Lattice Dynamics of Relaxor Ferroelectrics

Martin Kempa TAS group

Supervisor at ILL: Dr. Jiří Kulda

<u>Home institute</u>: Department of Dielectrics, Institute of Physics, Academy of Sciences of the Czech Republic <u>Supervisor</u>: RNDr. Jan Petzelt, DrSc.

Experimental Techniques

- Inelastic Neutron Scattering spectroscopy (INS)
- Fourier Transform Infrared Spectroscopy (FTIR)
 - conventional, high resolution, intensity of transmission / reflection
- Time Domain Terahertz Spectroscopy (TDTS)
 - both Re & Im part of permittivity

Relaxors: properties

- In relaxor ferroelectrics (relaxors) the ferroelectric (FE) state originates only in nanoscopic regions – dynamical polar nanoclusters, related to the structural disorder
- Anomalously high material constants (permittivity; piezoelectric, pyroelectric, electrostriction coefficients...)
 - interesting applications
 - (e.g. piezoelectric devices, capacitors, FE-RAMs)
- Essential processes in relaxors:
 - lattice vibrations
 - relaxational dynamics
 - dielectric dispersion in wide frequency and temperature ranges

Investigated materials

"Common features, similar properties"

- (Disordered ferroelectric BaTiO₃)
- Relaxor FEs perovskite structure ABO₃ (more B-sites: single → complex perovskite)
 - Pb(Zn_{1/3}Nb_{2/3})O₃ 8% PbTiO₃ (PZN-PT)
 - Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN)
 - Pb(Sc_{1/2}Ta_{1/2})O₃ (PST)
 - → ordered

→ disordered

with respect to B-sites

PbTiO₃: ferroelectric, tetragonal below $T_c=760$ K

Polar modes in perovskite relaxors

• TO1: soft mode

- follows Cochran law

$$\omega_{SM}^2 = A(T_d - T)$$

T_d... Burns temperature

- CM: central mode
 - usually splits into 2 or 3 components
 - the mean relaxation time obeys Vogel-Fulcher law

$$\tau = \tau_0 \exp\left(\frac{U}{T - T_f}\right)$$

• Other modes...

T_f... freezing temperature

PZN-PT [$Pb(Zn_{1/3}Nb_{2/3})O_3 - 8\% PbTiO_3$]

- "waterfall effect": upper branch rapidly drops into lower branch at a finite value of *q*: [q_{wf}~ 0.2 A⁻¹]
- can be explained by classic interference of line shape anomalies due to the TA–TO coupling

Relaxors: Future Research

- following INS experiments at ILL
- describe the "waterfall effect" in details
- assign the phonon branches

 (or phonon modes, respectively)
 from various methods
 to physical processes in relaxors
- characterize temperature dep. of the modes