

University of Manchester

Friction Stir Welding of high strength aluminum alloys

Jens Altenkirch (University of Manchester, ILL) Supervisor: Prof. P. J. Withers, Dr. A. Steuwer

University of Manchester

What is FSW

- Developed 15 years ago at TWI, UK
- Solid state joining technique
- Non consumable rotating tool
- Intense plastic deformation (stirring) at elev. temp. (friction) \rightarrow fine & equiaxed recrystallized grain structure
- Several benefits
 - controllable parameters
 - repeatable
 - high strength AA
 - energy efficient

FSW technique

Three flut

Worl[™] tool and MX-Triflute[™] tool

Friction Stir Welding of high strength aluminium alloys

University of Manchester

Friction Stir Welding of high strength aluminum alloys

University of Manchester

Applications of FSW

- Aerospace (example: new A350 family)
 - up to 50% FSW joints (fuselage & wings,
 - tail section, structure elements)
- Space shuttle fuel tank
- Automotive lacksquare
- Railway and shipping
- \rightarrow reduced costs and improved performance

BUT ...

in the early days residual stresses were often assumed to be low despite lack of evidence

Shinkansen (Japan)

Friction Stir Welding of high strength aluminum alloys

University of Manchester

Stress Engineering

- Peak stress close to yield stress •
- Change in distribution with lacksquarerotation speed

• Application of mechanical load during welding changes stress distribution

Friction Stir Welding of high strength aluminum alloys

University of Manchester

Goals

- Investigate matrix of samples for better understanding of residual stress
- Gain control over residual stress distribution
- Bragg-Diffraction (Neutrons and X-ray), mechanical properties and microstructure, FEM
- Advanced robotic based sample manipulation technique

