

Neutron scattering investigations in extreme sample environments

Title

Tapan Chatterji

Institut Laue-Langevin, Grenoble, France

Extreme sample environments:

- Low temperature
- High magnetic field
- High pressure

- Zero magnetic field
- Electric field

FOR SCIENCE

Pressure:Centre of EarthP = 3.62 MbarCentre of JupiterP = 100 MbarCentre of SunP = 990 Mbar

Magnetic field:Surface of Earth $H = 0.5 \ G$ Surface of Jupiter $H = 1 \ T$ Surface of Sun $H = 50-5000 \ G$ Neutron Star $H = 10^{10} \ T$?

Temperature: Surface of Earth $T = 288 \ K$ Surface of Jupiter $T = 160 \ K$ Surface of Sun $T = 5780 \ K$ Core of Sun $T = 16x10^{6} \ K$ Intergalactic space $T = 2.73 \ K$

Coldest place in the universe is in the low temperature lab: millikelvin? Easy! microkelvin, nanokelvin?

FOR SCIENCE

Earth's magnetic field

NEUTRONS FOR SCIENCE

Solar cromosphere

reveals the structure of the solar magnetic field rising vertically from a sunspot

HINODE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Vela Pulsar

Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

The rings are thought to represent shock waves due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce the jets. The origin of this activity is thought to be enormous electric fields caused by the combination of the rapid rotation and intense magnetic fields of the neutron star.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Vela pulsar jet

antes and

Sample environment for neutron scattering experiments

- Neutron, being a neutral particle, possesses a great penetrating power through engineering materials.
- The construction of sample environment is relatively easier for neutron experiments than for X-ray experiments.

Low temperature

- A vast majority of magnetic structures develop at a low temperature. Also many other interesting phenomena in condensed matter happen only at low temperatures.
- Neutron diffractometrs and spectrometers therefore must be equipped with cooling devices.

Orange He cryostat

First developed at ILL

Side view

Top view

Temperature range: 1.3 – 300 K Great advantage: top loading samples can be changed easily

A cross-section through a standard orange cryostat

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Structure consists of polyanionic puckered layers of As atoms in which Eu atoms are sandwiched.

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Commensurate-incommensurate lock-in phase transition in EuAs₃

PRL 57, 372 (1986)

14000

 $T_N = 11 K$, $T_L = 10.3 K$ AF1 phase below T_L IC phase: between T_N and T_L

Soliton-lattice model No higher-order satellites

- Temperatures down to about 300 mK can be obtained by evaporating ³He (³He cryostat).
- *Temperatures as low as 25 mK can be generated by using a mixture of ³He and ⁴He (dilution cryostat).*

³He-⁴He phase diagram

- The Bose liquid ⁴He becomes superfluid at $T_c = 2.177$ K whereas the Fermi liquid ³He becomes superfluid at $T_c = 2.5$ mK
- Below T = 0.87 K the liquid separates into two distinct phases: ³He-rich and ⁴He-rich phases.
- ³*He-rich liquid is lighter and floats on top of the heavier* ⁴*He-rich liquid with a visible interface.*
- If the liquid is cooled close to T = 0 the ³He-rich phase becomes pure ³He, but ⁴He-rich phase does not become pure ⁴He, but contains 6.54% ³He (finite solubility).

At temperatures much below 1 K dilute solution of ³He in ⁴He behaves like gaseous ³He with a heavier effective mass.

³*He atoms from the top liquid phase evaporate to the gas-like phase on bottom and generate cooling.*

Oxford ³He-⁴He cryostat

Developed at ILL, now commercialised

Side view

Cross section

1/2,1/2,0 reflection

Nuclear spin excitations in Nd₂CuO₄

May 2008

NEUTRONS FOR SCIENCE

Nuclear spin excitations in NdGaO₃

NEUTRONS FOR SCIENCE

High magnetic field

- Magnetic fields often influences the magnetic structures profoundly and causes field-induced phase transitions.
- Often these phase transitions occur at low temperatures and under high magnetic fields.
- So it is necessary to high magnetic fields and low temperatures simultaneously.

Oxford 15 Tesla cryomagnet

Developed at ILL and CENG, now commercialised

Side view

Top view

Kondo-lattice compound CeSb

(H-T) phase diagram of CeSb

The most complex magnetic phase diagram known so far: consists of sixteen phases.

At H = 0 the low temperature Phase is the type-IA phase. The rest are modulated AFP phases containing paramagnetic planes.

The type-I phase is missing, but paramagnetic fluctuations corresponding to its wave vector has been observed.

High pressure

- High pressure causes reduction in volume and changes bond distances and bond angles causing modifications of orbital overlaps and hence exchange interactions.
- *High pressure causes therefore drastic changes in properties of magnetic materials.*

Gas Pressure Cell

Pressure can be tunned easily
Pressure is limited to 5 kbar

P.D. S.ST.

5----

NEUTRONS

FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

McWhan Clamp pressure cell

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

PRB 49, 15096 (1994)

The ILL clamp pressure cell was used.

Important results:

- Stabilization of type I AF phase.
- Disappearance of AFP phases.
- Type I and type IA at high pressure
- CeSb behaves like CeBi at high P.

Crystal and magnetic structure of CuO:

The structure consists of Cu²⁺ ions coordinated by O in approximate square planar arrangement. These planes share edges to form Cu-O-Cu chains.

Cu-Cu chains along [1,0,-1]: Cu-O-Cu bond angle is 146 deg. The strongest superexchange is expected within the chain direction.

FOR SCIENCI

Magnetic structures of CuO

AF phase

Incommensurate phase

Spin frustration in the collinear arrangement

Spin frustration is removed by non-collinear arrangement

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Effect of pressure on the magnetic phases of CuO

Stability range of the IC phase increases at high pressure. It is likely that the AF will be suppressed at pressure of about 100 kbar or so.

NEUTRONS FOR SCIENCE

Frustrated AF MnS₂ on a fcc lattice

MnS_2 orders at $T_N = 48.2$ K with a type-III AF structure

Pyrite-type crystal structure

Type-III AF structure

First-order phase transition in MnS₂

Temperature variation of the 1, 1/2, 0 reflection of MnS_2

May 2008

INSTITUT MAX VON LAUE - PAUL LANGEVIN

High pressure X-ray diffraction on MnS₂

Laboratory X-ray diffraction

J. Phys. Chem. Solids 46, 113 (1985)

NEUTRONS FOR SCIENCE

Synchrotron X-ray diffraction

Physica 139&140B, 305 (1986)

May 2008

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Pressure dependence of lattice spacing and volume

J. Phys. Chem. Solids 46, 113 (1985)

Pyrite-marcasite transition with 15% volume contraction

INSTITUT MAX VON LAUE - PAUL LANGEVIN

High pressure X-ray diffraction on MnTe₂

 $MnTe_2$: type-I AF $T_N = 87 K$

NEUTRONS FOR SCIENCE

Phys. Lett. A 120, 44 (1987).

Phys. Lett. A 112, 411 (1985).

Paris-Edinburgh high pressure cell

1988

Pressure range: 1bar – 200 kbar at RT 1bar – 50 kar at 2 K

Zero magnetic field

Electric field

INSTITUT MAX VON LAUE - PAUL LANGEVIN

NEUTRONS FOR SCIENCE

Magnetic exchange striction is mainly responsible of electric polarisation

c2 c3

Phys. Rev. Lett. (submitted)

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Polarisation matrix elements

Q = (1/2,0,-5/4) $T = 25 K E = \pm 2.2 kV/cm$

 $P_{ij} = (I^{ij} - I^{-ij}) / (I^{ij} + I^{-ij})$

I^{ij} : generalized cross-sections The indices i and j each refer to one of the three orthogonal directions defined by the experiment

Phys. Rev. Lett. (submitted)

NEUTRONS FOR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Hysteresis loop measured on P_{yx}

Q = (-1/2,0,-7/4) Field cooling E = -2.2 kV/cm

- Neutron scattering is a very powerful condensed matter probe especially for structure and dynamics of magnetic materials.
- The realization of sample environment is relatively easier for neutron scattering than for X-ray scattering due to the transparency of neutrons through most engineering materials.
- Many outstanding new experiments can be done if the present limits can be extended by reasonably small amounts.

Properties of some cryofluids

Table 1: Properties of some cryofluids. T_b : boiling temperature at P = 1 bar, T_m : melting temperature at P = 1 bar, T_{tr} : triple-point temperature (pressure), T_c : critical temperature, P_c : critical pressure, L: latent heat of evaporation at T_b (from F. Pobell [6]).

Substance	T_b (K)	T_m (K)	T_{tr} (K)	$P_{tr}(\text{bar})$	T_c (K)	P_c (bar)	L (kJ/l)	Vol. % in air
H_2O	373.15	273.15	273.16	0.06	647.3	220	2252	_
Xe	165.1	161.3	161.4	0.82	289.8	58.9	303	$0.1 imes 10^{-4}$
Kr	119.9	115.8	114.9	0.73	209.4	54.9	279	$1.1 imes 10^{-4}$
O_2	90.2	54.4	54.36	0.016	154.3	50.4	245	20.9
Ar	87.3	83.8	83.81	0.67	150.9	48.7	224	0.983
N_2	77.4	63.3	63.15	0.12	126.0	33.9	160	78.1
Ne	27.1	24.5	24.56	0.43	44.5	27.2	110	$18 imes 10^{-4}$
D_2	23.7	18.7	18.72	0.17	38.3	16.6	50	_
H_2	20.3	14.0	13.80	0.07	33.3	13.0	31.8	$0.5 imes 10^{-4}$
$^{4}\mathrm{He}$	4.21				5.20	2.28	2.56	$5.2 \times 10_{-4}$
$^{3}\mathrm{He}$	3.19				3.32	1.16	0.48	_

Properties of cryofluids

Table 2: Properties of ³He and ⁴He (from F. Pobell [6]).

	³ He	$^{4}\mathrm{He}$
Boiling temperature T_b (K)	3.19	4.21
Critical temperature T_c (K)	3.32	5.20
Superfluid transition temperature T_c (K)	0.00025	2.177
Density at $T = 0$ K and saturated vapour pressure ρ (gcm ⁻³)	0.082	0.145
Molar volume at saturated vapour pressure and at $T = 0 \text{ K } V_m (\text{cm}^3 \text{mol}^{-1})$	36.84	27.58
Melting pressure at $T = 0$ K, P_m (bar)	34.39	25.36

Table 3: Quantum parameter λ of some cryoliquids (from F. Pobell [6]).

Liquid	Xe	Kr	Ar	N_2	Ne	H_2	$^{4}\mathrm{He}$	$^{3}\mathrm{He}$
λ	0.06	0.10	0.19	0.23	0.59	1.73	2.64	3.05

The modulated magnetic phases and lock-in transitions are especially sensitive to pressure.

Modulated magnetic phases

Reciprocal lattice description:

 $\begin{array}{ll} \text{F:} & k_0 = (0,0,0) \\ \text{AF:} & k_0 {=} (1/2,1/2,1/2) \\ \text{Modulated:} & k = k_0 + \delta \\ \text{Satellites} & \text{G} = \text{H} + {-} \ \text{k} \end{array}$

For reviews see: Science 264, 226 (1994) Int. J. Mod. Phys. B 7, 3225 (1993)

Book: Neutron scattering from magnetic materials ed. T. Chatterji, Elsevier.(2006)

Microscopic origin of modulated phases:

- In general competing exchange interactions can lead to modulated phases: Axial next-nearest-neighbour-Ising (ANNNI) model
- A delicate balance between crystal-field splitting and strength of p-f hybridization: CeSb (EuAs₃)
- Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction: rare-earth metals
- Fermi surface nesting: Spin density wave (SDW) in Cr
- Dzyaloshinskii-Moriya anisotropic interaction: long period modulated phase in Mnsi

Magnetic properties of CuO

- The strongly correlated transition metal oxide CuO is closely related with the high temperature superconducting cuprate materials.
- The magnetic coupling between 3d Cu²⁺ spins through the Cu-O-Cu bond is believed to play an important role for super conductivity in high temperature superconductors.
- + The application of pressure modifies significantly the Cu-O-Cu bond angle
- The strength and sign of the exchange interaction depends on the Cu-O-Cu bond angle through the orbital overlap

High spin - low spin transition in MnS₂

Experiment:

J. Phys. Chem. Solids 46, 113 (1985); Physica 139&140B, 305 (1986)

On the basis of volume contraction we suggested that the p-m transition in MnS_2 transition is accompanied by high spin - low spin (HS-LS) and most probably insulator-metal transition as well.

DFT +U calculations:

J. Phys.: Condens. Matter 15, 979 (2003); PRB 73, 115201 (2006)

HS-LS in MnS₂ has been predicted to occur around 110 - 160 kbar

Mn²⁺: d⁵ high spin $(3t_{2g}(up) 2e_g(up), S = 5/2)$ low spin $((3t_{2g}(up) 2e_g(down), S = 1/2)$

Why we need higher pressure

Pressure modifies drastically the stabilities of the magnetic phases in rare-earth magnetic systems CeSb and EuAs3 because T_N and J are small.

The ordering temperature T_N and magnetic exchange interaction J of CuO is relatively high, so to cause drastic modifications of magnetic phases much higher pressures are needed.

The maximum pressure which could be generated at ILL for neutron diffraction experiments has increased significantly enabling us to do further high pressure experiments on CuO and other interesting electronic materials.

Cross-sections through the 15 Tesla cryomagnet

Horizontal cross section

Vertical cross section

INSTITUT MAX VON LAUE - PAUL LANGEVIN