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A bounded random walk exhibits strong correlations between collisions with a boundary. For
an one-dimensional walk, we obtain the full statistical distribution of the number of such collisions
in a time t. In the large t limit, the fluctuations in the number of collisions are found to be size-
independent (independent of the distance between boundaries). This occurs for any inter-boundary
distance, including less and greater than the mean-free-path, and means that this boundary effect
does not decay with increasing system-size. As an application, we consider spin-polarized gases,
such as 3-Helium, in the three-dimensional diffusive regime. The above results mean that the
depolarizing effect of rare magnetic-impurities in the container walls is orders of magnitude larger
than a Smoluchowski assumption (to neglect correlations) would imply. This could explain why
depolarization is so sensitive to the container’s treatment with magnetic fields prior to its use.

PACS numbers: 05.40.Fb 76.60.-k 67.30.ep

Introduction. Random-walks between (or near)
boundaries crop-up throughout the mathematical sci-
ences, from diffusion of particles in a box, to biological
systems [1–4], or the gambler’s ruin problem [5, 6]. The
last of these is a first passage problem (the probability
that the walk hits the boundary at its nth step). For
a standard one-dimensional (1D) random walk, this first
passage problem has long since been solved [5, 6], and
now most work is for higher dimensions in various ge-
ometries [7–9], or anomalous walks [10–13]. Other works

Figure 1: Sketches of bounded random-walks: (a) a diffusive
walk and (b) a quasi-ballistic walk. In (a) the boundary-
collisions are clustered. In (b) the boundary collisions are
anti-clustered (predominantly equally spaced), because ran-
dom changes of direction (highlighted with stars) are rare.

study dynamics of walks within finite or bounded regions
[15–17]. Here we address a closely related problem; we
take a standard 1D random walk trapped between two
boundaries (labelled “L” and “R”), and study the statis-
tical distribution of the number of boundary-collisions in
a time t. Despite a well known formal connection to the
recurrence time (first-passage time for a walk starting at
the boundary) [5, 14], this problem does not appear to
have been solved before now. We obtain the full distri-
bution for arbitrary t, and study the large t limit.

Our central results, Eqs. (3,4), show that the statis-
tical fluctuations in the number of L and R boundary-
collisions, NL and NR, exhibit size-independence for large
time t. Remarkably, this is a boundary effect which does
not decay with increasing system size, X, even though
the average number of such collisions decays like 1/X.
The X-independences applies for all X, both greater and
less than the walk’s mean-free-path, lmfp; see Fig. 1a and
b. It is a consequence of the correlations between subse-
quent boundary collisions, with collisions clustering for
large X and anti-clustering for small X. The cluster-
ing for large X means the variance of NL,R is very much
greater than the average. The only requirement is that
t is much larger than the mean-free-time τmfp = lmpf/v
(so the motion is random) and the time to traverse the
system, ttrav (so the walk explores the whole system).

Below we discuss spin-polarized gases (3He, Xe, etc),
which are used in a variety of scientific and medical sit-
uations, and argue that the above size-independent fluc-
tuations are a crucial source of depolarization.
Model and Results. A telegrapher equation is a

standard model for one-dimensional random walkers with
a finite mean free path, lmfp [5, 18, 19]. It models a
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particle moving with velocity v in one-dimension, which
changes the direction of its motion at random on a
timescale τmfp = lmfp/v. We assume the walker is be-
tween two boundaries (see Fig. 1), the left (L) boundary
at x = 0 and the right (R) boundary at x = X. The
walk reflects whenever it hits the boundary, i.e. its ve-
locity is reversed. Working with dimensionless variables,
τ = t/τmfp and z = x/X, we define P±(z, τ) as the prob-
ability densities that the random-walker is at z and in
state + or − (i.e. has velocity +v or −v) at time τ . The
telegrapher equation is equivalent to [5, 18],

d
dτ P±(z, τ) = ∓ε d

dzP±(z, τ)− P±(z, τ) + P∓(z, τ) , (1)

where ε = vτmfp/X. Eq. (1) is a pair of master equations
for the left or right motion of the walker. The first term
on the right-hand-side is motion in the direction of travel
(with velocity ε in our dimensionless units), while the last
two terms account for the changes of direction which oc-
cur at random (at an average rate equal to one in our
dimensionless units). The diffusive and quasi-ballistic
limits are ε� 1 and ε� 1, respectively.

For a walk starting at z0 at τ = 0, we have P±(z, 0) =
1
2 [1∓(1−2a)]δ(z−z0), where a is the probability that the
initial velocity is positive. We write the boundary condi-
tions at z = 0, 1 as P+(0, τ) = µLP−(0, τ) and P−(1, τ) =
µRP+(1, τ), where µL and µR give escape probabilities at
each boundary collision. In reality µL = µR = 1, how-
ever we leave them free so we can use them as counting
variables to track the boundary collisions [20, 21]. The
survival probability [5] (probability to be in the system
at time τ), is Ψ(τ |z0) =

∫ 1

0
dz
[
P−(z, τ |z0) +P+(z, τ |z0)

]
.

The Supplementary Material details the calculation [5]
of the Laplace transform of the boundary-collision statis-
tics, with f̂(s) =

∫∞
0

dt e−sτ f(τ) for any f(τ). To get
the long time behavior, we do as follows.

1. We show that Ψ̂(s|z0) is a generating function for
the desired quantities (generated by taking deriva-
tives of Ψ̂ with respect to µL,R), and that Ψ̂(s|z0)

is given by P̂±(z, s|z0) at z = 0, 1.

2. We get P̂±(z, s|z0) at z = 0, 1 by writing Eq. (1)’s
Laplace transform as a matrix equation, using a
Fourier transform in z and a matrix diagonalisa-
tion. We thereby get the exact algebraic expres-
sions for

〈
N̂L,R(s|z0)

〉
,
〈
N̂2

L,R(s|z0)
〉
, etc, given in

Eq. (22-27) of the Supplementary Mxaterial.

3. For small s, we invert the Laplace transforms, to
get the statistics for t� max[τmfp, ttrav].

We also find that ttrav ' X/v + X2/(v2τmfp). Thus, for
t� max[τmfp, ttrav], the above method gives us〈

NL

〉
=
〈
NR

〉
= vt/(2X), (2)

var[NL] = var[NR] = t/(3τmfp), (3)
covar[NL, NR] = −t/(6τmfp). (4)

Since the distribution of NL,R is gaussian [5], all higher
moments are given by the above second-moments, and
so exhibit the same X-independence. Eqs. (2-4) apply
for any X, from quasi-ballistic (X � lmfp) to diffusive
(X � lmfp). Although for large X/lmfp the time at which
the dynamics enters the above long time limit goes like
ttrav ∝ X2. In this diffusive limit, the variance is vastly
larger than the average, although typical fluctuations are
of order

√
var, and remain much less than the average.

The index of dispersion is the variance-to-mean ratio
(VMR), and it tells us about clustering [22]. For the L
or R boundary collisions, the index is

var[NL,R]〈
NL,R

〉 =
2X

3lmfp

� 1 (clustered) for X � lmfp

= 1 (Poisson-like) for X = 3
2 lmfp

� 1 (anti-clust.) for X � lmfp

, (5)

Fig. 1a,b show the clustering for X � lmfp and anti-
clustering for X � lmfp. Remarkably, Eq. (3) is exactly
the same in two such physically different limits.

We also get the statistical distribution of boundary-
collisions for arbitrary times, as an algebraic expression
for its Laplace transform. The Laplace transform of the
probability density that a walk initially at z0 experi-
ences N+ = NL + NR boundary collisions in a time τ ,
is ĝ(N+, s|z0) = (N+!)−1(d/dµ)N+Ψ̂(s|z0)

∣∣
µ=0

, where we

take µL = µR = µ. Since Ψ̂ is a fairly simple function of
µ, one can evaluate the derivatives for any N+. Then

ĝ(N+>0, s|z0) =
∑
ν=±

[
m(a) + uνm(1−a)

]
(1− uν)

2λεu
N++1
ν s

, (6)

and ĝ(N+ =0, s|z0) = s−1(1− 2m(a)/D0), where

u± =
sinh [λ]± λε

(s+ 1) sinh [λ]− λε cosh [λ]
, (7)

m(α) = (1 + (1− α)s) sinh [λ(1− z0)]

+(1 + αs) sinh [λz0] + αλε cosh [λz0]

+(1− α)λε cosh [λ(1− z0)] . (8)

for λ =
√
s(2 + s)

/
ε andD0 = (1+s) sinh[λ]+λε cosh[λ].

Performing the inverse Laplace transform numerically,
Fig. 2 shows how this distribution evolves in time. For
t� max[τmfp, ttrav] it becomes the gaussian distribution
g(N+, t|z0) = (2πVt)

−1/2 exp
[
−
(
N+−〈N+(t)〉

)2
/(2Vt)

]
,

where 〈N+(t)〉 and Vt ≡ var[N+(t)] are in Eqs. (2-4).
Intuitive picture of the results. We use the clus-

tering to explain intuitively the surprising result that
the variances do not decay at large X/lmfp. We cut a
long random-walk into many segments each beginning
and ending at x = X/2 (see Fig 1a), each taking a time
tseg ∼ 3ttrav. The walk takes a time ttrav ∼ X2/(vlmfp)
to diffuse to a boundary, upon which it recoils to a dis-
tance lmfp from that boundary. Then the probability
that it does not hit the boundary again before returning
to x = X/2 is about 2lmfp/X. This probability is tiny,
so the segment contains Ncluster ∼ X/(2lmfp) boundary
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Figure 2: The evolution of the distribution of boundary col-
lisions with time, for three different ε, given by numerically
inverting the Laplace transformed distribution in Eqs. (6-8).
We plot the distribution of N+, for a particle initially at the
mid-point between the boundaries, z0 = a = 1/2. To make
the time-evolution of the shape of the distribution clearly vis-
ible, we multiply the vertical scale by the width of the dis-
tribution, V 1/2

t , at each time t, where Vt = var[N+(t)]. The
gaussian is that given below Eq. (8) for t/ttrav = 10.

collisions. Thus the statistics are similar to tossing a coin
every time-period tseg and saying that a “head” is Ncluster

collisions at the L boundary, and a “tail” is Ncluster col-
lisions at the R boundary. Then 〈NL〉 and 〈NR〉 go like
Ncluster × t/ttrav ∼ vt/X. However, the variances have
N2

cluster in place of Ncluster, and so go like t/τmfp. One
also has covar[NL, NR] ∼ −var[NL]. This simple argu-
ment gives Eqs. (2-4), except the O[1]-prefactors.
Difference from Smoluchowski. Eq. (5) is very dif-

ferent from Smoluchowski’s model of Brownian motion
[23]. When estimating the number of collisions each liq-
uid particle makes with a macroscopic object (the particle
undergoing Brownian motion), he neglected correlations,
taking var[NL−NR] ' var[NL +NR] ' 〈NL +NR〉. Yet,
if each liquid particle performs a random walk, Eq. (5)
shows that is very far from the truth; since the container
size, X, is many orders of magnitude larger than lmfp. In
fact, Smoluchowski’s assumption only works for Brown-
ian motion due to many-body effects (see below).
Spin-polarized gases. Such gases, particularly 3He,

are used as a spin-filter for neutrons [24], a precision mag-
netometer [25, 26] or to fundamental spin-dependent in-
teractions [27, 28]. They are used for magnetic resonance
imaging in medicine [29] and engineering [30]. 3He gas
is typically stored at room temperature and at pressures
0.1-1bar, in a glass container centimeters across [31]; un-
fortunately, it slowly depolarizes during storage. There is
a great variety in the quality of the containers; the gas re-
mains polarized for a few hundred hours in the best con-
tainers, while it depolarizes in only a few hours in other
superficially identical ones. The depolarization-processes

z

xθ

He3
Collision within gas: 
         spin unchanged

Collision with wall: 
                spin rotated

X

Ncluster

z
y

x

Figure 3: The random walk of a 3He atom due to collisions
with other 3He atoms. On the left, collisions with the con-
tainer walls are marked by ellipses. On the right, we show the
effect of one such boundary-scattering on the atom’s spin.

due to 3He-3He scattering in the gas [31–33] or inhomo-
geneous external magnetic field [27, 31, 34–42] differ little
between containers. Thus it is likely that magnetic im-
purities on the container walls [31, 43–49] are the origin
of the huge differences in depolarization times.

Here we assume that such magnetic impurities (act on
a shorter range than mean free path) slightly rotating the
atom’s spin each time the atom collides with the walls,
see Fig. 3. Refs. [50, 51] give a microscopic justification
of this. For a typical container (see above) the atomic
motion is diffusive with τmfp ∼ 10−10s, X/v ∼ 10−5s,
and ttrav ∼ 1s. The spin-dynamics for t of order the de-
polarization time (typically tens or hundreds of hours),
is deep in the long time regime t � ttrav � τmfp. The
atom’s 3D diffusive motion is very well approximated by
three uncorrelated 1D random-walks in the x, y and z-
directions. We take the spin to be rotated by a random
angle θLi at the ith collision with the boundary L, and
a random angle θRi at the i collision with boundary R.
These angles are tiny, since each atom only depolarizes
after very many boundary collisions. We assume that all
rotation are about the same axis (relaxing this assump-
tion does not qualitatively change the results [52]). In
this case, the spin-polarization at time t is

S(t) ≡
〈
S0 cos[Θ(t)]

〉
= S0 exp

[
− 1

2var[Θ(t)]
]
, (9)

where Θ(t) =
∑NL(t)
i=1 θLi +

∑NR(t)
i=1 θRi is the total angle

that the spin is rotated in a time t. The average in Eq. (9)
is over all rotation angles at each collision and all possible
random walks. Averaging over θLi and θRi, and then over
the number of boundary collisions, NL(t) and NR(t), we
arrive at 〈Θ(t)〉 and var[Θ(t)]. For 〈θ〉 = 〈θL〉 = 〈θR〉 and
var[θ] = var[θL] = var[θR], we have 〈Θ(t)〉 = 〈N+(t)〉 〈θ〉
and var[Θ(t)] = 〈N+(t)〉 var[θ] + var[N+(t)] 〈θ〉2 where
N+(t) = NL(t) + NR(t). Using Eqs. (2-4), we find the
polarization decays exponentially at a rate

1

T1
=
v var[θ]

2X
+
〈θ〉2

6τmfp
, (10)

for weak enough decay that T1 � ttrav [53]. The first
term is a typical boundary effect ∝ 1/X for container
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size, X [44–51]. The second term looks like a bulk effect,
but is in fact an X-independent boundary effect, originat-
ing from the X-independence of Eqs. (3,4). For typical
3He cells vτmfp/X . 10−5, so T−1

1 is vastly more sen-
sitive to the average spin-rotation at each collision, 〈θ〉,
than the spread of the rotations,

√
var[θ].

Ref. [47] had a similar result to Eq. (10) for quadrupole
fields, using diffusion equations. Ref. [27] got a similar
result for magnetic-fields in a region within Λ� X of the
wall, using diffusion and Redfield approximations . Their
result was for Λ� lmfp (for shorter distances the motion
is ballistic and does not obey a diffusion equation). They
were surprised to find that Monte Carlo simulations of
random walks showed the same behaviour for Λ < lmfp as
for Λ� lmfp. The origin of these paradoxical boundary-
effect (which did not decay with increasing system-size),
was not clear for Λ < lmfp. Our above analysis shows rig-
orously that such size-independent boundary-effects are
a generic property of random walks.
Comparison with experiments. Experiments [48,

51] showed a strong reduction of T1 when the container
had previously been placed in a strong magnetic field.
“Degaussing” [48] the container returned T1 to its original
value. This indicates a low density of magnetic impuri-
ties on the walls of their container, which the strong field
aligned and degaussing un-aligned. This strong depen-
dence of the depolarization on the history of the cell rules
out bulk effects as the dominant source of depolariza-
tion. However, it fits with our model of boundary effects.
The alignment of different impurities causes 〈θ〉 to grow
(〈θ〉 = 0 if they are randomly-oriented), and Eq. (10)
show its extreme sensitivity to the value of this 〈θ〉. In
contrast, the theory in Ref. [48] assumed no correlations
between an atom’s scatterings from the impurities. So it
does not explain why T1 should depends so strongly on
the alignment of the field of different impurities.

Experiments to-date included a uniform magnetic field
inducing Larmor spin-precession at frequency ω � t−1

trav.
Our above results are for the motional narrowing [54]
regime, ωttrav � 1; and so only give a qualitative expla-
nation of the experiments. We have, however, applied

our method to ωttrav � 1, and find that 1/T1 goes like
the square-root of pressure. This coincides with the pre-
diction for short-range forces near the walls [27], and fits
reasonably well to experiments in Ref. [51].
Applicability of Smoluchowski’s assumption.

Smoluchowski [23] applied his assumption (discussed
above) to the momentum-transfer between atoms doing
random walks and a macroscopic object (which under-
goes Brownian motion as a result). The depolarization
that we discuss can be considered as a spin-transfer be-
tween atoms and a macroscopic object (the container
walls). Despite superficial similarities, these two are very
different. Inter-atomic scattering in a gas rapidly re-
distributes the momentum of any given atom to other
atoms, making momentum-transfer a many-body prob-
lem. Green-Kirkwood-Kubo mean field theory shows
that many-body effects typically suppress correlations in
the momentum-transfer on a timescale of order a few
τmfp. Thus Smoluchowski’s assumption to neglect corre-
lations is not unreasonable.

In contrast, the rate for re-distribution of spin from
any given atom to the other atoms (due to inter-atomic
scattering) is tiny; if it were the only depolarization pro-
cess, then T1 > 800 hours at gas pressures ∼ 1bar.
Then boundary collision correlations occur on scales up
to ttrav ∼ 1s, and so are unaffected by many-body effects.
Thus these correlation are crucial for the spin-transfer to
the walls, and thus for the depolarization rate.
Conclusions. For a bounded random walk, we gave

the distribution of the number of boundary collisions in
an arbitrary time. Surprisingly, the long time limit ex-
hibits boundary effects which do not decay with increas-
ing system size. This could explain the 3He depolariza-
tion rate’s extreme sensitivity to details of the physics
at boundaries. It would be interesting to consider cases
where the walk itself has strong correlations, e.g. sub- or
super-diffusive dynamics.
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SUPPLEMENTARY MATERIAL

Derivation of NL,R statistics. Here we give the cal-
culation we outlined in the “Model and Results” section
of the paper, using techniques in Ref. [5]. For a proba-
bility density F (NL, NR, τ |z0), that the walker hits the L
and R boundaries NL and NR times in time τ , we have
Ψ(τ |z0) =

∑∞
NL,NR=0 µ

NL

L µNR

R F (NL, NR, τ |z0). Then

[dΨ/dµW ]µL,R=1 = 〈NW 〉,[
d2Ψ/dµ2

W

]
µL,R=1

= 〈NW (NW − 1)〉,[
d2Ψ/dµLdµR

]
µL,R=1

= 〈NLNR〉, (11)

for W ∈ {L,R}. To find Ψ and its derivatives, we
work in Laplace space, defining the Laplace transform
of any function f(τ) as f̂(s) =

∫∞
0
f(τ)e−sτdτ . We

multiply Eq. (1) by e−st and integrate over t from 0 to
∞, noting that

∫∞
0

dτ e−sτ d
dτ P±(z, τ |z0) = P±(z, τ =

0|z0) + sP̂±(z, s|z0). Defining the vector

P̂(z, s|z0) =

(
P̂+(z, s|z0)

P̂−(z, s|z0)

)
, (12)

we have

d

dz
P̂(z, s|z0) = M(s) P̂(z, s|z0) + F δ(z − z0), (13)

where

M(s) =
1

ε

(
−1− s 1
−1 1 + s

)
, F =

1

ε

(
a

a− 1

)
. (14)
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Figure S1: On the left we show the short-time behaviour of
var[N−(τ)] (quoted "a"), 〈N+(τ)〉 ("b") and var[N+(τ)] ("c")
where N± = NR ±NL. We take a = z0 = 1/2, for which the
mean time to first collision (mtfp) with the boundary, τmtfc =
(2ε)−1 + (2ε)−2 (so τmtfc = 30, 0.75, 0.11 for ε = 0.1, 1, 5
repsectively). On the right we show the variance ratio for
various ε. Dashed lines are the long-time asymptotes given
by Eqs. (2-4). On the left we improve these asymptotes by
adding small τ -independent terms O[1, ε−2] as fit parameters.

The boundary conditions are bT
L P̂(0, s|z0) = 0 and

bT
R P̂(1, s|z0) = 0, where T indicates a transpose of

bL =

(
1
−µL

)
, bR =

(
µR

−1

)
. (15)

The Laplace transform of the survival probability is
Ψ̂(s|z0) =

∫ 1

0
dz
(
P̂+(z, s|z0) + P̂−(z, s|z0)

)
. Subtracting

the first line of the matrix equation in Eq. (13) from
the second line, gives P̂+ + P̂− = −s−1

(
ε d

dz [P̂+ − P̂−]−
δ(z − z0)

)
. Placing this in the integral makes it easy to

evaluate, then using the boundary conditions we get

Ψ̂(s|z0) = s−1
[
1− (1− µL)εP̂L− − (1− µR)εP̂R+

]
, (16)

where we use the shorthand P̂L− ≡ P̂−(z = 0, s|z0) and
P̂R+ ≡ P̂+(z = 1, s|z0).

Thus, to find Ψ̂(s|z0), we do not need P̂(z, s|z0) for all
z, we only need its values at the boundaries z = 0, 1. In
what follows, we refer to these values using the shorthand
P̂L ≡ P̂(z = 0, s|z0) and P̂R ≡ P̂(z = 1, s|z0). To
get these, we define the Fourier transform of f̂(z, s) as
f̃(k, s) =

∫ 1

0
dz eikz f̂(z, s). We apply this to Eq. (13),

using
∫ 1

0
dz eikz d

dz P̂(z, s|z0) = eikP̂R− P̂L− ikP̃(k, s|z0).
This gives an equation for P̃(k, s|z0), which we write in
the basis where M is diagonal, using

M = V−1

(
λ 0
0 −λ

)
V, V=

(
c+(1 + s− ελ) −c+
c−(1 + s+ ελ) −c−

)
,

where ±λ are M’s eigenvalues, with ελ =
√
s(2 + s), and

c± = [(1 + s∓ ελ)2 − 1]−1/2. The result is

0 =

(
λ+ ik 0

0 −λ+ ik

)
V P̃(k, s|z0)

+ eikz0 VF + V P̂L − eik V P̂R, (17)

Eq. (17) is true for all k, so it must be true for k = iλ.
Then P̃(k, s|z0) drops out of the upper elements in this
vector equation (assuming P̃ does not diverge at k =

iλ), leaving an equation for P̂L and P̂R. For k = −iλ,
P̃(k, s|z0) drops out of the lower elements, giving us a
second equation for P̂L and P̂R. These equations are

e−λ vT
+ P̂R − vT

+ P̂L = e−λz0 vT
+ F, (18)

eλ vT
− P̂R − vT

− P̂L = eλz0vT
−F, (19)

where we define the vectors vT
+ ≡ (1, 0)V = c+(1 +

s − ελ , −1) and vT
− ≡ (0, 1)V = c−(1 + s + ελ , −1).

Eqs. (18,19) contain four unknowns; P̂L+, P̂L−, P̂R+,
P̂R−. However the boundary conditions, Eq. (15), en-
able us to write P̂R = uR P̂R+ and P̂R = uL P̂L−, where

uR =

(
1
µR

)
, uL =

(
µL

1

)
, (20)
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Figure S2: A 3He atom hitting the wall may enter micro-
scopic cavities in the wall, getting trapped there for some
time. This trapping may be geometric (bouncing as shown) or
chemical (van der Waals bonding to the glass). The trapping
time is random, and uncorrelated between different collisions
at the same place on the wall (e.g. longer for trajectory 2 than
1), The spin’s rotation θ is given by the field at the trapping
site (due to magnetic impurities), and the trapping time.

and P̂R+, P̂L− are the two quantities we need for Eq. (16).
Substituting this into Eqs. (18,19), we get equations for
P̂R+ and P̂L−, which in matrix form are(

e−λvT
+uR −vT

+uL

eλvT
−uR −vT

−uL

)(
P̂R+

P̂L−

)
=

(
e−λz0vT

+F
eλz0vT

−F

)
. (21)

Inverting this equation we find that

P̂R+ =
eλz0 [vT

+uL][vT
−F]− e−λz0 [vT

−uL][vT
+F]

eλ[vT
+uL][vT

−uR]− e−λ[vT
−uL][vT

+uR]
,

P̂L− =
e−λ(1−z0)[vT

+uR][vT
−F]− eλ(1−z0)[vT

−uR][vT
+F]

eλ[vT
+uL][vT

−uR]− e−λ[vT
−uL][vT

+uR]
.

Here vT
±uR = 1+s−µR∓ελ, vT

±uL = (1+s)µL−1∓µLελ,
and vT

±F = ε−1(1 + as∓ aελ), so we get

P̂+(1, s|z0) =
A+

L sinh[λz0] +B+
L λε cosh[λz0]

2εD
,

P̂−(0, s|z0) =
A−R sinh[λ− λz0] +B−Rλε cosh[λ− λz0]

2εD
,

where A±W = (1 − µW )(s + 2) ∓ (1 − 2a)(1 +

µW )s, B±W = (1 + µW ) ∓ (1 − 2a)(1 − µW ) and
D = [(1− µR)(1− µL) + s(1 + µLµR)] sinh[λ] + (1 −
µLµR)λε cosh[λ]. Substituting these into Eq. (16), we get
the Laplace transformed survival probability, Ψ̂(s|z0).

Laplace transforming Eqs. (11) we evaluate the deriva-
tives exactly. It is convenient to define N±(s|z0) =
NR(s|z0)±NL(s|z0), for which we have

〈
N̂±(s|z0)

〉
=

(1− 2a)s (sinh [λ(1− z0)]∓ sinh [λz0])

2s2 sinh[λ]

+
λε (cosh [λ(1− z0)]± cosh [λz0])

2s2 sinh[λ]
, (22)

〈
N̂2
±(s|z0)

〉
=

(
(1± 1)λε cosh [λ]

s sinh[λ]
∓ 1

)〈
N̂+(s|z0)

〉
± λε (a cosh [λ(1− z0)] + (1− a) cosh [λz0])

s2 sinh[λ]

∓ (1 + as) sinh [λ(1− z0)] + (s+ 1− as) sinh [λz0]

s2 sinh[λ]
, (23)〈

N̂+(s|z0)N̂−(s|z0)
〉

=
〈
N̂−(s|z0)

〉
+
s sinh[λ]− λε cosh[λ]

2s2 sinh2[λ]

×
(

(1− 2a)s
(

sinh[λz0]− sinh[λ(1− z0)]
)

−λε
(

cosh[λz0] + cosh[λ(1− z0)]
))
. (24)

To write these in terms of the number of L and R bound-
ary collisions, we use

〈
N̂R(s)

〉
= 1

2

〈
N̂+(s)

〉
+ 1

2

〈
N̂−(s)

〉
,〈

N̂L(s)
〉

= 1
2

〈
N̂+(s)

〉
− 1

2

〈
N̂−(s)

〉
, while〈

N̂2
R(s)

〉
= 1

4

〈
N̂2

+(s)
〉

+ 1
4

〈
N̂2
−(s)

〉
+ 1

2

〈
N̂+(s)N̂−(s)

〉
, (25)〈

N̂2
L(s)

〉
= 1

4

〈
N̂2

+(s)
〉

+ 1
4

〈
N̂2
−(s)

〉
− 1

2

〈
N̂+(s)N̂−(s)

〉
, (26)〈

N̂L(s)N̂R(s)
〉

= 1
4

〈
N̂2

+(s)
〉
− 1

4

〈
N̂2
−(s)

〉
. (27)

where for compactness we do not show explicitly that all
these quantities depend on z0.

For s � min[1, ε2], one can perform a small s ex-
pansion (we must keep terms up to s−2) and perform
the inverse Laplace transform, getting the results for
τ � max[1, τtrav]. We give these results in Eqs. (2-
4), neglecting t-independent terms of O[1] and O[ε−2],
equivalent to a small shift of time, t→ t+ O[τmfp, ttrav].
Fig. S1 shows the finite-time behavior of these quantities,
found by numerically inverting the Laplace transform of
Eq. (22-24). They go fairly rapidly to their long-time
linear-τ behavior, with var[N−(τ |z0)]/var[N+(τ |z0)]→ 3
for long-times.

The mean time to first collision (mtfc) is τmtfc =∫∞
0

dτ τ
(
dF (0, 0, τ |z0)/dτ

)
= Ψ̂(0|z0)|µL,R=0, and has a

simple form; τmtfc = τball + τdiff , where the times in the
ballistic and diffusive limits are τball = [a(1− z0) + (1−
a)z0]/ε and τdiff = z0(1 − z0)/(ε2). The typical time to
traverse the system, τtrav ' 2τmtfc(z0 = 1/2); which is
ttrav ' X/v +X2/(v2τmfp) in dimensionful units.

We conclude by pointing out that we never needed
the solution of Eq. (13). However for completeness we
point out that it is P̂(z, s|z0) = ezM(s)

[
P̂(z = 0, s|z0) +

e−z0M(s)F θ(z−z0)
]
, where θ(z) is a Heaviside step func-

tion, and the vector P̂(z = 0, s|z0) is given above.
Intermediate times in diffusive regime. In the

diffusive regime vτmfp � X, we can look at the intermedi-
ate t regime, defined by τmfp � t� τtrav. We follow the
above derivation, but now consider ε2 � s � 1. Then
the collision statistics are very sensitive to the walker’s
initial position, x0; if x0 is too far from a boundary, there



8

ò

ò

ò

ò

ò

à

à

à à
à

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

pressure @barD

1�
T

1
@h

ou
rs

-
1 D

Figure S3: Data from Fig. 6 of Ref. [50] (squares are sample
C#4 and triangles are C#13), with αp1/2 (our theory), where
α is chosen for the best fit. We do not include the expected
crossover to a 1/p behavior at higher p; instead we do not fit
to the points where this effect may be significant (two points
marked in gray for sample C#4). The remaining points are as
well fitted by our √p prediction as by the fitting in Ref. [50]
(a theory introduced in Ref. [48] which is linear in p at small
p, with the crossover to 1/p at higher p). More experiments
are necessary to distinguish between the theories.

are no collisions. Averaging uniformly over x0, we find〈
NL

〉
and

〈
NR

〉
are as in Eq. (2), while

var[NL] = var[NR] = v t3/2/(X τ
1/2
mfp), (28)

covar[NL, NR] ' −
〈
NL

〉2
= −(vt/X)2. (29)

Thus they decay with increasing system-size, with the
covariance having a much smaller magnitude than the
variances. Unlike in the long time limit, the distribution
is not gaussian see Fig. 2, and the typical fluctuations,√

var[NL,R], are much larger than the averages, 〈NL,R〉.
As a result the variance gives limited information about
the nature of the distribution.
Justification of our model for 3He. In experiments

[48,50], boundary-induce depolarization is likely due to
localized magnetic impurities, see Fig. S2. However at
each collision with a given region of the boundary, the
atom will be trapped there [49] for a different time (see
Fig. S2), thereby acquiring a different rotation angle. As
a result, the rotation angle is not directly related to the
position at which the atom hits the boundary. Thus it
seems a reasonable simplification to assume all scatter-
ing at a given boundary by a single distribution of angles
averaged over that surface. We make this simplification
in our model, characterizing the distribution by 〈θ〉 and

var[θ]. The central message of our discussion of polarized-
gases was that the depolarization rate is crucially depen-
dent on the correlations between boundary scatterings.
At worst, the above argument under-estimates such cor-
relation effects, by neglecting correlation due by multiple
scatterings in the same region of the boundary.
Depolarization with Larmor precession. The

spin of 3He in an external magnetic field precesses at
a rate ω. This was about 105s−1 for the experiments in
Refs. [48,50] (the other parameters were τmfp ∼ 10−10s,
X/v ∼ 10−5s, and ttrav ∼ 1s). Thus we want the depo-
larization rate, T−1

1 for τmfp � 1/ω � ttrav. Here T−1
1 is

the rate of relaxation along the axis of the external field
(the perpendicular decay rate, T−1

2 , is much faster).
We argue that ω−1 acts as a cut-off on the correlations

of the rotation angle. If the spin rotates clockwise about
the y-axis at every boundary collision, the angle to the
z-axis (the external field axis) will systematically grow
for times � ω−1, however after a time of order (2ω)−1

the spin will have precessed 180◦ about the z-axis. At
this point clockwise rotations about the y-axis will reduce
the angle between the spin and the z-axis. With this cut-
off at ω−1, the variance in the rotation angle is the sum
of the variances acquired in each time-slice of order ω−1,
so var[Θ(t)] ∼ ωt

[〈
N+(ω−1)

〉
var[θ]+var[N+(ω−1)] 〈θ〉2

]
.

We substitute in Eqs. (28,29), and get the depolarization
rate for τmfp � ω−1 � ttrav,

T−1
1 ∼ v

X

[
var[θ] + (ωτmfp)−1/2

〈
θ
〉2]

. (30)

Hence in this regime, 1/T1 decays with increasing system-
size, X. Since τ−1

mfp ∝ gas pressure, p, the second term
goes like √p. There is no experimental consensus on the
p-dependence in such systems [48,50]. While we do not
know all the experimental conditions, the data in Fig. 6
of Ref. [50] can be fitted with a √p, see Fig. S3.

For typical experimental parameter, the prefactor on
the second term in Eq. (30) is of order 105/2 ∼ 300 times
larger than that of the first term. Compared with the
case with no external magnetic field (where the prefactor
on the second term was 105 times larger than that of the
first term), the magnitude of the second term is greatly
reduced. This is a consequence of the fact that corre-
lations are absent on timescales larger than ω−1. None
the less, the remaining correlations are sufficient to make
1/T1 much more sensitive to average angle, 〈θ〉, than to
the spread of angles,

√
var[θ].
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