Neutron and X-ray Structural Investigations of Liquid Oxides

Viviana CRISTIGLIO

ILL (Grenoble) - CRMHT (Orleans)

Thesis Supervisor: Louis HENNET (CRMHT-CNRS)

ILL Supervisor: Gabriel CUELLO

Student CLIP Session 2005

Motivation

What we want to do...

- Local structure study of atomic arrangement in the liquids at short and intermediate range
- ② Development of Aerodynamic Levitation system combined with Laser Heating
- Improve of knowledge about the physical and technological features of materials at high temperature

Motivation

What we want to do...

- Local structure study of atomic arrangement in the liquids at short and intermediate range
- ② Development of Aerodynamic Levitation system combined with Laser Heating
- Improve of knowledge about the physical and technological features of materials at high temperature

Combining Neutrons and X-rays techniques we will obtain a detailed structural analysis of liquids properties

Molecular Dynamics Simulation at C-Lab at ILL

- Ab-initio by VASP
- Classical MD by nMoldyn

Approach

- We analyze the total structure factor S(q) and the pair correlation function g(r)
- We calculate the coordination number ${\mathcal N}$ and atoms distances

Expressions

$$g(r) - 1 = \frac{1}{2\pi^2 \rho_0 r} \int_0^\infty q[S(q) - 1] \sin(qr) dr$$

Approach

- We analyze the total structure factor S(q) and the pair correlation function g(r)
- \bullet We calculate the coordination number ${\mathcal N}$ and atoms distances

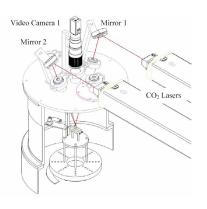
Expressions

$$g(r) - 1 = \frac{1}{2\pi^2 \rho_0 r} \int_0^\infty q[S(q) - 1] \sin(qr) dr$$

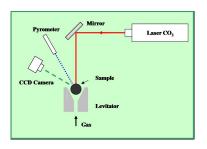
$$\mathcal{N} = 4\pi \rho_0 \int_{r_1}^{r_2} g(r) r^2 dr$$

Approach

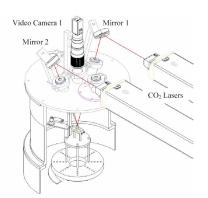
- We analyze the total structure factor S(q) and the pair correlation function g(r)
- \bullet We calculate the coordination number ${\mathcal N}$ and atoms distances

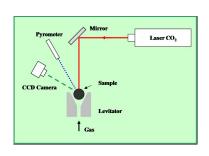

Expressions

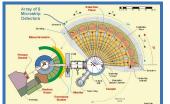
$$g(r)-1=rac{1}{2\pi^2
ho_0r}\int_0^\infty q[S(q)-1]\sin(qr)dr$$
 $\mathcal{N}=4\pi
ho_0\int_{r_1}^{r_2}g(r)r^2dr$


By multi-techniques approach we have reliable coordination numbers and distances in the liquid state

Levitation Tool - D4c Installation

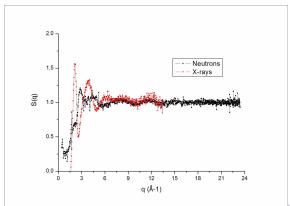



D4c Installation at ILL



Levitation Tool - D4c Installation

D4c Installation at ILL

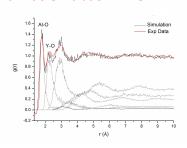


Results

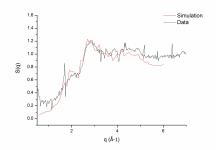
Garnet YAG, $Y_3AI_5O_{12}$ at 2100K

Laser material, optical lens, and thermal barrier coating

Neutron and X-ray diffraction data taken at D4c (ILL) and ID15 (ESRF)



Results


Garnet YAG, $Y_3AI_5O_{12}$ at 2100K

Laser material, optical lens, and thermal barrier coating

Ab-initio Simulation - VASP

Classical MD Simulation- nMoldyn

For the future...

MA systems, $MgAl_2O_4$ - $Mg_3Al_2O_6$ - $MgAl_4O_7$

Important component of Earth's mantle, ceramics industries fabrication

CA systems, CaAl₂O₄ - Ca₃Al₂O₆ - CaAl₄O₇

Ceramics industries fabrication

Silicon based Alloys, SiGe, SiC, Si₃N₄

Useful in semiconductor industry, nuclear gas-cooled fast reactor, engine components and cutting tools, very interesting for electronic applications

Acknowledgement

```
L.Hennet (CRMHT, CNRS)
```

G.Cuello (Diff Group - ILL)

M.Johnson (C-Lab ILL)

I.Pozdnyakova, D.Zanghi, S.Brassamin, J.F.Brun, G.Matzen, D.L.Price (CRMHT, CNRS)

H.E.Fischer, P.Palleau (ILL)