
Institut Laue-Langevin

Summer Stage

Author:
Peter Braden

Supervisors:
Martin Boehm

Alain Filhol

August 31, 2007

Abstract

The triple-axis spectrometer is an instrument that uses neutron scattering to
examine structural and magnetic excitation. It is not easy to use, however, as
measurements must constantly be translated to, and from, reciprocal space - a
mathematical space used to simplify calculation.

vTAS is a graphical program that aids this process by modeling the instru-
ment, allowing easy experimentation with the configuration and sample param-
eters. It also maintains a representation of the instrument’s physical state, for
example the location of the walls around the instrument, and its angular limits.

This report aims to explain the processes behind the design and implemen-
tation of vTAS, some of the physics encountered when developing the program,
and a summary of the author’s work at the Institut Laue-Langevin over the
summer stage.1

1Stage: French internship

Figure 1: IN14 - One of the triple-axis spectrometers at the ILL
From left to right: detector (see 2.4.5), analyser (see 2.4.4), spin flipper (flip the neutrons spin

state), cryomagnet containing the sample (cools and applies a magenetic field to the sample),

monochromator housing (see 2.4.2). The reactor is behind the monochromator housing.

1

Contents

1 Introduction 5

2 The Physics of the Triple Axis Spectrometer 6
2.1 Introduction . 6
2.2 Neutron Scattering . 6
2.3 Solid State Physics . 7

2.3.1 Crystal Structure . 7
2.3.2 Reciprocal Space . 9

2.4 Components of the Triple Axis Spectrometer 9
2.4.1 The Source . 9
2.4.2 The Monochromator . 9
2.4.3 The Sample . 10
2.4.4 The Analyser . 10
2.4.5 The Detector . 11

3 The Software Engineering behind vTAS 12
3.1 Introduction . 12
3.2 Existing Program . 12
3.3 Specification . 13
3.4 New Features . 13

3.4.1 Print . 13
3.4.2 Load/Save . 13

3.5 Design . 14
3.5.1 Architecture . 14
3.5.2 User Interface . 15
3.5.3 Mathematical Model . 17

3.6 Internationalisation . 19
3.7 Documentation of the Project . 20
3.8 Testing . 20

4 Evaluation 21
4.1 Introduction . 21
4.2 Critical Evaluation of the Program 21

4.2.1 Problems Encountered . 22

2

4.3 Remaining Tasks . 22
4.4 Areas for Extension . 22

Appendices 24

A Definition of Variables 25
A.1 Angles . 25
A.2 Experiment . 25
A.3 Sample . 26
A.4 Other Parameters . 26
A.5 Coordinates of Instrument Components 26

B Formulae 28
B.1 Calculate Sample Matrices from Sample Parameters 28

B.1.1 Unit Cell Volume . 28
B.1.2 Reciprocals . 28
B.1.3 UB Matrix . 29

B.2 Calculate Angles from Experiment Values 29
B.2.1 Translate ~Q into reciprocal space 29
B.2.2 Use inverse Bragg law to calculate a1 & a2 29
B.2.3 Use cosine rule to calculate a4 29
B.2.4 Calculate a3 using vector triangle 30
B.2.5 Use inverse Bragg law to calculate a5 & a6 30

B.3 Calculate Experiment Values From Angles 30
B.3.1 Wavelengths . 30
B.3.2 Calculating ~Q . 30
B.3.3 Calculating ~Ki . 30
B.3.4 Calculating ∆E . 31

B.4 Plot Triple Axis Spectrometer from Angles and Lengths 31
B.5 Calculate Angles from the Positions of Spectrometer 31

C Submitted Files 32
C.1 Code . 32
C.2 Documentation . 32
C.3 Web Page . 32

3

List of Figures

1 IN14 - One of the triple-axis spectrometers at the ILL 1

2.1 A comparison of the radiographs of neutrons(left) and x-rays(right). 6
2.2 The crystal unit cell, showing the relationships between the angles

and vectors. 7
2.3 The seven types of crystal system 8
2.4 The positions of vectors and angles within reciprocal space. . . . 10
2.5 The location of angles within the system. 11

3.1 The structure of the data model. 14
3.2 The dependencies of the components within the Model-View-

Controller structure. 16
3.3 A screenshot of the main window of vTAS 17
3.4 A sample of the document produced by the print function of the

program. 18
3.5 The relationships and dependencies between the variables when

calculating angles from reciprocal triangle. 19

4.1 Code Metrics . 22

A.1 The relationships and dependencies that need to be considered
when calculating experiment values from angles. 27

4

Chapter 1

Introduction

The Institut Laue-Languevin (ILL) in Grenoble is home to the most intense
neutron source in the world. The neutrons it produces are used in the study
of a wide range of subjects, from biology and particle physics, to material sci-
ence. One class of instruments used in these experiments is the triple-axis
spectrometer, an instrument that allows for the precise measurement of energy
and momentum transfer from the neutron to the sample, or from the sample to
the neutron, during neutron bombardment.

The mathematics to translate the orientations and energies of an experiment
into parameters suitable for the instrument are tedious, therefore to aid in the
design of experiments, a computer program is necessary.

The first version of vTAS was written in 1998 by Alain Bouvet, a physicist
at the ILL at the time. The program was written in java with an awt interface.
Unfortunately the program was very buggy, and its cramped interface made it
almost impossible to use.

In the summer of 2006 the program was resurrected by Noelle Le Delliou and
given a new interface using the swing toolkit. The program still contained a
number of errors, and by now the code had fallen into such disarray that further
progress was unfeasible.

It was therefore decided to completely reimplement the program based on
modern software engineering principles, allowing for the inclusion of many new
features.

5

Chapter 2

The Physics of the Triple
Axis Spectrometer

2.1 Introduction

Clearly, when designing software for an instrument such as the triple axis spec-
trometer, some grasp of the underlying physics of the instrument must be at-
tained. This chapter aims to look at the physics behind the triple axis spec-
trometer, and how it relates to the calculations that are performed in modeling
the instrument.

2.2 Neutron Scattering

Neutron Scattering is a method of analysing the structure and excitation of a
material by observing the diffraction of a beam of neutrons. As neutrons have
no charge, they can be used to measure the structure of charged substances
because the neutron is able to penetrate the ‘wall’ of charge surrounding atoms.
As neutrons also have spin, they can be used to measure samples with subtle
magnetic fields at an atomic scale.

Figure 2.1: A comparison of the
radiographs of neutrons(left) and
x-rays(right).

By exploiting the properties of neutrons,
a very detailed picture of the structure of a
sample, and the stresses and strains within
it, can be built up in a non-intrusive man-
ner. Furthermore, as the neutrons penetrate
the sample, they can be used to probe the
structure inside a sample.

Neutron probing techniques are compa-
rable to X-ray analysis, as is performed at
synchotron facilities such as the ESRF1. The

1European Synchrotron Radiation Facility - An advanced synchrotron X-ray source next

6

techniques are complementary as neutrons are very good at analysing the posi-
tions of weakly charged particles such as hydrogen atoms, whereas X-rays work
better with strongly charged particles. Figure 2.1 shows an example of a com-
parison of the two techniques. Note that the neutrons provide a better picture
of the plastic parts of the camera - those that contain hydrogen, whereas the
x-rays are better at imaging the metals.

2.3 Solid State Physics

Although neutron scattering can be used to analyse a wide range of samples,
the instruments which vTAS is designed to model are concerned mainly with
the study of solids, in particular solids with a crystalline substructure.

2.3.1 Crystal Structure

Crystals have, by definition, a periodic structure. This structure greatly sim-
plifies the mathematics needed to describe the sample, and therefore facilitates
the study of the material. A consequence of this is that crystals are the most
researched type of samples within solid state physics, and thus the study of
crystal structure is a mature field.

A B

C

α

ɣ

β

Figure 2.2: The crystal
unit cell, showing the rela-
tionships between the an-
gles and vectors.

The periodicity of crystals means that a large
crystal structure can be simplified down into a sin-
gle repeating unit. This unit cell allows the posi-
tions of all of the atoms in the sample to be specified
in a relative manner. This topic is more complex
than can be described here, however it is covered in
great detail in [5]. For the purpose of this report we
will simply define the unit cell of a crystal to be a
set of three vectors A, B and C at angles α, β and
γ, that specify the edges of the crystal’s periodic
unit (see fig 2.2).

There is only a finite set of crystals that are pos-
sible, and by characterising groups of these varia-
tions by their orders of symmetry, we can classify
all crystals into seven crystal systems (fig 2.3).

In addition to these parameters, when studying
a crystal with a triple axis spectrometer we must
also specify the orientation of the lattice in respect to the instrument axes. As
this technique analyses a two dimensional scattering plane, only a cross section
of the crystal can be analysed. This plane is denoted by two vectors ~O1 and ~O2.

to the ILL

7

Cubic

Tetragonal

Monoclinic

Rhombohedral

Orthorhombic

Hexagonal

Triclinic

Figure 2.3: The seven types of crystal system

8

2.3.2 Reciprocal Space

One of the mathematical devices utilised in simplifying the calculations from
the data gained from the experimentation is to convert the sample lattice into
reciprocal space and relative units. Reciprocal space is a space in which di-
mensions are the reciprocals of those in real space. Relative units are used to
scale the reciprocal space to allow measurements in terms of the unit cell of the
crystal, rather than absolute dimensions. These conversions allow us to simplify
the formulae that describe phenomena related to the scattering. To convert be-
tween absolute units and relative units we use a matrix, known as a UB matrix,
which is calculated from the unit cell parameters and the two vectors specifying
the samples orientation[Eqn. B.1.3].

We can use this reciprocal lattice to plot the crystal’s interactions with the
neutron beam. By defining vectors ~Ki and ~Kf as vectors with the direction
of the incoming and outgoing beams to the sample respectively, and lengths
equal to the reciprocal of the corresponding beam’s wavelengths, we can model
the scattering of the beam as a vector triangle[fig. 2.4]. The third side of the
triangle, which we define as ~Q, is therefore the vector difference caused by the
scattering. This vector is equivalent to the momentum transfer and is used in
further calculations.

2.4 Components of the Triple Axis Spectrometer

The triple axis spectrometer is comprised of several components, mechanically
movable in relation to each other along three axes.(fig. 2.5)

2.4.1 The Source

To probe materials accurately, a reliable source of neutrons must be used. In
the ILL, this source takes the form of a nuclear reactor. The neutrons emitted
from the nuclear fission of the fuel rods are channeled to the experiment along
guides, similar to optical fibres.

Other facilities produce neutrons by other means, including spallation which
produces a short burst of neutrons by colliding photons with heavy atoms (ie.
lead, tungsten).

The exact workings of the source are unimportant to the triple axis spec-
trometer, and all that needs to be noted is that the source produces neutrons
with different energies.

2.4.2 The Monochromator

The closest component to the neutron source is the monochromator. The func-
tion of this component is to extract a neutron beam with a well defined wave-
length. This is achieved by exploiting Bragg diffraction - the diffraction of the
beam by a crystal lattice with regularly spaced lattice layers Dm apart. The

9

A3

A4

P1

P2

Q

Kf

Ki

Ki

O1

O
2

Figure 2.4: The positions of vectors and angles within reciprocal space.

wavelength emitted from the monochromator can be calculated with the Bragg
Law:

nλ = 2Dm sin θ (2.1)

In this case we can ignore harmonics, meaning that n can be assumed to be 1.

2.4.3 The Sample

As has been mentioned, although many types of material can be analysed by
the triple axis spectrometer, we are interested in solids with a crystal substruc-
ture. We will therefore assume that the sample within vTAS is a crystal with
a specified unit cell, oriented within the system to a plane specified by the two
vectors O1 and O2.

2.4.4 The Analyser

The analyser is similar to the monochromator. It is used to analyse a specific
energy transfer within the scattered neutrons.

10

Source

Detector

Analyser

M
on
oc
hr
om
at
or

Sample

a5

a4

a1

a2

a6KfKi

Figure 2.5: The location of angles within the system.

2.4.5 The Detector

The detector simply measures the intensity of the beam output by the analyser.
Typically the detector scans with the analyser through a range of angles mea-
suring intensity at each. As this is a fairly slow process, even with a source as
intense as that at the ILL, several detectors may be combined, for example in
the Flat Cone detector which combines 31 detectors into a single unit allowing
for much quicker measurement.

11

Chapter 3

The Software Engineering
behind vTAS

3.1 Introduction

As has been discussed in the previous chapter, the physics behind vTAS are
not straightforward. The design of software to help model such a scenario must
therefore be built upon solid software design principles to allow as much effort as
possible to be channeled into understanding the complexities of the mathematics
behind the design.

vTAS is a fairly complex entity, comprising thousands of lines of code in a
structured and layered architecture. Combined with the fact that the author
had no experience in solid state physics before working on the project, and the
vagueness of the specification, the task was an ambitious one. This section aims
to look at the creation of the program from a software engineering perspective.

3.2 Existing Program

The original version of vTAS was written by Alain Bouvet in 1998. Developed
in an early version of awt, it contained many bugs, and was almost impossible
to use. Many of the formulae were literal translations from fortran. The code
was contained in a single monolithic class, over 3200 lines long, and, as java was
a new language and its object oriented nature was not as widely known, was
written in a functional style. The program did, however, contain many of the
features still in the modern version. Both the instrument preview pane and the
reciprocal space pane were based on visualisations offered in this initial version.

In 2006 it was decided to update the program. Noelle De Delliou was tasked
with modernising the interface and improving the ease of use of the program.
The existing codebase was utilised, however, which meant that the project was
hampered by the disorganisation of the code.

12

3.3 Specification

The specification for the third version of vTAS was loosely defined, therefore,
as follows:

Rewrite the program, to follow modern software engineering princi-
ples, thus allowing for the future addition of features, and improving
the user experience.

The vagueness of the specification meant that a flexible approach to the
development of the program was necessary. In addition, as the specification
became clearer as the project developed, an agile development paradigm was
necessary in order to adapt to the current requirements. As the vTAS was only
being developed by a single person, however, a rigid software engineering model
was not of great importance to the project, and thus the project was undertaken
with only a basic development model, based partly on the author’s experience
with the extreme programming paradigm.

3.4 New Features

The program itself has been completely rewritten. Although the majority of the
time was spent replicating the underlying data model, and the visualisations
from the previous program, a few new features were added.

3.4.1 Print

As it may be necessary to calculate parameters with vTAS and then use them
in other locations, a print function was deemed a worthwhile addition to the
program. The print function is fairly basic, merely printing the state of the
spectrometer along with the visualisations, however it summarises all of the
programs data, and the code for the feature has the possibility to be extended
should additional functionality be required.

3.4.2 Load/Save

Rather than have to set up the program every time it is run, load/save function-
ality means that the state of the program can be persistent between executions.
Save files could potentially be emailed between users of vTAS, allowing an ele-
ment of collaboration.

The file format for vTAS save files was deliberated over. XML1 was a logical
choice as it has become the de-facto standard for data storage. Instead of creat-
ing a new schema for the format, it was decided to utilise the java Properties
class which allows for the simple export and import of data to an xml file. This

1XML: eXtensible Markup Language - a file format that allows for the semantic storage of
character data

13

q, q_abs,
delta_e,
ki,
kf,
a1,
a2,
a3,
a4,
a5,
a6
sample,
instrument

Spectrometer
Model

lA2, uA2
lA4, uA4
lA6, uA6
walls,
ss,
sa,
sm,
name,
description
monochromator
analyser

Instrument
a, a*
b, b*
c, c*
alpha, alpha*
beta, beta*
gamma, gamma*
o1,
o2,
u_matrix,
b_matrix,
ub_matrix,
type

Sample

d
theta
lambda

Analyser

d
theta
lambda

Monochromator

Figure 3.1: The structure of the data model.

means that the actual format of the file can be left to the java implementation, a
level of abstraction that greatly eases the task of managing the program’s files.

The load and save feature is rather temperamental at present, due to insuf-
ficient time to finish and test it, however it should not be a hard task to extend
it as most of the functionality is in place.

3.5 Design

One of the key flaws with the previous program was that the code had been
assembled disparately throughout a long period of time and without an idea of
the final form of the program. This meant that the code was convoluted and, in
some places, almost incomprehensible. One of the key aims of the new version
of vTAS, therefore, was to improve the design of the program.

3.5.1 Architecture

In complex applications where information is presented to the user, and can be
manipulated, it is considered good practice to separate data from the user inter-
face. This provides several benefits. Firstly, it allows for increased modularity
of code. As the application is split into several discrete layers, each layer can be

14

thought of as a distinct component. This encapsulation, one of the key tenets
of object oriented design, improves the flexibility and durability of the program,
as each component can be tested and developed separately.

Separating the view from the data model can also allow the same data to be
displayed in several different ways. In vTAS, the same underlying data is used to
display several visualisations, and it is this separation of data and presentation
that allows this to be so flexible, extensible and organised.

One of the popular methods of separating data from presentation is known
as Model-View-Controller. In this architecture, the data is represented within
a model, the user interface is known as the view, and an intermediary layer,
known as the controller, is introduced to facilitate communication between the
two. Figure 3.2 shows how this architecture is applied to vTAS. As the layers
are complex, in vTAS they are organised into hierarchies.

This architecture lends itself to several design patterns. As the controller
layer is constantly monitoring the other layers for change, the Observer/Observable
design pattern is an ideal pattern to use. As the Swing toolkit already allows
for this pattern, by implementing action listeners, only the observation of the
data model has to be explicitly defined.

Another design pattern that was utilised within the program was the single-
ton pattern. The singleton pattern is a design pattern that aims to simplify the
referencing of an object within a program when it will only ever exist once. This
is the case for all three of the MVC layers in vTAS, and therefore the root node
of each layer’s hierarchy was implemented as a singleton. This means that the
reference for any object within the program can be obtained simply by locating
the root node and then traversing the layers tree. This technique allows great
flexibility, and ease of design however it should be used judiciously as without
care it can lead to complicated code.

3.5.2 User Interface

The program’s specification dictated that the swing toolkit should be used for
the graphical user interface of the program. Swing is a lightweight, platform
independent interface toolkit for java. This requirement left great scope for the
program. The previous versions of the program had used an applet architecture,
however this was not regarded as a benefit as it left the program constrained
by the performance and space constraints of the browser. By promoting the
program to be a full desktop application, more freedom was allowed in designing
the interface. To fulfil the need to provide a runnable version of the program on
the internet, Java Web Start was used to allow the program to be run from a
hyperlink.

With the constraints of the applet gone, the design of the application was
ready to be overhauled. One of the criticisms of the previous interface was that
the reciprocal space panel was too small to be used easily. In the new design this
has been enlarged significantly, and by changing the magnification with a zoom
bar or the scroll wheel of the mouse the panel has a much simpler interface.

15

View Hierarchy

Controller Hierarchy

Model Hierarchy

O
bserve & Set

Obs
erv

e &
 Set

Observe & Set
Ob

se
rv

e
&

Se
t

Observe & Set

Observes

Observes

Ob
se

rv
es

Observes

InstrumentAnalyserMonochromatorSample

Spectrometer
Model

Contains

Contains

Contains

Con
tai

ns

MainFrame

ParameterPaneInstrumentPreviewPane VisualisationPaneStatusPane

Contains

Con
tai

ns

Contains

Contains

ReciprocalPaneInstrumentPaneExperimentPaneCrystalPane

CrystalController InstrumentController

TASController

ReciprocalSpaceControllerInstrumentPreviewController

Manages

Man
ag

es

Manages Manages

O
bserve & Set

O
bserve & Set

O
bserve & Set

O
bserve & Set

O
bserve & Set

O
bs

er
ve

 &
 S

et

Figure 3.2: The dependencies of the components within the Model-View-
Controller structure.

16

Figure 3.3: A screenshot of the main window of vTAS

The previous program placed a great deal of importance on the preview
of the instrument, giving it almost half of the window’s space. This was very
wasteful, and therefore in the new program this has been shrunk down, with
the instrument automatically scaled to fit.

Another criticism of the previous design was that there was no indication of
what could be edited or moved within the visualisations. In the current version
of the program this is addressed by having small movement arrows appear over
movable parts when the mouse enters the appropriate pane.

3.5.3 Mathematical Model

One of the flaws of the previous incarnations of the program was that the mathe-
matics was implemented without taking advantage of the object oriented design
of the language. This led to very convoluted code, as formulae were frequently
reused.

In response to these difficulties, one of the first things to be written was a set
of data type classes for commonly used types, for example angles and vectors.
These data type classes are immutable, which means that they can be passed
by reference, like strings, without the integrity of the data being compromised.

The actual data model, like the other components of the program, is organ-
ised in a hierarchy. At the top of the tree is the Spectrometer Model class.
This class implements the interface ISpectrometerModel which specifies the
methods by which the model can be altered. It also provides references to the

17

vTAS Configuration
Experiment
|Ki|: 1.43
|Kf|: 1.5
Δ E: -0.44
Q: (1.0,0.0,0.0)

Ki Kf

Q

Cubic Sample
Length A: 5.0
Length B: 5.0
Length C: 5.0
Alpha: 90.0°
Beta: 90.0°
Gamma: 90.0°

Length A*: 1.26
Length B*: 1.26
Length C*: 1.26
Alpha*: 90.0°
Beta*: 90.0°
Gamma*: 90.0°

Source
Sample
Detector

Angles
A1: -41.01°
A2: -82.03°
A3: -65.24°
A4: 49.53°
A5: 38.63°
A6: 77.26°

null : vTAS: 3 Axis Spectrometer Simulator v3.2 Tuesday, August 28, 2007 11:42:11 AM CEST

Figure 3.4: A sample of the document produced by the print function of the
program.

18

a2a1

|Ki|

Ki Kf

|Kf|

a5 a6

Q

a3 a4

Figure 3.5: The relationships and dependencies between the variables when
calculating angles from reciprocal triangle.

various components of the system, namely the monochromator, analyser, sample
and instrument.

Most of the mathematics in vTAS is related to trigonometry. The visualisa-
tions of the underlying data model rely heavily on the elementary properties of
triangles in their calculation, and the calculations are largely derived from the
trigonometry of the vector triangle within reciprocal space. Many of the more
complex of the formulae used in the model can, in fact, be derived from the
cosine law. It may have therefore been simpler, when programming the data
model, to have tackled the mathematics in a more semantic way. Currently the
formulae are implemented as lines of mathematical code, generally using prim-
itive data types. If the data model was to be rewritten it may be advantageous
to consider the problem as a trigonometric one, and thus infer the benefits of
object orientation and strong typing within the calculations, rather than simply
translate mathematical formulae to code as exists in the current system.

An attempt was made to convert the model in this way however time con-
straints prevented this from being successfully completed. This would be a good
area for extension as by converting to an object based model, increased relia-
bility in the mathematics, and modularity of variables, could be accomplished.

3.6 Internationalisation

In an international facility such as the ILL, many languages are spoken. Accord-
ingly, when designing a program to be used in such an environment, interna-
tionalisation (often abbreviated as i18l) must be given due consideration. The
previous program contained many hard coded constants scattered throughout
the program. This is considered bad programming practice as it makes the pro-
gram difficult to translate and requires the program to be recompiled for each
new language.

Java provides tools to facilitate the internationalisation of programs in the
form of the ResourceBundle class. By storing the program’s variables within
an external resource file and then loading them at runtime, the program can be
easily run in several languages.

19

The current version of vTAS utilises these resource bundles, allowing the
program to be run in English or French, depending on the operating system’s
default language. Furthermore, as the constants exist within a UTF82 encoded
text file, new languages can be added without recompiling.3

3.7 Documentation of the Project

One of the negative aspects of the previous code-base was the lack of meaningful
documentation accompanying it. At several points throughout the code, impor-
tant formulae were interspersed with user interface code with no commenting
indicating their function.

Documentation is a crucial part of the modern software engineering disci-
pline. As software projects are likely to be developed by several people over their
lifespan, some explanation of their functionality is vital to provide subsequent
developers with the knowledge necessary to add to the code.

In the development of vTAS it was necessary, therefore, to provide a high
level of technical documentation. As the program was being developed in java,
it was logical to use the standard java documentation format, javadoc, to create
the documentation. 4

The documentation, along with this report, should allow future developers
to gain some insight into the way the program works, and locate any errors that
may occur in the mathematics.

3.8 Testing

To properly verify the mathematics of the program, a suite of tests was written
to compare the output of the program with TasMAD5, and therefore ensure their
veracity. The tests are not as extensive as they could be, however they provide
a good level of confidence in the correctness of the data model layer.

2UTF8 is a character encoding, similar to ASCII, that allows the inclusion of any character
in the unicode standard which contains most international characters.

3 For more information on this method of internationalisation, the reader is encouraged to
consult the official java documentation[8] , or the java tutorial[9].

4Javadoc is an automatic documentation generator that processes comments within the
source files.

5TasMAD: The instrument control software

20

Chapter 4

Evaluation

4.1 Introduction

In a project as ambitious as this one, it is inevitable that some tasks will remain
unfinished, and in some areas the code will not be as polished as that which was
initially invisioned. This section aims to take an objective look at the project,
discuss some of the areas which led to difficulties, and give a balanced overview
of the project.

4.2 Critical Evaluation of the Program

In a summer vTAS has been completely reimplemented. Although some bugs
still remain in the code, the submitted program is functional and hopefully will
prove useful to the users of the triple axis spectrometer. Moreover, the pro-
gram is now written to a high standard, combined with an architechtural plan.
These qualities make it trivial to add functionality or additional visualisations.
In these respects vTAS is a great success. Although not much completely new
functionality was added to the program, many small changes were made, in-
cluding visual indications of the angular limits, and improvement to the zoom
function within the reciprocal pane. In addition the codebase is now a solid
foundation on which future programs can be built.

One of the features that was requested to be added over the summer was a
simulator for the flat cone detector. Unfortunately, the limited amount of time
in the summer meant that this was too ambitious an objective. Another feature
which was requested but not completed was an E vs. Q visualisation. These
features should be easily implemented, and could provide a specification for a
future summer stàge.

21

Lines of Code 5873
Number of Classes 65

Number of Methods 535
Number of Overridden Methods 50

Mean Afferent Coupling 6.037
Mean Efferent Coupling 1.926

Figure 4.1: Code Metrics

4.2.1 Problems Encountered

One of the most persistent problems faced during the development of vTAS
was the complexity imposed by the large number of coordinate systems needed.
The translation between the Cartesian plane and the coordinate system used
within swing, although theoretically simple, made calculating the trigonometry
required by the visualisations difficult. This problem was mitigated by reorgan-
ising the code in a way that made obvious the system in which a point resided.
As mouse positions are reported within the swing coordinate system, at several
points a two way translation has to be performed for a single calculation. It was
thought that the efficiency of the program was less important, in this situation,
than the clarity of the mathematics.

Another conceptual problem was the understanding of the difference between
reciprocal space and the difference between relative and absolute units. This
confusion, and an uncertainty as to which variable lay in which space and in
which units meant that a lot of the formulae had to be rewritten.

4.3 Remaining Tasks

The program has a number of areas that are incomplete. These should obviously
be treated with the greatest importance when future work is to be done on vTAS.
The preferences pane, although mostly functional, still needs work, for example
on the table of wall coordinates. The angles within the preview pane are the
negative of the angles within the system. Modifying these may mean that the
formulae to plot the points within the pane may need to be updated.

The load/save functionality is still a little temperamental. It is able to
retrieve state for the experiment however instrument parameters, for example
the walls, are not retrieved from the save file. In addition, errors are sometimes
encountered when loading the save files.

4.4 Areas for Extension

The program has many opportunities for extension. The requested flat-cone and
E vs. Q visualisations should be treated as of high importance for a future stage.
Additionally finishing the load/save functionality would also be desirable. Based

22

on the author’s experience over the summer, there is at least another summer
of work that could be completed on the program. A suitable specification for
such a stage could be as follows:

Extend vTAS to include additional features and functionality such
as flat cone detection and an E vs. Q visualisation, and additionally
to complete exisiting features such as load/save.

Other features that may be desirable in future versions of vTAS could in-
clude: undo functionality, where the user is able to undo an erroneous mod-
ification; better error reporting, should the angles be out of accepted bounds
or should ~Q not be within the reciprocal plane; the implementation of more
instruments and facilitating the modification of the existing ones.

23

Appendices

24

Appendix A

Definition of Variables

A.1 Angles

a1 Angle between monochromator and incoming beam.

a2 Angle between incoming and outgoing beam in respect to monochromator.

a3 The angle between the incoming wave vector and the sample orientation
vector ~O1.

a4 Angle between incoming and outgoing beam in respect to the sample.

a5 Angle between analyser and incoming beam.

a6 Angle between incoming and outgoing beam in respect to the analyser.

A.2 Experiment

~Ki Incoming wave vector within reciprocal space → | ~Ki| = 2π
λincoming

(Recipro-
cal Space, Absolute Units :Å−1)

~Kf Outgoing wave vector within reciprocal space→ | ~Kf | = 2π
λoutgoing

(Reciprocal
Space, Absolute Units :Å−1)

~Qabs Difference vector within reciprocal space (Reciprocal Space, Absolute Units
:Å−1)

~Q Difference vector within reciprocal space (Reciprocal Space, Relative Units)

∆E Energy change from collision (meV)

25

A.3 Sample

A Crystal unit cell dimension(Real Space, Absolute units: Å).

B Crystal unit cell dimension(Real Space, Absolute units: Å).

C Crystal unit cell dimension(Real Space, Absolute units: Å).

α Angle between B and C.

β Angle between A and C.

γ Angle between A and B.

~O1 Vector indicating the samples orientation plane(Reciprocal Space, Relative
Units).

~O2 Vector indicating the samples orientation plane(Reciprocal Space, Relative
Units).

A.4 Other Parameters

Dm Lattice Spacing of the monochromator.

Da Lattice Spacing of the analyser.

Sm Scattering Sense of the monochromator.

Ss Scattering Sense of the sample.

Sa Scattering Sense of the analyser.

A.5 Coordinates of Instrument Components

M Monochromator

R Neutron Source

S Sample

A Analyser

D Detector

26

Calculate Delta E

Calculate Kf

Calculate |Ki|

Calculate |Kf|

Calculate Ki

dm da

Kf

|Kf|

|Ki|

a1 a2 a3 a5 a6a4

Ki

DeltaE

[UB Matrix]

Q

Qabs

Calculate Q

Calculate Qabs

Calculate
Angles

Figure A.1: The relationships and dependencies that need to be considered
when calculating experiment values from angles.

27

Appendix B

Formulae

B.1 Calculate Sample Matrices from Sample Pa-
rameters

B.1.1 Unit Cell Volume

As all crystal systems are special cases of the triclinic system, we can calculate
the volume using this single formula. [1]

V olume = A ·B · C ·
√

(1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ (B.1)

B.1.2 Reciprocals

A∗ =
(
B × C × sinα
V olume

)
· 2π (B.2)

B∗ =
(
A× C × sinβ
V olume

)
· 2π (B.3)

C∗ =
(
A×B × sin γ
V olume

)
· 2π (B.4)

α∗ = arccos
(

cosβ cos γ − cosα
sinβ sin γ

)
(B.5)

β∗ = arccos
(

cosα cos γ − cosβ
sinα sin γ

)
(B.6)

γ∗ = arccos
(

cosα cosβ − cos γ
sinα sinβ

)
(B.7)

28

B.1.3 UB Matrix

The UB Matrix is used to convert from relative units to absolute units. It is
made up of two matrices, one to scale the system, and one to rotate it.

The B Matrix scales the system and converts from a non-orthoganal reference
fram to an orthoganol one.

|B| =


A∗, B∗ × cosα cos β−cos γ

sinα sin β , C∗ × cos γ cosα−cos β
sin γ sin β

0, B∗ ×
√

1−
(

cosα cos β−cos γ
sinα sin β

)2

, −C∗ ×
√

1−
(

cos γ cosα−cos β
sin γ sin β

)2

× cosα

0, 0, 2π
C


(B.8)

The U Matrix rotates the system.

|U | =

 ~O1 × |B|
((~O1 × |B|)× (~O2 × |B|))× (~O1 × |B|)

(~O1 × |B|)× (~O2 × |B|)

 (B.9)

|UB| = |U | · |B| (B.10)

This means conversions can be performed as follows:

Relative units→ ×|UB| → Absolute units. (B.11)

Absolute units→ ×|UB|−1 → Relative units. (B.12)

B.2 Calculate Angles from Experiment Values

B.2.1 Translate ~Q into reciprocal space

~Qabs = ~Q× |UB| (B.13)

B.2.2 Use inverse Bragg law to calculate a1 & a2

a1 = arcsin

(
π

| ~Ki| ·Dm

)
(B.14)

a2 = 2 · a1 (B.15)

B.2.3 Use cosine rule to calculate a4

a4 = Ss arccos

(
| ~Ki|2 + | ~Kf |2 − | ~Qabs|2

2| ~Ki|| ~Kf |

)
(B.16)

29

B.2.4 Calculate a3 using vector triangle

a3 = − arctan 2

(
~Qabsy

~Qabsx

)
− arccos

(
−

(
| ~Kf |2 − | ~Ki|2 − | ~Qabs|2

2| ~Ki|| ~Kf |

))
(B.17)

B.2.5 Use inverse Bragg law to calculate a5 & a6

a5 = Sa arcsin

(
π

| ~Kf | ·Da

)
(B.18)

a6 = 2 · a5 (B.19)

B.3 Calculate Experiment Values From Angles

B.3.1 Wavelengths

Using the Bragg law:
| ~Ki| =

π

Dm sin a1
(B.20)

| ~Kf | =
π

Da sin a5
(B.21)

B.3.2 Calculating ~Q

Using the cosine rule and the vector triangle:

| ~Qabs| =
√
| ~Ki|2 + | ~Kf |2 − 2| ~Ki|| ~Kf | cos a4 (B.22)

~Qabsx = |Qabs| · cos

(
− arccos

(
−|

~Kf |2 − | ~Qabs|2 − | ~Ki|2

2 · | ~Qabs| · | ~Ki|

)
− a3

)
(B.23)

~Qabsy = |Qabs| · sin

(
− arccos

(
−|

~Kf |2 − | ~Qabs|2 − | ~Ki|2

2 · | ~Qabs| · | ~Ki|

)
− a3

)
(B.24)

~Q = ~Qabs · |UB| (B.25)

B.3.3 Calculating ~Ki

~Ki = (| ~Ki| · cos a3, | ~Ki| · sin a3, 0) (B.26)

30

B.3.4 Calculating ∆E

∆E = 2.072 · (| ~Ki|2 − | ~Kf |2) (B.27)

B.4 Plot Triple Axis Spectrometer from Angles
and Lengths

Cartesian coordinate system.

M = (const, const) (B.28)

R = (Mx,+ve) (B.29)

Sx = (Mx + lms sin(a2)) (B.30)

Sy = (My + lms cos(a2)) (B.31)

Ax = (Sx + lsa sin(a2 + a4)) (B.32)

Ay = (Sy + lsa cos(a2 + a4)) (B.33)

Dx = (ax + lad sin(a2 + a4 + a6)) (B.34)

Dy = (ay + lad sin(a2 + a4 + a6)) (B.35)

B.5 Calculate Angles from the Positions of Spec-
trometer

a2 = (π − 6 RMS) (B.36)

a1 =
1
2
a2 (B.37)

a4 = (π − 6 MSA) (B.38)

a6 = (π − 6 SAD) (B.39)

a5 =
1
2
a6 (B.40)

31

Appendix C

Submitted Files

This section aims to index the submitted content by providing a list of the
submitted files and their locations.

C.1 Code

The code is organised in a hierarchical package structure and should not be
altered manually. More information on the structure of the code is included in
the javadoc documentation.

The code should be readily importable into an IDE such as eclipse, however
some further configuration of the class path, for example, may be required.

The program is also supplied compiled as a platform independent jar file.
This jar file can be used with the java webstart file, vTAS.jnlp to allow the
program to be run over the internet. If recompiling the project to use with web
start, the jar file will have to be re-signed.

C.2 Documentation

The documentation of the project takes the form of html javadoc documen-
tation. This is located in the javadoc subdirectory, and can be accessed from
index.html

C.3 Web Page

The program was designed to replace an applet, and therefore a replacement
web page allowing the program to be run is included. The subdirectory web/
contains everything needed to create this page, and the contents can be copied
directly to a web server.

32

Index

analyser, 10

Bragg diffraction, 9
Bragg law, 10, 30

crystal system, 7

detector, 11
documentation, 20

existing program, 12

flat cone, 11

internationalisation, 19

javadoc, 20

load/save, 13

model-view-controller, 14
monochromator, 9

neutron spectrometry, 6
nuclear reactor, 9

reciprocal space, 29

sample, 10
source, 9
spallation, 9

triple axis spectrometer
components, 9

UB Matrix, 29
UB matrix, 9
user interface, 15

visualisations

calculation, 31
model, 17

vTAS
architecture, 14
design, 14
mathematical model, 17
specification, 13

33

Bibliography

[1] Barthelmy, D. Unit cell dimensions. http://webmineral.com/help/
CellDimensions.shtml.

[2] Baruchel, J., Hodeau, J. L., Lehmann, M. S., Regnard, J. R., and
Schlenker, C. Neutron and Synchotron Radiation for Condensed Matter
Studies. EDP Sciences - Springer-Verlag, 1993.

[3] Busing, W. R., and Levy, H. A. Angle calculations for 3- and 4- circle
x-ray and neutron diffractometers. Acta Cryst. (1966).

[4] Egelstaff, P. A. Thermal Neutron Scattering. Atomic Energy Research
Establishment, Harwell, Berkshire, England, 1965.

[5] Hooke, J. R., and Hall, E. Solid State Physics. Wiley, 1995.

[6] Le Delliou, N. Simulation d’un spectrometre trois-axes. (Previous
Stàge’s Report), 2006.

[7] Sun-Microsystems. Java documentation. http://java.sun.com/j2se/
1.4.2/docs/api/index.html.

[8] Sun-Microsystems. Java internationalisation documenta-
tion. http://java.sun.com/j2se/1.4.2/docs/api/java/util/
ResourceBundle.html.

[9] Sun-Microsystems. Java internationalisation tutorial. http://java.
sun.com/docs/books/tutorial/i18n/index.html.

[10] Various. Java forums. http://forum.java.sun.com/, 2007. (Many help-
ful clarifications, especially on JWS).

[11] Wikipedia. Wikipedia. http://en.wikipedia.org/, 2007. (Various en-
tries - used as an introduction to several topics).

34

http://webmineral.com/help/CellDimensions.shtml
http://webmineral.com/help/CellDimensions.shtml
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/docs/books/tutorial/i18n/index.html
http://java.sun.com/docs/books/tutorial/i18n/index.html
 http://forum.java.sun.com/
http://en.wikipedia.org/

The author wishes to thank the staff of the ILL for their hospitality over the
summer. In particular, acknowledgement must be given to Martin Boehm for
his patient explanation of the physics and help with the endless debugging of

the project, Alain Filhol for his tours of the reactor and invaluable
clarifications, Arno Hiess for the feedback on the interface, and everyone who

read over the report and highlighted the numerous mistakes.

35

Peter Braden
Summer 2007

http://www.ill.fr/Computing/resources/software/vTAS/
Institut Laue - Langevin

Grenoble
France

http://peterbraden.co.uk/
http://www.ill.fr/Computing/resources/software/vTAS/
http://www.ill.fr/

	Introduction
	The Physics of the Triple Axis Spectrometer
	Introduction
	Neutron Scattering
	Solid State Physics
	Crystal Structure
	Reciprocal Space

	Components of the Triple Axis Spectrometer
	The Source
	The Monochromator
	The Sample
	The Analyser
	The Detector

	The Software Engineering behind vTAS
	Introduction
	Existing Program
	Specification
	New Features
	Print
	Load/Save

	Design
	Architecture
	User Interface
	Mathematical Model

	Internationalisation
	Documentation of the Project
	Testing

	Evaluation
	Introduction
	Critical Evaluation of the Program
	Problems Encountered

	Remaining Tasks
	Areas for Extension

	Appendices
	Definition of Variables
	Angles
	Experiment
	Sample
	Other Parameters
	Coordinates of Instrument Components

	Formulae
	Calculate Sample Matrices from Sample Parameters
	Unit Cell Volume
	Reciprocals
	UB Matrix

	Calculate Angles from Experiment Values
	Translate into reciprocal space
	Use inverse Bragg law to calculate a1 & a2
	Use cosine rule to calculate a4
	Calculate a3 using vector triangle
	Use inverse Bragg law to calculate a5 & a6

	Calculate Experiment Values From Angles
	Wavelengths
	Calculating
	Calculating
	Calculating E

	Plot Triple Axis Spectrometer from Angles and Lengths
	Calculate Angles from the Positions of Spectrometer

	Submitted Files
	Code
	Documentation
	Web Page

