
(

1 + x

2

)
log2

(
1 + x

2

)
−
(

1− x
2

)
log2

(
1− x

2

)
(2.33)

and its derivative is
d

dx
Hb(x) = − log2

(
1 + x

1− x

)
. (2.34)
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Fig. 2.6: Binary Entropy function. The maximum is given at equal likeliness p(x) = 1/2 and

the minima at absolute outcome certainty, i.e. either 100 % possibility or impossibility.

The further away the result from the center the less equiprobable the original probability

distribution is.

Example 2.3.2. The entropy of a coin toss is given by the binary Shannon entropy Hb(x)

which is plotted in Fig. 2.6. In this case heads and tails occur equally frequently, the coin toss

is fair and the entropy is maximal, while if the resulting entropy is less then 1 bit it can be said

that the coin toss is rigged. ♦

2.3.3 Joint, conditional, mutual and relative entropy

To gain further insights it is necessary to have a closer look at the Shannon entropy depending

on at least two random variables. Since entropy and probabilities are functionally linked, similar

expression as in sec. 2.2.1 can be obtained. First, the definition of the joint entropy , associated

with the joint probability p(xi, yj) of the random variables X,Y , is given by

H(X,Y ) = −
∑
i

∑
j

p(xi, yj) log(p(xi, yj)) (2.35)

and from this definition the conditional entropy is deducible
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H(X|Y ) = H(X,Y )−H(Y ) = −
∑
i

∑
j

p(xi, yj) log(p(xi|yj)) . (2.36)

Proceeding with the list of properties of the Shannon entropy the following statements hold

• The joint entropy is symmetric H(X,Y ) = H(Y,X) and subadditive H(X,Y ) ≤ H(X) +

H(Y ). Subadditivity was introduced in Eq.
p(A ∪B) ≤ p(A) + p(B) .
(2.6) and, as was the case for probabilities,

equality only holds for statistically independent events. For correlated random variables

it can be said that knowledge about the outcome decreases the information.

• Since the conditional probability is generally not symmetric, the conditional entropy is

also not symmetric H(X|Y ) 6= H(Y |X) = H(X,Y ) − H(X). It is possible to define a

Bayes’ theorem also for the Shannon entropy which follows from the symmetry of the joint

entropy

H(Y |X) = H(X|Y )−H(X) +H(Y ) . (2.37)

The joint entropy tells something about the information of two random processes altogether.

Naturally, there should be an entropy that quantifies how much information two events have in

common. A measure of information coupling is given by the mutual information defined as

I(X;Y ) =
∑
i=1

∑
j=1

p(xi, yj) log

(
p(xi, yj)

p(xi)p(yj)

)
. (2.38)

• The mutual information is symmetric I(X;Y ) = I(Y ;X), non-negative I(X;Y ) ≥ 0 and

vanishes exactly when the two samples are independent, which reflects that this quantity

is a measure of the overlap of the joint probability distributions with its marginals.

• Mutual information can be connected to the other entropies in many ways, e.g.

I(X;Y ) = H(X) +H(Y )−H(X,Y ) . (2.39)

A nice feature of all these entropies is that they can be visualized in a Venn-Diagram, see

Fig. 2.7, in the same way as probability sets. In this diagram the two marginal entropies H(X)

and H(Y ) are subsets of the joint entropy H(X,Y ), the conditional entropies H(X|Y ), H(Y |X)

are given by the relative complements and the mutual information I(X;Y ) corresponds to the

intersection of the two disks. The formula Eq.

H(X|Y ) = H(X,Y )−H(Y ) = −
∑

i

∑
j p(xi, yj) log(p(xi|yj)) .

(2.36), Eq.
H(Y |X) = H(X|Y )−H(X) +H(Y )
(2.37) and Eq.

I(X;Y ) = H(X) +H(Y )−H(X,Y )
(2.39) are very intuitive
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H(X) H(Y)

H(X|Y) H(Y|X)

H(X,Y)

I(X;Y)

Fig. 2.7: Venn-Diagram for bivariate entropies which in set algebra terms can be written as

H(X,Y )↔ H(X ∪ Y ) for the joint entropy, I(X;Y )↔ H(X ∩ Y ) for the mutual informa-

tion and H(X|Y ) ↔ H(X ∩ Y c) for the conditional entropy, where X ∩ Y c is the relative

complement of the sets.

in this particular picture.

As a logical continuation a useful quantity will be presented, namely the Kullback-Leibler diver-

gence (KL-divergence), which also goes by some other names like relative entropy or information

divergence. Formally, it is defined as

DKL(P ||Q) =
∑
i

p(xi) log

(
p(xi)

q(xi)

)
= −H(X) +H(X;P ;Q) (2.40)

and is frequently used to measure the difference between two probability distributions p and q.

The mutual information I(X;Y ) = DKL (p(xi, yj)||p(xi)p(yj)) for example can be written in

terms of the KL-divergence. The quantity H(X;P ;Q) is known as cross entropy . The relative

entropy compares distributions, but since Eq.

DKL(P ||Q) =
∑

i p(xi) log
(
p(xi)
q(xi)

)
= −H(X) +H(X;P ;Q)

(2.40) is neither symmetric nor obeys the triangle

inequality it is thoroughly distinguished from distances by the term (statistical) divergence.
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p.d.f std. dev. σ(f) diff. entr. h(x)

f(x) = 1
b−a

b−a
2
√

3
log(b− a)

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 σ ln(σ
√

2πe)

f(x) = 1
π

a
a2+x2

undef. ln(2πa)

Tab. 2.1: The table lists the uniform, the normal and the Cauchy distributions along with their

respective standard deviations, if existent, and their differential entropies.

2.3.4 Rényi and differential entropy

Are there other continuous, Schur concave functions that maximize in the case of a uni-

form/normal probability distribution, are invariant under extension by null events and also

satisfy the product rule Eq.
f(p(x1, x2)) = I(x1, x2) = I(x1) + I(x2) = f(p(x1)) + f(p(x2)) .
(2.30) for independent random variables? The class of Rényi en-

tropies

Hα(X) =
1

1− α
log

(∑
x∈X

pα(x)

)
, α ≥ 0, α 6= 1 (2.41)

is the generalized version which meets all the requirements. The value α influences the weigh-

ing of the events: α = 0 gives lower weights to less surprising events while larger α’s put more

priority to events with high surprisal. The Shannon entropy H(X) = lim
α→1

Hα(X) is special

among Rényi entropies as it is the only one with a commonly accepted notion of conditional

entropy [45] and therefore has a well defined chain rule (l.h.s of Eq.

H(X|Y ) = H(X,Y )−H(Y ) = −
∑

i

∑
j p(xi, yj) log(p(xi|yj))

(2.36)).

In contrast to a discrete, a continuous source emits a symbol continuum, i.e the information in

a signal is capable of having uncountable many values. The theoretic model of this source is in

the simplest case a one-dimensional random variable X which can assume arbitrary values x in

an interval and is described by a continuous probability density fX(x). Instead of the Shannon

entropy, the differential entropy

h(x) = −
∫

X
fX(x) log(fX(x))dx (2.42)

is used for continuous probability distributions.

Since every selected value x occurs with typically zero probability and arbitrarily close values

are practically indistinguishable, it is meaningless to ask for the information content of such a
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value. No entropy can be given in the sense of the mean information content per symbol, as

is considered for the discrete source. Differential entropy should hence not be considered as a

straightforward extension of the Shannon entropy [46].

Despite some dissimilarities with the Shannon entropy, the differential entropy is very helpful in

describing probability distributions, because it is closely related to standard deviations. The ta-

ble Tab. 2.1 contains three different probability distribution functions along with the respective

entropies. The example of a uniform probability density already implies a few important facts:

the entropy h(x) becomes negative when b − a < 1 and diverges for a Dirac delta distribution

b−a→ 0. For the normal distribution the entropy grows as the standard deviation increases. It

is particularly interesting that for a given variance a Gaussian provides the probability density

with the maximal entropy, therefore for all h(x)

h(x) ≤ ln(
√

2πeσ2) (2.43)

with equality for a normal distribution. The last function in Tab. 2.1 is an example which has

no finite standard deviation, but a definite entropy.
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CHAPTER 3

Quantum formalism

The mathematical formalism of quantum mechanics has not only been constantly complemented

but also conceptually developed further since its foundation. An overview of the theoretical

concepts of quantum physics important in this thesis is given. In general, no proofs are provided,

but only references to standard textbooks are cited. The key sources for the following sections

in this chapter are [21, 47–51].

3.1 Linear operators in Hilbert space

A Hilbert space H over complex numbers is a vector space in which a scalar product 〈·|·〉 is

defined and for all φ, χ, ψ ∈ H and c1, c2 ∈ C: (i) the inner product is anti-linear in its first

argument and linear its second 〈c1φ|c2χ+ ψ〉 = c∗1(c2 〈φ|χ〉 + 〈φ|ψ〉), (ii) complex conjugation

is given by 〈φ|χ〉∗ = 〈χ|φ〉, (iii) 〈φ|φ〉 ≥ 0 and (iv) 〈φ|φ〉 > 0 if φ 6= 0. Every vector in a Hilbert

space can be written uniquely as a linear combination of orthogonal basis vectors {|en〉}

|ψ〉 =
∑
n

cn |en〉 =
∑
n

〈en|ψ〉 |en〉 (3.1)

with the coefficients retrieved by 〈em|ψ〉 =
∑

n cn 〈em|en〉 =
∑

n cnδnm = cm. From this

Eq.

|ψ〉 =
∑

n cn |en〉 =
∑

n 〈en|ψ〉 |en〉
(3.1) Parseval’s identity can be deduced ‖ψ‖2 = 〈ψ|ψ〉 =

∑
n |〈en|ψ〉|

2. This identity

holds for all inner-product spaces, but the name is mostly mentioned for the special case of
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the Fourier theorem, where |en〉 = {e−inx}n∈N is an orthonormal basis for L2[−π, π] and the

coefficients

cn = 〈f |en〉 =
1

2π

∫ 2π

0
f(x)e−inxdx (3.2)

are exactly given by the Fourier transform. The Fourier transform is a linear, unitary transfor-

mation and in its discrete form is simply a change of basis. As mentioned in the preface, the

quantum superposition Eq.

|ψ〉 =
∑

n cn |en〉 =
∑

n 〈en|ψ〉 |en〉
(3.1) is mathematically the least common attribute rooted in all

uncertainty relations. Explicit applications of unitary transformations for uncertainty relations

are found in [52, 53].

Operators map elements from one vector or function space to another. If ψ ∈ H and every φ

belongs to the domain of observable Â then the corresponding mapping is typically written as

|ψ〉 = Â |φ〉. A mapping Â is linear when Â(c |φ〉+ |χ〉) = cÂ |φ〉+Â |χ〉 , ∀ |φ〉 , |χ〉 ∈ H , ∀c ∈ C

and is a bounded operator if there exists a real number r ≥ 0 such that ‖Âφ‖ ≤ r‖φ‖.

The Banach space L(H), fulfills the axioms of vector spaces and is a normed space with

the operator norm ‖Â‖ := sup ‖Âφ‖ , ‖φ‖ = 1. A bounded operator is Hermitian if it is

self-adjoint Â = Â†, write Â ∈ Ls(H) (the space of self-adjoint operators). Since Hermi-

tian operators have a real-valued spectrum a bounded operator is regarded as self-adjoint if

〈ψ|Â|ψ〉 is a real number and it is called positive if 〈ψ|Â|ψ〉 ≥ 0 (or simply Â > 0) for all

ψ ∈ H. It is useful to observe that any operator that satisfies Â = B̂†B̂ is positive, because

〈ψ|Â|ψ〉 = 〈ψ|B̂†B̂|ψ〉 = 〈B̂ψ|B̂ψ〉 = ‖B̂ψ‖ ≥ 0. In that case the operator might be identified

with its square root B̂ =
√
Â.

For positive bounded operators the trace operation is well-defined as summing of the diagonal

entries

Tr(Â) :=

d∑
i

〈φi|Â|φi〉 , (3.3)

which does not depend on the chosen orthonormal basis {|φi〉} ∈ Cd. With the definition of

the trace at hand it is possible to define: an arbitrary operator in L(H) is called a trace-class

operator if ‖Â‖Tr := Tr(
√
Â†Â) < ∞ and shall be denoted by T (H). For two trace class

operators Â, B̂ it is possible to introduce the Hilbert-Schmidt inner product given as

〈Â|B̂〉 = Tr(Â†B̂) (3.4)
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and the induced Hilbert-Schmidt norm ‖Â‖HS :=

√
〈Â|Â〉. The operators satisfying ‖Â‖HS <∞

are called Hilbert-Schmidt operators.

A self-adjoint operator P̂ , element of a set of projections P(H), is an orthogonal projection onto

a closed subspace M ⊂ H if it is idempotent P̂ 2 = P̂ . The norm of a projector is ‖P̂‖ = 1 for

P 6= 0 and it’s eigenvalues are 1 and 0. For two distinct projection operators P̂1 and P̂2 it can be

said that P̂1P̂2 is zero if the projectors are in orthogonal subspaces M,M⊥. The sum P̂1 + P̂2 is

a projector only when they belong to orthogonal subspaces, the product P̂1P̂2 of two projectors

is generally not a projector unless they commute [P̂1, P̂2] = 0. A one-dimensional projection of

the form P̂ = |φi〉 〈φi|, where {|φi〉} is a complete orthonormal system, is a rank-1 operator.

To every projection operator P̂ exists a complementary projection operator P̂⊥ = 1 − P̂ . A

projector decomposes a linear Hilbert space to H = M⊥ ⊕M .

A bounded linear operator Û is called unitary if Û †Û = Û Û † = 1, where the adjoint can also

be identified with it’s inverse Û † = Û−1, and it is called isometric because it preserves the norm

‖Ûφ‖ = ‖φ‖. The operator norm yields ‖Û‖ = 1 and eigenvalues of a unitary operator are of the

form eir, r ∈ R. Unitary operators are related to self-adjoint operators, that is if Â = Â† then

eiÂ is unitary and the adjoint exponential operator is simply given by (eiÂ)† = e−iÂ. A crucial

property for the product of two unitary operators is given by the Baker-Campbell-Hausdorff

formula, which indicates that the exponential map for non-commuting operators [Â, B̂] 6= 0 is

generally not homomorphic eiÂeiB̂ 6= ei(Â+B̂).

3.1.1 Common operator decompositions

In the following, some frequently used operator and matrix factorizations are introduced which

appear later on. For a purely discrete spectrum the spectral decomposition works out in the

same way as the eigenvalue decomposition of Hermitian matrices, which for non-degenerate

eigenvalues is

Â =
∑
i

ai |ai〉〈ai| =
∑
i

aiP̂ (ai) . (3.5)

The parenthesis after the projector is meant to emphasize the association with the operator by

its eigenvalue decomposition. Every self-adjoint operator has a complete orthonormal system

of eigenvectors |ai〉, that span a linear subspace. The eigenvectors of a Hermitian matrix with
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Fig. 3.1: Interpretation of the matrix polar decomposition, where a rotation is followed by a

stretch along the green and red arrows to end up in the final configuration.

real eigenvalue ai = 〈ai|Â|ai〉 constitute an orthogonal basis and the projection operators that

arise that way sum to unity ∑
i

P̂ (ai) =
∑
i

|ai〉〈ai| = 1 . (3.6)

In analogy to the polar form of complex numbers z = reiφ, any linear operator has a polar

decomposition

Â = |Â|Û =
√
Â†Â Û , (3.7)

where |Â| is the absolute and Û is a unitary operator. Geometrically a matrix polar decom-

position splits the action of the deformation into a shape conserving rotation and a stretching,

which is illustrated in Fig. 3.1.

Let Â be an m×n matrix. Then there exists a unitary m×m matrix Û , a unitary n×n matrix

V̂ and an m×n diagonal matrix Σ̂ with nonnegative, decreasing real entries σi on the diagonal

such that

Â = Û Σ̂V̂ † . (3.8)

The form Eq.
Â = Û Σ̂V̂ † .
(3.8) is called the singular value decomposition (SVD) of Â. Because of the

matrix similarity Â†Â = V̂ (Σ̂†Σ̂)V̂ −1, the square root of the eigenvalues of the Hermitian,
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positive matrix ÂÂ† are the diagonal elements of Σ̂ and the σi are called the singular values.

Example 3.1.1.

Â =


1 1

1 0

0 1

 , Â†Â =

 2 1

1 2

 . (3.9)

The square root of the eigenvalues of Â†Â are σ1 =
√

3, σ2 =
√

1 and the eigenvectors v1 =

1√
2
(1, 1)T and v2 = 1√

2
(−1, 1)T constitute the unitary matrix V̂ = (v1,v2). The second unitary

matrix is calculated by ui = 1
σi
Âvi and is therefore given by Û = (u1,u2,u1 × u2). The singular

value decomposition in the example is therefore

Â = Û Σ̂V̂ † =


√

2
3 0 − 1√

3

1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3



√

3 0

0 1

0 0


 1√

2
− 1√

2

1√
2

1√
2

 . (3.10)

♦

The SVD for square matrices has a similar geometric interpretation as the matrix polar decom-

position containing one additional rotation, but it also extends to matrices with unequal row

and column sizes. Another very important feature of the SVD is that it is a common method to

calculate the Moore - Penrose pseudoinverse Â+, the inverse of rectangular or singular matrices.

To be more precisely, a matrix Â ∈ Cm×n has a pseudoinverse Â+ ∈ Cn×m when satisfying the

following four criteria: (i) ÂÂ+Â = Â , (ii) Â+ÂÂ+ = Â+ and Hermiticity in both directions

(iii) (ÂÂ+)† = ÂÂ+ (iv) (Â+Â)† = Â+Â . For a matrix with SVD as in Eq.
Â = Û Σ̂V̂ † .
(3.8) the pseudoin-

verse is Â+ = V̂ Σ̂+Û †, where Σ̂+ is attained by inverting the nonzero (diagonal) entries and

transposing the matrix. The inverse of the matrix from the previous example is calculated as

Example 3.1.2.

Σ̂+ =

 1√
3

0 0

0 1 0

 ⇒ Â+ =
1

3

 1 2 −1

1 −1 2

 . (3.11)

♦
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3.2 Density operator

The density operator ρ̂ (a.k.a statistical operator) on a Hilbert spaceH is defined as a Hermitian,

positive, bounded trace-class operator with unit trace Tr(ρ̂) = 1, formally

S(H) := {ρ̂ ∈ T (H) | ρ̂ ≥ 0,Tr(ρ̂) = 1} . (3.12)

The set S(H) of all density operators is convex, which means that ρ̂ = λρ̂1 + (1− λ)ρ̂2 ∈ S(H)

for all ρ̂1, ρ̂2 ∈ S(H) and λi ∈ [0, 1]; The extreme points of density operators are the one-

dimensional orthogonal projections P̂ψ = |ψ〉 〈ψ|, where ‖ψ‖ = 1, which correspond to pure

states of the Hilbert space. A criterion for pureness of the density matrix is therefore given by

idempotence ρ̂2 = ρ̂, from which follows

Tr(ρ̂2) = 1 pure states ,

Tr(ρ̂2) < 1 mixed states .
(3.13)

One-dimensional orthogonal projections have rank 1, which therefore also holds for pure states,

while convex combination of two orthogonal rank 1 elements can be used to construct higher

ranked elements. The rank of the operator in a convex set is given as the minimum number of

projectors that are necessary to express it as a convex combination.

Another property of mixes states is that they can be written as a mixture of pure states in many

ways if they are not extremal points of the convex set, for example ρ̂ =
∑

i ψiP̂ψi =
∑

i φiP̂φi ,

where |ψi〉 , |φi〉 need not be orthogonal unit vectors. Even for orthogonal vectors the convex

combination is generally not unique. A visualization of the situation is given in Fig. 3.2 . For

dim(H) ≥ 3 it can be shown that a density matrix belongs to the boundary if one of the

eigenvalues in the diagonalized form Eq.

Â =
∑

i ai |ai〉 〈ai| =
∑

i aiP̂ (ai)

(3.5) equals zero [49]. For dimension 2 the state space

is spherical as indicated in Fig. 3.2 and the boundary coincides with the set of all pure states.

In quantum physics, if the same density matrix is given for ensembles consisting of different

pure states then physically these states cannot be distinguished by any operational procedure.

3.2.1 Bloch vectors

The Bloch sphere is very useful to visualize the geometry of a two-dimensional quantum system.

It emerges from the symmetry group of the two-dimensional quantum system SU(2) which is a

the set of matrices in C2 with unit determinant

44



CHAPTER 3. QUANTUM FORMALISM

ρ

P

ϕ1

P

ϕ2

P

ψ1

P

ψ2

rank 2

rank 1

Fig. 3.2: Any interior point in the convex disk corresponds to a mixed state that can be realized

by an arbitrary convex combination of two extremal points. The projectors that lie on the

exterior circle have rank 1, while the rank increases in the interior.

Û =

z1 −z2

z∗2 z∗1

 , det(Û) = |z1|2 + |z2|2 = 1 . (3.14)

By decomposing the complex entries of the matrix into real and imaginary part z1 = x0 +

ix1 and z2 = x2 + ix3 it becomes obvious that Eq.

Û =

(
z1 − z2

z∗2 z∗1

)
, det(Û) = |z1|2 + |z2|2 = 1 .

(3.14) describes a 3 dimensional sphere

x2
0 + x2

1 + x2
2 + x2

3 = 1 embedded in the four dimensional real space R4. The reason Bloch

states can be drawn in Euclidean space is due the fact that the global phase eiα (S1 ∼= U(1))

is typically removed from the formalization of two-level quantum states2. Taking the modulo

S2 ∼= S3/S1 ∼= SU(2)/U(1) exactly gives the surface of a ball in R3 as shown in Fig. 3.3, whose

Hilbert state can be parametrized by a polar angle ϑ and an azimuthal angle ϕ

|χ(ϑ, ϕ)〉 =

 cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)
 = cos

(
ϑ

2

)
|+z〉+ eiϕ sin

(
ϑ

2

)
|−z〉 . (3.15)

Notice that there is only half the angle in Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15), because the generators of SU(2) are given

by Ŝi = 1
2 σ̂i, with the Pauli observables

2These phase circles S1 are still related to geometric phases.
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Fig. 3.3: Bloch sphere. The state vector Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15) of a two-dimensional system can be geomet-

rically illustrated in a sphere with polar angle ϑ and azimuthal angle ϕ.

σ̂x =

0 1

1 0

 , σ̂y =

0 −i

i 0

 , σ̂x =

1 0

0 −1

 , (3.16)

so the exponential map reads eixŜi = ei
x
2
σ̂i . Consequently, orthogonal states belong to antipodal

points on the sphere and any state reverts back to its origin after a rotation by ϑ = 4π. This

causes a small peril that should be kept in mind when plotting vectors in the Bloch sphere. It

is safe to use the spherical representation of the Hilbert vectors as long as one is aware that all

signs change |χ(2π, ϕ)〉 = − |χ(0, ϕ)〉 after a full rotation of the Bloch ball.

In order to see how two dimensional states can be formulated in terms of a density matrix it is

good to know that the Pauli matrices σ̂1, σ̂2, σ̂3 given in Eq.

σ̂x =

0 1

1 0

 , σ̂y =

0 −i

i 0

 , σ̂x =

1 0

0 −1

 .

(3.16) together with the identity

matrix 1 = σ̂0 form, when endowed with the Hilbert-Schmidt inner product Eq.
〈Â|B̂〉 = Tr(Â†B̂)
(3.4), an

orthogonal basis for the Hilbert space C2. Therefore any 2x2 matrix Â over the complex field

must be factorisable as a linear combination of the form
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Â =
3∑
i=0

riσ̂i = r01+
3∑
i=1

riσ̂i , ri =
1

2
〈σi|Â〉 =

1

2
Tr(σi Â) , (3.17)

where the factor 1/2 comes in, because 〈σi|σj〉 = 2δij .

Example 3.2.1. Let Â be a some random matrix of the form

Â =

a b

c d

 (3.18)

then the coefficients are: r0 = (a+ d)/2, r1 = (b+ c)/2, r2 = (ib− ic)/2, r3 = (a− d)/2. ♦

In case the operator in Eq.

Â =
∑3

i=0 riσ̂i = r01+
∑3

i=1 riσ̂i , ri = 1
2 〈σi|Â〉 = 1

2Tr(σi Â) ,

(3.17) is the pure density matrix given by the projector ρ̂χ = |χ〉〈χ|

of Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15) calculation will yield: r0 = Tr(ρ̂χσ̂0)/2 = 1/2 and for i > 0, ri>0 = Tr(ρ̂χσ̂i)/2 =

〈χ|σi|χ〉 /2. Usually, the two-level density matrix is then written out as

ρ̂ =
1+ r · σ̂

2
, (3.19)

where r in case of pure states is exactly the expectation value of the Pauli matrices r =

(r1, r2, r3)T = 〈χ|σ̂|χ〉. The Bloch vector r is element of the real space R3 symmetric un-

der rotations of the group SO(3). Checking out the trace of the squared density matrix, the

result is

Tr(ρ̂2) = Tr(
1+ 2r · σ̂ + 1r · r

4
) =

1 + ‖r‖2

2
, (3.20)

which according to Eq.

Tr(ρ̂2) = 1 pure states ,

Tr(ρ̂2) < 1 mixed states .
(3.13) implies that the density matrix is pure if the state has unit length

‖r‖ = ‖χ‖ = 1 and consequently ρ̂χ is a projector. On the other hand, allowing the vector

length to be ‖χ‖ < 1 implies that all inner points of the Bloch sphere are mixed states. Another

way to see this feature is to calculate the eigenvalues of Eq.

ρ̂ = 1+r·σ̂
2 ,

(3.19) which are λ± = (1±‖r‖)/2,

therefore for a unit length vector one eigenvalue equals 0 and the state cannot be written as

convex combination of extreme points. The totally mixed state is represented by ρ̂ = 1/2 and

is acquired at ‖r‖ = 0. A Bloch sphere as in Fig. 3.3 is therefore only centered at |χ〉 = 0 for

the state space, while for density matrix the origin is shifted by 1/2.

With the two-dimensional quantum system analyzed above, it is a good opportunity to introduce
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the term of mutually unbiased states. Mathematically, the orthonormal eigenstates |ai〉 , |bj〉

belonging to pairs of observables over a d-dimensional Hilbert space which satisfy

|〈bj |ai〉|2 =
1

d
, ∀i, j ∈ {1, 2....d} (3.21)

are called mutually unbiased. The eigenvectors |±x〉 , |±y〉 , |±z〉 of the Pauli matrices are the

easiest example of orthonormal bases that have the property of Eq.

|〈bj |ai〉|2 = 1
d , ∀i, j ∈ {1, 2....d}

(3.21). Physically these

state imply the maximal trade-off in the distinguishability, i.e. perfect knowledge about one

observable implies maximal ignorance for the other. This interpretation makes these states

particularly important in quantum information theory.

3.2.2 Composite two-state systems

Quantum theory contains a lot of interesting new phenomena when several particles are involved.

Suppose, T̂ ∈ T (H) is a general trace class operator on a composite Hilbert space H1 ⊗ H2,

where the subscripts refer to separate subsystems in the sense that experiments in system 1

and system 2 can be performed individually (not necessarily causally independent). The partial

trace over the system 1 for such an operator is defined by the mapping

Tr1 : T (H1 ⊗H2)→ T (H2) (3.22)

and vice-versa for the partial trace Tr2 over system 2. Assuming that the operator is given by

a tensor product T̂ = T̂1 ⊗ T̂2 the following relations hold

Tr1(T̂1 ⊗ T̂2) = Tr(T̂1) T̂2 ,

Tr2(T̂1 ⊗ T̂2) = T̂1 Tr(T̂2) .
(3.23)

The partial trace can also be written in terms of Hilbert states; for {|φm〉} a basis in H1 and

{|ψn〉} a basis in H2 it follows from the unity of the projector sum Eq.

∑
i P̂ (ai) =

∑
i |ai〉 〈ai| = 1 .

(3.6) of T̂

T̂ =

∑
k,l

|φkψl〉 〈φkψl|

 T̂

(∑
m,n

|φmψn〉 〈φmψn|

)

=
∑

k,l,m,n

〈φkψl|T̂ |φmψn〉 |φkψl〉 〈φmψn| ,
(3.24)
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then the partial trace over system 1 is given as

Tr1(T̂ ) =
∑

k,l,m,n

〈φkψl|T̂ |φmψn〉 δkm |ψl〉 〈ψn|

=
∑
l,m,n

〈φmψl|T̂ |φmψn〉 |ψl〉 〈ψn| .
(3.25)

After taking the partial trace on a bipartite system it is possible to perform a trace operation on

the second part yielding the total trace. A quick exercise reveals that the order with which the

total trace is calculated is not relevant Tr(T̂ ) = Tr(Tr1(T̂ )) = Tr(Tr2(T̂ )). Another important

property is that for T̂ ≥ 0 the partial traces of each system Tr1(T̂ ) ≥ 0 (resp. Tr2(T̂ ) ≥ 0)

remains positive. This is an example of a complete positive map (detailed description is given in

sec. 3.4). The formula about the partial trace are significantly important for the class of density

operators. Regard a joint state ρ̂12 ∈ S(H1 ⊗ H2) in the composite system, then the partial

trace Tr1(T̂ ) gives the reduced state of subsystem 2 and vice-versa Tr2(T̂ ) gives the reduced

density operator of subsystem 1. In case the joint state is not entangled and given by a tensor

product of two reduced states Eq.

Tr1(T̂1 ⊗ T̂2) = Tr(T̂1) T̂2 ,

Tr2(T̂1 ⊗ T̂2) = T̂1 Tr(T̂2) .
(3.23) yields ρ̂1 = Tr2(ρ̂1 ⊗ ρ̂2).

Interestingly, reduced states, emerging in the process of partial tracing of a pure joint state

ρ̂12 are not pure in general. Mixed states are therefore often considered as a product of state-

reduction. Following this track of consideration one might ask if it is possible to purify a mixed

state: adding an extra system to a mixed state, can the resulting larger system become pure?

This task is referred to as state purification and can be though of the inversion of state reduction.

Here is how the purification works: Let ρ̂1 be a state on H1 and add an aiding space Hanc,

which is called ancilla, then the joint pure state ρ̂1,anc is a purification of ρ̂1 if Tranc(ρ̂1,anc) = ρ̂1.

Formally, assume a mixed state ρ̂1 =
∑n

i λi |φi〉 〈φi| in space H1 where {|φi〉} is orthogonal, for

the ancillary system take {|ψ〉i} as orthonormal basis of Hanc, then

|χ〉 =
∑
i

√
pi |φi〉 ⊗ |ψi〉 , (3.26)

gives ρ̂1,anc = |χ〉 〈χ|, the purification of ρ̂1 with
∑

i λi = 1. From this, one deduces that a

mixed subsystem can, when combined with an ancilla, be composed to yield a pure state in

the extended space. Any vectorial form |χ〉 ∈ H1 ⊗ H2 as in Eq.

|χ〉 =
∑

i

√
pi |φi〉 ⊗ |ψi〉 .

(3.26) with two respective

orthonormal bases is also known as the Schmidt decomposition of |χ〉.
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3.3 Effects

In the context of quantum physics, the term of effect [54] can be associated with a measurement

on a physical object. A prepared ensemble of particles that passes a measurement yields a certain

result and the effect assigns a probability to the ensembles associated with that outcome. From

the framework of states ρ̂, the effect operators Π̂ are exactly the maps from the set of states S(H)

to the unit interval [0, 1], ergo to the range of probabilities. Consequently, for the expectation

value Tr(ρ̂Π̂) to be in the unit interval, the effect Π̂ must be a positive, self-adjoint operator

with the property 0 ≤ Π̂ ≤ 1. The set of effects shall be denoted by

E(H) :=
{

Π̂ ∈ Ls(H) | 0 ≤ Π̂ ≤ 1
}
. (3.27)

The most prominent example of effects that comply with Eq.

E(H) :=
{

Π̂ ∈ Ls(H) | 0 ≤ Π̂ ≤ 1
}
.

(3.27) and Eq.
x
(3.6) are normal-

ized projection operators: such effects Π̂m = P̂m = P̂ †mP̂m are called sharp observables. It is

known from previous considerations that projectors are extremal elements of the convex set, so

that they can be regarded a special subclass of all effects.

Let (Ω,F) be a measurable space (see sec. 2.2) and P(H) ⊂ L(H) be the set of orthogonal

projectors of the complex Hilbert space H then a projection-valued measure (PVM) maps events

(outcomes) to operators Π̂ : F → L(H) with the properties

1. Π̂(∅) = O.

2. Π̂(Ω) = IH, with IH the identity on H.

3. Π̂(∪iXi) =
∑

Π̂(Xi) (series convergence in the weak operator topology) for any sequence

of disjoint sets Xi ∈ F .

4. For all X ∈ F it holds Π̂(X) ∈ P(H).

These conditions connect measurable results and their probabilities to operators of quantum

physics. It is necessary for the effects to be positive, sum up to unity and be additive since they

are related to measures in probability space (Ω,F , p).

More generally, a complete set {Π̂m ∈ E(H)} that sums to unity, but is not a collection of pro-

jectors and does not meet requirement 4, is called a positive operator-valued measure (POVM).
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These effects are in contrast to their sharp PVM counterparts referred to as unsharp observables.

As shown in the definition in sec. 3.1 positive operators can be decomposed to

Π̂m := M̂mM̂
†
m , (3.28)

where M̂m in this context will be called measurement operators. The measurement operators

are only unique up to a unitary transformation M̂m =
√

Π̂mÛ (this is nothing but the polar

decomposition Eq.
Â = |Â|Û =

√
Â†Â Û .

(3.7)), as inserting into Eq.
Π̂m := M̂ †mM̂m .
(3.28) makes it immediately apparent. As a

consequence POVMs alone do not yield the form of the measurement operators.

The set of sharp and unsharp observables Π̂ : F → L(H) constitutes the set of all quantum

observables O(Ω,F ,H), where Π̂ is a POVM if it satisfies requirements 1-3 of the list, or

equivalently if F 3 X → Tr(ρ̂Π̂(X)) is a probability for all ρ̂ ∈ S(H). The set of observables

form a convex set which allow to mix up two observables Π̂1, Π̂2 ∈ O(Ω,F ,H) in the form

λΠ̂1 + (1 − λ)Π̂2. Any effect can be be decomposed by the spectral theorem into n mutually

orthogonal projectors

Π̂ =

n≤dim(H)∑
i=1

αiP̂i . (3.29)

The upper bound of summation n determines the rank, if n = 1 then the effect will be rank-1.

To understand POVMs better, consider the following example.

Example 3.3.1. One of the simplest illustration of a valid two-dimensional POVM can be

constructed as follows. Using the state notation of Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15) the set of three states given by

|t1〉 =

√
2

3
|χ
(π

2
, 0
)
〉 , |t2〉 =

√
2

3
|χ
(
π

2
,
2π

3

)
〉 , |t3〉 =

√
2

3
|χ
(
π

2
,
4π

3

)
〉 (3.30)

allow to construct three effects Π̂i that constitute a POVM

Π̂1 = |t1〉 〈t1| =
2

3
P̂ (r1) , Π̂2 = |t2〉 〈t2| =

2

3
P̂ (r2) , Π̂3 = |t3〉 〈t3| =

2

3
P̂ (r3) . (3.31)

The states in Eq.

|t1〉 =
√

2
3 |χ

(
π
2 , 0
)
〉 , |t2〉 =

√
2
3 |χ

(
π
2 ,

2π
3

)
〉 , |t3〉 =

√
2
3 |χ

(
π
2 ,

4π
3

)
〉

(3.30) are called trine states, the collection of effects in Eq.

Π̂1 = |t1〉 〈t1| = 2
3 P̂ (r1) , Π̂2 = |t2〉 〈t2| = 2

3 P̂ (r2) , Π̂3 = |t3〉 〈t3| = 2
3 P̂ (r3) .

(3.31) in turn are

known as trine POVM. Each matrix is positive and the sum of the three matrices yields the

identity matrix. Because of the 2
3 -factor the effects are not projectors Π̂2

i 6= Π̂i , but they are

proportional to the projector P̂ pointing in direction ri. Because of their proportionality the
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Fig. 3.4: The 3-outcome trine POVM illustrated as non-normalized projectors in an operator

sphere confined to the xy-plane. The effects have Hilbert-Schmidt norm ‖Π̂i‖HS = 2
3 and

are separated by a constant angle of 120◦.

effects retain their rank, i.e. they are rank-1 operators in the same way as projectors. Another

consequence from this plain example is that the measurement operators are easily related to

the effects by M̂i = Û
√

2
3 P̂ (ri), which are unique up to an arbitrary unitary operator. An

illustration of the trine state is given in Fig. 3.4. ♦

In the two-dimensional case, if a POVM is proportional to PVMs of the form in Eq.

ρ̂ = 1+r·σ̂
2 ,

(3.19) then

all effects sum to unity if the total displacement of the Bloch vectors ri is zero, that is

n∑
i=1

ri = 0, ‖ri‖ = 1 ⇒
n∑
i=1

Π̂i =
2

n

n∑
i=1

P̂ (ri) = 1 . (3.32)

This formula Eq.

∑n
i=1 ri = 0, ‖ri‖ = 1 ⇒

∑n
i=1 Π̂i = 2

n

∑n
i=1 P̂ (ri) = 1 .

(3.32) comprises the projective case given for n = 2 and the trine state ex-

ample for n = 3. The PVM with only two elements must necessarily be collinear showing to

antipodal points on the sphere, while the three-elemental POVM forms an equilateral triangle.

For n = 4 the rigidness of the shape decreases and it is possible to have 4 vectors pointing to a

vertices of a parallelogram, but also to the vertices of a regular tetrahedron.
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Up to now all effects considered were proportional to projectors Π̂ = λP̂ (r) with λ ∈ [0, 1].

Relaxing the unit length restriction of the qubit POVM ads an additional degree of freedom.

Any arbitrary, finite, two-dimensional quantum effect can be written in the form

Π̂i(%, r) =
%i1+ ri · σ̂

2
, ‖ri‖ ≤ %i ≤ 2− ‖ri‖ . (3.33)

The inequality in Eq.

Π̂i(%, r) = %i1+ri·σ̂
2 , ‖ri‖ ≤ %i ≤ 2− ‖ri‖ .

(3.33) is a necessary condition that ensures that all Π̂i, which have eigen-

values 1
2(%± ‖ri‖), satisfy the range condition 0 ≤ Π̂i ≤ 1 according to Eq. (3.27) . The effect

is rank 1 if %i = ‖ri‖ and equal to a projector exactly for ‖ri‖ = 1.

3.3.1 Measurement outcomes and outputs

Measurements in quantum physics are often described by postulates, which are rules telling how

to acquire statistics in an ensemble of identical measurements. Here, the measurement process is

explained without looking at the physical and operational details of the measurement apparatus.

The two essential ingredients that characterize the process of measurement are the state de-

scribable by a Hilbert state |ψ〉 or density matrix ρ̂, and an measurement operator that makes

the observation given by the effect Π̂. The treatment of the measuring process was for a long

time limited to projective von-Neumann measurements. Such a measurement is described by

an Hermitian observable which has the spectral decomposition Â =
∑

mmP̂m, where the eigen-

values m correspond to the measurement outcomes. Born’s rule then supplies the probability

for that particular outcome to occur for the initial state ρ̂i

p(m) = Tr(ρ̂iP̂m) = 〈ρ̂i|P̂m〉 (3.34)

and furthermore the expectation value is given by 〈Â〉 =
∑

mmTr(ρ̂iP̂m). The final state after

a particular outcome m is described by the density operator

ρ̂f (m) =
P̂mρ̂iP̂

†
m

Tr(P̂mρ̂iP̂
†
m)

, (3.35)

while the full ensemble after the measurement will be of the form ρ̂f =
∑

m 〈ρ̂i|P̂m〉 ρ̂f (m) =∑
m P̂mρ̂iP̂

†
m. The key property of von Neumann measurements is repeatability, i.e. after a
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projective measurement produces outcome m, the result is reproduced when the measurement

is repeated. Repeatability in quantum theory is not strictly necessary and for many important

measurements can be regarded a dispensable restriction. The employment of POVMs allows to

access a wider spectrum of quantum measurements. The previous result Eq.
p(m) = Tr(ρ̂iP̂m) = 〈ρ̂i|P̂m〉 .
(3.34) changes to

p(m) = Tr(ρ̂iΠ̂m) = Tr(M̂mρ̂iM̂
†
m) , (3.36)

where the resolution of identity must hold for Π̂ ∈ O(Ω,F ,H), hence Π̂(Ω) =
∑

ωm∈Ω Π̂({ωm}) =∑
m Π̂m = 1. The outcome m now corresponds no longer to the eigenvalue, but some output

variable, and the state after measurement is

ρ̂f (m) =
M̂mρ̂iM̂

†
m

Tr(M̂mρ̂iM̂
†
m)
6= Π̂mρ̂iΠ̂

†
m

Tr(Π̂mρ̂i)
. (3.37)

The right hand side has been deliberately added to emphasize that the post-measurement state

is not given by the operative action of the effects Π̂m, but by the action of the operators M̂m.

A more detailed description about quantum measurements follows in sec. 3.6.

3.4 Quantum operations

A substantial component which has not been discussed until now is the concept of a quantum

channel, the ‘pipeline’ that connects states and observations. The function of a channel is to

take input states and guide them, permitting all operations that map quantum ensembles to

other valid quantum ensembles.

A quantum operation is a linear map E transforming a set of states S(H) to another set of

density operators S̃(H̃). Since density operators can always be written as convex combination

of pure states, the map E has to be convexity preserving [49], i.e.

E

(∑
i

λiρ̂i

)
=
∑
i

λiE (ρ̂i) . (3.38)

The map in Eq.

E (
∑

i λiρ̂i) =
∑

i λiE (ρ̂i) .

(3.38) should meet further mathematical requirements. First, the map has to

preserve positivity E(ρ̂) ≥ 0 for all inputs ρ̂ ∈ S(H). A second important requirement is that

the unit trace of input states is preserved or at least not increased: Tr(E(ρ̂)) ≤ Tr(ρ̂) = 1.

Depending on the strictness of the inequality Tr(E(ρ̂)) ≤ 1 there are two distinguished terms
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1. Quantum operations, correspond to trace non increasing maps.

2. Quantum channels, correspond specifically to trace preserving maps, Tr(E(ρ̂)) = 1.

The physical difference between the two is that quantum channels are non-selective, i.e. they

will either map unitarily or pure states to mixed states deterministically, while trace decreasing

operators describe nondeterministic, selective mappings of states as is the case in information

providing quantum measurements. Such quantum operations transform pure states to either

pure or mixed states [55].

Another property of quantum operations and channels can only be comprehended when looking

at composite quantum systems. Let H1 ⊗H2 be the Hilbert space of a composite system and

consider a map as in Eq.

E (
∑

i λiρ̂i) =
∑

i λiE (ρ̂i) .

(3.38) where E1 acts on H1 extended by the identity map 12 acting

on system H2, which indicates that the second subsystem is left untouched. Then the action of

the map on the composite density matrix is given by

(E1 ⊗ 12)(ρ̂1 ⊗ ρ̂2) = E1(ρ̂1)⊗ ρ̂2 . (3.39)

In general the extended map (E1⊗12) should also transform quantum ensembles appropriately.

Positivity of the submap E1 is not enough for the composite map (E1⊗12) to be positive. Gen-

erally speaking, if a map E1 between the sets of trace class operators is such that its extended

map E1 ⊗ 12 is positive on the composite Hilbert space for all finite dimensional extensions of

H2 then E1 is called completely positive (CP) . Hence, a quantum channel is rigorously defined

as a linear map E that has to be completely positive, trace-preserving (CPTP).

Evolutions of quantum systems are usually considered in the more prevalent Schrödinger pic-

ture, which puts the entire dynamics into the quantum states leaving the quantum operators

unchanged, in opposition to the Heisenberg picture which transforms the observables keeping the

states in their static form. This switch between the pictures can be accomplished for quantum

channels E on L(H) by the dual map E∗. Suppose, ρ̂ ∈ S(H) and Â ∈ L(H), then irrespective

of which pictures is used the expectation values have to be the same

Tr
(
E(ρ̂)Â

)
= Tr

(
ρ̂ E∗(Â)

)
, (3.40)

where the mapping E∗ is now acting on the observable. From the following equation
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Tr (E(ρ̂)) = Tr (E(ρ̂)1) = Tr (ρ̂ E∗(1)) (3.41)

the trace non-increasing property Tr(ρ̂) ≥ Tr(E(ρ̂)) of quantum operations translates to E∗(1) ≤

1 for the dual quantum operation E∗. When equality holds E∗(1) = 1 the operation is called

unital . The most common examples of quantum channels are

1. Unitary maps EU (ρ̂) = Û ρ̂Û †.

2. Partial tracing Ep(ρ̂) = Tr2(ρ̂) , ρ̂ ∈ H1 ⊗H2 as has already been introduced (sec. 3.2.2).

3. Let ρ̂anc be a fixed state of Hanc, the ancillary Hilbert space, then the extension of

the system by an uncorrelated ancilla is also a valid and substantial quantum channel

Eanc(ρ̂) = Tr(ρ⊗ ρ̂anc).

The distinguishing feature of the examples mentioned above is that unitary transformations only

describe the deterministic evolution of a closed subsystem. The other kind of channels can serve

as physical models for taking environmental influences into account. If the state ρ̂ ∈ S(HS) is

considered and ρ̂E is a defined state of the environment Hilbert space HE , then their common

global evolution can be described as an unitary operator Û on the system plus environment

(see Fig. 3.5 for a pictograph of an open quantum system). This leads to a further important

quantum channel, emerging as a combination of tensoring with an ancilla Eanc, common unitary

evolution EU and eventually using a partial trace Ep to extract information about the changes

of the system state.

The following corollary can be provided: Let E : S(H)→ S(H) be a CPTP map between states

in a Hilbert state H, then there exists a Hilbert space HE , a pure state ρ̂E = |e〉〈e| ∈ HE and

a unitary operator Û ∈ H ⊗HE such that any channel can be represented by

EE(ρ̂) = TrE

(
Û(ρ̂⊗ ρ̂E)Û †

)
(3.42)

for all ρ̂ ∈ H. The channel in Eq.

EE(ρ̂) = TrE

(
Û(ρ̂⊗ ρ̂E)Û †

)
.

(3.42) is a chained composition of three channels: Eanc◦EU ◦Ep.

The formula of Eq.

EE(ρ̂) = TrE

(
Û(ρ̂⊗ ρ̂E)Û †

)
.

(3.42) can be regarded a special version of a more general from of the Stine-

spring theorem and guarantees that each channel can be expressed in this form; the triplet
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ρ

ρE

U


ℰ(ρ)

Fig. 3.5: Model of the interaction of a unitary operator acting on the dilated space resulting

in a channel E(ρ̂) that describes the input state’s change by coupling with an ancilla and

interaction through a global unitary. The resulting state is obtained after discarding the

environment ρ̂E by partial tracing.

〈HE , Û , ρ̂E〉 is usually called Stinespring dilation3.

It is possible to make a change in the appearance of Eq.

EE(ρ̂) = TrE

(
Û(ρ̂⊗ ρ̂E)Û †

)
.

(3.42) to arrive at the operator sum

representation, also Kraus representation, of quantum operations and channels. For the purpose

of reformulation the orthonormal eigenstates of the environment is chosen {|ei〉} and the initial

state fixed as ρ̂E = |e0〉 〈e0|. Thus

EE(ρ̂) = TrE

(
Û(ρ̂⊗ |e0〉〈e0|)Û †

)
,

=
∑
k

〈ek|Û |e0〉 ρ̂ 〈e0|Û †|ek〉 ,

=
∑
k

Êkρ̂Ê
†
k ,

(3.43)

where Êk = 〈ek|Û |e0〉 is called Kraus operator . From the trace-preservation of quantum chan-

nels, one obtains

Tr(EE (ρ̂)) = Tr

(∑
k

Êkρ̂Ê
†
k

)
= Tr

(∑
k

Ê†kÊkρ̂

)
= 1 . (3.44)

It can be further deduced that for a CPTP map the resolution of the identity holds∑
k

Ê†kÊk = 1 . (3.45)

3The Stinespring dilation is more general statement on the theory of CP maps between C∗-algebras [48].
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The operator sum representation puts the interaction with the environment into the operators,

such that the details about the ambient are concealed and the dynamic of the system’s state

emerges without explicitly considering the properties of the environment. The description of

quantum channels with the operator sum representation satisfying Eq.

∑
k Ê
†
kÊk = 1 .

(3.45) is equivalent to

the dilation Eq.

EE(ρ̂) = TrE

(
Û(ρ̂⊗ ρ̂E)Û †

)
.

(3.42). For trace non increasing quantum operations the equality in Eq.

∑
k Ê
†
kÊk = 1 .

(3.45)

must be replaced with
∑

k Ê
†
kÊk ≤ 1.

The Kraus operators already appeared in the form of measurement operators in sec. 3.3.1.

This should not be a surprise since transformations from pre- to post-measurement states are

described by quantum operations. Writing I(k)(ρ̂) = Êkρ̂Ê
†
k and normalizing by Tr(I(k)(ρ̂)),

the system state acquires the form

ρ̂k =
I(k)(ρ̂)

Tr(I(k)(ρ̂))
=

Êkρ̂Ê
†
k

Tr(Êkρ̂Ê
†
k)
. (3.46)

This is nothing but the density operator emerging after a measurement as given in Eq.

ρ̂f (m) = M̂mρ̂iM̂
†
m

Tr(M̂mρ̂iM̂
†
m)
6= Π̂mρ̂iΠ̂

†
m

Tr(Π̂mρ̂i)
.

(3.37).

In that form Π̂k = Ê†kÊk corresponds exactly to elements of a POVM and p(k) = Tr(Π̂kρ̂) is

nothing but the probability for the outcome k. This equivalence permits an extremely useful

interpretation of the operator-sum representation and vice-versa: the measurement operators

previously encountered can now be interpreted as the Kraus operators Êk → M̂k = 〈ek|Û |e0〉

and Eq.

EE(ρ̂) = TrE

(
Û(ρ̂⊗ |e0〉〈e0|)Û †

)
,

=
∑

k 〈ek|Û |e0〉 ρ̂ 〈e0|Û †|ek〉 ,
=
∑

k Êkρ̂Ê
†
k .

(3.43)

Ens (ρ̂) =
∑
k

M̂kρ̂M̂
†
k =

∑
k

p(k)ρ̂k , (3.47)

can be interpreted as the ensemble after measurement. Notice, that Eq.

ρ̂k = I(k)(ρ̂)
Tr(I(k)(ρ̂)) =

Êkρ̂Ê
†
k

Tr(Êkρ̂Ê
†
k)
.

(3.46) describes an

accessible ancilla system that acts as a probe at the measurement, while Eq.

Ens (ρ̂) =
∑

k M̂kρ̂M̂
†
k =

∑
k p(k)ρ̂k .

(3.47) takes the

average over all outcomes making the individual results inaccessible. Therefore Ens (ρ̂) is a

non-selective CPTP map, while I (ρ̂) is a selective, trace decreasing quantum operation that

discards some terms in the operator sum representation.

3.5 Distance of states

In sec. 2.2.4 some metrics in classical probability theory were introduced. For quantum theory,

it is also important to have a kind of distance measure which indicates the similarity or close-

ness of states. Especially interesting are the ones that have a classical version and a quantum
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analogue, for example the trace distance and quantum state fidelity .

The trace distance for two states ρ̂ and σ̂ is a true metric satisfying the axioms given in sec. 2.2.4

and is defined as half the trace norm Dtr(ρ̂, σ̂) = 1
2‖ρ̂ − σ̂‖HS . When both states commute

[ρ̂, σ̂] = 0 they have a common eigenbasis and the quantum physical trace distance simply be-

comes the classical total variation distance.

The fidelity of states ρ̂ and σ̂ is another comparability measure defined as

F (ρ̂, σ̂) = Tr

(√√
ρ̂ σ̂
√
ρ̂

)
. (3.48)

The fidelity is not a metric in the axiomatic sense, although it has the qualities of a good state

discriminator. In case the two states commute, the fidelity F (ρ̂, σ̂) = BC(ri, si) is given by the

Bhattacharyya coefficient of the eigenvalue distribution (see sec. 2.2.4). Assume that ρ̂ = |r〉〈r|

is a pure state, then F (|r〉〈r| , σ̂) = Tr
(√
|r〉〈r|σ̂|r〉〈r|

)
=
√
〈r|σ̂|r〉, the fidelity is simply the

square root of the expectation value. If both states are pure then one receives the overlap

between two states

F (|r〉〈r| , |s〉〈s|) =
√
〈r|s〉〈s|r〉 = |〈s|r〉| . (3.49)

The fidelity ranges from 0 to 1 and is symmetric, invariant under unitary transformation,

monotone under CPTP maps F (E(ρ̂), E(σ̂)) ≥ F (ρ̂, σ̂) and concave in its input F (
∑

i λiρ̂i, σ̂) ≥∑
i λiF (ρ̂, σ̂).

For qubits, the fidelity can be associated with an angle between states F (ρ̂, σ̂) = cos (θρ,σ). The

state fidelity for two-dimensional states ρ̂, σ̂ can be simplified to

F (ρ̂, σ̂) =

√
Tr(ρ̂σ̂) + 2

√
det(ρ̂) det(σ̂)

=

√
1

2
(r · s) +

√
(1− ‖r‖2)(1− ‖s‖2) .

(3.50)

3.6 Quantum instruments

A crucial object for the mathematical modeling of quantum measurements is the so-called

quantum instrument, constructed such that it has a quantum state ρ̂ as input and an output

consisting of both a quantum state and a classical value. The two outputs correspond to the
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measurement outcome and the conditional posteriori state. The quantum instrument related

to a proper measurement model has to consider how a microscopic quantum system interacts

with another quantum object or a macroscopic device from which out of a multitude of possible

values a particular outcome is obtained by a form of registration. After the interaction of the

quantum state with the measurement apparatus, the measurement model must also describe

the posteriori state. It should be noted that the apparatus must not literally be a large physical

device, but is often a quantum system that functions as a probe.

Consider an observable Π̂(X) of the object system on Hilbert space H and classical outcomes

represented by the measurable space (Ω,F). The purpose of the measurement is to determine

the ‘value’ of observable Π̂(X) ∈ O(Ω,F ,H) (see sec. 3.3). For the description of the mea-

surement apparatus the following model is used: there is an associated Hilbert space K, usually

called the probe system, a meter observable M̂(X) (respectively pointer observable) on the probe

system, which is correlated to the observable Π̂(X) intended to be measured, and an apparatus

outcome space (ΩK,FK). While the measurable spaces may differ, it is legitimate to assume

that both have the same outcome spectrum, and therefore corresponding subscripts will simply

be omitted from now on. Both systems have initial states ρ̂ ∈ S(H) and ξ̂ ∈ S(K), which are

physically and stochastically uncorrelated to each other prior to measurement. Eventually, a

measurement interaction has to couple the object and probe system, described by a unitary

quantum channel EU , that maps the initial compound state ρ̂ ⊗ ξ̂ to a final transformed state

Û(ρ̂⊗ ξ̂)Û †. A scheme of the described situation is illustrated in Fig. 3.6.

The probe system’s elements in this scheme are conveniently collected into a quadruple M =

〈K, ξ̂, Û , M̂〉 which is called an indirect measurement model [21, 48]. In sec. 3.3.1 the direct

measurement model was already introduced, where the probability is given by the squared

amplitude, respectively Tr(Π̂(X)ρ̂). Because the indirect measurement must yield the same

results as the direct measurement formula, the measurement model must satisfy the probability

reproducibility condition

Tr(Π̂(X)ρ̂) = Tr
(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
, (3.51)

where X ∈ F is a subset of all possible outcome values, indicated by the gauge in Fig. 3.6. The
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Fig. 3.6: Illustration of an indirect measurement model. The output state, conditioned on the

outcome X, is given by a trace non-increasing quantum operation I(X)(ρ) transforming the

initial object state. The result of the measurement is attained by interaction of the apparatus

with the object state (a.k.a system state) and pointer read-out of the meter observable M̂(X).

interpretation of Eq.

Tr(Π̂(X)ρ̂) = Tr
(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
.

(3.51) is simple; the outcome probability when measuring Π̂(X) directly

must coincide with the result of the probe system’s observable M̂(X).

Now, consider a joint measurement of two observables Π̂A(X), Π̂B(Y ), where the first observable

Π̂A(X) is measured by means of the measurement model 〈K, ξ̂, Û , M̂〉, while a direct measure-

ment is assumed for observable Π̂B(Y ). In order to attain the joint probability p(X,Y ) with

outcome sets X and Y , a mathematical formalism is needed that describes the state trans-

formation after the object state becomes disentangled from the measurement apparatus. For

that purpose the partial trace over the probe state in Eq.

Tr(Π̂(X)ρ̂) = Tr
(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
.

(3.51) is applied, which defines the

quantum operation

IM(X)(ρ̂) := TrK

(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
. (3.52)

This operation valued measure IM : F → L(K) from outcome space (Ω,F) to the non-

normalized final states, conditioned on the measurement which has led to a result in X, is

called an instrument . In Fig. 3.6 the output state IM(X)(ρ̂) is indicated by the green ar-

row coming out of the apparatus. Consequently, the probability of a joint measurement of
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observables Π̂A, Π̂B can now be written in the form

p (X,Y ) = Tr
(
IM(X)(ρ̂)Π̂B(Y )

)
= Tr

(
TrK

(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
Π̂B(Y )

)
= Tr

(
EU (ρ̂⊗ ξ̂)

(
Π̂B(Y )⊗ M̂(X)

))
.

(3.53)

The properties of instruments are deduced from three defining requirements [48],

1. IM(X)(ρ̂) is a quantum operation.

2. The entire event space Ω or the empty set yield traces Tr(IM(Ω)(ρ̂)) = 1, respectively

Tr(IM(∅)(ρ̂)) = 0.

3. Moreover, for a countable mutually disjoint sequence {Xi}i∈I ∈ F the union of sets

satisfies Tr(IM(
⋃
iXi)(ρ̂)) =

∑
i Tr(IM(Xi)(ρ̂)).

Furthermore, consider ΩB to be the entire outcome space of observable Π̂B, then the joint

probability Eq.

p (X,Y ) = Tr
(
IM(X)(ρ̂)Π̂B(Y )

)
= Tr

(
TrK

(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
Π̂B(Y )

)
= Tr

(
EU (ρ̂⊗ ξ̂)

(
Π̂B(Y )⊗ M̂(X)

))
.

(3.53) reduces to

p (X,ΩB) = p (X) = Tr (IM(X)(ρ̂)) . (3.54)

The normalized posteriori state associated with the pointer observation from the values set X

is (assuming Tr (IM(X)(ρ̂)) 6= 0)

ρ̂′X =
IM(X)(ρ̂)

Tr (IM(X)(ρ̂))
. (3.55)

This conditional output state emerges naturally when calculating the conditional probability

using Bayes theorem, i.e. the quotient of the joint probability Eq.

p (X,Y ) = Tr
(
IM(X)(ρ̂)Π̂B(Y )

)
= Tr

(
TrK

(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
Π̂B(Y )

)
= Tr

(
EU (ρ̂⊗ ξ̂)

(
Π̂B(Y )⊗ M̂(X)

))
.

(3.53) to the marginal

Eq.
p (X,ΩB) = p (X) = Tr (IM(X)(ρ̂)) .
(3.54) is given by

p (Y |X) =
Tr
(
IM(X)(ρ̂)Π̂B(Y )

)
Tr (IM(X)(ρ̂))

= Tr
(

Π̂B(Y )ρ̂′X

)
. (3.56)

This operational approach to quantum mechanical measurement by instruments was among oth-

ers investigated in the works of Davies and Lewis [51] and Ozawa [56]. An important theorem

correlated to the topic: for any apparatus described by a measurement modelM = 〈K, ξ̂, Û , M̂〉

exists a unique CP instrument IM, where the output probability distribution is given by
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Eq.
p (X,ΩB) = p (X) = Tr (IM(X)(ρ̂)) .
(3.54) and the normalized quantum state reduction by Eq.

ρ̂′X = IM(X)(ρ̂)
Tr(IM(X)(ρ̂)) .

(3.55). Additionally, with-

out loss of generality the measurement model can be chosen such that ξ̂ is initially a pure

state, the channel EU is a unitary quantum channel Û and M̂(X)→ P̂M (X) a sharp observable

(P̂M (X))2 = P̂M (X).

The relationship between measurement models and instruments is not one-to-one [48, 57]. That

means that whileM→ IM is unique, the inversion of the mapping is not, i.e. different appara-

tuses can have a similar measurement effect or various possibilities for carrying out the pointer

reading can be provided for an apparatus. Consider that the Kraus decomposition of the in-

strument I(x)(ρ̂) =
∑

k Êk(ρ̂)Ê†k is not a unique map. Therefore, to each instrument there is

an equivalence class of measurement models IM → [M] that have the same state transforma-

tions for the object. Alternatively, two schemes M1 and M2 are equivalent if the transformed

states are equal IM1 = IM2 . The annotation of the instrument withM shall be omitted if the

reference is irrelevant.

To connect the instrument and the measured observable the duality relation as defined in

Eq.

Tr
(
E(ρ̂)Â

)
= Tr

(
ρ̂ E∗(Â)

)
.

(3.40) must be considered for some arbitrary Â ∈ L(H), that is

Tr
(
Â I(X)(ρ̂)

)
= Tr

(
Â TrK

(
Û(ρ̂⊗ ξ̂)Û †(1⊗ P̂M (X))

))
= Tr

(
ρ̂ TrK

(
Û †(Â⊗ P̂M (X))Û(1⊗ ξ̂)

))
= Tr

(
ρ̂ I∗(X)(Â)

)
.

(3.57)

Since the last line has to hold for all states the duality relation yields

I∗(X)(Â) = TrK

(
Û †
(
Â⊗ P̂M (X)

)
Û(1⊗ ξ̂)

)
. (3.58)

By comparison to Tr
(
ρ̂ I∗(X)(Â)

)
the POVM of the apparatus Π̂I(X) emerges from Eq.

I∗(X)(Â) = TrK

(
Û †
(
Â⊗ P̂M (X)

)
Û(1⊗ ξ̂)

)
.

(3.58)

as

Π̂I(X) = I∗M(X)(1) , (3.59)

which is called the associated observable of instrument I. It is particularly convenient to append

the formula to the probability in Eq.
p (X,ΩB) = p (X) = Tr (IM(X)(ρ̂)) .
(3.54) as
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p(X) = Tr (I(X)(ρ̂)) = Tr
(

Π̂I(X)ρ̂
)
. (3.60)

The effect observable induced by the instrument is unique I → Π̂I , while the reverse is once

more an equivalence to a collection of instruments Π̂→ [I], because different measurements of

the same observable Π̂ may have quite different effects on the measured object. In conclusion,

every measurement scheme fixes an instrument and transitively a unique POVM. Reversely,

there are infinitely many CP instruments to a POVM which admit infinitely many models M,

ergo

Π̂I ⇒ [I], I ⇒ [M] . (3.61)

A fundamental physical principle can be formulated now: “There is no information gain without

disturbance of quantum states” (for a proof see [58]). There are instruments that do not change

the states and can only perform scaling by a nonnegative probability measure λ:

Π̂I(X) = λX1 = p (X)1 . (3.62)

Effects of the form Eq.
Π̂I(X) = λX1 = p (X) 1 .
(3.62) which are proportional to the identity operator are called trivial

observables. For an instrument of this kind all states of the object system remain unaltered

and the particular outcome X does not distinguish any states, which can be simply recognized

when inserting I(X)(ρ̂) = λX ρ̂ into Eq.

ρ̂′X = IM(X)(ρ̂)
Tr(IM(X)(ρ̂)) .

(3.55). Measurements that do not alter the states of

the system give no information at all.

3.6.1 Lüders instrument

In the following section the standard von Neumann measurement model is presented and will be

related to the Lüders instruments, the most common type of instruments for which the state is

updated according to the square root dynamics. For this purpose the corresponding formalism is

considered and thereby the ensuing consequences of a von Neumann measurement is revealed.

The description of the dynamics of von Neumann’s measuring process requires a quantum

theoretical description of both the measuring object and the measuring apparatus. Therefore,

let {|φn〉} be an orthonormal basis in H and the projector P̂n = |φn〉 〈φn| ∈ P(H) be the

associated sharp observable. Next, P̂Mm = |ξm〉〈ξm| is the effect of the apparatus with m being
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the pointer value brought forth by the orthonormal probe states {|ξm〉} ∈ K. The measurement

interaction Û must be designed such that a clear result is obtained when the probe state changes

from the initial state |ξ1〉 to

Û (|φn〉 ⊗ |ξ1〉) = |φn〉 ⊗ |ξn〉 (3.63)

for all states |φn〉. The instrument corresponding to the model 〈K, |ξ1〉 , Û , P̂Mm 〉 can be calculated

with Eq.

IM(X)(ρ̂) := TrK

(
EU (ρ̂⊗ ξ̂)(1⊗ M̂(X))

)
.

(3.52). For a general system state |ψ〉 =
∑

i ci |φi〉 calculation yields

I(m)(|ψ〉〈ψ|) = TrK

((
Û (|ψ〉 ⊗ |ξ1〉) (〈ψ| ⊗ 〈ξ1|) Û †

)(
1⊗ P̂Mm

))
= TrK

Û
∑

i,j

c∗i cj |φi〉〈φj | ⊗ |ξ1〉〈ξ1|

 Û †
(
1⊗ P̂Mm

)
= TrK

∑
i,j

c∗i cj |φi〉〈φj | ⊗ |ξi〉〈ξj |

 (1⊗ |ξm〉 〈ξm|)


= TrK

(∑
i

c∗i cm |φi〉〈φm| ⊗ |ξi〉〈ξm|

)
= |cm|2 |φm〉〈φm| = Tr

(
|ψ〉〈ψ| P̂Mm

)
P̂Mm = P̂Mm |ψ〉〈ψ| P̂Mm .

(3.64)

In case the observable is a projection, the von Neumann type measurements is given by the

Lüders instrument as

IL(m)(ρ̂) = P̂mρ̂P̂m , (3.65)

which has already been introduced in sec. 3.3.1, but now with more details and clarity. A quick

evaluation on the probability confirms the plausibility of the result:

p(m) = Tr (IL(m)(ρ̂)) = Tr
(
P̂ 2
mρ̂
)

= Tr
(
P̂mρ̂

)
= |cm|2 . (3.66)

Apparatuses of this sort have the property of ideality , which means that if outcome m occurs

with p(m) = 1, then the initial state is an eigenstate of the observable P̂m and there is no

disturbance of the initial state P̂mρ̂P̂m = ρ̂. But, as was already pointed out previously, if the

measured observable is unsharp, i.e. given by complete set of effects on a finite or countable set

m ∈ Ω, then for a discrete observable

I ′L(m)(ρ̂) =

√
Π̂(m)ρ̂

√
Π̂(m) , (3.67)
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is the correct form and I ′L is called general Lüders instrument. A simple way to see that

Eq.
IL(m)(ρ̂) = P̂mρ̂P̂m .
(3.65) cannot be generally correct is to look at the total probability:

1 =
∑
m

p(m) =
∑
m

Tr
(

Π̂(m)2ρ̂
)
6=
∑
m

Tr
(

Π̂(m)ρ̂
)

= 1 . (3.68)

The statement only holds for projective observables Π̂(m)2 = Π̂(m). In close connection to

the Lüders instrument is the Lüders theorem which states that a sharp discrete observable P̂m

commutes with observable Â ∈ L(H), if measuring P̂m does not disturb the measurement of Â.

Mathematically, this formulates to

Tr
(
IL(Ω)(ρ̂)Â

)
= Tr

(
ρ̂Â
)
⇐⇒ [P̂m, Â] = 0 . (3.69)

This conjecture is easily shown, since

Tr
(
IL(Ω)(ρ̂)Â

)
=
∑
m

Tr
(
P̂mρ̂P̂mÂ

)
= Tr

((∑
m

P̂m

)
ρ̂Â

)
= Tr

(
ρ̂Â
)
. (3.70)

The extension of the proposition to unsharp observables is known as generalized Lüders theo-

rem [59].

An important characteristic of measurements is repeatability. In terms of instruments this can

be expressed as the reproducibility of an outcome in a sequential measurement. A common way

to phrase this idea mathematically is that the conditional quantum state upon repetition must

be identical Tr (I(X)(I(X)(ρ̂))) = Tr (I(X)(ρ̂)). The projective Lüders measurement P̂ 2
m = P̂m

is repeatable as can be quickly proven

IL(m)(IL(m)(ρ̂)) = P̂mI(m)(ρ̂)P̂m = P̂ 2
mρ̂P̂

2
m = P̂mρ̂P̂m = IL(m)(ρ̂) . (3.71)
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Elements of neutrons optics

4.1 Properties of the neutron

Neutrons belong to the building blocks of the atomic nuclei and are effected by all four fun-

damental interactions. The neutron has a mass of mn = 939.57 MeV/c2 and can therefore be

described by the Schrödinger equation for non-relativist energies, it is not stable outside the

nucleus and decays according to the reaction

n→ p+ e− + ν̄e

with an average life-time of τn ' 887 s, it strongly interacts with nucleons and finally is affected

by electromagnetic interactions because of the magnetic moment caused by the neutron’s 1
2 -spin

µ = γnS =
γn~
2
σ̂ , (4.1)

where γn ' −1.832 10−8 rad s−1 T−1 is the neutron’s gyromagnetic ratio. The energy of a

neutron in quantum mechanics is related to de Broglie wavelength

λ =
h

mn · v
. (4.2)

Depending on the value of the wavelength one distinguishes between cold, thermal, epithermal

and fast neutrons. Thermal neutrons for example have energies around 25 meV, which is equiv-
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alent to a wave length of 1.8 Å (v ∼= 2200m/s) and corresponds, according to E = kBT , to a

temperature of ' 300 K.

Quantum physically, the density operator of a free neutron wave function is given by a super-

position of plane waves

ρ̂(r, t) =

∫
d3kρ̂′(k)ei(k·r−ωt) . (4.3)

The lack of an electric charge or the absence of the coulomb field allows unimpeded penetration

of the neutrons into materials, since the nucleons are neither influenced or hindered by the

negatively charged electron orbits nor by the positive nuclear charges. Neutron interactions

with atomic nuclei can only take place when the incoming neutron has entered the interaction

range of the strong nuclear forces. The neutron is then either scattered or absorbed by a capture

reaction with or without excitation. Neutron optics can be regarded as the subject that mainly

deals with coherent elastic neutron scattering.

4.2 Production and detection of thermal neutrons

Research reactors that release neutrons by fission of uranium are the most common source. Only

a small fraction, which happens to fly in the direction of the jet pipes leading out of the reactor,

can be used. After moderation, i.e. deceleration of neutrons from their high initial energies to

thermal energies, the wavelength spread is given according to a Maxwell-Boltzmann distribu-

tion. Uncertainty experiments presented in this thesis are all carried out at the TRIGA Mark-II

research reactor in Vienna, whose characteristics can be looked up at [60, 61]. Key metrics are:

the maximum continuous thermal power of the reactor is 250 kW, which provides a neutron

flux of 1013 cm−2s−1. A pyrolytic graphite monochromator installed at the polarimeter beam-

line of the TRIGA Mark-II delivers a neutron beam with the 1st order wavelength of λ(n=1) =

1.99Å and a monochromaticity of (∆λ)/(λ(n=1)) ∼= 0.02, verified by time of flight measurements.

Due to their electrical neutrality, the neutron is not directly ionizing and can therefore only be

detected via a nuclear conversion. The two most commonly used nuclear reactions utilize boron

and helium, i.e.
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Fig. 4.1: Neutron particle detector containing a BF3 filled proportional counter tube. The boron

is enriched with 10
5B that produces lithium and alpha particles through nuclear reactions,

ionizing the gas in the tube, which is why high voltages are applied between the electrodes.

From the size of the round 6cm wide opening of the counter tube it can be recognized that

a large part of the detector is made of the protective radiation shielding.

10
5B + 1

0n→


4
3Li + 4

2α+ 2.8 MeV

4
3Li∗ + 4

2α+ 2.3 MeV

and

3
2He + 1

0n→ 3
1H + 1

1p + 0.764 MeV .

These detectors serve to detect slow or thermal neutrons. In fact, these nuclear reactions are

exploited in proportional gas counter tubes, which are filled with either boron trifluoride BF3 or

helium-3 gas at up to about one bar positive pressure. The charged α-particle or Li, respectively

the tritium and proton, which are released by secondary ionization are collected at a wire-shaped

anode under high voltage. Due to the high electric field in the vicinity of the thin anode, the

electrons are accelerated so much that they in turn can ionize further gas atoms. This way a gas

69



CHAPTER 4. ELEMENTS OF NEUTRONS OPTICS

amplification factor of about 103 can be achieved. Finally, it is important to mention that the

absorption of the neutron in the case of boron is spin-independent, while for 3
2He it is technically

possible to have a spin-selective detection. The BF3 - detector in Vienna, used throughout all

experiments presented here, is shielded by moderating and absorbing materials made of paraffin

together with boron powder to minimize background. A picture of the cylindric neutron detector

is given in Fig. 4.1. The inherent detection efficiency is > 99% and the statistics for detection

is in agreement with the Poisson-distribution given by Eq.

p(X = k) = λk

k! e
−λ , k ∈ N0 .

(2.15).

4.3 Essentials of neutron optics

The theory of scattering of thermal neutrons is based on the Born approximation and the Fermi

pseudo-potential [62]. The situation to have in mind is a neutron beam that scatters at a certain

localized potential V̂ (r), constituted by a another free particle or a nucleus in a solid target.

For an initial plane wave

〈r|k〉 = φk(r) =
1

(2π)
3
2

eikr (4.4)

the wave function of the scattering problem is given by the Lippmann-Schwinger equation

ψ(r,k) ∝ φk(r)− 1

4π

2mn

~2

∫
d3r′

eik|r−r’|

|r− r’|
V̂ (r’)ψ(r’,k) . (4.5)

Here, k is the initial momentum of the neutron located at r and V̂ (r’) is the complex optical

potential of the scatterer. Since the scattering potential is spatially confined by the extent of the

target, the distance of the detector from target is usually considered much larger (‖r‖ � ‖r’‖).

This justifies the evaluation of Eq.

ψ(r,k) ∝ φk(r)− 1
4π

2mn
~2
∫
d3r′ e

ik|r−r’|

|r−r’| V̂ (r’)ψ(r’,k) .

(4.5) for an asymptotic behavior

k|r− r’| =
√

1− 2r · r’
r2

+
r′2

r2
= kr − k’ · r’ +O(r−1) , (4.6)

where the wave vector on the right side is the final momentum k’ = ker of the neutron after

the elastic scattering directed at the detector. Inserting the asymptotic formula Eq.

k|r− r’| =
√

1− 2r·r’
r2

+ r′2

r2
= kr − k’ · r’ +O(r−1) .

(4.6) into

the previous wave function gives

ψ(r,k) ∝ φk(r)− 2mn

4π~2

eikr

r

∫
d3r′e−ik’·r’V̂ (r’)ψ(r’,k) . (4.7)

70



CHAPTER 4. ELEMENTS OF NEUTRONS OPTICS

This solution corresponds to a spherical wave of the type eikr/r that emanates after the impact

as a scattering wave. The amplitude is spatially modulated as a function of the momenta and

all information about the inner structure and potential of the impact target is contained in the

so-called scattering amplitude f(k,k’) given by

f(k,k’) =
2mn

4π~2

∫
d3r′e−ik’·r’V̂ (r’)ψ(r’,k)

≈ 2mn

4π~2

∫
d3r′V̂ (r’)e−i(k’−k)·r’ + · · · .

(4.8)

In the second line of Eq.

f(k,k’) = 2mn
4π~2

∫
d3r′e−ik’·r’V̂ (r’)ψ(r’,k)

≈ 2mn
4π~2

∫
d3r′V̂ (r’)e−i(k’−k)·r’ + · · · .

(4.8) the Born approximation was applied which has a simple expla-

nation. The incident primary wave with wave vector k stimulates a scattered wave e−ik’·r by

interaction with the respective potential V̂ (r’) at the location r’. The total scattering wave of

the target results as a superposition of all partial waves from the volume element d3r. The Born

approximation corresponds to the first part in the iterative solution to f(k,k’) and only takes

single scattering events into consideration, while higher terms in the series, concerning multiple

scattering, are neglected.

For thermal neutrons, the scattering amplitude can in many situations be described by a single

parameter, namely the scattering length. It can be derived by the Fermi potential V̂ (r), which

describes an isotropic scattering on a singular point-like nucleus:

V̂ (r) =
2π~2

mn
bδ(r) . (4.9)

The parameter b is called the bound scattering length which, when inserted into Eq.

V̂ (r) = 2π~2
mn

bδ(r) .

(4.9), solely

determines the scattering amplitude f(k,k’) = b. Of course, neutrons interact not only with

one but with a lattice of bound atoms at position ri with scattering lengths bi building up a

mean macroscopic potential as

VF (r) = 〈
∑
i

2π~2

mn
biδ(r− ri)〉

=
2π~2

mn
Nbc .

(4.10)

The coherent scattering length bc = 〈bi〉 is defined as average over the individual bi and N =

〈
∑

i δ(r− ri)〉 as the average particle number density which provides the means to describe
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neutron optical phenomena to a larger extend. With a scattering length of bc = 10.3 fm for

nickel, for example, the Fermi potential would be roughly VF ∼= 245 neV.

Monochromatization and diffraction

A monochromator is used to select neutrons with certain wavelengths. Perfect single-crystals

are often used as monochromators for neutrons, where waves are reflected by Bragg’s law . In

this case, there is a constructive interference only for the wavelengths which occur at the Bragg

angle and thus fulfill the Bragg condition

nλ = 2dhkl sin θ . (4.11)

The integer n determines the order of the reflection of the incident beam at the n-th atomic

lattice plane, dhkl is the spacing between the planes in the atomic lattice with h,k,l indicating

the Miller indices and θ is the angle of incidence. Mosaic crystals can also be used, which

consist of small individual spatially displaced perfect crystal areas (mosaic blocks), which allow

a broadening of the intensity reflexes due to a wider acceptance angle. The larger the mosaic

width and the worse the neutron beam collimation, the larger the wavelength uncertainty ∆λ

of the reflected beam becomes. Typically, the wavelength resolution ∆λ/λ of mosaic crystal

monochromators is about 1%.

Reflection and refraction of neutrons

Refraction refers to the change in the k-vector of a wave due to a neutron’s transmission through

a medium described by a refractive index n. The time independent Schrödinger equation with

Fermi potential (Ĥkin + V̂F )ψ(r) = Eψ(r) has a plain wave solution and therefore an energy

relation of the form

E =
(~K)2

2mn
+ VF =

(~k)2

2mn
, (4.12)

where K is within the potential region and k outside of the target. The refractive index for the

neutron wave in this case is defined as

n =
K

k
=

√
1− VF

E
=

√
1− 4π

k2
Nbc

≈ 1− VF
2E

= 1− 2π

k2
Nbc .

(4.13)
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α α
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

vacuum

medium
z = 0

Fig. 4.2: Reflection and refraction of a neutron beam similar to that in light optics. When

the neutron meets the surface at z = 0 with a different refractive index, the well-known

phenomena occur.

The last line approximates the square root by the first term in the Taylor series since VF
E � 1,

which also implies that the index of refraction is close to n . 1. If the transmission at the

interface is between medium A and a different medium B then refraction is given by a relative

index n = nA
nB

. Assume, a neutron matter wave with wave vector k comes from vacuum and

enters another medium at level z = 0. Then the incident wave at the start (s) will generally

have a partially reflected (r) and partially transmitted part (t), that is

ψ(r) =

 teiK·r z < 0 ,

seik·r + reik’·r z > 0 .
(4.14)

The geometry of this problem is illustrated in Fig. 4.2. The reflected wave vector is k’ =

(kx,−kz)T . The wave function must satisfy the continuity conditions (for ψ(r) and ∇̂rψ(r)) at

the boundary z = 0:

seikxx + reikxx = teiKxx ,

ikx(seikxx + reikxx) = iKx(teiKxx) ,

ikz(se
ikxx − reikxx) = iKz(te

iKxx) .

(4.15)
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From the first equation and the partial derivative ∂xψ(r) in the second line the equality kx = Kx

can be deduced and subsequently from the last line kz(s − r) = Kz(s + r), which relates the

angles and refractive indices with the amplitudes of the wave function

nz =
Kz

kz
=
K sinβ

k sinα
= n

sinβ

sinα
=
s+ r

s− r
. (4.16)

This Eq.

nz = Kz
kz

= K sinβ
k sinα = n sinβ

sinα = s+r
s−r .

(4.16) is Snell’s law and provides the expressions

r =
1− nz
1 + nz

s , t =
2

1 + nz
s , (4.17)

which are related to the reflectivity R = |r|2 and the transmissivity T = |t|2. Mathematically,

the reflection and refraction of neutrons is similar to that of electromagnetic radiation and can

be described by equivalent relationships known from light optics. Similar to X-ray radiation,

total reflection also occurs for neutrons for the so-called grazing incidence. To show this fact the

momentum conservation kx = Kx can be utilized which yields n = cosα
cosβ and then eliminating

the angle β from Snell’s law Eq.

nz = Kz
kz

= K sinβ
k sinα = n sinβ

sinα = s+r
s−r .

(4.16) delivers

R =

∣∣∣∣∣sinα−
√
n2 − cos2 α

sinα+
√
n2 − cos2 α

∣∣∣∣∣
2

. (4.18)

The result shows that for n = 1 everything is transmitted, while for α → 0 reflectivity is

approximately R ≈ 1. For thermal neutrons the critical angle for total reflection

αc =
√

1− n2 =

√
λ2

2π
Nbc (4.19)

is typically αc ≈ 0.2 degree in which case the series expansion of Eq.

R =
∣∣∣ sinα−√n2−cos2 α

sinα+
√
n2−cos2 α

∣∣∣2 .

(4.18) satisfies R ∝

α2
c/ sin4 α. The results just obtained correspond to the laws of refraction on a single layer.

The range of the critical reflection angle can be increased by an order of 5 by incorporation

of multilayer structures. This method can be used with non-magnetic materials for neutron

guides, but also with magnetic materials in polarizing supermirrors.

Supermirror

The neutron is a spin-1/2 particle with a magnetic moment µ, which for an exterior magnetic

field B results in a potential Vm = µ ·B. The phenomenon behind neutron polarization is spin-
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|↑〉

|↓〉

Absorber

Fig. 4.3: Schematic illustration of the alternating multilayer structure of magnetic and non-

magnetic materials in a supermirror polarizer. Bragg reflection on certain magnetic sin-

gle crystals is a standard method for producing polarized monochromatic thermal neutron

beams.

dependent interaction of the particles with magnetic materials. Among the most common tools

are magnetic supermirrors made out of a ferromagnetic material (e.g. Fe, Co, Ni) which induce

magnetic scattering (bm) at the interface. Effectively, this scattering behavior is described by

adapting the scattering length; Eq.

V̂F (r) = 〈
∑

i
2π~2
mn

biδ(r− ri)〉
= 2π~2

mn
Nbc .

(4.10) is modified to

VF (r) =
2π~2

mn
N(bc ± bm) . (4.20)

The sign indicates whether the neutrons spins are oriented parallel or anti-parallel to the mag-

netization of the nuclei in the sample. The polarizing supermirror is constructed of several

layers of ferro- and non-ferromagnetic materials (usually two) applied to a neutron absorbing

substrate with decreasing layer thickness towards the substrate. The magnitude of nuclear and

magnetic scattering is determined by their respective scattering lengths. The reflectivity for

the spin magnetic moment in the multi-bilayer with material A and B in the guide tube has a

proportionality of the form

R± ∝ [NAb
A
c −NB(bBc ± bBm)] . (4.21)

For a suitable sequence of bilayers (bBc = ∓bBm) the neutron reflectivity of one spin component

can be immensely reduced. Each of these bilayers in these systems produces a Bragg peak and
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Fig. 4.4: A polarizing Ni-Ti supermirror is a rectangular cuboid with a typical size of (HWD)

10cm x 25cm x 80cm depending on the design, materials or manufacturer. Small windows of

dimensions up to 5cm x 5cm at both ends of the supermirror serve as input and output for

the neutrons. The curvature of the multilayer structure can not be seen from the outside,

but can be noticed when adjusting with a subsequent detector. Because of the elements

making up the inside, the object is rather heavy.

the sequence of multi-layers extends the range of reflection (see Fig. (4.3)). A slight curvature

of the total, typically 0.5 - 1 m long arrangement prevents direct transmission of neutrons that

would otherwise not touch the walls of the mirror. However, the inside of a supermirror is not

visible from the outside, as Fig. 4.4 shows. The typically achievable degrees of polarization P

are in the range of 0.9 - 0.99, where the efficiency of polarization

P =

∣∣∣∣N+ −N−
N+ +N−

∣∣∣∣ (4.22)

is defined as the difference of particles polarized up (+) or down (-) divided by the total particle

number. The polarization varies from 0 for a totally unpolarized beam to 1 for a fully polarized

beam.
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Phase shift and absorption

If the neutron is not reflected by the multilayer but enters the medium, the neutron in the

material is shifted in phase and can also be absorbed depending on the specific cross section.

With a few exceptions, the probability of neutron absorption in the atomic nucleus for most

isotopes is much smaller than the scattering probability. For a material with thickness D, there

is a weakening of the neutron transmittance according to the Beer-Lambert law T = e−µD,

where µ is the absorption coefficient. Should the neutron not be absorbed, then the Fermi

potential VF causes nonetheless a phase shift. For a neutron propagating perpendicular to a

material and exiting after a length D a phase shift of χ = −λNbcD will occur. For example,

copper with 1 mm thickness shifts the phase of the neutron with 2Å wavelength by χ ≈ −140 rad

assuming a neutron incidence normal to the surface. Such a relative phase shift can be measured

with neutron interferometers [31].

4.4 Interaction of free neutrons with a classical magnetic field

The appropriate quantum mechanical description of the dynamics of a neutron with non-

relativistic energies in an external magnetic field is given by the Schrödinger (- Pauli) equation

i~
∂

∂t
ψ(r, t) = Ĥ(r, t)ψ(r, t) =

(
− ~2

2mn
∇̂2 − µ σ̂ ·B(r, t)

)
ψ(r, t) . (4.23)

The Schrödinger equation Eq.

i~ ∂∂tψ(r, t) = Ĥ(r, t)ψ(r, t) =
(
− ~2

2mn
∇̂2 − µ σ̂ ·B(r, t)

)
ψ(r, t) .

(4.23) contains the time derivative of the wave function as well

as the kinetic and potential operator. The magnetic interaction term contains the Pauli spin

operators σ̂ = (σ̂x, σ̂y, σ̂z)
T indicating that the wave function is constituted by a two dimen-

sional spinor function |χ(r, t)〉 = (χ+(r, t), χ−(r, t))T . The evolution and dynamics of the wave

function depends on the form and type of the magnetic field. The behavior of neutrons in a

homogeneous static magnetic field is explained in the following.

In case the field vector is constant and uniform, i.e. B(r, t) = B0en, Eq.

i~ ∂∂tψ(r, t) = Ĥ(r, t)ψ(r, t) =
(
− ~2

2mn
∇̂2 − µ σ̂ ·B(r, t)

)
ψ(r, t) .

(4.23) can be reduced

to the time-independent Schrödinger equation solved by

|ψ(x, t)〉 =
1√
2π

∫
φ(k)e

i
(
kx− ~k2

2mn
t
)
dk |χ(t)〉 , (4.24)
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Fig. 4.5: Depiction of Larmor precession. The external field B0 points into the y-direction.

Depending on the initial angle of the spin, it will undergo a gyroscopic precession about the

magnetic field. For states orthogonal to the magnetic field, the cone degenerates into a circle

allowing to flip the spin from up to down.

where the spin evolution |χ(t)〉 is given by the unitary operator ÛDC

|χ(t)〉 = ÛDC(t) |χ(0)〉 = e−i
µB0
~ σ̂ent |χ(0)〉

=

(
cos

(
µB0

~
t

)
12 − iσ̂ · en sin

(
µB0

~
t

))
|χ(0)〉 .

(4.25)

Two interesting phenomena can be deduced from the previous formulae, Zeeman energy splitting

and Larmor precession. Zeeman splitting of the neutron kinetic energy occurs due to interaction

of the spin parallel to the external magnetic field. The initial energy E0 = ~2k2
0/2mn of the free

neutron changes for up- and down spin states to

〈Ĥ〉 =
~2k2

0

2mn
± µB0 . (4.26)

The Larmor precession describes the evolution of the neutron spin in the constant magnetic field.

Introducing the Larmor frequency ωL = 2µB0/~ the polarization of the neutron, calculated by

the expectation value of the Pauli spin operators, yields

P = 〈σ̂〉 = 〈χ(0)| (σ̂ cos (ωLt) + en × σ̂ sin (ωLt)) + en(en · σ̂) (1− cos (ωLt)) |χ(0)〉 . (4.27)
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The Eq.
P = 〈σ̂〉 = 〈χ(0)| (σ̂ cos (ωLt) + n̂× σ̂ sin (ωLt)) + n̂(n̂ · σ̂) (1− cos (ωLt)) |χ(0)〉 .
(4.27) makes use of Rodrigues’ rotation formula and a short mathematical exercise

reveals that it fulfills

Ṗ =
d

dt
〈σ̂〉 = ω ×P . (4.28)

This equation is nothing but the Bloch equation without relaxation describing how a magnetic

field gives a torque on the system. The cone-like movement of spin in the field, illustrated in

Fig. 4.5, is called Larmor precession.

Homogeneous, constant magnetic fields can be applied in various ways. The most common

methods include, on the one hand, permanent magnets on the other hand coils with a solenoid

or a Helmholtz design. An ideal solenoid is geometrically a helical course of wire which has a

length l relatively large to the diameter and thus a very high number of windings N . The field

strength of such a magnetic field can be regulated by the current I and is approximately [63]

B(I) ≈ µ0N

l
I . (4.29)

The photo in Fig. 4.6 shows a commonly used coil. This consists of two insulated wires wound

in different directions. Observing the course of the turns, it can be seen that the coils each

generates a homogeneous magnetic field in the horizontal and vertical directions, while there is

no field along the short side (orthogonal to the image plane).

The Helmholtz coil is a special coil arrangement in which two short coils with a radius R are

arranged in parallel at the distance equal to the radius R fed with the same current. At the

center of the coils the field is given by

B(I) ≈ 8µ0√
125R

I . (4.30)

Unlike neutrons in spatially homogeneous fields, a different effect occurs for the spin if the

field is inhomogeneous. A neutron beam in a magnetic field, where F = ∇(µ ·B) is non-zero

will be deflected according to Stern-Gerlach experiment which will always occur as soon as a

non-homogeneous magnetic field transition is present. However, strong fields in the Tesla range

are necessary to realize a splitting of a thermal neutron beam of a few arc-seconds [64]. A

supermirror can work as a spin-separating analyzer much like a Stern-Gerlach apparatus.
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Fig. 4.6: The DC spin rotating coil. Basically, it consists of two helically wound wires (2mm

diameter), that lie on top of each other and produce local magnetic fields. These spin rotators

have a size of (HWD) 6cm x 6cm x 2cm and are typically standing on small goniometer stages

to adjust them with respect to a guide field and the neutron beam propagating along the

geometric center through the copper. The wires are connected to a current source using

screw terminals sitting on top of the coil.
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Preparation uncertainty relations

State preparation uncertainties refer to uncorrelated measurements of observables Â and B̂ on

distinct but identically prepared systems of an ensemble ρ̂. The term preparation uncertainty

was introduced as such to make a distinction between conceptually different types of uncertainty

relations. The byword preparation emphasizes the reciprocal inaccuracy in the production or

processing of those quantum states which have no common eigenbasis. Consequently, there

is no device or mechanism that would allow to prepare arbitrarily sharp eigenstates of two

non-commutating observables jointly. However, this type of uncertainties idealize the actual

measurement and do not take into account the quantum mechanical nature of the measurement

procedure, which was not possible at Heisenberg’s time as the necessary mathematical tools had

not been sufficiently developed. Originally, the uncertainty principle had also been understood

to set a limitation on measurements, i.e. each measurement necessarily has a back-action on

the measured object and consequently limits the achievable accuracy of incompatible measure-

ments. The impossibility to infer the individual results of the measurements from the jointly

measured statistics is called the measurement uncertainty principle.

There are two categories that give three distinguished types of uncertainties [47, 65]

1. State preparation uncertainty describes the impossibility of preparing a condition in which

conjugated quantities simultaneously have an exact value. This comprises the standard
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textbook presentation in terms of standard deviation.

2. a) The uncertainty of a simultaneous joint measurement. It is not possible to realize

a measurement device that accurately estimates the outcomes of two physically in-

compatible observables Â and B̂ such that their joint measurement distribution is

perfectly decomposable.

b) The uncertainty of a successive joint measurement. Because a measurement ensues

a disturbance on the quantum state a subsequent measurement of an incompatible

observable will be compromised.

Point 1 differs from point 2, because it involves correlated measurements. Point 2 a) and 2 b)

in turn are different, because the successive type accounts for both the inaccuracy and the

imparted disturbance in one detection, while the joint type involves two measurements. It

should be mentioned that e.g. according to Hall [22] a 4th kind exists still, which might be

called overlap-uncertainty:

3. A measurement apparatus cannot be calibrated such that it unambiguously discriminates

different physically incompatible quantum states.

In this kind of uncertainty principle, various systematically selected states are sent in sequence

to a measurement apparatus. The term overlap then refers to the fact that the measurements

cannot unambiguously tell apart all prepared particles unless they are all orthogonal to each

other. Somehow, this statement can be regarded as the reversal of the principle in point 1,

in which state and observables exchange roles. In this chapter, a small overview of important

intermediate results are summarized, which are then partly needed in the subsequent chapters.

5.1 Variational preparation uncertainty relations

Heisenberg did not use any rigorous formulation in his initial work [2] about the uncertainty.

The first form of uncertainty relation had therefore a more qualitative character. However, a

short time after Heisenberg’s vague presentation an inequality holding for arbitrary states was

proven by Kennard [5], later by Weyl [6], who established the relation which is now simply

known as Heisenberg’s uncertainty relation

σ(Q̂)σ(P̂ ) ≥ ~
2
. (5.1)
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Here, σ(Q̂) and σ(P̂ ) denote the standard deviations of position and momentum, whose product

has to always be greater equal to half the reduced Planck constant ~. Soon thereafter, a

generalization of the inequality to arbitrary observables Â, B̂ was reported by Robertson [8]

σ(Â)σ(B̂) ≥
∣∣∣∣ 1

2i
〈ψ|[Â, B̂]|ψ〉

∣∣∣∣ := CAB , (5.2)

and circa one year after, Schrödinger [9] derived a slightly improved version which contains

Eq.

σ(Â)σ(B̂) ≥
∣∣∣ 1

2i 〈ψ|[Â, B̂]|ψ〉
∣∣∣ := CAB .

(5.2) as special case

σ(Â)2σ(B̂)2 ≥
∣∣∣∣ 1

2i
〈{Â− 〈Â〉1, B̂ − 〈B̂〉1}〉

∣∣∣∣2 +

∣∣∣∣ 1

2i
〈[Â, B̂]〉

∣∣∣∣2 . (5.3)

The proof of the relation Ineq.

σ(Â)2σ(B̂)2 ≥
∣∣∣ 1

2i 〈{Â− 〈Â〉 1, B̂ − 〈B̂〉1}〉
∣∣∣2 +

∣∣∣ 1
2i 〈[Â, B̂]〉

∣∣∣2 .
(5.3) relies on the Cauchy - Schwarz inequality: | 〈Â′2〉 || 〈B̂′2〉 | ≥

| 〈Â′B̂′〉 |2. With the identification Â′ = Â− 〈Â〉1, likewise for B̂′, the left side yields the stan-

dard deviations σ(Â) = 〈(Â− 〈Â〉)2〉 for both operators. The right side is attained by making

the decomposition Â′B̂′ = 1
2

(
[Â′, B̂′] + {Â′, B̂′}

)
and substituting the primed observables with

the shifted ones. When 〈{Â′, B̂′}〉 = 0 then Robertson’s relation is attained. The terms added

by Schrödinger correspond to additional statistical correlations and, in fact, can be understood

as quantum mechanical covariance [66] given as cov(Â, B̂) = 1
2 〈{Â, B̂}〉 − 〈Â〉 〈B̂〉. When the

covariance is taken into account, then the Robertson-Schrödinger equation can be written par-

ticularly elegantly [67, 68] by means of the covariance matrix Eq.

Σij = cov(Xi, Xj) .

(2.18)

det
(

Σij(Â, B̂)
)
≥ CAB . (5.4)

A close look at these inequalities is mandatory at this point. The standard deviation in

Ineq.

σ(Â)σ(B̂) ≥
∣∣∣ 1

2i 〈ψ|[Â, B̂]|ψ〉
∣∣∣ := CAB ,

(5.2) is σ(Â) =

√
〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2 and likewise for observable B̂. The standard

deviations characterize the dispersion of a distribution and are a measure for the spread of a

set of values around the mean. This means that the argued inequalities are concerned with the

statistical nature of the outcome distribution and are therefore not related to the systematic

imperfections of a quantum measurement. The theoretical standard deviation is in reality de-

termined by numerous repetitions of the measurement on exactly identical states. Physically,

one can associate preparation uncertainty relations with a reservoir of particles which contains

a large number of copies of one |ψ〉, as illustrated in Fig 5.1, so that an error-free measuring

apparatus determines the distribution of σ(Â) on a sub-ensemble of the states and with the
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meas. of A

meas. of B

copies of ψ

Fig. 5.1: Measurements on different parts of a sample of equally prepared systems.

second sub-ensemble the second distribution width σ(B̂); consequently, there will be trade-off

between the spreads of those distributions.

The position-momentum uncertainty is in many ways extraordinary in the sense that the in-

volved operators are defined on an infinite-dimensional Hilbert space, related to each other by a

Fourier transformation. The Fourier transformation provides for instance the link between the

time domain and the frequency domain or a location and the spatial frequencies (wave num-

bers). Denoting Fourier transformation of the function f(x) by F (k), the bijective mapping

and its inverse are given by

f(x) =

∫ ∞
−∞

F (k)e2iπxkdx, F (k) =

∫ ∞
−∞

f(x)e−2iπxkdx . (5.5)

Suppose f ∈ L2(R) with unit norm ‖f‖2 = 1, then the variance can be written as σ(f)2 =∫∞
−∞(x − 〈x〉)2|f(x)|2dx and for the Fourier transformed function likewise σ(F )2 =

∫∞
−∞(k −

〈k〉)2|f(k)|2dk. So, mathematically for probability distributions with well defined Fourier trans-

forms, an inequality of the form

σ(f)2σ(F )2 ≥ 1

(4π)2
(5.6)

can be obtained [6, 7, 69], saturated by Gaussian functions. The reciprocal nature of the spreads

in the Fourier transform of, say, a plane wave ψ = e
i
~ (p·x−Et) also suggests an energy-time un-

certainty. However, there is no time operator in quantum physics and hence no uncertainty

relation can literally involve the time variable t displayed by a clock in a laboratory. Neverthe-

less, uncertainty relation of this kind do exist [70, 71] and classical Fourier transform seems to
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be one of the few options to deal with such observables at all.

Over the time it has been questioned, whether the standard deviation is an adequate measure

of uncertainty or not. On one hand, criticisms arose concerning the appropriateness of the

standard deviation as a measure of distribution concentration, on the other hand, there are some

downsides of the variance in finite dimensional Hilbert spaces. It seems, the less a probability

function resembles a normal distribution, the less useful the standard deviations is. Here is a

short list of potential problems:

• Multimodal distributions, i.e. distributions with multiple peaks. Consider the convex

combination of two normal distributions f(x) = 1
2N (µ, σ1) + 1

2N (−µ, σ2). The total

standard deviation for two narrow bumps σ1 ≈ σ2 → 0 is given by σ(f) ' µ. So the

standard deviation of the function and its Fourier transform does not depend on the

widths of the independent Gaussians, but on the distance of the peaks to the coordinate

center.

• There is nothing special about the second moment of a distribution. One could as well take

the kurtosis, the fourth standardized moment, or any higher 2n-th moment (see 2.2.2).

• A big issue for continuous distributions are diverging standard deviations σ → ∞ or

distributions without higher moments. The Cauchy distribution given in Tab. 2.1, which

is used in physics to describes resonances, has no mean value and ergo no higher stochastic

moments.

• No invariance under relabeling {p1, p2} ↔ {p2, p1}. Given a probability vector p =

(Tr(Π̂1ρ),Tr(Π̂2ρ), ...Tr(Π̂nρ))T , where is Π̂i are elements of a POVM, a permutation π

of the of the measurement outcomes π(p) changes the standard deviation.

• In finite dimensions the standard deviation vanishes for the eigenstates of Â or B̂. Par-

ticularly for inequalities containing only products, like Robertson’s relation, this leads to

trivial statements.

The last point above can be circumvented by deriving a formula that contains the sum instead

of the product of standard deviations. Recently, such inequalities were derived, among the

more renown is the Maccone-Pati [72] uncertainty relation σ(Â)2 + σ(B̂)2 ≥ max{L1, L2} with
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L1 = ±i 〈[Â, B̂]〉+
∣∣∣〈ψ|Â± iB̂|ψ⊥〉∣∣∣2 and L2 = 1

2

∣∣∣〈ψ⊥A+B|Â+ B̂|ψ〉
∣∣∣2. This stronger uncertainty

relations can be related to Robertson’s equation by observing that from (σ(Â)− σ(B̂))2 ≥ 0 it

follows that σ(A)2 + σ(B) ≥ 2σ(A)σ(B). Erasing the second summand of L1 then yields the

well-known form Ineq.

σ(Â)σ(B̂) ≥
∣∣∣ 1

2i 〈ψ|[Â, B̂]|ψ〉
∣∣∣ := CAB .

(5.2).

5.2 Entropic preparation uncertainty relations

Unlike the standard deviation, which quantifies the weighted dispersion of the random variable

along the abscissa x, the information entropy determines the uncertainty of a distribution

only by the quantum physically relevant values on the ordinate axis, namely the probabilities

p(x). In order words, entropy measures the uncertainty only by the ‘heights’ in a histogram.

While working on the many-worlds interpretation of quantum mechanics Everett discovered

already in 1957 an inequality, which he would publish later in an expanded version of his

doctoral thesis [29, 73]. Likewise Hirschmann [12] studied the same entropic representation of

the uncertainty relation for position and momentum and proposed in the same year for the sum

of differential entropies

h(|f |2) = −
∫ ∞
−∞
|f(x)|2 log(|f(x)|2)dx (5.7)

the uncertainty relation h(|f |2) + h(|F |2) ≥ 0 , where ‖f(x)‖2 = ‖F (k)‖2 = 1 are normalized

and related to each other by Fourier transformation. The relation was tightened by Beckner [13]

and independently by Bia lynicki-Birula and Mycielski in 1975 [14] to the renown form

h(|f |2) + h(|F |2) ≥ log
(e

2

)
. (5.8)

The Ineq.

h(|f |2) + h(|F |2) ≥ log
(
e
2

)
.

(5.8) faithfully satisfies the maximum property of the differential entropy for a Gaus-

sian Ineq.
h(x) ≤ ln(

√
2πeσ2) .

(2.43) . For position and momentum the following inequality can be derived

log(eπ~) ≤ log(2πeσ(Q)σ(P ))

= log

(√
2πeσ(Q̂)2

)
+ log

(√
2πeσ(P̂ )2

)
≤ h(Q) + h(P ) . (5.9)

Because the entropic uncertainty in Ineq.

log(eπ~) ≤ log(2πeσ(Q)σ(P ))

= log

(√
2πeσ(Q̂)2

)
+ log

(√
2πeσ(P̂ )2

)
≤ h(Q) + h(P ) .

(5.9) implies the standard deviation relation it is

considered as stronger.
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The change of the representation form of the uncertainty led to a re-consideration of existing

examples and highlighted some issues with the standard deviation. The usefulness of entropy

motived Deutsch [15] to find an information-theoretic inequality for finite dimensional Hilbert

spaces which would not only be valid for continuous Fourier transformed pairs of variables.

Among the problems already given for the standard deviation as inappropriate measures of

uncertainty, Deutsch criticized that unlike in the position momentum case the right hand side

of Robertson’s relation is state dependent. The commutator cannot be proportional to the

identity in finite dimensions, hence would inherently not constitute a constant bound. It is easy

to realize that by looking at the trace of the commutator [Â, B̂] = αĈ, α ∈ C which is

Tr([Â, B̂]) = Tr(ÂB̂)− Tr(B̂Â) = 0 = αTr(Ĉ) . (5.10)

So Ĉ, if the trace is well defined, must be traceless, which is clearly not the case for the identity

operator.

For finite dimensions entropic uncertainty relations first utilized the Shannon entropy H(A),

where A is the random variable related to the physical observable Â, defined by

H(A) = H(Â|ρ̂) = −
∑
i

Tr(|ai〉〈ai| ρ̂) log (Tr(|ai〉〈ai| ρ̂)) . (5.11)

This is evidently the same as Eq.

H(X) = 〈I(xi)〉 = −
∑N

i=1 p(xi) log(p(xi)) .

(2.32), but the formula receives now a physical interpretation

as the deficiency in the information which a prepared state ρ̂ gives about measurements made

on Â. For two non-commuting observables Â and B̂ , having complete sets of non-degenerate,

normalized eigenstates |ai〉 and |bi〉, Deutsch derived the relation

H(A) +H(B) ≥ −2 log

(
1 + c

2

)
, c = max

i,j
|〈ai|bj〉|2 , (5.12)

where the uncertainty bound c is defined as the maximal overlap of the quantum states and can

also be written as the maximum of the squared fidelity c = maxi,j F (|ai〉〈ai| , |bj〉〈bj |)2. The

right-hand side has now generally all features of a reasonable state independent limit: it does

not explicitly dependent on the input state and equals zero if ρ̂ is a simultaneously eigenstate

of Â and B̂, i.e. when both observables posses definite values. The maximal overlap ranges

between 1/d for two mutually unbiased bases, d is the dimension of the Hilbert space, to 1,

when the observables have a common eigenvector; so 1
d ≤ c ≤ 1.
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After Deutsch’s work this subject developed quickly. Partovi [74] first studied the inequality

for degenerate spectra, and afterwards Maassen and Uffink [16] derived, based on a conjecture

of Kraus [75], a tighter bound for the uncertainty measurements given by

H(A) +H(B) ≥ −2 log (c) . (5.13)

Amazingly, Maassen and Uffink proved that Ineq.
H(A) +H(B) ≥ −2 log (c) .
(5.13) is just one member of a general class

of inequalities given by the sum of Rényi entropies with indices {α, β} ≥ 1
2

Hα(A) +Hβ(B) ≥ −2 log (c) ,
1

α
+

1

β
= 2 . (5.14)

While the validity of such entropic inequalities is undoubted, it is a great challenge to find out

when saturation can be achieved depending on certain parameters like the degree of state mix-

ture, the type and number of observables and the dimension of the system. The Maassen-Uffink

uncertainty relation serves as useful guidepost since it is optimal for mutually unbiased quan-

tum states in all dimensions. For other cases, finding the optimum in the inequality remains a

highly active and intensively studied field of research.

5.3 Optimal preparation uncertainty relations for qubits

Because qubits belong to the simplest quantum system, entropic uncertainty relations in two

dimensions were studied in depth and are one of the few cases for which an exact lower bound on

the sum of the information entropies exists, even if only numerically. First Sanchez [76, 77] and

then Ghirardi et. al. [78] contributed significantly to the analysis. Here is how the optimization

works: the most general qubit observables are of the form Eq.

Π̂i(%, r) = %i1+ri·σ̂
2 , ‖ri‖ ≤ %i ≤ 2− ‖ri‖ .

(3.33). First, notice that if |a〉 is

an eigenvector of a · σ̂, ‖a‖ = 1, it is also an eigenvector of β1+ αa · σ̂. Because the Shannon

entropy depends only on the eigenstates and not on the eigenvalues, without loss of generality

one can fix the pair of observables to Â = a · σ̂ and B̂ = b · σ̂, where both Bloch vectors have

unit length. Accordingly, the problem simplifies to finding the Bloch vector r corresponding to

the initial state |ψ〉 that minimizes the sum of the binary entropies Hb(a · r) + Hb(b · r) (see

Eq.

Hb(x) = −
(

1+x
2

)
log
(

1+x
2

)
−
(

1−x
2

)
log
(

1−x
2

)
(2.33)). It is clear that r must be coplanar to the vectors a, b to yield minimal values. By
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a

b

r

θ

α

Fig. 5.2: The vectors and angles visualize the situation in the deduction of the optimal lowest

bound for in two-dimensional Hilbert space. Here, a and b belong the respective observables

Â and B̂ with an included angle α, while the others θ and α− θ are the angles between the

Bloch vectors and the system state.

identification of a · r = cos θ and expressing the observables’ Bloch vector angle a · b by the

maximal overlap c = cos α2 , the optimal bound is obtained by the minimization

f(θ, α) =
∂

∂θ
(Hb(cos θ) +Hb(cos(α− θ)))

= − sin θ log2

(
1 + cos θ

1− cos θ

)
+ sin(α− θ) log2

(
1 + cos(α− θ)
1− cos(α− θ)

)
= 0 , (5.15)

where θ runs over the interval [0, 2π) and α over [0, π). The situation is illustrated in Fig. 5.2

and the derivative of Eq.

f(θ, α) = ∂
∂θ (Hb(cos θ) +Hb(cos(α− θ)))

= − sin θ log2

(
1+cos θ
1−cos θ

)
+ sin(α− θ) log2

(
1+cos(α−θ)
1−cos(α−θ)

)
= 0 .

(5.15) is plotted for four different α in Fig. 5.3. These plots indicate

that the form of the derivative depends on α and that for some critical value αc the number

of zeros of the function changes from 2 to 4. This critical value apparently occurs at the point

where the inflection of the curve is stationary. In order to determine that particular angle

the second derivative has to be calculated. From the first graph Fig. 5.3(a) one sees that the

function has a peak when

∂f(θ, α)

∂θ

∣∣∣∣
α=0

= 0 → cos θ log2

(
1 + θ

1− θ

)
= 0 . (5.16)
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(b) α < αc.
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(c) α ∼= αc.
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Fig. 5.3: Plots of the derivative as given in Eq.

f(θ, α) = ∂
∂θ (Hb(cos θ) +Hb(cos(α− θ)))

= − sin θ log2

(
1+cos(θ)
1−cos θ

)
+ sin(α− θ) log2

(
1+cos(α−θ)
1−cos(α−θ)

)
= 0 .

(5.15). The function f(θ, α) is shown for four

different values of α, starting with α = 0 and then α = 0.5 in Fig. 5.3(b), α = 1.17 in

Fig. 5.3(c) and α = 1.5 in Fig. 5.3(d). Depending on this angle, a bifurcation of the solution

from two to four intersection with the abscissa occurs, which determines the critical angle.

The solution of the transcendental equation Eq.

∂f(θ,α)
∂θ

∣∣∣
α=0

= 0 → cos θ log2

(
1+θ
1−θ

)
= 0 .

(5.16) shall be denoted as θc and has for

0 ≤ θ ≤ π
2 a value of θc ' 0.585. Inserting the attained solution yields at f(θc, α) = 0 the

critical angle αc ' 1.169. Summarizing the result, the optimal entropic preparation uncertainty

relation in two dimensional Hilbert space can be divided into three regions, first [78]

Hb(A) +Hb(B) ≥ 2Hb(cosα) , α ∈ [0, αc] , (5.17)

second, the range α ∈ (αc,
π
2 ) larger then the critical angle for which one has to resort to nu-
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merical calculations and third α = π
2 which is the limit as given by the Maassen-Uffink bound.

In general, the analysis of uncertainty relations depend on many circumstances and therefore

generalizations of system specific results are only partially possible. General optimization for

other dimensions is fairly difficult. Recently, Abbott et. al [79] provided a full characterization

of a tight state-independent uncertainty relations for qubits, which will be briefly excerpted in

the following paragraphs.

Consider a matrix M̂ which has the Bloch vectors from Â = a · σ and B̂ = b · σ as rows

M̂ =

aT

bT

 =

a1 a2 a3

b1 b2 b3

 , (5.18)

then it is possible to write the components of the inner products as

u := M̂r =

a · r

b · r

 =

〈Â〉
〈B̂〉

 . (5.19)

Because M̂ is not a quadratic matrix it is not invertible, but as mentioned in sec. 3.1.1 it is

possible to calculate a pseudoinverse. Geometrically M̂+M̂ is an orthogonal projection onto

the subspace spanned by {a,b} (i.e. range of M̂T ). Here is an important lemma required for

further proceeding: if r is the Bloch vector of the quantum state ρ̂ then the following inequality

holds ∣∣∣M̂+u
∣∣∣ =

∣∣∣M̂+M̂r
∣∣∣ ≤ |r| (5.20)

with equality given when r ∈ span{a,b}. Choosing a particular basis for the Bloch vectors

a = (
√

1
2(1 + a · b),

√
1
2(1− a · b, 0)T and b = (

√
1
2(1 + a · b),−

√
1
2(1− a · b, 0)T allows the

determination of the pseudoinverse

M̂+ =
1√

1− (a · b)


√

1+a·b
2

√
1−a·b

2√
1−a·b

2 −
√

1+a·b
2

0 0

 . (5.21)

Inserting this result into Eq.

∣∣∣M̂+u
∣∣∣ =

∣∣∣M̂+M̂r
∣∣∣ ≤ |r| .

(5.20) provides a tight uncertainty relation for the expectation
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Fig. 5.4: The uncertainty in Eq.

〈Â′〉2

(1+a·b) + 〈B̂′〉2

(1−a·b) ≤ |r|
2 .

(5.23) changes its form depending on the inner product a · b

and its radius determined by ‖r‖. In the case of mutually unbiased states the expectation

values are confined within a circle, whose radius decreases for mixed states. When the inner

product becomes larger a deformation to an ellipse occurs.

values of the observables

|〈A〉a− 〈B〉b|2 = 〈Â〉+ 〈B̂〉 − 2(a · b) 〈Â〉 〈B̂〉

≤
(
1− (a · b)2

)
‖r‖2 ≤ 1− (a · b)2 = |a× b|2 .

(5.22)

The quadric in Eq.

|〈A〉a− 〈B〉b|2 = 〈Â〉+ 〈B̂〉 − 2(a · b) 〈Â〉 〈B̂〉
≤ (1− (a · b)2) ‖r‖2 ≤ 1− (a · b)2 = |a× b|2

(5.22) is of the form x2 − Axy + y2 + B = 0 and therefore describes some

conic section. To find out which, the following transformations 〈Â〉 = 1√
2
(〈Â′〉 − 〈B̂〉′) and

〈Â〉 = 1√
2
(〈Â′〉+ 〈B̂′〉) are employed, which gives

〈Â′〉2

(1 + a · b)
+

〈B̂′〉2

(1− a · b)
≤ ‖r‖2 . (5.23)

So the uncertainty relation in Eq.

|〈A〉a− 〈B〉b|2 = 〈Â〉+ 〈B̂〉 − 2(a · b) 〈Â〉 〈B̂〉
≤ (1− (a · b)2) ‖r‖2 ≤ 1− (a · b)2 = |a× b|2

(5.22) describes an ellipse where the radius is given by the

degree of mixture ‖r‖ and the inner product a ·b controls the lengths of major and minor axes.

Because the ellipse is only canonical in the primed coordinates, it will be skewed for the original

expectations values. A plot of the situation is given in Fig. 5.4 for two different choices of scalar
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products.

Because, the square of the Pauli matrices is given by the identity operator, it is possible to

reformulate Eq.

|〈A〉a− 〈B〉b|2 = 〈Â〉+ 〈B̂〉 − 2(a · b) 〈Â〉 〈B̂〉
≤ (1− (a · b)2) ‖r‖2 ≤ 1− (a · b)2 = |a× b|2

(5.22) in terms of standard deviations. So, for or all observables with Â2 = 1

the expectation value is 〈Â〉 = ±
√

1− σ(Â)2 and consequently the following tight preparation

uncertainty relation is obtained

σ(A)2 + σ(B)2 + 2 |a · b|
√

1− σ(A)2
√

1− σ(B)2 ≥ 2−
(
1− (a · b)2

)
‖r‖ , (5.24)

which is only saturated when r is in the span of a-b and (a · b) 〈Â〉 〈B̂〉 ≥ 0.

The article elaborates further how to derive an inequality for more than 2 observables, e.g. the

well-known relation 〈Â〉 + 〈B̂〉 + 〈Ĉ〉 ≤ ‖r‖. However, for the continuation of this thesis all

required relationships are summed up so that the topic of preparation uncertainty relations can

be completed. Of course, there are many more and significant developments on this subject and

a plethora of other quantities or viewpoints that can be exploited to quantify the respective

trade-offs. Overviews on entropic uncertainty relations and corresponding developments are

provided in [29, 80].
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CHAPTER 6

Operational error-disturbance

The measurement uncertainty is about the inevitable intrusion through the act of measure-

ment and the concomitant limitation of the precision of conjugate observables. Decisive in this

category is that a joint probability is determined in one shot, unlike in the determination of

statistical dispersions consisting of uncorrelated single measurements. The main focus in this

segment will be on Ozawa’s theory based on operational rms-errors.

6.1 Theory of quantum operational error and disturbance

The noise in a measurement describes the difference between the output of a measurement

apparatus and the ‘true value’, respectively the intended quantity to be measured. Denote the

intended observable in a given state ρ̂ as Â and regard the actually made precise measurement

of another observable X̂, the meter observable in the same state, the difference between them

is represented by the noise operator

N̂(Â) = X̂ − Â . (6.1)

The root mean square (rms) noise or error is the average noise defined as

ε(Â) := 〈N̂(Â)2〉
1
2 . (6.2)
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The question arises how the error ε(Â) can be utilized to quantify the accuracy of a measurement.

In this case the observables must be related to the measurement model of the apparatus as shown

in Fig. 3.6. Let the quadruple 〈K, ξ̂, Û , M̂〉 constitute an indirect measurement model, which

describes the measurement process of apparatus M, where K is the apparatus state space, ξ̂

is the initial apparatus state, Û is a unitary operator providing the interaction between object

and apparatus system and M̂ is the meter observable of the apparatus. Defining ρ̂ as the initial

object state, the error ε(Â) of apparatus M for a general observable Â is defined [21] as

ε(Â) := 〈N̂(Â)2〉
1
2 = Tr

((
Û(1⊗ M̂)Û † − Â⊗ 1

)2
ρ̂⊗ ξ̂

) 1
2

. (6.3)

This way the noise operator is related to the difference N̂(Â) = M̂out − Âin, which describes

how accurate the value of the observable Âin = Â ⊗ 1 on the product state ρ̂ ⊗ ξ̂ before the

measurement is transferred to the apparatus’s actual observation M̂out = Û †(1 ⊗ M̂)U . The

definition can also be rewritten as a distance with the Hilbert-Schmidt norm

ε(Â) := ‖(M̂out − Âin)

√
ρ̂⊗ ξ̂‖HS . (6.4)

In this form the error in Eq.

ε(Â) := 〈N̂(Â)2〉
1
2 = Tr

((
Û(1⊗ M̂)Û † − Â⊗ 1

)2
ρ̂⊗ ξ̂

) 1
2

.

(6.3) has apparently the property to vanish when the experimen-

tal output equals the eigenvalues of Â =
∑

i ai |ai〉 〈ai| (neglecting degeneracy). Assume the

probe state to be ξ̂ = |ξ〉〈ξ| then from N̂(Â) |ai〉 |ξ〉 = (M̂out − ai) |ai〉 |ξ〉, it follows a precise

measurement of Â by the apparatus is made when

ε(Â) = 0 ⇒ M̂out |ai〉 |ξ〉 = ai |ai〉 |ξ〉 . (6.5)

Expanding the square of expression Eq.

ε(Â) := 〈N̂(Â)2〉
1
2 = Tr

((
Û(1⊗ M̂)Û † − Â⊗ 1

)2
ρ̂⊗ ξ̂

) 1
2

.

(6.3) gives

ε(Â) = Tr
((

(M̂out)2 − {M̂out, Âin}+ (Âin)2
)

(ρ̂⊗ ξ̂)
)
. (6.6)

Then, defining the partial trace of an arbitrary system observable Ô ∈ H⊗K over the apparatus

state ξ̂, given by

Ô(n) = TrK

(
Ô(n)(1⊗ ξ̂)

)
, (6.7)

shows that the root mean square noise of the measurement is determined by the first Ô and

second moment Ô(2) of operators (see sec. 2.2.2), because
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Tr(Ô
(2)
A ρ̂) = Tr

(
(M̂out)2(ρ̂⊗ ξ̂)

)
,

Tr(ÔAÂρ̂) = Tr
(
M̂outÂin(ρ̂⊗ ξ̂)

)
,

Tr(ÂÔAρ̂) = Tr
(
ÂinM̂out(ρ̂⊗ ξ̂)

) (6.8)

and the squared error of observable Â in terms of the system state only with the dissected

detector state can be denoted as

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
. (6.9)

It was elucidated that the initial state ρ̂ of a system will in general change under the influence of a

measurement to I(m)(ρ̂). For any bounded Hermitian operator B̂ onH the probability after the

first measurement are given by tr(I(m)(ρ̂)B̂) = tr(I∗(m)(B̂)ρ̂), where the dual transform I∗(B̂)

is employed. The disturbance of a measurement observable for a given state is determined by the

CPTP map that describes the non-selective operation of the type Eq.

Ens (ρ̂) =
∑

k M̂kρ̂M̂
†
k =

∑
k p(k)ρ̂k .

(3.47) of the apparatus.

This non-selective state change and its dual transformation in the system plus apparatus picture

are determined by

Ens(ρ̂) = TrK

(
Û(ρ̂⊗ ξ̂)Û †

)
,

E∗ns(Â) = TrK

(
Û(Â⊗ 1)Û †(1⊗ ξ̂)

)
.

(6.10)

The average over all measurement outcomes of the non-selective map discards all information

about the correlations between meter value and the eigenvalue of B̂. A lot of the mathematical

technicalities of the disturbance are analogous to the treatment of the noise operator. The root

mean square (rms) disturbance η(B̂) is defined by the disturbance operator D̂ = B̂out − B̂in in

the following way

η(B̂) : = 〈D̂(B̂)2〉
1
2 = 〈B̂out − B̂in〉

1
2 .

= Tr

((
Û(B̂ ⊗ 1)Û † − B̂ ⊗ 1

)2
ρ̂⊗ ξ̂

) 1
2

.

(6.11)

Here, the observables B̂in = B̂ ⊗ 1 and B̂out = Û †(B̂ ⊗ 1)Û are linked to the instrument of the

noise measurement by Tr
(
B̂out(ρ̂⊗ ξ̂)

)
= Tr

(
I∗(m)(B̂)ρ̂

)
. It can be demonstrated that η(B̂)
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vanishes if and only if the estimation of Â does not affect the subsequent measurement of B̂.

By the same methods all formulas can be used again

η(B̂)2 = ‖(B̂out − B̂in)

√
ρ̂⊗ ξ̂‖HS

= Tr((B̂out)2(ρ̂⊗ ξ̂))− Tr(B̂out(B̂ ⊗ 1)(ρ̂⊗ ξ̂))− Tr((B̂ ⊗ 1)B̂out(ρ̂⊗ ξ̂))

+ Tr((B̂2 ⊗ 1)(ρ̂⊗ ξ̂))

= Tr
(

(E∗ns(B̂2)− {E∗ns(B̂), B̂}+ B̂2)ρ̂
)
.

(6.12)

Notice, the dual map from the Schrödinger to Heisenberg picture is used to transfer the distur-

bance of the state system to the perturbed observable, which in terms of Kraus operators has

a close analogy to Eq.

Ens (ρ̂) =
∑

k M̂kρ̂M̂
†
k =

∑
k p(k)ρ̂k .

(3.47) given by

E∗ns(Ô(n)) =
∑
k

M̂kÔ
(n)M̂ †k . (6.13)

Instead of the given ε(Â) and η(B̂) definitions, a different decomposition can be done that sep-

arates both error and disturbance into two terms, which are called operator bias and fuzziness,

respectively [81, 82]. For example, in the case of error, Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
.

(6.9) is equivalent to

ε(Â)2 = Tr
((
Ô

(2)
A − Ô

2
A

)
ρ̂
)

+ Tr

((
ÔA − Â

)2
ρ̂

)
. (6.14)

The first term is called fuzziness which characterizes the sharpness of the measurement observ-

able. The fuzziness vanishes when observable ÔA is a sharp projector for which the second

moment is identical to the squared first moment, while it becomes maximal for trivial effects

proportional to the identity [96]. The second quantity is the bias, which quantifies how well the

operator ÔA approximates Â in a measurement. This form of separation of the error is more

reminiscent of classical estimation theory, where bias estimators and sample variances appear

as analogies to their quantum version.

6.1.1 Error - Disturbance uncertainty relations

In the process of quantifying Heisenbergs original formulation in terms of measurement errors,

the use of a noise operator as introduced in sec. 6.1 appeared first for the special case of

position and momentum by Arthurs and Kelly [17], which would later be generalized to arbitrary
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observables by Arthurs and Goodman [18] who provided the error-error trade-off

ε(Â)ε(B̂) ≥ CAB . (6.15)

The issue with Ineq.
ε(Â)ε(B̂) ≥ CAB .
(6.15) is that it does not generally hold as it was deduced under the as-

sumption of unbiased approximation. After about two decades, Ozawa achieved to come up

with a universally valid formulation of the measurement uncertainty relation, which includes

two additional terms. A closer look at the issue follows for the case of error and disturbance.

The idea behind Ozawa’s derivation of the error-disturbance uncertainty relation is as follows;

first, because the meter observable M̂ and B̂ are in distinct Hilbert spaces the commutator

[M̂out, B̂out] = 0 commutes and accordingly

0 = [M̂out, B̂out]

= [D̂(B̂) + B̂in, N̂(Â) + Âin]

= [D̂(B̂), N̂(Â)] + [D̂(B̂), Âin] + [B̂in, N̂(Â)] + [B̂in, Âin] .

(6.16)

This commutativity is a key idea of the measurability: while the observables Â, B̂ do not

commute, their approximations do. Building the expectation values, taking the modulus on

the entire term and splitting the expression into subterms by applying the triangular inequality

leads to

−[B̂in, Âin] = [D̂(B̂), N̂(Â)] + [D̂(B̂), Âin] + [B̂in, N̂(Â)] ,∣∣∣〈[B̂in, Âin]〉
∣∣∣ =

∣∣∣〈[D̂(B̂), N̂(Â)]〉+ 〈[D̂(B̂), Âin]〉+ 〈[B̂in, N̂(Â)]〉
∣∣∣ ,∣∣∣〈[B̂, Â]〉

∣∣∣ ≤ ∣∣∣〈[D̂(B̂), N̂(Â)]〉
∣∣∣+
∣∣∣〈[D̂(B̂), Âin]〉

∣∣∣+
∣∣∣〈[B̂in, N̂(Â)]〉

∣∣∣ .
(6.17)

For further processing an estimation of the terms must be done. The rms value is always greater

than or equal to the standard deviation

ε(Â) ≥ σ(N̂(Â)) , η(B̂) ≥ σ(D̂(B̂)) (6.18)

and accordingly Robertson’s relation Ineq.

σ(Â)σ(B̂) ≥
∣∣∣ 1

2i 〈ψ|[Â, B̂]|ψ〉
∣∣∣ := CAB .

(5.2) delivers the inequality

ε(Â)η(B̂) ≥ σ(N̂(Â))σ(D̂(B̂)) ≥
∣∣∣∣12 〈[D̂(B̂), N̂(Â)]〉

∣∣∣∣ . (6.19)
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Thus, a very useful intermediate result is obtained, when the relation Eq.

−[B̂in, Âin] = [D̂(B̂), N̂(Â)] + [D̂(B̂), Âin] + [B̂in, N̂(Â)] ,∣∣∣〈[B̂in, Âin]〉
∣∣∣ =

∣∣∣〈[D̂(B̂), N̂(Â)]〉+ 〈[D̂(B̂), Âin]〉+ 〈[B̂in, N̂(Â)]〉
∣∣∣ ,∣∣∣〈[B̂, Â]〉

∣∣∣ ≤ ∣∣∣〈[D̂(B̂), N̂(Â)]〉
∣∣∣+
∣∣∣〈[D̂(B̂), Âin]〉

∣∣∣+
∣∣∣〈[B̂in, N̂(Â)]〉

∣∣∣ .
(6.17) is updated by

the newest result

ε(Â)η(B̂) +
1

2

(∣∣∣〈[D̂(B̂), Âin]〉
∣∣∣+
∣∣∣〈[B̂in, N̂(Â)]〉

∣∣∣) ≥ 1

2

∣∣∣〈[B̂, Â]〉
∣∣∣ = CAB . (6.20)

The joint measurement of two observables whose uncertainty is ε(Â)η(B̂) ≥ CAB
4 only holds

when the correlation terms vanish. Making the same trick with the other terms on the left hand

side

ε(Â)σ(B̂) ≥ σ(N̂(Â))σ(B̂) ≥
∣∣∣∣12 〈[B̂in, N̂(Â)]〉

∣∣∣∣ ,
η(B̂)σ(Â) ≥ σ(D̂(B̂))σ(Â) ≥

∣∣∣∣12 〈[D̂(B̂), Âin]〉
∣∣∣∣ , (6.21)

the error-disturbance uncertainty relation (EDUR) by Ozawa, universally valid for arbitrary

pairs of observables and for arbitrary generalized measurements, is derived [20] as

ε(Â)η(B̂) + ε(Â)σ(B̂) + η(B̂)σ(Â) ≥ CAB . (6.22)

First Improvement

Although the inequality Ineq.
ε(Â)η(B̂) + ε(Â)σ(B̂) + η(B̂)σ(Â) ≥ CAB .
(6.22) is valid in its form, the question arose under which circum-

stances does equality hold. The weak point in the previous derivation is the triple application

of Robertson’s inequality, since it only happens for limited situations that all three terms are

simultaneously tight. Branciard [83] in 2013 came up with more stringent inequalities derived

from two geometric lemmas.

By adopting the following notations

|a〉 =
Âin − 〈Â〉
σ(Â)

|ψ, ξ〉 , |b〉 =
B̂in − 〈B̂〉
σ(B̂)

|ψ, ξ〉 , (6.23)

|x〉 =
M̂out − 〈Â〉

σ(Â)
|ψ, ξ〉 , |y〉 =

B̂out − 〈B̂〉
σ(B̂)

|ψ, ξ〉 , (6.24)

4A great dispute in the scientific community arose regarding this inequality as it is not clear whom it can be

attributed to [21, 23]. According to Ozawas, this inequality is to be blamed on Heisenberg.
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â =

<(|a〉)

=(|a〉)

 , b̂ =

 =(|b〉)

−<(|b〉)

 , x =

<(|x〉)

=(|x〉)

 , y =

 =(|y〉)

−<(|y〉)

 , (6.25)

it is possible to employ the following

1. Lemma: For any two orthogonal vectors x and y of the Euclidean space, the following

inequality is satisfied

‖â− x‖2 + ‖b̂− y‖2 + 2‖â− x‖‖b̂− y‖
√

1− (â · b̂)2 ≥ (â · b̂)2 . (6.26)

A thorough calculation

‖â− x‖2 = (〈x| − 〈a|)(|x〉 − |a〉) =

(
ε(Â)

σ(Â)

)2

,

‖b̂− y‖2 = (〈y| − 〈b|)(|y〉 − |b〉) =

(
η(B̂)

σ(B̂)

)2
(6.27)

allows a strengthening of Ozawa’s relation for the case of pure states to

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)

√
σ(Â)2σ(B̂)2 − C2

AB ≥ C
2
AB . (6.28)

A geometrical meaning of the lemma is supplied in Fig. 6.1(a) and as mentioned the inequality

is in fact tight for any observables Â, B̂ and system state ρ̂ = |ψ〉〈ψ| in the sense that equality

is obtainable by measurements.

A special, nevertheless important sub-case concerns observables with Â2 = B̂2 = 1, to which

the Pauli observables belong to. Assuming that the meter observable has the same spectrum

M̂2 = 1, it follows that also the approximate observables are Ô2
A = Ô2

B = 1. For states

satisfying σ(Â) = σ(B̂) = 1 it is possible to utilize

2. Lemma: For any two orthonormal vectors x̂ and ŷ of the Euclidean space, the following

inequality is satisfied for â⊥ =
√

1− (â · x̂)2 and b̂⊥ =

√
1− (b̂ · ŷ)2

(â⊥)2 + (b̂⊥)2 + 2â⊥2b̂⊥

√
1− (â · b̂)2 ≥ (â · b̂)2 . (6.29)
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ab


x

y

x

y

a - x=ϵ
˜
A

b - y=η
˜
B

a·b→C
˜
AB

π

2
-θ

ϑ-θa
θb-ϑ

(a) Lemma 1.

ab


x

y

a - x=ϵA
b - y=ηB

a·b→CAB

π

2
-θ

ϑ-θa
θb-ϑ

(b) Lemma2.

Fig. 6.1: Geometric depiction of the employed lemmas. The vectors x and y correspond to

the observables that are jointly measurable and which are supposed to approximate the

observables being represented by a and b. These pictures of error ε(Â) and disturbance

η(B̂) make the quantities as operator difference very intelligible. Note that, in 2. Lemma

it is necessary for all vectors to have unit length in order to satisfy the restriction of Â2 =

B̂2 = Ô2
A = Ô2

B = 1.

The geometric picture in Fig. 6.1(b) shows the arrangement forces all vectors to have unit length

and relate to error and disturbance by

(â⊥)2 = ‖â− x‖2
(

1− ‖â− x‖2

4

)
= ε(Â)2

(
1− ε(Â)2

4

)
:= ε̃(Â)2 ,

(b̂⊥)2 = ‖b̂− y‖2
(

1− ‖b̂− y‖2

4

)
= η(B̂)2

(
1− η(B̂)2

4

)
:= η̃(B̂)2 .

(6.30)

Summing up: For Â2 = B̂2 = Ô2
A = Ô2

B = 1 and σ(Â) = σ(B̂) = 1 the improved inequality in

Ineq.

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)
√
σ(Â)2σ(B̂)2 − C2

AB ≥ C2
AB .

(6.28) simplifies further to

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)

√
1− C̃2

AB ≥ C̃
2
AB . (6.31)

Second Improvement

In uncertainty relations, the case of mixed states is rarely treated. If uncertainty relations are

designed to be state-independent the inaccuracies can only be a consequence of incompatible

operators. The bound CAB for a totally mixed state ρ̂ = 1/d would lead to Eq.
Tr([Â, B̂]) = Tr(ÂB̂)− Tr(B̂Â) = 0 = αTr(Ĉ) .

(5.10) and

therefore vanish. To avoid the disappearance of the bound for error and disturbance Ozawa
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suggested a modification [84].

The central idea relies on two modifications, first a purification similar to the Schmidt decom-

position Eq.

|χ〉 =
∑

i

√
pi |φi〉 ⊗ |ψi〉 .

(3.26): in the canonical purification the ancilla Hilbert space is given by the dual

space Hanc = H∗, which contains all bra-states. The purification in this form changes to

|χ〉 =
∑
i

√
pi |φi〉 ⊗ 〈φi| , (6.32)

which gives the original state back accordingly ρ̂ = TrH∗(|χ〉 〈χ|). The second ingredient is

changing the operators in the extended Hilbert space. First, define

√
ρ̂(−i[Â, B̂])

√
ρ̂ = Û †W

∣∣∣√ρ̂(−i[Â, B̂])
√
ρ̂
∣∣∣ (6.33)

to be the polar decomposition as shown in Eq.
Â = |Â|Û =

√
Â†Â Û .

(3.7), where ÛW can be chosen as a self-adjoint

unitary operator on H (likewise for its dual ÛW ∈ H∗). The observables on the extended Hilbert

space H⊗H∗ now change to

Â′ = Â⊗ IH∗ ,

Û ′ = Û ⊗ IH∗ ,

B̂′W =
(
B̂ − 〈B̂〉 IH

)
⊗ Û∗W .

(6.34)

Physically, there is no change in the observable Â′ and the unitary operator in the measurement

model 〈K, ξ̂, Û ′, M̂〉. The disturbance of the new observable B̂′W is however different as it now

interacts with the extended dual state 〈φi|. The shift of the operator Â → Â′ does not effect

the standard deviation σ(Â′) = σ(Â) nor the error ε(Â′) = ε(Â). For B̂ → B̂′W the standard

deviation becomes smaller σ(B̂′W ) ≤ σ(B̂), while disturbance remains as it is η(B̂′W ) = η(B̂).

Finally, a closer look at the bound CA′B̂′W
unveils the following

2iCA′B̂′W
= 〈χ|[Â′, B̂′W ]|χ〉 = 〈χ|[Â⊗ IH∗ , B̂ ⊗ Û∗W ]|χ〉

= 〈χ|[Â, B̂]|χ〉 ⊗ Û∗W

=
∑
i,j

√
pi
√
pj 〈φi|[Â, B̂]|φj〉 〈φj |ÛW |φi〉

= Tr
(
ÛW
√
ρ̂[Â, B̂]

√
ρ̂
)

= iTr
(∣∣∣√ρ̂[Â, B̂]

√
ρ̂
∣∣∣)

:= 2iDAB .

(6.35)
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That is, the bound can be replaced with a new quantity given by the expectation value of the

modulus of the operator in Eq.

√
ρ̂(−i[Â, B̂])

√
ρ̂ = Û †W

∣∣∣√ρ̂(−i[Â, B̂])
√
ρ̂
∣∣∣ .

(6.33). Accordingly, the results can be used to reformulate the

previous relations Ineq.

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)
√
σ(Â)2σ(B̂)2 − C2

AB ≥ C2
AB .

(6.28) and Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31) to

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)

√
σ(Â)2σ(B̂)2 −D2

AB ≥ D
2
AB , (6.36)

and

ε̃(Â)2 + ε̃(B̂)2 + 2ε̃(Â)ε̃(B̂)
√

1−D2
AB ≥ D

2
AB . (6.37)

In comparison to CAB the new bound

DAB =
1

2
Tr
(∣∣∣√ρ̂[Â, B̂]

√
ρ̂
∣∣∣) (6.38)

has the property to become 1 for totally mixed states when [Â, B̂] is traceless. This quantity

can also be used to replace the boundary on the right-hand side of the Robertson relation [85].

Also, if σ̂ = 1
|α|2 [Â, B̂]†ρ̂[Â, B̂] is a quantum state, where the constant α is determined by the

commutator [Â, B̂] = αĈ, then there a nice interpretation for DAB, namely

DAB =
1

2
Tr

(√√
ρ̂[Â, B̂]†ρ̂[Â, B̂]

√
ρ̂

)
=
|α|
2

Tr

(√√
ρ̂ σ̂
√
ρ̂

)
=
|α|
2
F (ρ̂, σ̂) .

(6.39)

Thus, if the action of the commutator is proportional to some quantum operation, then DAB

has the meaning of quantum state fidelity as in Eq.

F (ρ̂, σ̂) = Tr
(√√

ρ̂ σ̂
√
ρ̂
)
.

(3.48).

6.2 Measurement scheme of error and disturbance

An issue appeared at first regarding the accessibility of errors and disturbances in practical

experiments, since physically the expectation value of {Â, ÔA} in Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
.

(6.9) implies a joint mea-

surement of two non-commuting observables of the form Tr(ÂÔAρ̂). In order to overcome this

obstacle the weak measurement method and the three-state method were proposed.
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6.2.1 Weak measurement method

In recent years, the concept of weak measurements has gained much attention in the quantum

physics community. In such weak measurements, the mean value of the quantum mechanical

probability distribution is measured without causing excessive disturbances on the quantum

state, so that a (partial) characterization of the wave function is possible after completion of

the measurements.

In 1988 Aharonov et al. [86] introduced the weak value 〈Â〉w of observable Â: in its most general

form, assuming Tr(Π̂f ρ̂i) 6= 0, it is written as

〈Â〉w =
Tr(Π̂f Âρ̂i)

Tr(Π̂f ρ̂i)
. (6.40)

Here, ρ̂i is the initial quantum state of the system and Π̂f is the post-selection observable.

If ρ̂i = |ψi〉〈ψi| is a pure state and Π̂f = |ψf 〉〈ψf | is a discrete projector, then the originally

published form 〈Â〉w = 〈ψf |Â|ψi〉 / 〈ψf |ψi〉 is obtained. The weak measurement is a special

kind of joint measurement, usually extracted by preparing a particular initial state, coupling the

quantum system weakly to the apparatus and then making a specific (succeeding) post-selection.

Assume the special case where the projectors of the spectral decomposition Â =
∑

m amP̂m

commutes with the post-selection operator [Π̂f , P̂m] = 0 for all outputs m, then from the

identification p(m|f) = Tr(Π̂f P̂mρ̂i) it follows that the weak value is identical with a conditional

expectation

〈Â〉w =
∑
m

am
p(m|f)

p(f)
. (6.41)

However, observable Â will in general not commute with the post-selection effect, which espe-

cially implies that Born’s rule Eq.
p(m) = Tr(ρ̂iP̂m) = 〈ρ̂i|P̂m〉 .
(3.34) does not generally yield a true probability. However,

if quasi-probabilities pwv with negative outcomes are admissible then the weak-valued probabil-

ity, conditioned on an initial state and a final measurement, is defined by the real part of the

weak-valued projector P̂m [65]

pwv(m|f) = < 〈P̂m〉w = <
Tr(Π̂f P̂mρ̂i)

Tr(Π̂f ρ̂i)
, (6.42)

which is connected to the joint quasi-probability by a Bayesian kind of rule
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pwv(m, f) = pwv(m|f)p(f) = <Tr(Π̂f P̂mρ̂i) . (6.43)

Among a variety of new applications, weak-valued probabilities have also been linked to the for-

mal definitions of error-disturbance Eq.

ε(Â) := 〈N̂(Â)2〉
1
2 = Tr

((
Û(1⊗ M̂)Û † − Â⊗ 1

)2
ρ̂⊗ ξ̂

) 1
2

.

(6.3), Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
.

(6.11) and hence to the uncertainty principle.

The connection is quickly confirmed for sharp observables, e.g.

ε(Â)2 = Tr

((
Û(1⊗ M̂)Û † − Â⊗ 1

)2
ρ̂⊗ ξ̂

)

= Tr

(Û(1⊗
∑
m

mP̂m)Û † −
∑
a

aP̂a ⊗ 1

)2

ρ̂⊗ ξ̂


=
∑
a,m

(m− a)2 <Tr
((
Û(1⊗ P̂m)Û †(P̂a ⊗ 1)

)
ρ̂⊗ ξ̂

)
=
∑
a,m

(m− a)2pwv(m, a)

(6.44)

where the resemblance to Eq.

pwv(m, f) = pwv(m|f)p(f) = <Tr(Π̂f P̂mρ̂i) .

(6.43) can be increased by denoting Π̂′m = Û(1 ⊗ P̂m)Û †, P̂ ′a =

P̂a ⊗ 1 and ρ̂′i = ρ̂ ⊗ ξ̂, which returns the intended form pwv(m, a) = <Tr(Π̂′mP̂
′
aρ̂
′
i). The

error ε(Â) can hence be determined by a weak measurement [87] of P̂a on the initial quantum

state, after which a strong post-selective measurement takes place to read out the final meter

observable M̂ . As before the disturbance can also be interpreted as the weak valued quasi-

probability distribution between the initially intended and finally measured observables after

disturbance

η(B̂)2 =
∑
b,b′

(b− b′)2pwv(b, b
′) . (6.45)

Due to the relationship between error/disturbance and weak measurements, implementation

of experiments for testing the weak valued formulation have also been carried out for two-

dimensional quantum systems. These set-ups have in common that they are based on a quan-

tum circuit suggested by Lund and Wiseman [88], who proposed to measure the joint quasi-

probabilities in a sequential set-up as illustrated in Fig. 6.2. Experimental realizations of the

proposal would be difficult with neutron optical set-ups available at the moment, but there are

photonic tests of the weakly-measured error-disturbance [89–91]. A thorough calculation of the

quantum circuit suggested by Lund is given in [92] that shows a mismatch between the joint

distribution and the actual rms-deviation.
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Fig. 6.2: Schematic diagram of sequential set-up to measure the weak-valued probabilities pwv.

The idea is to make a weak measurement of Â to obtain the value a (or [B̂] and b), such that it

leaves the initial state ρ̂i almost undisturbed and then make an indirect strong measurement

with meter output m, immediately followed by a strong B̂ determination on the perturbed

state ρ̂′ with outcome b′. The read-out of the weak probe and the meter or final third

measurement give joint probabilities which approximately reconstruct the quasi-probability

distributions.

6.2.2 Tomographic three-state method

Here, experiments at the research reactor facility TRIGA Mark II of the Vienna University of

Technology that have been made over the years in the field of error-disturbance tests in the

case of two-dimensional quantum systems are described. In the experiments [36, 93, 94] the

set-up is of the form illustrated in Fig. 6.3. A thermal monochromatic neutron beam with

a mean wavelength of 1,99Å and a monochromaticity of ∆λ/λ ∼= 0.02 propagates in the y-

direction. The neutrons that emerge from the reactor are mixed spin states which are polarized

after crossing a bent Co-Ti supermirror resulting all states to enter the set-up in spin state

|+z〉. The entire configuration from the first polarizer to analyzer-2 is enclosed by a Helmholtz

coil, which generate two magnetic guide fields in +z - direction of the magnitude of roughly

Bg ∼= 13G. This external magnetic field causes a Zeemann split of the potential energy where

the population in the respective levels can be changed by applying magnetic field perpendicular

to the y-z plane.
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Fig. 6.3: Illustration of the experimental set-up together with Bloch sphere description. The

neutron-polarimeter set-up consists of three stages. (1) Preparation (blue region): the incom-

ing mono-energetic neutron beam is polarized in +z-direction by passing through a polarizing

supermirror. In coil DC1 the required directions of the input states are generated. In case

the coil is fed with a noise current an ensemble mixed in time is generated controlled via a

tunable noisy magnetic field. (2) Apparatus M1, consisting of a projective ÔA measurement

(pink region) and a correction operation (light green region): analyzer-1 together with the

coils DC2/3 carry out the first measurement and allow for a unitary rotation of the output

state of the ÔA measurement. (3) Apparatus M2, measuring B̂ (dark green region): the

second measurement fixes B̂ and is carried out by the the coil DC4 and the analyzer-2.

Three Bloch-spheres are depicted: indicated on the left is the input states to be sent to the

apparatus M1 and M2, shown in the middle are the directions of the Â (red) and ÔA (pink)

measurements and exhibited on the right are the directions of the B̂ measurement in the

apparatus M2 (dark green) as well as the state after the correction (light green).

As shown in Fig. 6.3, the experimental set-up is divided into three larger stages: 1. state prepa-

ration (blue), 2. ÔA measurement (pink), and 3. B̂ measurement (light and dark green).
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Fig. 6.4: Illustration of a well aligned DC-coil which shows the oscillation of the neutron count

rate between the up and downs spin states. At 0 current all states are in the |+z〉 state,

while at ∼= ±595 mA at half the intensity the states correspond to |∓y〉, Finally for currents

twice as strong ∼= ±1190 mA the spin is flipped to |−z〉. The contrast of such an oscillation

can be up to 0.99 and the phase misalignment below 1◦.

1. State preparation: In the first stage the initial |+z〉 up spin of the neutron is changed

by static magnetic field in x-direction, whose unitary evolution ÛDC1 is given in sec. 4.4 and

typical diagram of a polarization oscillation is shown in Fig. 6.4. The coils are solenoids fed

with a direct current in two axes, one that produces a field in the negative z -direction Bz which

compensates the guide field Bgez = −Bzez and a second field Bx that induces a the unitary

transformation. The current in the coil changes the magnetic field strength and hence the po-

larization of the neutron’s magnetic moment. By checking the transmission probability through

a supermirror analyzer p = | 〈+z|ÛDC1|+ z〉 |2 the rotation angle can be controlled by the coil

current. It should be noted that all four coils involved are adjusted in exactly the same way.

Their performances, i.e. contrast and phase-stability of oscillations are virtually identical.

From the Bloch sphere representation it is clear that coils change the polar angle of the qubit

state. When a neutron spin immediately after the coil re-enters the guide field it will Larmor

precess about the vertical z -direction by some azimuthal angle. Depending on the time of flight
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t12 between DC1 and DC2 for instance, it is possible to tune the incident angle of the spin

to second coil: if |+y〉 is the state after DC1 then from exp(iφσ̂z) |+y〉 the azimuthal angle

φ = µ|Bg|t12/~ is determined by the neutron’s propagation time between the coils. Since the

neutron velocity is constant, the angle is controlled by the relative coil distance. Once more,

this concept works also for DC2, DC3 and DC4.

2. ÔA measurement: The second stage consists of the apparatus M1 defined as DC2 +

analyzer-1, and the unitary operation Û carried out by DC3. The apparatus M1 makes a

measurement of

ÔA = cos θOAσ̂z + sin θOAσ̂y =
∑
m=±1

mP̂OA(m) . (6.46)

The (Kraus) measurement operators of M1 are

{M̂m} = {|σ̂z = m〉 〈ÔA = m|} (6.47)

and thus, the output state after the measurement in apparatus M1 can be written as

ρ̂′ =
∑
m

|σ̂z = m〉〈ÔA = m|ρ̂|ÔA = m〉〈σ̂z = m| . (6.48)

The whole process consisting of DC2 + analyzer-1 + DC3 can be considered as a measuring

apparatus for measuring ÔA with the measurement operators

{M̂m} = {ÛDC3 |σ̂z = m〉〈ÔA = m|} (6.49)

and the POVM

P̂OA(m) = M̂ †mM̂m . (6.50)

Let Â = σ̂z, then evaluation of the error Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
.

(6.9) for dichotomic spin observables (i.e. they

have only two outcomes) reveals

{Â, ÔA} = 2 cos θOA1 (6.51)

and remembering that the square of the Pauli matrices are Â2 = Ô2
A = 1 the error in Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
.

(6.9)

is expected to become

ε(Â) =
√

2− 2 cos θOA = 2

∣∣∣∣sin(θOA2

)∣∣∣∣ . (6.52)
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3. B̂ measurement: In a successive measurement the determination of ÔA causes the dis-

turbance on the measurement of the following observable B̂. Most of the results are derived

analogously to the error case. The whole process consisting of DC4 + analyzer-2 can be con-

sidered as a measuring apparatus for measuring B̂ with outcome b = ±1 and measurement

operators

{M̂m2} = {|σ̂y = b〉 〈σ̂z = m| Û †DC3} . (6.53)

Recall, that the measurement is projective measurement of ÔA if and only if

ÛDC3 |σ̂z = m〉 = |ÔA = m〉 . (6.54)

In the first publications [36, 93], the coil DC3 was used in order to make DC2+analyzer-1 +

DC3 a projective measurement of ÔA. Let B̂ = σ̂y, thus the disturbance is given by

ÔB =
∑
m

M̂ †mB̂M̂m

=
∑
m=±1

|ÔA = m〉 〈ÔA = m|B̂|ÔA = m〉 〈ÔA = m|

= sin θOAÔA

B̂ÔB = sin θOAB̂ÔA = sin θOA (σ̂y (cos θOAσ̂z + sin θOAσ̂y))

= sin2 θOA1+ i sin θOA cos θOAσ̂x

η(B̂)2 = 2− 2<(B̂ÔB) = 2− 2 sin2 θOA = 2 cos2 θOA .

(6.55)

The theoretical prediction of disturbance η(B̂) for a projective measurement of ÔA is therefore

η(B̂) =
√

2 |cos θOA| . (6.56)

Extraction of error and disturbance from data

The three state method is based on the decomposition of the anti-commutator into three parts

{Â, ÔA} = 4P̂+
A ÔAP̂

+
A − ÂÔAÂ− ÔA , (6.57)

where P̂+
A = (1+Â)

2 is the two-dimensional projector belonging to the positive eigenvalue of Â 5.

Utilizing this formula gives the algebraically equivalent expression

5There also exists a two state method which uses a combination of P̂+
A and P̂−A for a split into two parts.
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Fig. 6.5: Diagram of measurement procedure. In the first operation ÛDC1 generates from

the initial state |+z〉 in the case Â = σz the three states {|+x〉, |−x〉 and |+z〉}.

The second operation is the transformation to |ÔA = ±1〉 by ÛDC2 which pass the first

analyzer with probability p = | 〈ÔA = ±1|σ̂z = 1〉 |2. Then |σ̂z = 1〉 is transformed to

ÛDC3 |σz = 1〉 = ÛDC3 |σz = m〉 depending on the state from the ÔA measurement. The

last coil DC4 has the same purpose as the second coil and controls the transition prob-

ability p =
∣∣∣〈σz = b|ÛDC4ÛDC3|σz = m〉

∣∣∣2 through the second analyzer. At the end for

every of the three input states 4 different count-rates are obtained, denoted by Im,b where

{m, b} = {−1, 1}.

ε(Â)2 = 2 + Tr(ÔAρ̂) + Tr(ÔA Âρ̂Â)− 4 Tr(P+
A ρ̂) Tr(ÔA ρ̂|A) . (6.58)

which allows to access the error statistically by measurements of ÔA with three different states

{ρ̂, Âρ̂Â, ρ̂|A = P̂+
A ρ̂P̂

+
A /Tr(P̂+

A ρ̂)}. Furthermore, this implies that in the state preparation

step three different states must be generated with ÛDC1. Physically, the disturbance can be

measured with the three-state method as well, i.e.

η(B)2 = 2 + Tr(ÔB ρ̂) + Tr(ÔB B̂ρB̂)− 4 Tr(P+
B ρ) Tr(ρ|BÔB) . (6.59)

The diagram in Fig. 6.5 helps to understand how the data and the statistics of the measurement

are obtained. In the first part the three input states are generated sequentially by three different
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transformations ÛDC1 |+z〉. The measurement operator in the experiment is realized by a

supermirror analyzer which takes |ÔA = ±1〉 = ÛDC2

(
ÛDC1 |+z〉

)
as input states and will

always produce |σ̂z = 1〉 as output state. In order to realize both outcomes m = ±1, it is

necessary to incorporate the third coil DC3. By appropriate choice of the unitary operations

the input and output states can be properly correlated ÛDC3 |σz = ±1〉, which rotate in each

case on two antipodal points on the Bloch sphere. The purpose of the second apparatus is

to measure B̂ = σ̂y so that the transition probabilities through the analyzer would be p =∣∣∣〈σy = b|ÛDC3(σz = m)〉
∣∣∣2. The fourth DC4 is there to change the axis of filtering by two

different rotations: ÛDC4 is exactly chose such that

p =
∣∣∣〈σy = b|Û †DC4ÛDC4|ÛDC3(σz = m)〉

∣∣∣2
=
∣∣∣〈σz = b|ÛDC4ÛDC3|σz = m〉

∣∣∣2 , (6.60)

which implies a state transformation ÛDC4 |σy = b〉 = |σz = b〉 without changing the total prob-

ability.

To every combination of m = ±1 and b = ±1 and state ρ̂, a count rate is obtained, denoted by

Im,b(ρ̂). Probability is calculated from the relative frequency with which one of the outcomes

occurs. The expectation values in Eq.

ε(Â)2 = 2 + Tr(ÔAρ̂) + Tr(ÔA Âρ̂Â)− 4 Tr(P+
A ρ̂) Tr(ÔA ρ̂|A) .

(6.58) or Eq.

η(B)2 = 2 + Tr(ÔB ρ̂) + Tr(ÔB B̂ρB̂)− 4 Tr(P+
B ρ) Tr(ρ|BÔB) .

(6.59) are then determined by the ratio of

the count rates for each state as illustrated in Fig. 6.5, i.e.

Tr(ÔAρ̂) =

∑
(m,b)mIm,b(ρ̂)∑

(m,b) Im,b(ρ̂)
, Tr(ÔB ρ̂) =

∑
(m,b) bIm,b(ρ̂)∑
(m,b) Im,b(ρ̂)

, (6.61)

where ρ̂ must be alternated according to the three-state-method.

6.3 Adjustments

The adjustment of the system, shown in Fig. 6.6, can be done as follows. Immediately at the

beam port of the reactor wall, a supermirror is placed, which is adjusted in height and angle so

that a maximum number of neutrons are detected. The second, subsequent supermirror is set

at a distance of approximately 0.5m to maximum transmission of the neutrons. Subsequently,

a slight misalignment is performed, whereby higher orders of the Brag-reflected neutrons can
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Fig. 6.6: Photo of the polarimeter beamline at the TRIGA Mark-II research reactor. The beam

port is located on the yellow wall of the reactor (1) from which a gray, polarizing supermirror

(2) protrudes. A solenoid coil (3), standing on a translation stage (4), is aligned centrally

to the window of the first supermirror and is surrounded by a Helmholtz coil (5), which has

been raised for better visibility in the photo. The second DC coil is covered by the middle

supermirror (6). The whole scenario is repeated in the back segment: a Helmholtz coil (7) in

which there are two solenoid coils (8,9), followed by another supermirror (10), which finally

ends at the detector.

be removed. Although this reduces the count rate, it does increase the degree of polarization,

which is typically of the order of 98%. For the second supermirror, which is followed by a

detector, the same procedure is carried out.

The DC coils are used, as explained in sec. 4.4, to rotate the neutron spin. They stand on small

goniometers, which are not recognizable on the image in Fig. 6.6, controlling the alignment to
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the neutron beam and the external magnetic field. The neutrons sense a non-adiabatic change

in the magnetic field during transition through the coil and precesses according to Eq.

|χ(t)〉 = ÛDC(t) |χ(0)〉 = e−i
µB0
~ σ̂ent |χ(0)〉

=
(

cos
(
µB0

~ t
)
12 − iσ̂ · en sin

(
µB0

~ t
))
|χ(0)〉

(4.25).

A well-established coil is shown in Fig 6.4. In addition, each of these small solenoids are placed

on motorized linear stages, which can change the relative distance between the coils and to the

respective supermirrors continuously. To avoid problems in connection with the Earth magnetic

field or stray fields Helmholtz coils producing circa 1.3 mT cancel possible influences to a large

extend. An unfortunate influencing factor of the copper coils is that it causes a loss rate of

about 25 neutrons/sec due to scattering and low absorption.

The imperfect degree of polarization, coming from suboptimal spin purification of the super-

mirrors, is a systematic error that degrades the data, which can be crucial for testing optimal

uncertainty trade-offs. The finite efficiency of the supermirror is shown in the plots in Fig. 6.7.

The continuous change of the incident spin relative to the static projection of the supermirror in

the z-direction would ideally have to result in | 〈χ(ϑ, 0)|+ z〉 | = cos2 ϑ
2 . In Fig. 6.7(a), the fit of

the data is shown by the black curve, where the parameters of the fit function f(x) = a+b cosx

resulted to a ∼= 0.494 and b ∼= 0.483. A potential phase error is neglected because it is much

smaller and only statistical in nature. The deviation from the red ideal curve is strongest at

the extreme values, which is shown in Fig. 6.7(b). This shows that the static fluctuations are

smaller than the systematic insufficiency of the polarization measurement.

To undo this deficiency from the data, the values must be slightly scaled. For this purpose, one

makes a singular measurement at the beginning of the adjustment and then determines the fit,

with which the fit parameters are obtained. These can be used to offset the new ordinate values

according to

fnew(x) =
1

2

(
1 +

fmeas(x)− a
b

)
. (6.62)

The adaptation of the finite degree of polarization must be carried out for each supermirror

involved.
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(a) Discrepancy between the black-colored function obtained by fitting the data and the

theoretical prediction represented by the red curve. The fidelity F (ρ̂ϑ, ρ̂
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the degree of overlap, which experimentally is strictly smaller than 1 and larger than
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(b) Imperfection of polarization. Each point corresponds to packages of neutrons in 60

seconds. The green line and confidence band demonstrate that the maximal overlap

has a mean of 0.976± 0.005 and cannot reach the maximal probability.

Fig. 6.7: Very high but imperfect efficiency in polarization measurements. The upper panel

shows data points acquired by preparing the state ρ̂ϑ = |χ(ϑ, 0)〉〈χ(ϑ, 0)| (the vector |χ(ϑ, ϕ)〉

is defined in Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15)) and making a projection onto ρ̂exp
Z . The impurity of ρ̂exp

z is a

systematic error that can be taken into account by scaling the data with a correction factor

which for example lift the mean value shown in the lower panel.
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6.4 Results

6.4.1 Standard configuration

The error and disturbance are obtained by measuring the frequency of a particular outcome

relative to all possible sets. So, when the first apparatus measures for example m = 1 and

the second apparatus measures b = −1, this means that the neutrons have a certain proba-

bility of being transmitted through the supermirrors in that configuration. This gives a count

rate I(m=+1),(b=−1) in a predefined time-scale, usually 60 secs. or 90secs., which is always kept

constant throughout the entire experiment. The intensities, according to the corresponding out-

comes are depicted in Fig. 6.8 for the so-called standard configuration Â = σ̂z, B̂ = σ̂y, hence

their eigenstates are mutually unbiased and the states of ÔA are coplanar with |±a〉 , |±b〉. The

initial input state is ρ̂x = |+x〉〈+x|.

In the upper panel Fig. 6.8(a) the angle is θOA = 0 which means that an exact measurement

of Â is performed. The first four outputs occur all with 1
4 of the total intensity, because each

| 〈+x|σ̂z = m〉 |2 and | 〈+z|σ̂y = b〉 |2 (|+z〉 is the state after the Â measurement) occur each

with the same probability of 1
2 . Because Âρ̂xÂ just reflects the state to ρ̂−x = |−x〉〈−x| there

is nothing changing in the next intensity quadruple. The error measurement is completed with

the count rates for ρ̂|A = |+z〉〈+z|: the up-spin state is completely transmitted in the first

apparatus m = 1 and then measured with half the probability in apparatus M2, while the

neutrons are not transmitted when m = −1 is analyzed . For the disturbance measurement,

the first two histograms do not change, because the input states are once more ρ̂x, ρ̂−x and

the two expectation values Eq.

Tr(ÔAρ̂) =
∑

(m,b)mIm,b(ρ̂)∑
(m,b) Im,b(ρ̂) , Tr(ÔB ρ̂) =

∑
(m,b) bIm,b(ρ̂)∑
(m,b) Im,b(ρ̂) ,

(6.61) are obtained by different evaluation only. The last count

rate distribution is also uniform, because ρ̂|B = |+y〉〈+y| behaves the same as ρ̂x in the first

histogram.

The histograms for ρ̂ and Âρ̂Â = B̂ρ̂B̂ in Figs. 6.8(b) and 6.8(c) are identical due to the sym-

metry of the observable configuration. The error and disturbance are entirely dominated by

the two eigenstates of the non-commuting observables ρ̂|A and ρ̂|B in the measurement. The

last bar chart in Fig. 6.8(c) indicates that ρ̂|B has been measured accurately and therefore the

disturbance vanishes.
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(a) Histogram for θOA = 0 resulting in ÔA = Â.
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(b) Histogram for θOA = 2π
9

close to the angle bisector of Â and B̂.
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(c) Histogram for θOA = 0 resulting in ÔA = B̂.

Fig. 6.8: Count rate histograms. Determination of the expectation values Eq.

Tr(ÔAρ̂) =
∑

(m,b)mIm,b(ρ̂)∑
(m,b) Im,b(ρ̂) , Tr(ÔB ρ̂) =

∑
(m,b) bIm,b(ρ̂)∑
(m,b) Im,b(ρ̂) ,

(6.61) by count

rates Im,b for three different angles θOA, namely 0 in Fig. 6.8(a), 2π
9 in Fig. 6.8(b) and π

2 in

Fig. 6.8(c). The input state is ρ̂ = ρ̂x. The panel on the left always shows the total count

rate, which is approximately 4800, the three bar charts to the right of the first column are the

required intensities to measure the error with all three states and finally the three leftmost

histograms are required for the disturbance. The label below the charts correspond to the

subscripts of the intensities, e.g. for the error (+−) = I(m=+1),(b=−1).
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Fig. 6.9: Measurement results of error as function of the polar angle of the observable ÔA =

cos θOAσ̂z + sin θOAσ̂y. The blue line corresponds to the theoretical prediction given by the

function ε(Â) = 2
∣∣∣sin θOA

2

∣∣∣. The data points represent the measured quantities from θOA = 0

to π. The statistical error-bars are larger close to 0 since they obtained at low count rates.
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Fig. 6.10: Measurement results of η(B̂) =
√

2 |cos θOA| for projective measurement of ÔA (for

the uncorrected case). The red line correspond once more to the given function and points

correspond to the results. The statistical error-bars are larger close to 0 since they obtained

at low count rates.
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Error-disturbance results obtained by projective measurements with neutrons are given in

Fig. 6.9 and Fig. 6.10. They were first confirmed in the article [36]. The error at θOA = 0

(or multiples of 2π) is zero, because at this angle the approximate observable ÔA = Â is iden-

tical to the intended observable and there is no difference between the two. In other words if

the observables are perfectly correlated then perfect accuracy measurements are possible. A

change of the angle θOA misaligns the directions of the observables and therefore alters the

distance between them. Accordingly the error increases and reaches a maximum at ÔA = −Â.

A rotation of the observable beyond this point reverts the error back symmetrically (and is thus

not measured). The disturbance has an opposite behavior. When ÔA = Â then the measure-

ment imparts the maximal disturbance on the state that measures B̂. The disturbance η(B̂)

decreases however as ÔA approaches B̂ and has a minimum at equality for θOA = π
2 .

Both error and disturbance depend on a the same angle θOA, therefore it is appropriate to

plot them parametrically (ε(Â), η(B̂)). Four different error-disturbance trade-offs are given in

Fig. 6.11 for the standard configuration. The results of the measurement are plotted again in

the range θOA ∈ [0, π2 ] with their theoretical prediction. They obviously violate a naive Arhturs-

Kelly-like version of the uncertainty relation ε(Â)η(B̂) ≥ 1
2 . On the other hand the blue line

given by Ozawa’s first prediction Ineq.
ε(Â)η(B̂) + ε(Â)σ(B̂) + η(B̂)σ(Â) ≥ CAB .
(6.22) is far-off the results and there seems no way for

the outcomes to touch that curve. This is a strong evidence that the inequality is too loose.

The green curve corresponding to Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31) for pure states CAB = 1 on the other hand can

actually be approached. It was suggested by Branciard that instead of recreating the eigenstate

of the projector P̂OA(m) it is better to transform the state after analyzer-1 to the eigenstates

of B̂ [83]. This can be realized by a correction procedure.

Correction and anti-correction: The data in Fig. 6.10 satisfy the error-disturbance rela-

tion under consideration but do not lead to saturation. From relation Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31), if ε(Â) =

2
∣∣∣sin θOA

2

∣∣∣ then η(B̂) should satisfy

2

∣∣∣∣sin(π4 − θOA
2

)∣∣∣∣ ≤ η(B̂) ≤ 2

∣∣∣∣sin(π4 +
θOA

2

)∣∣∣∣ . (6.63)

This means that that the region of attainable values is bounded from below and also from above.

The lower limits turn out to be accessible by ‘correcting’ the state after the ÔA measurement
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Fig. 6.11: Plot of ε(Â)-η(B̂) with four different predictions. The blue curve corresponds to

the first prediction of Ozawa as given in Ineq.
ε(Â)η(B̂) + ε(Â)σ(B̂) + η(B̂)σ(Â) ≥ CAB .
(6.22) when σ(Â) = σ(B̂) = 1 and the red

curve corresponds to the first result obtained by Erhart et. al. [36]. Apparently experimental

outcomes are below the Arthurs-Kelly curve, i.e. the naive reinterpretation of the Robertson-

like inequality ε(Â)η(B̂) ≥ 1
2 , given by the yellow line, and therefore falsify its general validity.

The ominous gap between the results and the Ozawa prediction encouraged the search for

an improvement, obtained by Branciard, whose solution is plotted in green.

while the upper limit is obtained by ‘anti-correcting’ . To obtain an optimal operator Û , let

ÛDC3 be such that ÛDC3 |σ̂z = m〉 = |B̂ = m〉 for m = ±1 e.g.,

ÛDC3 =
1√
2

(σ̂z + σ̂y) =

1 −i

i 1

 (6.64)

independent of the value of θOA. Then, the measurement operators are given by {M̂m} =
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Fig. 6.12: Comparison of disturbances. The red line and points show once more the result as

given in Fig. 6.10, while the green curve η(B̂) = 2
∣∣∣sin(π4 − θOA

2

)∣∣∣ and the measurement

points demonstrate the decrease of disturbance between 0 ≤ θOA ≤ π. The disturbance can

be increased to find the worst case as given by the purple curve η(B̂) = 2
∣∣∣sin(π4 + θOA

2

)∣∣∣
with the corresponding measurement results.

{|B̂ = m〉 〈ÔA = m|} and eventually

ÔB =
∑
m

M̂ †mB̂M̂m

=
∑
±1

|ÔA = m〉 〈B̂ = m|B̂|B̂ = m〉 〈ÔA = m| = ÔA

B̂ÔB = B̂ÔA

= σ̂y (cos θOAσ̂z + sin θOAσ̂y)

= sin θOA1+ i cos θOAσ̂x

η(B̂)2 = 2− 2<(B̂ÔB) = 2− 2 sin θOA = 4 sin

(
π

4
− θOA

2

)2

.

(6.65)

To obtain an anti-optimal Û , let ÛDC3 be such that ÛDC3 |σ̂z = m〉 = |B̂ = −m〉 for m = ±1

e.g.,

ÛDC3 =
1√
2

(σ̂z − σ̂y) =

 1 i

−i 1

 (6.66)
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Fig. 6.13: Experimental search of minimal disturbance. After the projective measurement of

ÔA at an angle of θOA = 50◦ the unitary ÛDC3 is used to create different states |χ(ϑ, ϕ)〉.

The minimum at ϑ = φ = π
2 corresponds exactly to |+y〉.

independent of the value of θOA. Then, the measurement operators are given by {M̂m} =

{|B̂ = −m〉 〈ÔA = m|} and maximal disturbance becomes

ÔB =
∑
±1

|ÔA = m〉 〈B̂ = −m|B̂|B̂ = −m〉 〈ÔA = m| = −ÔA ,

η(B̂)2 = 2− 2<(B̂ÔB) = 2 + 2 sin θOA = 4 sin

(
π

4
+
θOA

2

)2

.

(6.67)

The results with correcting and anti-correcting unitary transformations are plotted in Fig. 6.12.

After the measurement of ÔA and before the measurement of B̂ a unitary quantum channel

ÛDC3 allows to generate different states. When the state after the apparatus M1 yields the

outcome m = 1, the state afterwards is |+z〉 and can appropriately be rotated to |+y〉 for

every angle of θOA to reduce the disturbance by a correlated transformation. At zero error

the disturbance is a fixed point and at θOA = π
2 the uncorrected states already matches the

eigenstate of B̂, so there is no need for improvements there. For intermediate values the effect

of the optimization is clearly visible. If instead for m = 1 the unitarily transformed state is

always |−y〉 then physically the set-up adds disturbance to the quantum state before it is finally

detected. Corrected and anti-corrected disturbance are inversely phased (phase-shifted by π).
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Fig. 6.14: Squared error-disturbance ε(Â)2 vs. η(B̂)2 uncertainty relation as indicated by

Ineq.
ε̃(Â)2 + η̃(B̂)2 ≥ 1 ⇔ (ε(Â)2 − 2)2 + (η(B̂)2 − 2)2 ≤ 4 .
(6.68). The region in gray is inaccessible, the green boundary is the saturated limit of

the inequality and the white area the entire accessible region.

The optimization can be investigated with experimental methods as well. For each angle θOA,

a stepwise variation of the unitary transformations has to be done to find the position of the

minimum. The dependence of the disturbance on the configuration of the post-measurement

state is plotted in Fig. 6.13. This plot shows the result when the unitary operator ÛDC3 gener-

ates all possible qubit states |χ(ϑ, ϕ)〉 as defined in Eq.

|χ(ϑ, ϕ)〉 =

(
cos
(
ϑ
2

)
eiϕ sin

(
ϑ
2

)) = cos
(
ϑ
2

)
|+z〉+ eiϕ sin

(
ϑ
2

)
|−z〉 .

(3.15) in the range from 0 < ϑ < π and

0 < φ < π. The lowest disturbance is obtained at a the point that corresponds to the positive

eigenstate of B̂.

The parametric plot of the result Eq.

ε(Â) =
√

2− 2 cos θOA = 2
∣∣∣sin( θOA2 )∣∣∣ .

(6.52) vs. Eq.

2
∣∣∣sin(π4 − θOA

2

)∣∣∣ ≤ η(B̂) ≤ 2
∣∣∣sin(π4 + θOA

2

)∣∣∣ .
(6.63) must in its squared form yield a
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Fig. 6.15: Plots of error-disturbance obtained by building the square root in Fig. 6.14. The

region in gray is inaccessible, while the dashed green line represent the smallest and largest

obtainable uncertainty outcomes, which have been obtained properly. The framed section

matches the picture Fig. 6.11 and is usually the most interesting part, because it contains

the lowest achievable pairs of values.

circle as indicated by Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31)

ε̃(Â)2 + η̃(B̂)2 ≥ 1 ⇔ (ε(Â)2 − 2)2 + (η(B̂)2 − 2)2 ≤ 4 . (6.68)

This is shown in Fig. 6.14, where the full range of obtainable (ε(Â)2, η(B̂)2) pairs and the ‘for-

bidden’ region are colored in white and gray. The measured points at the boundary below the

value η(B̂)2 ≤ 2 correspond to the optimized uncertainty relation, when the inequality is satu-

rated, while the points above that value can be obtained by anti- correction. In Fig. 6.15 the

quadrant (0, 0) to (
√

2,
√

2) is identical to the prediction of the tight bound shown in Fig. 6.11,

first measured in [91].
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6.4.2 Non-standard configuration

The research of error and disturbance is extended now by changing the polar angle of B̂, thereby

altering the observable’s relative orientation. That is, the choices for the operators are Â = σ̂z

and

B̂′ = cos θBσ̂z + sin θBσ̂y (6.69)

for two angles θB = {π3 ,
π
6 } and for the input state ρ̂ = |+x〉 〈+x|. Overall, the uncertainty

is expected to decrease, since the involved observables Â, B̂′ are no longer maximally non-

commuting, or more precisely their eigenstates are not mutually unbiased. The choice of the

operator changes the optimal disturbance to

η(B̂′) = 2

∣∣∣∣sin(θOA − θB2

)∣∣∣∣ (6.70)

and also the bound CAB = | sin θB|. Since all observables are still in the y-z plane orthogonal to

the system state Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31) still holds. Analogous to the standard configuration after appara-

tus M1, a correction of the state after the ÔA measurement the closest eigenstate of B̂′ must be

performed to reach the lowest disturbance. The experimental results are plotted for both angles

θB in Fig. 6.16. In the angle dependent plots it is apparent that the disturbance disappears

once more when the observables coincide B̂′ = ÔA and the closer these two operators are, the

more the minimum shifts to the left. In the error-disturbance trade-offs it is obviously the case

that the uncertainty shrinks the smaller the angle θB.

6.4.3 Error-disturbance for mixed states

As was pointed out, the limit CAB in the uncertainty relation given by Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31) predicts a

disappearance of the error-disturbance trade-off for mixed states, while other new bound DAB

as introduced by Ineq.

ε̃(Â)2 + ε̃(B̂)2 + 2ε̃(Â)ε̃(B̂)
√

1−D2
AB ≥ D2

AB .

(6.37) is unaffected for changes of mixture in the standard configuration,

i.e. for Â = σ̂z, B̂ = σ̂y and states

ρ̂x =
1+ ‖rx‖σx

2
, (6.71)

which are mixed if ‖rx‖ has not unit length.
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(b) Angle dependence for θB = π
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(c) Error disturbance for θB = π
3
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(d) Error disturbance for θB = π
6

.

Fig. 6.16: The upper panel of the figure contains the variations of the measurement operator

angle θOA for a fixed θB = π
3 in Fig. 6.16(a) and θB = π

6 in Fig. 6.16(b). In the lower panel

the error-disturbance is plotted which displays the property that the closer the observables

in context are the more the limit CAB decreases and hence the more the uncertainty region

disappears.

The set-up for this measurement is equivalent to the experiments that have been used previously.

The only difference is located in the first coil DC1 which is also fed with a random noise-signal

and thereby produces a ‘noisy’ magnetic field. This means the neutrons with different arriving
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Fig. 6.17: Noisy voltage as plotted by the ArbExpress R© signal generator software from Tek-

tronix. Such a random wave form can either be generated by the software and then uploaded

onto the signal generator (AFG 3022B) or directly created at the device itself. If one chooses

the rate of change of the voltage as long as the neutrons’ time of transmission through the

coil, each particle will see a different magnetic field. Therefore, feeding such a signal into the

solenoid producing the Bx field mixes the total spin ensemble.

times at the coil DC1 are unitarily rotated individually by some Ûnoise(
π
2 + ∆ξnoise(t)), so that

the whole state given by the time average is a mixed spin ensemble [95]. Experimentally, the

conversion to mixed states is carried out using an AFG 3022B signal generator, which is con-

nected to the windings of the x-coil, fed with a random voltage amplitudes looking something

like in Fig. 6.17. The degree of mixture and alignment of the states was monitored by measuring

the polarization vector P = Tr(σρ̂). Tuning of the amplitude of the noise field will accordingly

change P and allow to determine the desired degrees of mixtures. The checking of the efficiency

of mixing is listed in Tab. 6.1.

The results of error-disturbance for mixed input states as given by Eq.

ρ̂x = 1+‖rx‖σx
2 .

(6.71) for five different

mixtures are depicted in Fig. 6.18. There are two limits in each plot colored in green and blue if

the results differ and the according measurement points. Starting with the pure state obviously

nothing changes, then continuing with mixed states ‖rx‖ ∼= {3
4 ,

1
2 ,

3
4 , 0} the measurement out-

come reveals that the form of the familiar error-disturbance trade-off remains the same. Hence

Ineq.

ε̃(Â)2 + η̃(B̂)2 + 2ε̃(Â)η̃(B̂)
√

1− C̃2
AB ≥ C̃2

AB .

(6.31) is indeed only tight for pure states and the second improved version Eq.

ε̃(Â)2 + ε̃(B̂)2 + 2ε̃(Â)ε̃(B̂)
√

1−D2
AB ≥ D2

AB .

(6.37) is

a legitimate replacement to explain the invariance of the ε(Â), η(B̂) - uncertainty relation for
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Px = Tr(σ̂xρ̂) Py = Tr(σ̂yρ̂) Pz = Tr(σ̂zρ̂)

0.998± 0.003 −0.004± 0.008 −0.008± 0.008

0.748± 0.011 0.016± 0.008 −0.025± 0.008

0.499± 0.014 0.003± 0.008 −0.005± 0.008

0.241± 0.015 0.038± 0.006 −0.047± 0.006

−0.030± 0.017 0.022± 0.009 −0.036± 0.009

Tab. 6.1: Result of the polarization vector P = Tr(σ̂ρ̂) measurement indicating the degree of

mixture.

mixed states. This statement remains true as long as the input state is ‘orthogonal’ to the

regarded observables as indicated by Fig. 6.18(a).

6.5 Measurement uncertainty relation based on statistical distances

Whether the definitions of error and disturbance as given by Ozawa are appropriate measures

to quantify measurement uncertainty lead to intensive controversies. As competitor to the con-

struct of rms operator deviations, an alternative approach to the topic was presented by Busch,

Lahti and Werner (BLW) [23–25] whose theory is based on the statistical distance, more accu-

rately the Wasserstein-2 metric (see. Eq.

Wp(µ, ν) := infπ∈Π(µ,ν)

(∫
X×X d(x, y)pdπ(x, y)

) 1
p
.

(2.28)) between their outcome values. The distance in

the error-disturbance relations is obtained by a comparison of two reference outcome distribu-

tions of observables Â, B̂ to a measurement of Ĉ, approximating Â and likewise D̂ measuring B̂

with different, but identically prepared ensembles ρ̂. A scheme of the idea is shown in Fig. 6.19.

The theory starts with a state-specific error ∆(Â, Ĉ, ρ̂) which assesses a degree of closeness of

Â to Ĉ for a specific quantum state ρ̂. By the same reasoning for the disturbance the distance

of the distribution shall be defined as

∆(Â, Ĉ, ρ̂) = W2(Âρ, Ĉρ) , ∆(B̂, D̂, ρ̂) = W2(B̂ρ, D̂ρ) , (6.72)

where subscript to the observables in the Wasserstein-2 distanceW2(Âρ, Ĉρ) have been appended

to indicate state dependency. However, the difference in a particular state is not a good indicator
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(a) Geometric situation.
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(b) Result for pure state ‖rx‖ = 1.
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(c) Result for mixed state ‖rx‖ ∼= 0.75.
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(d) Result for mixed state ‖rx‖ ∼= 0.5.
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(e) Result for mixed state ‖rx‖ ∼= 0.25.
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(f) Result for mixed state ‖rx‖ ∼= 0.

Fig. 6.18: Plots of ε(Â)-η(B̂) showing for five different mixtures ‖rx‖: (b) 1, (c) 0.75, (d) 0.5,

(e) 0.25 and (f) 0 no effect on the uncertainty as predicted by DAB, while the other bound

CAB given by the blue dashed line suggest a disappearance of uncertainty the more mixed

the quantum states become [94].
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Fig. 6.19: Schematic implementation of a distance-type error-disturbance experiment. Three

separate measurements are performed to record the three different distributions: two single

measurements that provide the reference values (top and bottom histograms) and a bivariate

distribution from the joint measurement, whose marginals are then compared with the refer-

ence outcome distributions. The difference in the output statistics is quantified by the state

dependent value ∆(Â, Ĉ, ρ̂) = W2(Âρ, Ĉρ) for the error and ∆(B̂, D̂, ρ̂) = W2(B̂ρ, D̂ρ) for

disturbance. These ∆’s in turn are used to obtain state independent measures of imprecision.

for the overall performance in the sense that its smallness implies high measurement quality of

the device. Therefore, BLW propose to consider two types of total error/disturbance:

1. The ‘worst case’ estimate: a figure of merit (FoM) of the measurement apparatus given

by the maximal difference between the measurements with respect to all quantum state

∆(Â, Ĉ)FoM = sup
ρ
W2(Âρ, Ĉρ) , ∆(B̂, D̂)FoM = sup

ρ
W2(B̂ρ, D̂ρ) . (6.73)

2. Alternatively, since it might be difficult to retrieve the supremum over all states, a calibra-

tion error (Cal) is proposed in which the prepared states are eigenstates of the observable

to be determined, respectively for which Ĉρ is nearly a point (Dirac-) measure δx [96]

∆(Â, Ĉ)Cal = lim
ε→0

sup
ρ,x

(
W2(Ĉρ, δx) | W2(Âρ, δx) ≤ ε

)
. (6.74)
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The analysis of the trade-off relation for errors ∆(Â, Ĉ) and ∆(B̂, D̂) for qubits measurements is

made in [25]. Calculations yield the following relationships. Let the joint probability distribution

of Âρ, Ĉρ be collectively written into the matrix

γij =

 γ 〈P+
A 〉 − γ

〈P+
C 〉 − γ 〈P−C 〉

 (6.75)

with the respective projectors of the observables under consideration, then the state-dependent

Wasserstein-2-metrics yield [97]

W2(Âρ, Ĉρ) =

√
inf

γ∈Γ(Âρ,Ĉρ)

∑
(i,j)=±1

(i− j)2 γij

=
√

inf
γ

4(γ1,−1 + γ−1,1) =
√

4
∣∣〈P+

A 〉 − 〈P
−
C 〉
∣∣

=
√

2 |r · (a− c)|

W2(B̂ρ, D̂ρ) =
√

2 |r · (b− d)| .

(6.76)

These state-dependent quantities are important from an experimental point of view because

they show some differences between Ozawa and BLW’s results. In contrast, in the qubit case

for sharp observables the state-independent expression ∆(Â, Ĉ)FoM and ∆(Â, Ĉ)Cal are de-facto

identical with Ozawa’ error definition ε(Â), at least for pure states. Indeed, as proven in BLW’s

works an indisputable similarity is given

ε(Â) =
1

2
∆(Â, Ĉ)2

FoM = ∆(Â, Ĉ)Cal ,

η(B̂) =
1√
2

∆(B̂, D̂)2
FoM = ∆(B̂, D̂)Cal .

(6.77)

Hence, the BLW error-disturbance relation (∆(Â, Ĉ)Cal,∆(B̂, D̂)Cal) in two dimensional quan-

tum systems with projective measurements is given as illustrated in Figs. 6.9, 6.10 and 6.15 and

the figure of merit errors are obtained by the square roots of the calibration definitions up to

some constant factor.

There exist a few tests of BLW uncertainty relation [98–100]. Here, only the neutron optical

method [97] is summarized. The experimental setup has once more the design as in Fig. 6.3.

The target observables are the maximally non-commuting Pauli operators Â = a · σ̂ = σ̂z and
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Fig. 6.20: A collection of the various state-dependent errors for projective Pauli observables.

The calibration errors in blue and red for the eigenstates of Â and B̂ exactly match Ozawa’s

error-disturbance definition. The figure of merit errors colored yellow and green are obtained

by ρ̂errr and ρ̂distr according to Eq.

ε(Â) = 1
2∆(Â, Ĉ)2

FoM = ∆(Â, Ĉ)Cal ,

η(B̂) = 1√
2
∆(B̂, D̂)2

FoM = ∆(B̂, D̂)Cal .

(6.77) and share the same extremity and monotonicity

as the calibration errors. Finally, for a state ’perpendicular’ to all involved observables,

errors vanish ∆(Â, Ĉ, ρ̂x) = ∆(B̂, D̂, ρ̂x) = 0 shown by the violet line on the x-axis, since

all probabilities in that case are uniform and there is no statistical difference between the

outcomes.

B̂ = b · σ̂ = σ̂y, while the approximating observables are chosen as Ĉ = c · σ̂ = sin θ σ̂y+cos θ σ̂z

and the modified output operator D̂ = d · σ̂ = E∗ns(B̂) =
∑

k ĈkB̂Ĉ
†
k = sin2 θ σ̂y + 1

2 sin(2θ) σ̂z

(see. Eq.

E∗ns(Ô(n)) =
∑

k M̂kÔ
(n)M̂ †k .

(6.13)). To obtain the apparatus’ figure of merit it is necessary to prepare the input

state ρ̂errr with Bloch vector r = (a−c)/‖a−c‖, or in the case of disturbance r = (b−d)/‖b−d‖

associated with ρ̂distr . If the measurement operators are known beforehand, then calibration

errors are obtained by the eigenstates ρ̂±a = |±a〉〈±a| and ρ̂±b = |±b〉〈±b|. The various

cases are grouped and plotted in Fig. 6.20. One finds that there is no significant difference to

Ozawa’s theory in most cases. The calibration error and disturbance coincide with Eq.

ε(Â) =
√

2− 2 cos θOA = 2
∣∣∣sin( θOA2 )∣∣∣ .

(6.52)

and Eq.
η(B̂) =

√
2 |cos θOA| .

(6.56), the figures of merit are simple rescaled versions of these results. However,
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Ozawa’s definitions for projective measurements of the Pauli observables are state-independent.

Hence, there is a discrepancy in the case for the states for which the expectation value vanish

〈Â〉 = 〈B̂〉 = 〈B̂〉 = 〈D̂〉 = 0, because all outcome distributions are equiprobable. This is

indicated in the plot Fig. 6.20 by the pruple line congruent with the abscissa.

6.6 Discussion

What remains to complete the topic is a discussion about the presented theories and to make

certain criticisms and comparisons. The issue with the error-disturbance uncertainty relation

Ineq.

ε̃(Â)2 + ε̃(B̂)2 + 2ε̃(Â)ε̃(B̂)
√

1−D2
AB ≥ D2

AB .

(6.37) are rooted in the error and disturbance definitions

ε(Â)2 = Tr
((
Ô

(2)
A − {ÔA, Â}+ Â2

)
ρ̂
)
,

η(B̂)(2) = Tr
((
Ô2
B − {ÔB, B̂}+ B̂2

)
ρ̂
)
.

(6.78)

The anti-commutator necessitates a measurement of a product of two generally non-compatible

observables Tr(ÔAÂρ̂) which cannot be done in one shot. The two existing workarounds are

the weak measurement method and the three-state method.

Although weak measurements are an elegant technique, it seems as if the principle of the si-

multaneous indeterminacy of the involved observables has been lead to absurdity. One of the

principles of quantum physics, as already mentioned in sec. 3.6, is that there can be no informa-

tion without disturbance. Looking again at Fig. 6.2 one recognizes that in this form the pointer

value is tried to be determined without causing a disturbance, which is not possible. But if one

then accepts the finite effectiveness of the weakly interacting apparatus, the objects of consid-

eration changes to something like ε(Â, Âw) and η(Âw, M̂), i.e the error of the weak observable

and the disturbance thereby. That means instead of the intended error and the disturbance

one measures a combination of the weak error before the apparatus and the disturbance of

the strong measuring apparatus. This charade to define the value of Â results in inaccurate

approximations of the error.

In the case of the three state method, there is again the criticism that no ‘direct’ measurement

134



CHAPTER 6. OPERATIONAL ERROR-DISTURBANCE

is made. This means that three different states have to be prepared with which separate, mul-

tiple measurements are performed. Now one could argue that the same is the case with the

entropic definitions, with which the overlap is determined and the fourth type of uncertainty

(see section heading of chapter 5) is being regarded. Here, however, the difference with Ozawa’s

definition is that the states are not eigenvectors of one operator. Furthermore, the number

of states to be prepared does not increase with increasing dimension of the Hilbert state, but

remains the same. The second aspect to consider is that the algebraic transformation Eq.

{Â, ÔA} = 4P̂+
A ÔAP̂

+
A − ÂÔAÂ− ÔA .

(6.57)

inevitably contains a term (Â + 1) > 1 and thus has a spectrum greater than 1. In the spin

case, the operator is proportional to the projector and a factor of 4 has been introduced into

the transformations in Eq.

ε(Â)2 = 2 + Tr(ÔAρ̂) + Tr(ÔA Âρ̂Â)− 4 Tr(P+
A ρ̂) Tr(ÔA ρ̂|A) .

(6.58) or Eq.

η(B)2 = 2 + Tr(ÔB ρ̂) + Tr(ÔB B̂ρB̂)− 4 Tr(P+
B ρ) Tr(ρ|BÔB) .

(6.59). In general, however, the super-normalized state

(Â + 1)ρ̂(Â + 1) will have to be normed by the term Tr((Â + 1)2ρ̂), which still is not a valid

effect (Â + 1)2 6∈ E(H). If certain algebraic transformations and the multitude of necessary

single measurements are accepted and error-disturbance can be formally reconstructed there is

still the question whether the interpretation as mean square error is still meaningful. At least,

the advantage over the weak valued method is that high accuracies in the measurements are

achievable.

When Â2 = B̂2 = Ô2
A = Ô2

B = 1 and the initial system state ρ̂ is orthogonal to these, hence

σ(Â) = σ(B̂) = 1, then the optimal uncertainty relation is given in Ineq.

ε̃(Â)2 + ε̃(B̂)2 + 2ε̃(Â)ε̃(B̂)
√

1−D2
AB ≥ D2

AB .

(6.37). For the Pauli

matrices the commutator [Â = σ̂z, B̂ = σ̂y] = 2iσ̂x inserted to Eq.

DAB = 1
2Tr

(√√
ρ̂[Â, B̂]†ρ̂[Â, B̂]

√
ρ̂

)
= |α|

2 Tr
(√√

ρ̂ σ̂
√
ρ̂
)

= |α|
2 F (ρ̂, σ̂) .

(6.39) and with the help of

Eq.

F (ρ̂, σ̂) =
√

Tr(ρ̂σ̂) + 2
√

det(ρ̂) det(σ̂)

=
√

1
2(r · s) +

√
(1− ‖r‖2)(1− ‖s‖2) .

(3.50) then yields

DAB =
|2i|
2
F (ρ̂x, σ̂xρ̂xσ̂x) = F (ρ̂x, ρ̂x) = 1 . (6.79)

From this the uncertainty relation Ineq.
ε̃(Â)2 + η̃(B̂)2 ≥ 1 ⇔ (ε(Â)2 − 2)2 + (η(B̂)2 − 2)2 ≤ 4 .
(6.68) is obtained. For the Pauli matrices, not only

is there square equal to σ̂2
i = 1, but also the anti-commutator {σi, σj} = 2δij1 is proportional

to the identity. Hence the generally state dependent error ε(Â) and disturbance η(B̂) are state

independent in this particular case. The following problem occurs: let the input state be ρ̂y,

then σ(B̂) = 0 and therefore the requirements of the second geometric lemma Eq.

(â⊥)2 + (b̂⊥)2 + 2â⊥2b̂⊥

√
1− (â · b̂)2 ≥ (â · b̂)2 .

(6.29) are

not met and the proper description should be Ineq.

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)
√
σ(Â)2σ(B̂)2 −D2

AB ≥ D2
AB ,

(6.36). The bound CAB is zero and likewise

DAB =
|2i|
2
F (ρ̂y, σ̂xρ̂yσ̂x) = F (ρ̂y, ρ̂−y) = 0 . (6.80)

Both Branciard’s and Ozawa’s uncertainty relation Ineq.

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)
√
σ(Â)2σ(B̂)2 − C2

AB ≥ C2
AB .

(6.28) and Ineq.

ε(Â)2σ(B̂)2 + η(B̂)2σ(Â)2 + 2ε(Â)η(B̂)
√
σ(Â)2σ(B̂)2 −D2

AB ≥ D2
AB ,

(6.36) just suggest
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η(B̂) ≥ 0. But for projective qubit measurements Ineq.
ε̃(Â)2 + η̃(B̂)2 ≥ 1 ⇔ (ε(Â)2 − 2)2 + (η(B̂)2 − 2)2 ≤ 4 .

(6.68) holds under all circumstances

since it is state independent and the inequality derived for a particular ensemble is valid gen-

erally. Under the current status, the inequality that holds for all states follows only for a few

selective cases.

The theory of Busch-Lahti-Werner has merely been touched here, hence for a recent criticism

consider [101]. In this thesis, it was only shown that BLW and Ozawa in the two-dimensional

projective case are actually identical and therefore no quantitative statement can be made

about which theory is preferable. In order for theoretical differences to crystallize, it would be

possible to resort to the case of mixed states. For the totally mixed state ∆(Â, Ĉ, 1d ) would

always yield a uniform probability and hence vanish similar to the case of ∆(Â, Ĉ, ρ̂x) = 0 for

Tr(Âρ̂x) = Tr(Ĉρ̂x) = 0.
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Entropic noise-disturbance

A measurement uncertainty relation can also be put in terms of accessible information, i.e. how

much information can be obtained by a given measurement and how much correlation is lost

after the invasive observation. Buscemi et al. [26] introduced definitions of noise and distur-

bance, which quantify the performance of the measurement apparatuses by conditional Shannon

entropies. Unlike in Ozawa’s error-disturbance definition which indicate the statistical distance

between the approximate observable and the observable actually measured, the entropic defini-

tions measure the ability to infer the system observable from the measurement outcome. Other

notable differences are that this entropic uncertainty relation only relies on the probabilities of

the measurement outcomes and that it is conceptually state-independent.

7.1 Theory of entropic measurement uncertainty relations

The proposed information-theoretic uncertainty describes the trade-off between entropic noise

N(M, Â) and entropic disturbance D(M, B̂), where Â and B̂ are two generally non - commut-

ing observables with eigenstates |ai〉 and |bj〉 respectively and {M̂(m) = M̂m}m is a POVM

associated with the apparatus’ instrument M. To understand the whole framework a closer

look on the definitions of N(M, Â) and D(M, B̂) is due. Consider the scheme in Fig. 7.1 to
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Fig. 7.1: The probabilistic histogram on the left indicates that a classical uniform distribution

p(a) = 1
d of the eigenstates |a〉 each labeled by the eigenvalues a is prepared. The unknown

states |a〉 are measured by apparatus M1 which ejects a conditional output state I(m)(|a〉〈a|)

together with a pointer value m from the measurement operator M̂m. The outcome provides

a probability p(a|m) conditioned on the result m from which the initial input state can be

guessed. The ability to guess or discriminate all input states by the measurement is given

by taking an average over all results indicated in the figure by the right side histographic

distribution.

get a grasp on the idea of entropic noise. Initially, the eigenstates of Â are prepared with equal

probability and measured by the apparatus M1. In a d-dimensional Hilbert space this implies

that the the joint probability distribution for the a-th input state and outcome m is given by

p(m, a) = p(a)p(m|a) =
1

d
p(m|a) , (7.1)

where the conditional probability is

p(m|a) = Tr (I(m)(|a〉〈a|)) = Tr(M̂m |a〉〈a|) . (7.2)

The information-theoretic noise of such a measurement is defined to be the conditional Shannon

entropy Eq.

H(X|Y ) = H(X,Y )−H(Y ) = −
∑

i

∑
j p(xi, yj) log(p(xi|yj)) .

(2.36), so

N(M, Â) := H(A|M) = H(A,M)−H(M)

=
∑
m

p(m)H(A|M = m)

= −
∑
m,a

p(m)p(a|m) log(p(a|m)) ,

(7.3)
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where H(A,M) denotes the entropy of the joint distribution p(m, a) associated with the random

variables A 3 a and M 3 m, and H(M) denotes the entropy of p(m). Note that the logarithm

base is arbitrary, but is chosen here to be 2, corresponding to bits. This noise is the information-

theoretic uncertainty of the input value of A, conditioned on the obtained measurement outcome.

It vanishes only if the input value can be obtained without error from the outcome. The

dependency in the conditional probabilities can also be swapped with Bayes’ theorem Eq.

p(B|A) = p(A|B)p(B)
p(A) .

(2.8)

p(a|m) =
p(m)

p(a)
p(m|a) =

Tr(M̂m |a〉 〈a|)
Tr(M̂m)

. (7.4)

This inversion of the conditional probability also has the consequence that the converse physical

situation is realizable in which the input state ρ̂m = M̂m

Tr(M̂m)
with initial distribution p(m) =

1
dTr(M̂m) determines the observable Â. The entropic noise operator can be defined equivalently

with the notation of Eq.

H(A) = H(Â|ρ̂) = −
∑

i Tr(|ai〉〈ai| ρ̂) log (Tr(|ai〉〈ai| ρ̂)) .

(5.11) as

N(M, Â) =
∑
m

p(m)H(Â|ρ̂m) . (7.5)

The definition of entropic disturbance bears strong resemblance to the noise case. The uniden-

tified eigenstate |b〉 in the d-dimensional Hilbert space with uniform distribution p(b) = 1
d is

measured by apparatus M1, but this time a subsequent projective measurement of observable

B̂ is made in the second apparatus M2. The experimental set-up needs to be modified, to allow

for possible error correction as illustrated in Fig. 7.2. The error correction operation E is a

CPTP map that can reduce the loss of information and depend the state and the meter out-

come following the measurement of M̂ . Denote B′ as the random variable with respect to the

result of the subsequent measurement of B̂ labeled by b′, then one can calculate the disturbance

of observable B̂, for a given error correction operation Em, as the conditional entropy

DE(M, B̂) := H(B|B′) = H(B,B′)−H(B′)

= −
∑
b,b′

p(b′)p(b|b′) log(p(b|b′)) . (7.6)

which can be evaluated with p(b′, b) = p(b)p(b′|b) = 1
dp(b

′|b) and

p(b′|b) =
∑
m

Em (Tr (I(m)(|b〉〈b|))) . (7.7)
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Fig. 7.2: Scheme for the entropic disturbance measurement. The classical uniform distributed

p(b) = 1
d eigenstates |b〉 are send into the set-up. After a measurement in apparatus M1 a

result m and an output state is obtained. Depending on the outcome m an error correction

procedure conditioned on the result m on I(m)(|b〉〈b|) can be applied in order to reduce

the loss of correlation due to M1. The second apparatus then measures observable B̂ and

generates outcome b′, which can be used to infer the initial input state.

The information-theoretic disturbance then corresponds to the minimum value of the distur-

bance optimized over all possible error-correction operations

D(M, B̂) := inf
E
DE(M, B̂). (7.8)

The noise-noise uncertainty relation measures the mutual exclusiveness to which an apparatus

can simultaneously perform as an Â-measuring device and a B̂-measuring device and is given

here by

N(M, Â) +N(M, B̂) ≥ − log(c) = − log(max
i,j
|〈ai|bj〉|2) , (7.9)

while the entropic noise-disturbance uncertainty reads

N(M, Â) +D(M, B̂) ≥ log(c) := − log(max
i,j
|〈ai|bj〉|2) (7.10)

quantifying the degree of joint measurability in a successive set-up. These inequalities are

conceptually similar to the Maassen-Uffink relation Ineq.
H(A) +H(B) ≥ −2 log (c) .
(5.13). The accessible region of the

preparation uncertainty [27] for the state ρ̂ is defined by
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E(Â, B̂) = {(H(Â|ρ̂), H(B̂|ρ̂)) | ρ̂ is a density matrix} . (7.11)

As implied by Eq.

N(M, Â) =
∑

m p(m)H(Â|ρ̂m) .

(7.5) and in contrast to region E(Â, B̂) the measurement uncertainty region

for noise-noise measurements is given by

RNN (Â, B̂) = {(N(M, Â), N(M, B̂)) | M is an instrument}

=

{∑
m

p(m) (H(A|ρ̂m), H(B|ρ̂m))

∣∣∣∣∣ {p(m), ρ̂m}m

}
(7.12)

respectively for noise-disturbance by

RND(Â, B̂) = {(N(M, Â), D(M, B̂)) | M is a quantum instrument} . (7.13)

The weighted ensemble {p(m), ρ̂m}m is a particular convex combination which satisfies the sum-

mation rule
∑

m p(m)ρ̂m = 1

d . In [27] theoretical studies are conducted about the uncertainty

regions to link preparation and measurement uncertainties and find out how their limits are

correlated:

1. Proposition: The entropic noise-noise region RNN (Â, B̂) ⊆ conv(E(Â, B̂)) is in the convex

hull of the preparation region E(Â, B̂).

2. Proposition: The entropic noise-disturbance region can be related to the entropic noise-

noise region via RND(Â, B̂) ⊆ cl(RNN (Â, B̂)) * RNN (Â, B̂), where cl denotes the mono-

tone closure, i.e. the closure under increasing either coordinate.

7.2 Experiment 1 - Entropic noise-disturbance measurement uncertainty

7.2.1 Prediction for projective qubit measurements

If a projective measurement of M̂ = σ ·m is performed on such an eigenstate (see Fig. 7.1),

then the measurement outcome will be m = ±1, with conditional probability distribution

p(m|a) = 1
2(1 + ama ·m). Hence, if the two eigenstates are sent with equal probabilities, the
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joint probability of input a and output m is

p(m,α) = p(a) p(m|a) =
1

4
(1 + ama ·m) . (7.14)

Note it follows immediately that the average input and output distributions are given by the

marginals

p(a) =
1

2
= p(m) . (7.15)

From Eq.

N(M, Â) := H(A|M) = H(A,M)−H(M)

=
∑

m p(m)H(A|M = m)

= −
∑

m,a p(m)p(a|m) log(p(a|m)) .

(7.3) the noise may be calculated as

N(M, Â) = Hb (a ·m) , (7.16)

where Hb denotes the binary entropy function as introduced by Eq.

Hb(x) = −
(

1+x
2

)
log
(

1+x
2

)
−
(

1−x
2

)
log
(

1−x
2

)
.

(2.33).

To calculate the information-theoretic disturbance of B̂, the eigenstates of B̂ must have equal

prior probabilities, and the correlation between b and b′ must be determined. In particular,

from the measured joint probability distribution p(b, b′) one can calculate the disturbance of

B̂, for a given error correction operation E , as the conditional entropy. The first relation

containing expression Eq.

DE(M, B̂) := H(B|B′) = H(B,B′)−H(B′)

= −
∑

b,b′ p(b
′)p(b|b′) log(p(b|b′)) .

(7.6) can be experimentally tested for any particular error correction

operation, while inequality Ineq.

N(M, Â) +D(M, B̂) ≥ log(c) := − log(maxi,j |〈ai|bj〉|) .
(7.10) can only be tested in practice if the optimal error

correction operation is known. Note that, assuming a von Neumann-like collapse of the initial

state in a projective Lüders instrument, the theoretical joint probability distribution of b,m and

b′ may be calculated as

p(b,m, b′) = p(b,m) p(b′|b,m) =
1

4
(1 + bmb ·m) 〈b′b|E(|mm〉〈mm|)|b′b〉 . (7.17)

The joint distribution p(b, b′) can then be found by summing over m. Two particular error

correction operations are of interest, which are considered in turn below.

No error correction: If no error correction is carried out, i.e., E ≡ 1, then Eq.

p(b,m, b′) = p(b,m) p(b′|b,m) = 1
4 (1 + bmb ·m) 〈b′b|E(|mm〉〈mm|)|b′b〉 .

(7.17) yields the

joint probability distribution

p(b, b′) =
∑
m=±1

1

8
(1 + bmb ·m)

(
1 + b′mb ·m

)
=

1 + bb′(b ·m)2

4
. (7.18)
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Hence, the corresponding disturbance is given by

D1(M, B̂) = Hb

(
(b ·m)2

)
. (7.19)

Note that the disturbance is zero for m = ±b, as one would expect, also that D1(M,B) >

N(M,B) (where the right hand side is calculated analogously to Eq.
N(M, Â) = Hb (a ·m) .
(7.16)). Thus, by per-

forming no error correction at all, the disturbance to B̂ is greater than the noise added to any

estimate of B̂ from the measurement of M̂ .

Optimal error correction in projective measurements: Define the error correction operation Eopt

by

Eopt(|mm〉〈mm|) :=

 |mb〉, b ·m ≥ 0

| −mb〉, b ·m < 0.
(7.20)

Hence, the output state is rotated from |mm〉 to |mb〉 if the angle between directions m and

b is no more than π radians, and to | −mb〉 otherwise. Note that, rather than implementing

Eopt via rotations, one can simply discard the state |mm〉 and prepare the desired state directly.

Recalling b′ is the outcome of a subsequent measurement of B̂, as depicted in Fig. 7.2, it

immediately follows that

b′ :=

 m, b ·m ≥ 0

−m, b ·m < 0.
(7.21)

Thus, the error correction acts to ensure that b′ is determined solely from knowledge of the

result m. Further, this formula immediately implies that p(b′|m) = 1
2(1 + b′m · sign{b ·m}).

It follows, using Eq.

p(b,m, b′) = p(b,m) p(b′|b,m) = 1
4 (1 + bmb ·m) 〈b′b|E(|mm〉〈mm|)|b′b〉 .

(7.17), that the corresponding joint probability distribution of b and b′ is

given by

p(b, b′) =
∑
m=±1

p(b,m) p(b′|b,m) =
∑
m=±1

p(b,m) p(b′|m) =
1 + b b′|b ·m|

4
. (7.22)

The corresponding disturbance is therefore given by

DEopt(M, B̂) = Hb (b ·m) = N(M, B̂) ≤ D1(M, B̂) . (7.23)

where Hb(x) = Hb(1 − x) has been used. Note that the equality with N(M, B̂) means that

the error correction and measurement of B̂ add no further noise. This is the minimum pos-

sible disturbance, i.e. DEopt(M, B̂) = D(M, B̂). This is easily shown by noticing that, if the

143



CHAPTER 7. ENTROPIC NOISE-DISTURBANCE

measurement along m is projective (as is assumed here), then the state of the quantum system

coming out of the measurement apparatus is a function of the outcome m. In other words, the

output quantum system is in fact a function of the output random variable M .

An experiment testing the predictions presented above was successfully performed with neu-

trons [102] with the exact same construction as shown in Fig. 6.3. The first coil DC1 makes

the state preparation |aa〉 and |bb〉, DC2 plus analyzer-1 perform the measurement M̂ =

cos θσ̂z + sin θσ̂y, DC3 is once more responsible for error correction and DC4 plus analyzer-

2 makes the measurement of B̂ = σ̂y. Then for every combination of the triple {a,m, b′},

{b,m, b′} a neutron intensity I{a,m,b′}, I{b,m,b′} is recorded, whose ratio provides a probability

through

p(a) =

∑
m,b′ I{a,m,b′}∑
a,m,b′ I{a,m,b′}

, p(m|a) =

∑
b′ I{a,m,b′}∑
m,b′ I{a,m,b′}

.

p(b) =

∑
m,b′ I{b,m,b′}∑
b,m,b′ I{b,m,b′}

, p(m|b) =

∑
b′ I{b,m,b′}∑
m,b′ I{b,m,b′}

.

(7.24)

A profound difference of the conducted experiment and the presented theory is that the con-

ditioning of the states and measurement outcomes m ↔ a have been swapped. Converting

Eq.

p(a) =
∑
m,b′ I{a,m,b′}∑
a,m,b′ I{a,m,b′}

, p(m|a) =
∑
b′ I{a,m,b′}∑
m,b′ I{a,m,b′}

.

p(b) =
∑
m,b′ I{b,m,b′}∑
b,m,b′ I{b,m,b′}

, p(m|b) =
∑
b′ I{b,m,b′}∑
m,b′ I{b,m,b′}

.

(7.24) according to Bayes’ rule Eq.

p(B|A) = p(A|B)p(B)
p(A) .

(2.8) it is possible to evaluate the information theoretic

definitions of noise and disturbance nevertheless.

7.2.2 Results

With entropies everything is determined by measuring the conditional probabilities which are

plotted in Fig. 7.3. To determine the noise, the probability p(m|a) is recorded, which is rep-

resented by the blue curves. The angle θ = 0 means that the projectors (1 ±m · σ̂)/2 let the

neutrons corresponding to eigenstates a = ±1 of the same sign pass completely, while spins with

opposite values do not reach the detector at this angle θ. Of course, turning the projectors by

θ = π causes a reversal of the situation.

For the disturbance, the prepared eigenstates are |±b〉, so the probability at first is 1
2 . The

extreme values at π
2 come about for a similar reason as in the noise case. The first apparatus
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(d) Probability puncor(b
′|b) with b′ = −b.
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′|b) with b′ = b.
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(f) Probability pcor(b
′|b) with b′ = −b.

Fig. 7.3: Conditional probabilities obtained by Eq.

p(a) =
∑
m,b′ I{a,m,b′}∑
a,m,b′ I{a,m,b′}

, p(m|a) =
∑
b′ I{a,m,b′}∑
m,b′ I{a,m,b′}

.

p(b) =
∑
m,b′ I{b,m,b′}∑
b,m,b′ I{b,m,b′}

, p(m|b) =
∑
b′ I{b,m,b′}∑
m,b′ I{b,m,b′}

.

(7.24), from which the entropic noise and dis-

turbance are determined. In the upper panels the conditional probabilities p(m|a) are plotted

versus the angle of the projective measurement with Bloch vector m = cos θ êz + sin θ êy. In

the middle panel are the red curves of the probability measurement puncor(b
′|b) required for

the uncorrected disturbance, while the lowest panel show the corrected conditional probabil-

ities pcor(b
′|b) in green.
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Fig. 7.4: Results of entropic noise N(M, Â) (blue) as predicted by Eq.
N(M, Â) = Hb (a ·m) .
(7.16) for a = êz,

corrected disturbance Eq.

DEopt(M, B̂) = h (b ·m) = N(M, B̂) ≤ D1(M, B̂) .

(7.23) (green) and uncorrected disturbance Eq.

D1(M, B̂) = Hb

(
(b ·m)2

)
.

(7.19) (red) for

b = êy in a projective measurement with m = cos θ êz + sin θ êy.

M1 does not disturb the prepared eigenstates |±b〉 at this point, but in the second apparatus

M2 the eigenstate can either be in the range or in the kernel of the projector that is making

the disturbance measurement. One recognizes very well how the unitary correction procedure,

performed after apparatus M1, increases the curvature of the probability function from the

uncorrected curves in Figs. 7.3(c) and 7.3(d) to the corrected ones in Figs. 7.3(e) and 7.3(f).

Varying the angle θ of the projector M̂ with increment ∆θ = 10◦ in the interval [0◦, 90◦] and

with ∆θ = 20◦ in [100◦, 180◦] the oscillation of noise and disturbance have been recorded which

are plotted in Fig. 7.4. The information theoretic aspect of the results can be understood as

preparing a message in form of the system’s state while the apparatus has to acquire knowledge

about the system through the PVM with outcomes m. At θ = 0 the measurement observable is

M̂ = σ̂z so that for the two eigenstates |aa〉 the probability distribution has maximal peaks at

{p(a)} = {1, 0} or {p(a)} = {0, 1}, hence the Shannon entropy is zero, or in other words there

is no information obtained by the measurement. An alteration of the polar angle reduces the
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Fig. 7.5: Parametric plot of information noise N(M, Â) versus disturbance D(M, B̂). The

measured points in red corresponding to an uncorrected uncertainty trade-off are generally

equal or above the optimized green points. Furthermore, the black dashed line N(M, Â) +

D(M, B̂) = 1 as suggested by Eq. (7.10) cannot be saturated, except for the top-right and

bottom-left points in the corner.

capability to foretell the measurement result until at at θ = π
2 each outcome will be equiprob-

able {p(a)} = {1
2 ,

1
2}, the uncertainty with which one of the two results is obtained and the

information gained by the meter value is maximal. Unlike in Ozawa’s definition of error, the

information-theoretic noise is the largest in the case of mutually unbiased states, since both

operators ±Â can perfectly discriminate all |ai〉.

The disturbance is reciprocal to the noise, when sending the two eigenstates |bb〉 the conditional

probabilities p(b′|b) would be perfectly correlated without the first measurement apparatus. For

M̂ = σ̂z the correlation after M1 disappears maximally and information gain by the second mea-

surement has an extreme as indicated in Fig. 7.4. Rotating M̂ towards σ̂y reduced the loss of
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correlation in device M1 and allows for a perfect inference of the input states again at θ = π
2 .

The decisive uncertainty behavior is seen in Fig. 7.5 which displays three different curves. The

black dashed line corresponds to Ineq.

N(M, Â) +D(M, B̂) ≥ log(c) := − log(maxi,j |〈ai|bj〉|)
(7.10) with the boundary c = 1; obviously the measured

points are above the general prediction, however the points in the case of Pauli observables seem

to not get close to the boundary except for the extremes (N,D) = (1, 0) and (N,D) = (0, 1). The

red theoretical line corresponding to (Hb(cos θ), Hb(sin
2 θ)) lies significantly above the green line

(Hb(cos θ), Hb(sin θ)), whose implicit inequality describing the uncertainty relation is described

by

g (N(M, σ̂z)) + g (D(M, σ̂y)) ≤ 1 . (7.25)

The function g(x) = H−1
b (x) is the inverse function6 of the binary entropy Eq.

Hb(x) = −
(

1+x
2

)
log
(

1+x
2

)
−
(

1−x
2

)
log
(

1−x
2

)
.

(2.33) in the

domain x ∈ [0, 1]. The uncertainty relation in terms of the inverse function therefore corresponds

to the saturated limit when the measurement is performed by a Lüders instrument [27].

7.3 Experiment 2 - Entropic noise-noise measurement uncertainty

7.3.1 Prediction for general qubit measurements

After the first experiment [102], a revision of the theory suggested the use of general POVM

measurements rather than a projective measurement. It turned out [27] that for such a change

of observables the inequality Ineq.

g (N(M, σ̂z)) + g (D(M, σ̂y)) ≤ 1 .

(7.25) is not always satisfied and it is possible find pairs of

entropic noise and disturbance values that are below the boundary. A proper analysis of noise

and disturbance for unsharp observables (see sec. 3.3) is very difficult and has not been entirely

solved so far. Therefore, only entropic noise-noise uncertainty principle [103] are considered

here for the time being, afterward the latest findings in the other case will be ventured briefly.

In chapter 5 it was stated that the Maassen-Uffink inequality is not generally tight and a

lower bound for arbitrary a and b is found by minimizing the left-hand side in Eq.

f(θ, α) = ∂
∂θ (Hb(cos θ) +Hb(cos(α− θ)))

= − sin θ log2

(
1+cos θ
1−cos θ

)
+ sin(α− θ) log2

(
1+cos(α−θ)
1−cos(α−θ)

)
= 0 .

(5.15); this

region will be identified with E(Â, B̂) as defined in Eq.
E(Â, B̂) = {(H(Â|ρ̂), H(B̂|ρ̂)) | ρ̂ is a density matrix} .

(7.11). Combining previous results an

optimal entropic noise-noise uncertainty relation can be constituted in case of a two dimensional

quantum system. First, consider the tight preparation uncertainty relation for qubits given

6This function has no analytic inverse, making many calculations with it rather cumbersome.

148



CHAPTER 7. ENTROPIC NOISE-DISTURBANCE

by Eq.

|〈A〉a− 〈B〉b|2 = 〈Â〉+ 〈B̂〉 − 2(a · b) 〈Â〉 〈B̂〉
≤ (1− (a · b)2) ‖r‖2 ≤ 1− (a · b)2 = |a× b|2

(5.22), then substitute the expectation value with the inverse entropy, since H(A) =

Hb (a ·m) = Hb(〈Â〉), i.e.

g (H(A))2 + g (H(B))2 − 2 |a · b| g (H(A)) g (H(B)) ≤
(
1− (a · b)2

)
‖r‖2 . (7.26)

In 1. proposition it is suggested that the measurement uncertainty region RNN (Â, B̂) is given

by the convex hull of E(Â, B̂), therefore

RNN (Â, B̂) = conv
{

(s, t)
∣∣g(s)2 + g(t)2 − 2 |a · b| g(s)g(t) ≤

(
1− (a · b)2

)
‖r‖2

}
. (7.27)

The region shows different behavior depending on the critical angle αc ∼= 0.691 obtained by

solving Eq.

f(θ, α) = ∂
∂θ (Hb(cos θ) +Hb(cos(α− θ)))

= − sin θ log2

(
1+cos θ
1−cos θ

)
+ sin(α− θ) log2

(
1+cos(α−θ)
1−cos(α−θ)

)
= 0 .

(5.15). In Fig. 5.3 it was visualized that at |a ·b| ∼= cos(0.691) ∼= 0.391 a bifurcation

of the values occurs, which in this instance implies that E(Â, B̂) spans a convex area when

|a · b| ≥ 0.391. Consequently, the uncertainty relation satisfying this conditions is given by

g
(
N(M, Â)

)2
+ g

(
N(M, B̂)

)2
− 2 |a·b| g

(
N(M, Â)

)
g
(
N(M, B̂)

)
≤
(
1− (a·b)2

)
‖r‖2 (7.28)

and the preparation and measurement uncertainty region are congruent RNN (Â, B̂) = E(Â, B̂).

On the other hand, when |a·b| ≤ 0.391 then the region E(Â, B̂) is not convex and has no implicit

analytic expression, except in the case |a · b| = 0 for which the Maassen-Uffink like relation

Ineq.

N(M, Â) +N(M, B̂) ≥ − log(c) = − log(maxi,j |〈ai|bj〉|2) .

(7.9)

N(M, Â) +N(M, B̂) ≥ 1 (7.29)

is tight. To grasp the procedure of measuring this uncertainty relation projective measurements

must be considered first. With p(+1) = p(−1) = 1
2 and H(Â|ρ̂+) = H(Â|ρ̂−) the noise in

Eq.

N(M, Â) =
∑

m p(m)H(Â|ρ̂m) .

(7.5) evaluates to N(M, Â) = H(Â|ρ̂+). This means that for projective two-outcome

measurements the reachable entropic noises span the area E(Â, B̂) = {(H(Â|ρ̂), H(B̂|ρ̂))} =

{(N(M, Â), N(M, B̂))} when the measurement apparatus M implements the PVM {ρ̂+, ρ̂−}.

Now, concerning points contained in the complement RNN (Â, B̂) \ E(Â, B̂), it is clear that

these points are obtained by the combination that makes the region convex, so if {ρ̂1+, ρ̂1−}

corresponds to one point at which the area changes its convexity and {ρ̂2+, ρ̂2−} to the other

point; then joining these by the line λ{ρ̂1+, ρ̂1−}+ (1−λ){ρ̂2+, ρ̂2−} gives a POVM that allows
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Fig. 7.6: Graphical illustration of the POVM in Eq.

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
.

(7.30) in the operator representation.

The blue vectors correspond to P̂±(m1) with length ‖M̂1‖ = ‖M̂2‖ = λ of the POVM

operators M̂m, while the yellow arrows correspond to P̂±(m2) with length 1− λ = ‖M̂3‖ =

‖M̂4‖. Because each axes-vectors face in opposite directions, the spanned area is always

a parallelogram, albeit it can be very deformed. The red arrow represents the pure state

ρ̂a = |a〉〈a| and the green one ρ̂b = |b〉〈b|, which are drawn coplanar with the parallelogram

of the measurement operators. Overall, the parallelogram POVM has 4 degrees of freedom:

angles θ1, θ2, φ and the lengths denoted by {λ, 1− λ}.

to obtain values outside of E(Â, B̂). Swapping the role in definition Eq.

N(M, Â) =
∑

m p(m)H(Â|ρ̂m) .

(7.5) Â ↔ ρ̂m, one

concludes that with the four-outcome POVM

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
(7.30)

it is possible to reach the optimal information theoretic noise-noise trade-off, which quantifies

how well the unknown eigenstates of observables Â, B̂ can both be inferred by the measurement

apparatus. A graphical interpretation of expression Eq.

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
.

(7.30) is illustrated in Fig. 7.6.

So far only the uncertainty region, i.e parametric relationship between the noises has been

specified. It remains as a task to find out the explicit behavior N(M, Â) as a function of the
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relative angle between the observables’ Bloch vectors. The marginal probabilities are given by

p(m) =
1

d
Tr
(
M̂m

)
=

 λ
2 , m = {1, 2} ,
1−λ

2 , m = {3, 4} .
(7.31)

and with ρ̂m = M̂m

Tr(M̂m)
= {P̂+(m1), P̂−(m1), P̂+(m2), P̂−(m2)} it follows that

p(a|m) = Tr(ρ̂mρ̂a) =

 1
2 (1 + am̃m1 · a) , m = {1, 2} ,
1
2 (1 + am̃m2 · a) , m = {3, 4} ,

(7.32)

where a and m̃ both range over ±1. Therefore inserting both results into Eq.

N(M, Â) := H(A|M) = H(A,M)−H(M)

=
∑

m p(m)H(A|M = m)

= −
∑

m,a p(m)p(a|m) log(p(a|m)) .

(7.3) the noise

of operator Â (likewise for B̂) is the convex sum of the binary Shannon entropies with the

respective scalar products mi · a

N(M, Â) = λHb(m1 · a) + (1− λ)Hb(m2 · a) . (7.33)

7.3.2 Experimental procedures and data acquisition

A generalized measurement is typically realized by restricting observations to a subspace of

a larger Hilbert space, which are part of an orthogonal measurement but cannot in general

be described as projections on the subspace. Since Eq.

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
.

(7.30) (see also Fig. 7.6) is a statis-

tical combination of two projections and the post-measurement states are irrelevant, one can

adapt a successive measurement scheme that can realize the POVM by performing a sequential

projective measurement. This reproduces the probability distribution of the outcomes for an

arbitrary input state. A succession of two Lüders instrument does the trick, where additionally

two unitary channels are also introduced to account for possible transformations

p(a|m) = Tr (IL(m̃) (EaU (IL(λi)(ρ̂θ)))) . (7.34)

The realization of output m will be identified with the four result of two separate outcomes

p(a|m) = p(a|λi, m̃).

In Fig. 7.7 a schematic example of the entire procedure for the determination of noise N (M, Â)

is illustrated. The transmissivity of the first analyzer determines the probability weighting

and is controlled in the coil DC1, which rotates the incoming spin ρ̂ = |+z〉〈+z| by applying

a magnetic field Bx in x-direction. The rotation angle in the Larmor precession is given by
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Fig. 7.7: Neutron polarimeter set-up of the measurement. The initial state |+z〉〈+z|, indicated

by the red arrow after the polarizer, is transformed to ρ̂θ with two different angles in DC1 and

passes analyzer-1 with probabilities p(λ1) = | 〈+z|ρ̂θ|+ z〉 |2 or p(λ2) = | 〈+z|−̂ρθ|+ z〉 |2. A

random number generator makes a virtual die roll by computational methods and equiproba-

bly generates one of the two possible eigenstates of the observables Â and B̂ by two magnetic

fields in DC2. Finally, DC3 and analyzer-2 make a projection into the direction m1 on the

neutrons transmitted with probability λ and a projection to m2 on the ensemble transmitted

with 1− λ.

θ = γBxt, where γ is the neutron’s gyromagnetic ratio and t the time of flight through the

coil. The corresponding unitary operator Û1(θ) = exp(i θ2σx) transforms the initial states to

ρ̂θ = Û1(θ)ρ̂Û †1(θ) which consequently yields

IL(λi)(ρ̂θ) = P̂+(z)Û1(θ) |+z〉〈+z| Û †1(θ)P̂+(z)

=
∣∣∣〈+z|Û1(θ)|+ z〉

∣∣∣2 |+z〉〈+z| = p(λi) |+z〉〈+z| .
(7.35)

Because two complementary probabilities are required, p(λi) = {λ, 1− λ} is defined such that

p(λ1) = λ =
∣∣∣〈+z|Û1(θ)|+ z〉

∣∣∣2 = cos2

(
θ

2

)
,

p(λ2) = 1− λ =
∣∣∣〈+z|Û1(θ + π)|+ z〉

∣∣∣2 = sin2

(
θ

2

)
.

(7.36)
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The magnetic field in DC2 turns the spin by the same effect as in the first coil. For every

point that is measured a total of four different currents are fed into DC2 which will prepare

the eigenstates |+a〉 and |−a〉 of observable Â and likewise the eigenstates |+b〉 and |−b〉 of

observable B̂. The probability with which EaU (p(λi) |+z〉〈+z|) creates one of the eigenstates is

controlled by a random number generator specifying the probability distribution p(a) = p(b) = 1
2

as required. Experimentally, this means that a random number generating software in the range

{0, 1} creates one outcome and then applies one of two currents in DC1 (see Fig. 6.4) to prepare

|±z〉 or likewise |±y〉. Be aware, that the randomization happens only once for every particle

ensemble and not for individual neutrons. The eigenstates are pure with a uniform probability

to obtain one of the possible choices. From the entire ensemble contributing to the statistics

projections P̂m̃(m1) = P̂±(m1) are made on the fraction λ and projection P̂m̃(m2) = P̂±(m2)

likewise on the fraction 1− λ. Re-evaluating Eq.

p(a|m) = Tr (IL(m̃) (EaU (IL(λi)(ρ̂θ))))

(7.34) fully, delivers

p(a|m) = p(a|λi, m̃) = Tr (IL(m̃) (EaU (IL(λi)(ρ̂θ))))

= Tr
(
IL(m̃)

(
EaU (P̂λρ̂θP̂λ)

))
= Tr (IL(m̃)(p(λi)ρ̂a)) = Tr (p(λi)IL(m̃)(ρ̂a))

= Tr
(
p(λi)P̂m̃(mi) |aa〉〈aa|

)
= Tr

(
M̂m |aa〉〈aa|

)
.

(7.37)

as desired. This gives a total of 8 different intensities for the 2 times 4 combinations of a =

{−,+} and m = λi×m̃ = {1, 2, 3, 4}, and 8 count rates for b respectively. The output intensities

get labeled with lower indices I{a,m}, where m = {1, 2, 3, 4} is partitioned into parts

p(a|m)→


λ

 |+a〉 ∨ |−a〉

 P̂+(m1) → Ia,m=1 ,

P̂−(m1) → Ia,m=2 ,

1− λ

 |+a〉 ∨ |−a〉

 P̂+(m2) → Ia,m=3 ,

P̂−(m2) → Ia,m=4 .

(7.38)

Analogous to formulas in Eq.

p(a) =
∑
m,b′ I{a,m,b′}∑
a,m,b′ I{a,m,b′}

, p(m|a) =
∑
b′ I{a,m,b′}∑
m,b′ I{a,m,b′}

.

p(b) =
∑
m,b′ I{b,m,b′}∑
b,m,b′ I{b,m,b′}

, p(m|b) =
∑
b′ I{b,m,b′}∑
m,b′ I{b,m,b′}

.

(7.24) the ratio of intensities provides the probabilities

p(λi) =

∑2i
m=2i−1 I{a,m}∑4
m=1 I{a,m}

, p(a|m) =


λ

I{a,m}∑2
m=1 I{a,m}

, m = {1, 2} ,

(1− λ)
I{a,m}∑4
m=3 I{a,m}

, m = {3, 4} .

(7.39)
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(a) Histogram of the projective measurement outcomes with Bloch vector a = êz and m1 = cos θ1ez + sin θ1ey

required to determine N(M, Â) at λ = 1. The stepsize of the rotation angle in the plot is ∆θ1 = π/6. The

intensity on the left is maximally peaked and therefore allows a clear distinction of the input states, while at

θ1 = π
2

outcome 1 and 2 registered approximately the same number of neutrons: the noise at that point will

be minimal. When the intensity in dark blue is higher it is more likely that the input state is |a〉, else if the

bar in light blue is taller then the outcome suggests that |−a〉 is the measured eigenstate.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

θ1=0 θ1=π/6 θ1=π/3 θ1=π/2 θ1=2π/3 θ1=5π/6

4-outcomes m

0

500

1000

1500

2000

2500

3000

In
te
ns
.
[a
rb
.
un
it]

(b) Histogram of the projective measurement outcomes with Bloch vector m1 same as in Fig. 7.8(a) and b =

cos(π
3

)ez + sin(π
3

)ey required to determine N(M, B̂) at λ = 1. When the intensity in dark blue is higher it

is more likely that the input state is |b〉, else for light blue |−b〉 is more probable. Because the states |a〉 , |b〉

are not mutually unbiased in this example, the intensity on the left is distributed unevenly and peaks when

θ1 = π
3

.

Fig. 7.8: Intensity distributions in the projective case where the 4-outcome POVM is simply

M̂m =
{
P̂+(m1), P̂−(m1), ∅, ∅

}
. The Bloch vectors are note perfectly orthogonal, instead

the inner product is a ·b ∼= 0.5, which corresponds to an angle of π3 . The histograms indicate

how the count rates in Eq.

p(λi) =
∑2i
m=2i−1 I{a,m}∑4
m=1 I{a,m}

, p(a|m) =
λ

I{a,m}∑2
m=1 I{a,m}

, m = {1, 2} ,

(1− λ)
I{a,m}∑4
m=3 I{a,m}

, m = {3, 4}

(7.39) provide the probabilities. The value of λ corresponds to

the frequency of occurrence of outcomes 1+2 and 3+4 to the total count rate (1+2+3+4).

The ratio of m = 1 to m = 2, in turn, determines the probability associated with the first

projector and m = 3 to m = 4, which do not occur in this figure, the probabilities from

P̂+(m2) and P̂−(m2).
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7.3.3 Results

The regarded observables of the spin-1/2 system are the Pauli matrices Â = a · σ̂ and B̂ = b · σ̂.

To keep the experiment simple a = ez is chosen for the first Bloch vector and only b is varied

over the y-z plane. In the case λ = 1, the value at which the parallelogram degenerates into

antipodal projectors, the results are known to be determined by rotating the operators P̂ (m1),

where m1 = cos θ1ez+sin θ1ey. It is no surprise that the noise in this case is given by Eq.
N(M, Â) = Hb (a ·m) .

(7.16)

and Eq.

DEopt(M, B̂) = h (b ·m) = N(M, B̂) ≤ D1(M, B̂) .

(7.23), i.e. Hb(m1 · a) and Hb(m1 · b).

The raw data of the projective noise measurement before evaluation is demonstrated in Fig. 7.8.

The upper half Fig. 7.8(a) shows the count rates from which the noiseN(M, Â) can be extracted.

It should be clear by now that the maximally peaked distribution provides no new information

and the uniform distribution at θ = π
2 yields the maximal entropy. The inference on the un-

known input state is color-coded in dark (|a〉) and light blue (|−a〉) meaning that the bar that is

taller is more likely to be the true initial state. The tradef-off is visually recognizable, since the

ability to draw a concise conclusion about the initial state is not peaked simultaneously. Due to

the choice of the relative angle of b to be at π
3 , there is no maximum offset of the distribution in

the lower Fig. 7.8(b). Note that event 3 and 4 never take place, which means that a projective

measurement λ = 1 is made.

A plot of one set of the results is given in Fig. 7.9 which shows the variation of noise depending

on the angle of m1(θ1) when a = ez and b ∼= cos(4π
9 )ez+sin(4π

9 )ey. The measured points in pur-

ple display how the noise N(M, B̂) increases when m′1 = cos θ1ez +sinφ sin θ1ey +cosφ sin θ1ex

is also changed by some azimuthal angle; this does of course not affect the noise Hb(m1 · a) =

Hb(m1 · ez) of observable Â. When the observables’ Bloch vector a, b span a plane, then

points of disturbance are lifted the more the measurement direction lies outside that plane

m′1 · (a × b) 6= 0. Understandably, this happens, because entropy increases for more uniform

distributions.

As was mentioned before, for |a · b| ≤ 0.391 the projective measurement does not provide

the lowest boundary. How the measurement points for the minimal uncertainty relation are

obtained is illustrated in Fig. 7.10. For this purpose, the neutron spin is measured not only

in the direction m1, but also in m2, so that all four slots of the bar chart contribute to the
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Fig. 7.9: Results of entropic noises N(M, Â) = Hb(cos θ) in blue and N(M, Â) = Hb(m1 ·b) in

green for a relative angle a·b = bz ∼= cos(4π
9 ). The minimal uncertainty occurs when the Bloch

vector of the measurement operator is in the plane spanned by a-b, while the uncertainty

increases when the azimuthal angle in m′1 = cos θ1ez + sinφ sin θ1ey + cosφ sin θ1ex is not

an integer multiple of π. The purple colored data points indicate the increase of noise, when

the projector P̂ (m′1) is rotated out of the y-z plane at the positions θ = π
6 ,π3 and π

2 .

conditional entropy. In a projective measurement, only the ratio of the count rates of two bars

of the chart determine the entire probability distribution. However, the interplay of 4 intensities

can increase success rate for the inference of the unknown state. Instead of acquiring information

with the total number of neutrons, it can be more informative if one makes an inquiry with a

sub-ensemble only and perform a second inquiry with the remainder of the particles. The blue

and turquoise colored bar of the histogram build one block and the orange/yellow the other,

where both correspond to the projector as shown in Fig. 7.6. From the minimization

min
θ

(Hb(m1(θ) · a) +Hb(m1(θ) · b)) , (7.40)

according to Eq.
Hb(A) +Hb(B) ≥ 2Hb(cosα) , α ∈ [0, αc] .
(5.17), the entropy minimizing projection directions are m1

∼= cos(4◦)ez +

sin(4◦)ey and likewise m2 = cos(76◦)ez + sin(76◦)ey. The following statement can be made
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(a) Histogram of the measurement outcomes with Bloch vector a = êz, m1
∼= cos(4◦)ez + sin(4◦)ey and m2

∼=
cos(76◦)ez + sin(76◦)ey required to determine N(M, Â). The angles of the measurment directions are a

consequence of the minimization problem introduced in sec. 5.3 and further analyzed in Fig. 7.11. For dark

blue and orange the probability of the input state suggests an initial eigenstate of |a〉, while the lighter

counterparts favor |−a〉. The advantage of the POVM measurement is that more information about the

original state can be obtained from the bar charts in intermediate areas.
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(b) Histogram required to determine N(M, B̂) with Bloch vector b ∼= cos( 4π
9

)ez + sin( 4π
9

)ey and identical

directions for the projectors m1
∼= cos(4◦)ez+sin(4◦)ey and m2

∼= cos(76◦)ez+sin(76◦)ey. Like in Fig. 7.10(a)

darker colors suggest |+b〉 while light blue and light yellow indicate |−b〉 to be the true initial state.

Fig. 7.10: Intensity distribution of the 4-outcome POVM of Eq.

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
.

(7.30) for a·b ∼= 0.17. In contrast

to Fig. 7.8 the outputs m = 3 and m = 4 also appear for λ 6= 1 and become maximal for

λ = 0 at which the projective measurement of m2 is performed. The heights of bar 1+2

and 3+4 divided by the total intensity determines once more the statistical mixture of the

measurements. From left to right the decrease of the weight parameter is circa ∆λ = −0.1.

The probabilities Tr(P̂±(m1)ρ̂) are given by the cool, bluish colored bars and Tr(P̂±(m2)ρ̂)

by the warm, bright colored bars.
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Fig. 7.11: Determination of noises of the four-outcome POVM. The red curve indicates the sum

N(M, Â) +N(M, B̂) at λ = 1 for a · b ∼= cos(4π
9 ), which has two local minima, namely one

at θ1 ≈ 4◦ and θ2
∼= 76◦. The noises for different values of mixing λ are colored bluish for

N(M, Â) = Hb(m1 ·a) and greenish for N(M, B̂) = Hb(m1 ·b). Unlike in Fig. 7.9 the angle

is no longer varied, instead the measurement results are obtained for different mixing of the

POVM at the two directions m1(θ1) and m2(θ2). The color legend on the right side indicates

that lighter colors correspond to larger and darker colors to smaller values of λ. The data

points show that for λ = 1 the projective measurement at m1(4◦) close to a has almost

vanishing noise N(M, Â) while the noise of N(M, B̂) is large. The effect of decreasing the

weighting λ means that projective measurement at m1(76◦) contributes also to the entropy

and hence reduces the noise of B̂ at the expanse of the noise in observable Â.

now: since the positive operators P̂+(m1), P̂+(m2) are in the northern hemisphere, output 1

and 3 tend to favor state |+a〉, while 2 and 3 will indicate higher probabilities at |−a〉. At the

same time, 4◦ and 76◦ are also in the right hemisphere, so that outcome 1 and 3 also imply |+b〉

and 2+4 again |−b〉.

In Fig. 7.11 the respective noises for different weightings λ, as indicated by Eq.
N(M, Â) = λHb(m1 · a) + (1− λ)Hb(m2 · a) .

(7.33), are plot-
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ted. The graph show that entropic noise for the non-projective cases is obtained as a function of

λ, but not as a continuous function of the polar angle θ1. From the sum N(M, Â) +N(M, B̂)

given by the red curve for λ = 1, the position of the two local minima {θ1, θ2} can be deduced

which fix both angles and depend on the inner product |a · b|.

The result of the noise-noise uncertainty relation for an eigenstate overlap of |a ·b| ∼= 0.5 is plot-

ted in Fig. 7.12. The projective noise measurement starts at θ1 = 0, which yields N(M, Â) = 0

and makes contact with the coordinate axes at approximately Hb(cos(π3 )) ≈ 0.81. Constant

variation of the angle θ1 by an increment of ∆θ1 = 10◦ decreases the noise of observable B̂ at

the expense of the noise of observable Â, vanishing again at 0.81. At θ1 = π
2 the noise of Â has

its maximum N(M, Â) = 1 and reverts back along the blue curve. The noise N(M, B̂) = 1

is given at θ1 = 5π
6 . The measurement points in purple are obtained for a fixed noise of Â

by rotating m1(φ) out of the a-b plane. In Fig. 7.12 the three points with the lowest noise

N(M, B̂) and the rightmost point at N(M, Â) = 1 point are vertically elevated to the upper

edge: ergo this area belongs to the accessible uncertainty region E(Â, B̂) as well.

The case depicted in Fig. 7.12 is a generic example that the optimal uncertainty relations are

already obtainable by a projective measurement. A different situation occurs when the inner

product is smaller than the critical angle, which is plotted for 4 different values of |a · b| in

Fig. 7.13. The white area coincides with the uncertainty E(Â, B̂) and the blue curve and points

corresponds to theoretical and experimental results obtained by projective measurements. The

blue shaded area represents the region RNN (Â, B̂) \E(Â, B̂), which contains the elements that

are in the convex hull of E(Â, B̂) constituting the green line, the lowest achievable uncertainty

bound. The gray areas is the set of points inaccessible by any kind of POVM.

The sequence of graphs starts with the mutually unbiased case plotted in Fig. 7.13(a); the

Bloch vectors are perpendicular, the boundary is c = 1 and the uncertainty relation is given by

Ineq.

N(M, Â) +N(M, B̂) ≥ − log(c) = − log(maxi,j |〈ai|bj〉|2) .

(7.9). Indeed, choosing θ1 = 0 and θ2 = π
2 for the 4-outcome POVM Eq.

M̂m =
{
λP̂+(m1), λP̂−(m1), (1− λ)P̂+(m2), (1− λ)P̂−(m2)

}
.

(7.30) and vary-

ing the probability weighting λ improves the noise-noise trade-off noticeably. Each measured

point on the bottom green line has a different value of λ marked by slightly different colors.

As the legend on the top of the plots implicates the largest probability weighting is colored the

darkest and decreasing by ∆λ ≈ −0.1 the experimental results wander from the bottom-right
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Fig. 7.12: Noise N(M, A) - N(M, B) trade-off between the two non-commuting observables

at a · b ∼= 0.5. The blue boundary is obtained by projective measurements in the a-b (i.e.

y-z) plane, while the purple corners are results of non-coplanar projective measurements,

obtained by lifting the points as illustrated by Fig. 7.9. The white, convex area E(Â, B̂) is

the domain of values obtainable by projectors P̂±(m1), while the blue region is excluded by

projective measurements.

to the top-left corner with colors getting brighter. Physically the employment of the POVM

increases the ability to correctly infer the unknown eigenstates except for the fixed points in

the corners.

When the eigenstates of B̂ come closer to Â as is the case in Fig. 7.13(b) and Fig. 7.13(c),

E(Â, B̂) becomes less concave, the region RNN (Â, B̂) \ E(Â, B̂) starts shrinking and the im-

provements made by the POVM become closer to the PVM uncertainty domain. Notice that

the angles in m1(θ1) and m2(θ2) are determined by analyzing the projective noise-noise re-

gion which has two points at which the area becomes non-convex, i.e. the start and end point

of the green line. These can, as already indicated in Fig. 7.11, be numerically calculated

by finding the minima of minθ (Hb(m1(θ) · a) +Hb(m1(θ) · b)). Eventually, as is exhibited in
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Noise N(ℳ,A )

N
oi
se
N
(ℳ
,B
)

λ
≃1.00 ≃0.90 ≃0.82 ≃0.66 ≃0.58

≃0.53 ≃0.39 ≃0.20 ≃0.09 ≃0.01
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(d) |a · b| ∼= 0.35.

Fig. 7.13: Plots of noise N(M, Â) versus N(M, B̂) for four different |a · b| ≤ 0.391. The gray

area demarcates a new uncertainty region with a new domain of outcomes only attainable

by the POVM. The green line constructs the convex hull of the white area E(Â, B̂).
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Fig. 7.13(d) for a scalar product close to the critical value, the bean shaped curve overlaps

with the green line. This means the measurement uncertainty region becomes almost congru-

ent with the preparation uncertainty domain RNN (Â, B̂) ≈ E(Â, B̂). Although it is no longer

visually recognizable, the gray area along with the green line marks the generally inaccessible

area as in Figs. 7.13(a)–7.13(c), while the blue areas are already excluded by projective mea-

surements. Attempts to access the non-convex area from (N(M, A), N(M, B)) ≈ (0.17, 0.70)

to (N(M, A), N(M, B)) ≈ (0.70, 0.17) is of no use, since the bottom projective measurement

result is practically collinear with the green line obtainable by the POVM.

The above experiment confirms the validity of the 1. Proposition for qubit measurements. In-

deed the limit in the uncertainty relation can be significantly improved for intermediate values

between some outer, fixed points (see Fig. 7.13). It is particularly useful that both preparation

and measurement uncertainty principles can be connected with each other geometrically. In

this case convexity poses a simple criterion on the set of allowed noise-noise values.

7.4 Entropic noise-disturbance measurement uncertainty for general qubit

measurements

Finding optimal entropic noise-disturbance uncertainty relations is difficult and analytical so-

lutions have not been generally derived yet. It is worth having a glimpse at the issue and

present some developments. To recognize the problem consider Ineq.

g (N(M, σ̂z)) + g (D(M, σ̂y)) ≤ 1 .

(7.25) not for sharp ob-

servables, but instead for the qubit POVM of the form Eq.

∑n
i=1 ri = 0, ‖ri‖ = 1 ⇒

∑n
i=1 Π̂i = 2

n

∑n
i=1 P̂ (ri) = 1 .

(3.32), then calculations show: if

Π̂k = 1
n(1 + mk · σ̂), with the vector mk = (0, sin(φ + 2πk

n ), cos(φ + 2πk
n ))T , [k > 1 ∈ N],

the noise would simply be N(M, Â) = 1
n

∑n
k=1Hb(mk · a). Assuming that there is a cor-

rection that makes the disturbance identical to the noise case7, it would likewise mean that

Dε(M, B̂) = N(M, B̂) = 1
n

∑n
k=1Hb(mk · b). Accordingly, for n = 2 the projective measure-

ment result Ineq.

g (N(M, σ̂z)) + g (D(M, σ̂y)) ≤ 1 .

(7.25) is obtained, while for the trine POVM n = 3 the uncertainty relation

g(N(M, Â))2 + g(DE(M, B̂))2 ≈ 1.1 � 1 (7.41)

does not hold [27], for n = 4 the violation is even 1.22.

7This correction is based on a maximum-likelihood procedure.
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Based on some basic considerations and numerical calculations, Abbott et. al. [27] suggest a

test for an entropic noise-disturbance uncertainty whose lowest region might be presentable by

RND(Â, B̂) = {(N(M, Â), D1(M, B̂)) | M is purity preserving} . (7.42)

For a purity preserving quantum instrument the Kraus decomposition is given by a single sum-

mand Mm(ρ̂) = M̂mρ̂M̂
†
m = Ûm

√
Π̂mρ̂

√
Π̂mÛ

†
m. In other words realizing a general Lüders

instrument Eq.

I ′L(m)(ρ̂) =

√
Π̂(m)ρ̂

√
Π̂(m) ,

(3.67) with an additional unitary correction Ûm originating from the polar

decomposition of the measurement operator might suffice to obtain the lowest bound. The con-

jecture in [27] is that for the two orthogonal Pauli observables, say σ̂z, σ̂x, and the three-outcome

POVM Π̂m(x) = pm(x)(1+ rm(x) · σ̂), where p0(x) = cosx
(1+cosx) , p1(x) = p−1(x) = 1

2(1+cosx) and

rm = ((−1)m cos(mx), 0, sin(mx))T , the noise-disturbance region

RND(σ̂z, σ̂x) = cl

{
cosx+Hb(sinx)

1 + cosx
,
Hb(cosx)

1 + cosx
| 0 ≤ x ≤ π

2

}
(7.43)

provides a tight uncertainty region. It remains an open issue to verify this speculative prediction.

7.5 Discussion

Entropic definitions of uncertainty relations are easy to handle, interpretation is plausible, they

are state independent, and it should be emphasized that it depends only on probabilities. There

is also a bigger concept [104, 105] supporting the fundamental ideas of entropic formulations.

The choice of conditional Shannon entropy as noise and disturbance is reasonable, since it is

the only Rényi entropy for which the chain rule is well defined. Physically, however, it requires

the production of all eigenstates of observables Â and B̂, especially in infinite dimensions of

Hilbert spaces interpretation and implementation can not be continued logically.

The fact that one sends unknown, uniformly distributed states on the measurement apparatus

appears somehow artificial. Ideally, an appropriate device would have to generate each states

sequentially without a physical possibility of recording the randomness of the physical process.

Furthermore, rms and entropic disturbances differ in that the former is transformed by a non-

selective measurement (in Ozawa’s theory, error correction comes from the non-uniqueness of

the measurement effects, see Eq.
Π̂I ⇒ [I], I ⇒ [M] .
(3.61)) while the latter gives a conditional, selective output.
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This drastically changes the approach of error correction, since in the entropic case not only

unitary transformations, but any optimization depending on the meter outcome can be per-

formed. Whether correction ‘on the fly’, i.e. forwarding the meter outcome to the correction

device while the set-up is running, is meaningful should also be up for debate. Finally, due to

the occurrence of the logarithm, many values and results are often numerical in nature. This

can make the subject of optimization a tedious task.
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CHAPTER 8

Conclusion and Outlook

The developments and studies at the Atomic Institute in Vienna were described and the nec-

essary methodologies presented. The motivation and the current developments are rooted in

the wish to break up the confusion of different ideas about the uncertainty principle presented

at the historical beginning of quantum mechanics. The first half of the thesis was devoted

to the mathematical and physical basics that are necessary for a deeper understanding of the

subject. The focus here was on the modern treatment of observables and quantum operations,

witch enable the discussion of the incompatibility of conjugate quantities. Neutron optics is

an established and versatile tool for experimental tests. An emphasis was made on the experi-

ments and the obtained results regarding the characterization of measurement uncertainties of

the rms error-disturbance type introduced by Ozawa [20] and the information-theoretic noise-

disturbance type first published by Buscemi et. al [26]. Both error/noise - disturbance theories

have given new impetus to the research of uncertainty relations and already underwent several

iterations of improvements recently.

The first experimental test of Ozawa’s theory gave new stimulus to this area of research. How-

ever, it turned out that the original inequalities were not satisfactory, because for most cases no

saturation was achievable. Therefore, revisions were necessary to remedy this situation. The

previous chapters 6 and 7 illustrate the importance of error correction procedures for uncer-
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tainty relations for sequential measurements (see Figs. 6.12–6.16). It has also been shown that

Ozawa’s theory for mixed spin states exhibits exactly the same behavior as for pure spin states

(see Fig. 6.18); this residual or unaffected behavior for mixtures is indeed amazing, because it

is generally not expected that uncertainty relations are entirely insensitive to the form of the

prepared state. The partial invalidation of the bound CAB for the error-disturbance uncertainty

relation proved that the alternative bound DAB provides the tightness for projective measure-

ments when Tr(Âρ̂) = Tr(B̂ρ̂) = 0.

The entropic version, in turn, is of great importance because of its thematic proximity to

information theory. Here, the idea is based on the amount of information obtained by the

approximate measurement. As shown in Figs. 7.4 and 7.5, the more knowledge acquired by

the measurement, the more the system is disturbed; a subsequent determination has less in-

formation to offer because of the loss of correlation. Again, for spin measurements, there is

plenty of room for improvement. The results shown for a successive measurement are optimal

only for projective Pauli observables, in other cases it is still an open problem to find out how

the optimal noise-disturbance bound can be characterized. Because of the difficulties, instead

of a sequential uncertainty relation for generalized observables, an entropic noise-noise trade-

off was tested. For this purpose, a successive Lüders instrument was realize, which provides

the necessary statistics to implement the 4-output POVM of interest. The joint-measurement

uncertainty dictates that no device can be calibrated such that a joint determination of un-

known eigenstates of two non-commuting observables is possible. Interestingly, with POVMs

more information can be retained when the observables under consideration are non-commuting

‘enough’, i.e. optimality by general measurements depends on the inner product |a · b| of the

Bloch vectors. This property has been shown in the experimental results in Figs. 7.12 and 7.13.

Several points for innovations are available. Starting from Ozawa’s theory, the most obvious

challenge is to describe new uncertainty relations with POVMs. In this case, the fuzziness as

mentioned in Eq.

ε(Â)2 = Tr
((
Ô

(2)
A − Ô2

A

)
ρ̂
)

+ Tr

((
ÔA − Â

)2
ρ̂

)
.

(6.14) would give a non-zero value and contribute to the average rms noise as

well. A corresponding proposal with a quantum circuit is found in the article by Lu et al. [82].

From the experimental point of view uncertainty relations for quantum systems in higher di-

mensions, e.g. 2x2 = 4 dimensions, should be the next target due to availability of established

manipulation and measurement techniques. However, one should avoid choosing observables,
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which lead to state-independent behavior of error and disturbance. This requires care with

the observables build by tensor products of Pauli-observables that construct the higher Clifford

algebras over the real numbers in which the square and anti-commutator can be proportional

to the identity: generally, (σ̂i ⊗ σ̂j)2 = 14 is always true, however some of the combinations

like {σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂z} = diag(2σ̂y,−2σ̂y) are non trivial and imply new behavior. There are

definitions similar to Ozawa’s measures [19, 22, 65] which can also be tackled next. As already

briefly mentioned in sec. 6.5, the BLW theory could be inspected with mixed spin particles in

order to highlight discrepancies with error and disturbance in the case of qubits.

In the entropic case, as with Ozawa’s error-disturbance, a test of noise-disturbance uncer-

tainty for generalized observables should be studied next. In order to determine the region in

Eq.

RND(σ̂z, σ̂x) = cl
{

cosx+Hb(sinx)
1+cosx , Hb(cosx)

1+cosx | 0 ≤ x ≤
π
2

}
.

(7.43), a 3-output rank-1 POVM has to be realized. It would be advisable to implement a

suitable ancilla system, although it should be possible to perform a one-dimensional system of

successive measurements (see [106]). It is important to make sure that the post-measurement

state is given by the generalized Lüders instrument given by Eq.

I ′L(m)(ρ̂) =

√
Π̂(m)ρ̂

√
Π̂(m) .

(3.67). In addition to the

Shannon entropy, an alternative formulation of a measurement uncertainty relation based on

relative entropy described by Eq.

DKL(P ||Q) =
∑

i p(xi) log
(
p(xi)
q(xi)

)
= −H(X) +H(X;P ;Q)

(2.40) has also been introduced [28, 107]. To what extent this

theory is more useful or expedient, has yet to be clarified. Theoretically, it might be prefer-

able because the KL-divergence should not require a specification of a distribution a priori and

seems more flexible. Furthermore, it does not have the complications of the Shannon entropy for

non-discrete spectra and is related to a true distance, the Fischer information metric. It would

also be interesting to find an extension that allows to formulate a weak-valued (information)

entropy. This would however require a formula that can deal with negative quasi-probabilities

which are ill-defined for the logarithm.

More than ever, it would again be of great interest to explore position-momentum trade-offs us-

ing neutron-optical phenomena like diffraction or scattering. The new measurement uncertainty

experiments have so far been limited to 2-dimensional quantum systems. Uncertainty relation is

also related to other physical issues. The most obvious example is complementarity, which can

be regarded as uncertainty relations in disguise [108]. Similar to the previous analysis, a which

way detector could be modeled by an indirect measurement model, which would correlate error

and disturbance with visibility and distinguishability. A new evaluation of Englert’s definitions
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[109] in this context in a neutron interferometer would be feasible.

At the polarimeter beam line at the TRIGA Mark-II the next task should be testing the prepa-

ration uncertainty relation Eq.

σ(A)2 + σ(B)2 + 2 |a · b|
√

1− σ(A)2
√

1− σ(B)2 ≥ 2−
(
1− (a · b)2

)
‖r‖ .

(5.24). The peculiarity of this inequality is that it can naturally

be expanded to trade-offs of 3 or more observables. Working on the theory [107] and comparing

it to the existing entropic noise and disturbance could also be interesting in the near future. If

coils with oscillating magnetic fields are installed in the beamline, energy-dependent measure-

ments with time-resolved detections could be made. In any case, the experimental research of

two-dimensional uncertainty relations still carries on.
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Frequently used symbols

(Ω,F , p) probability space.

D(M, B̂) optimal entropic disturbance of B̂ w.r.t instrument M.

DE(M, B̂) entropic disturbance of B̂ w.r.t instrument M and error correction E .

E(Â, B̂) preparation uncertainty region of observables Â, B̂.

F (ρ̂, σ̂) quantum state fidelity of states ρ̂, σ̂.

H(X) Shannon entropy of random variable X.

H(X,Y ) joint Shannon entropy.

H(X|Y ) conditional Shannon entropy.

Hb(x) binary Shannon entropy.

N(M, Â) entropic noise of Â w.r.t instrument M.

RND(Â, B̂) measurement uncertainty region of noise of Â and disturbance of B̂.

RNN (Â, B̂) measurement uncertainty region of noise of Â and of B̂.

Wp(µ, ν) Wasserstein p-metric of measures µ and ν.

Ω sample space.

Σ,F σ - algebras.

ε(Â) error of observable Â.

η(B̂) disturbance of observable B̂.

Â+ pseudoinverse of Â.

D̂(B̂) disturbance operator of observable B̂.

N̂(Â) noise operator of observable Â.
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Frequently used symbols

P̂ (ai) or P̂a projector with eigenvalue outcome space {ai}.

Π̂(X) effect with outcome X.

ρ̂ density operator.

σ̂i Pauli matrices.

〈K, ξ̂, Û , M̂〉 indirect measurement model.

E quantum operations.

IL(m)(ρ̂) Lüders instrument.

IM(X)(ρ̂),M quantum instrument.

L(H) set of all bounded linear maps.

O(Ω,F ,H) set of observables.

S(H) set of states.

σ(X) standard deviation of random variable X.

conv(X) convex hull of set X.

cov(X,Y ) covariance of random variables X and Y.

g(x) inverse function of the binary Shannon entropy.

h(x) differential entropy.

p(A,B) joint probability.

p(A|B) conditional probability.
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