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It is pointed out that evaporated multilayer structures can be used not only for neutron
monochromatization, as deseribed in the pioneering work of Schoenborn ef al., but
also as (magnetized) mirrors with a reflectivity near to unity and a cut-off angle as
high as 46 times the critical angle of the usual neutron mirrors. We also suggest that,
using neutron spin analysers in a way that preserves wave coherence, it is possible
to amplify particular components of the neutron beam polarization so as to facilitate
their detection.

It has been suggested [1, 2] that multilayer evaporated ‘ synthetic crystals ’
could be used as neutron polarizers. As shown in the insert in Figure 1, such a
structure consists of alternating layers of a ferromagnetic (M) and a nonmagnetic
(V) material ; the neutron scattering density of the magnetized M layer for
one neutron spin direction (say ‘ down ’) equals that of the V layer. So for
the down spin neutrons the multilayer has a uniform refractive index,
while for the up spin neutrons it has a periodic structure giving rise to Bragg
reflection and characterized by a contrast 2P, where P is the magnetic scattering-
length density of M.

Tt is readily found that, if ‘up’ spin neutron wave propagation in the layers
M and V is described by the glancing angles 6, and 8, respectively (Figure 1),
Snell’s law reduces for the small angles in question to the form

Oy =/ (05"~ 0.7) (1)

where 6,=A4/(2P/x) is the critical angle for total reflection of neutrons of wave-
length A at the M-V interface [3] This shows that for glancing angles bigger
than 26, we can take 8, ~8,,~0, i.e. we can neglect refraction eﬂects and apply
simple Bragg theory [4] to calculate the reﬁect1v1ty forsucha mulmlaryer structure
with N bilayers having d = 2d,, = 2d;, lattice spacing (Figure 1).

The in-plane dimensions of the ‘elementary unit cell’, being irrelevant,
can be taken as unity, and straightforward evaluation of the crystallographic
structure factor for such a cell gives for the first order reflection

Fi=2Pd[n

Neglecting extinction, the reflectivity of the IV-bilayer structure can be taken
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as the square of N times the wave amplitude reflectivity of a single bilayer
plane. This gives [4]

16
R=—, N*AP*=}N¥d[d)!

where d,=+/(7/8P) is the lattice spacing which would correspond to 6, in
Bragg’s law; e.g. for iron d,~280A. Hence for a high reflectivity of, say,
R =1, which, with exfinction taken into account, would give a real reflectivity
of 60-709,, we need

N=2(d,/d)2 (2)

bilayers. Note, that for d=1 d, i.e. Op 0, ~50,, N=>50 only. Experimental
tests [5, 6] have confirmed the predicted high reflectivity (60-909,) and polari-
zation (> 959,).

We suggest an arrangement which extends considerably the range of
applicability of the multilayer structure. A multilayer with a gradually
changing lattice spacing d(n) (n=1,2,3...) will give a reasonably high
reflectivity for all angles up to an angle 8, equal to a few times 6,, if for any
angle within that range a sufficient number of successive layers have thickness
close to the required value. Such a multilayer structure (let us call it a super-
mirror) would thus behave very much like a totally reflecting mirror, but with a
higher cut-off angle and not quite as high a reflectivity (see Figure 1). The
reflectivity function R(6) of a supermirror will certainly show some fringe struc-
ture, which could be calculated by some rather lengthy numerical computation.
The basic features, however, can be explored very simply (see later) and for
polarizing or analysing applications the finer details of £(f) are usually of little
importance.

Similar structures have been successfully tested as wide-band, all dielectric
high reflectance mirrors in ordinary optics {7].

The effective number of bilayers N(z) contributing to the reflection at a given
8, i.e. a given d(n), can be estimated by the number of those bilayers around the
nth bilayer which reflect with a phase correct within + 45° relative to that of
the nth bilayer:

N(n)~ — ‘@ (8(;5:7,))—1

if d(n) is a smooth, monotonically decreasing function of ». By virtue of
Equation 2 we get the differential equation

2(0;?;)): _%(Sig))_l

d(n)=2d,/+/n

Our derivation applies to 6>26,, i.e. d <d /2. In the range d./2<d<d,
refraction effects become important. They can, however, be corrected for by

which has the solution
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Figure 1 Schematic curves of reflectivity versus incident angle. The insert shows a part
of the multilayer structure.

(a) Total reflecting mirrors
(6) Multilayer monochromators [1]
(¢) Supermirrors

increasing the thickness of the M layers corresponding to Equation 1, which
readily gives

1

= | (e ()] -asves

dy(n)=d./vn

The first M layer with #n=5 will be thick enough to ensure nearly total
reflection for 0 <6<, also. In order to achieve good polarization in this
range the refractive index of the V layer must be about equal to that of the
vacuum, so as to avoid parasitic total reflection by the vacuum/V interface.
A good choice of materials is vanadium for V and Co,gFe,, for M. Note that
for 0, = 50, only about 100 layers are needed.

The significance of these supermirror polarizers is that they promise
a possibility of polarizing neutrons with no unnecessary loss in intensity. The
increase of the cut-off angle to nearly 1° at as small a wavelength as 2 A,
compared to 10" for ordinary mirrors, seems to be the quantum leap which

while
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makes possible the handling of a reasonable beam divergence, the construc-
tion of Soller type analyser systems for large-solid-angle acceptance, and the
use of powerful one- and two-dimensional geometrical focussing. Non-
polarizing supermirrors might also find several interesting applications, e.g.
focussing small angle scattering.

The other device suggested here is based on the generalized description of
the action of neutron polarizers and analysers. Since a measurement in the
quantum mechanical sense happens only if a neutron is captured in the detector,
the classical way of describing a polarized beam by splitting it into up and down
polarized, incoherent, components, is generally inadequate. We should rather
keep track of the coherence, i.e. the neutron-spin wave function should be
written as

6 . .0
10, ¢> =cos§|']*> +e‘¢sin§|¢ >

where 0 and ¢ are the polar angles of the spin vector. It is this coherence that
gives rise to the Larmor precessions (described by the time dependence of ¢),
which is fundamental to the neutron spin echo concept [8]. By the same
token, the action of a neutron analyser is more correctly described by an S-matrix
than by up and down reflectivities. For an analyser with negligible spin-flip
cross section, the §-matrix can be written as

= a 0
S=A< 6* ea, ¢>
In general ¢ and the phase of the complex coefficient 4 could be different

for different volumes of the analyser, and thus the coherence would be lost by
averaging, as it inevitably is for crystal analysers. However, evaporated mirrors
and multilayers, which need only 100-200 Oe magnetizing fields, should show
sufficient phase uniformity. Thus the spin state of the neutron reflected by
the analyser would be given by

8 0% ¢* >

] 6
0,4 > =A\/(052M cos? 3 +a?,, sin? é)

where 8% and ¢* could be readily calculated.

An interesting application of this approach is the following case of neutron-
spin-component amplification. Assume that §=180°—¢, so that there is a
small deviation of the beam polarization from the quantization axis (the magnetic
field direction).

Such very small deviations are of great interest, for example in the diffrac-
tion by non-centrosymmetrical magnetic structures and, allegedly, in parity-
violating nuclear interaction effects. In such a case we easily find, that

180° —f* = e* =4/(r)e

where r=(a,,/a,,)? is the flipping ratio of the analyser. The increased
deviation ¢* gives rise to an increased precessing spin component, which can be
measured directly by applying subsequently a 90° spin turn before a second
analyser used in the usual way [8, 9]. This arrangement resembles the
crossed polarizers in ordinary optics. The advantages of this method are
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illustrated in the following comparison of the number of detected neutrons
N, needed to indicate an e=10-° rad deviation for r=100:

(@) Classical method: 100
Ny~ —— ~1018

analyser only 0= 2.2
(b) 90° detection: b

90° turn + analyser By P 5107
(¢) Spin cmnpone;nt amplificotion: Vo~ 5 ~ 5 108

analyser + 90° turn + analyser 07 rel

We note that from the point of view of the incoming beam intensity the
last two methods are equivalent and 107 times superior to the classical one.
The spin component amplifier method, however, shows the decisive advantage,
namely that it requires less precision in neutron counting and the count rate
is lower, for high precision neutron counting above 105-10%n/sec is a compli-
cated, expensive, and by no means easily available procedure.

Experiments are underway to test these ideas and develop practical fabri-
cation procedures for the large-scale use of supermirrors. The problems
encountered are more severe than those in optical multilayer mirror fabrication,
mainly because, for neutrons, a much higher number of much thinner layers
have to be produced with precision.

When experimental results on multilayer systems with sufficiently precisely
known structure become available, it will be appropriate to make more
rigorous computer calculations of their behaviour. It seems, however, that
the above approximate theory offers a good enough understanding of the
phenomena at the present stage of experimental work.
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