Superconducting Vortices in CeCoIn₅: Toward the Pauli-Limiting Field

Michel Kenzelmann ETH Zürich & Paul Scherrer Institute

University of Montreal Paul Scherrer Institute

University of Birmingham University of Notre Dame Los Alamos National Lab

Univ. of California, Irvine Brookhaven National Lab Andrea D. Bianchi Joel Mesot, Markus Zolliker, Joachim Kohlbrecher

Jon S. White, Edward M. Forgan

Lisa DeBeer-Schmitt, Morten Ring Eskildsen

Roman Movshovich, Eric. D. Bauer, John L. Sarrao, Joe Thompson Zachary Fisk

Cedomir Petrovic

Paul Scherrer Institute

User facilities with neutron, muon and synchrotron sources, and soon a free-electron laser Paul Scherrer Institute Key figures 2008

Staff	~1280
Of which externally financed	~ 300
Doctoral students	~ 270
Apprentices	80
External users	~1700
Number of scientific publications	~ 800

PSI-employees with teaching duties at ETH and universities ~ 70

SINQ spallation neutron source

SANS-I at Paul Scherrer Institute

11 Tesla horizontal-field cryomagnet with dilution insert on SANS-I

11 Tesla horizontal cryomagnet

Improvements to the dilution insert

CeCoIn₅ – model unconventional superconductor

K. Izawa et al., Phys. Rev. Lett. 87, 057002 (2001)

- **x** large γ =1J/mole/K² : heavy-fermion superconductor
- **x** line nodes in the superconducting gap function
- x spin singlet superconductivity
- **x** four-fold symmetry indicates d-wave symmetry $\rightarrow d_{x^2-y^2}$
- x two-dimensional Fermi surface

Field-tunable superconductor

y, distance to QCP T/T 2 T/T exchange energy, 1.6 $T_{n} = 0.4 \text{ K}$ C-C_{Sch}-C_{lattice})/T (J/mol K²) non-critical contrib. y = 0.2 J/mol K² 5T, y = 0.001 1.2 6T. y_=0.14 7T, y_=0.33 8T. y.=0.5 9T. v.=0.8 0.8 0.4 HIIC 0.1 T (K)

Tayama et al., Phys. Rev. B 65, R180504 (2002)

Orbital limiting fields:

H || c : H_{c20} = 15 Tesla H || a : H_{c20} = 35 Telsa

Maki parameters

$$H_p = \Delta_0 / (8 \mu_B \pi \chi_{spin})^{1/2}$$

A. D. Bianchi et al., Phys. Rev. Lett **91**, 257001 (2003)

- Non-Fermi liquid behavior intensifies close to the upper critical field
 CeCoIn₅ is in the proximity of a quantum critical point
 H transition becomes first-order
- H_{c2} transition becomes first-order for T < 1K

Extended second superconducting phase at high fields H $_{\perp}\,c$

Fulde and Ferrell, Phys. Rev. **135**, A550 (1964) Larking and Ovchinnikov, Zh. Eksp. Teor, Fiz **47**, 1136 (1964)

Magnetic field response in type-II Superconductors

Measurement of diffraction Pattern from flux lattice Large distance \rightarrow small angles

Previous studies on CeCoIn₅

m = 36 mg, λ = 6 Angstrom, D11 (ILL), Eskildsen et al. Phys. Rev. Lett 90, 187001 (2003)

m = 86 mg, λ = 4.5 Angstrom, D11/D22 (ILL), DeBeer-Schmitt et al. Phys. Rev. Lett. 97, 127001 (2006)

Neutron scattering intensity generally decreases with increasing field

Requirements of experiment

- Small-angle neutron scattering instrument
- High fields: H > 4T ~ 11T
- Low temperatures: T ~ 50 mK
- High scattering intensity \rightarrow large mass ~ 500mg

Vertical field magnet on a SANS instrument? No, too high background

Low background → horizontal field magnet with sapphire windows

Waiting for new dilution insert at PSI, arrived fall 2006 \rightarrow SANS-I experiment

Experiment on CeCoIn₅

Vortex flux lattice as a function of field H || c

A. D. Bianchi et al, Science **319**, 177 (2008)

Vortex form factor

Scattering intensity should decrease with increasing field (loss of contrast) \rightarrow not observed in CeCoIn₅

→ Correlation length does not depend on the magnetic field strength

Novel vortex structure with paramagnetic cores

A. D. Bianchi et al, Science 319, 177 (2008)

Summary

- CeColn₅ is a singlet d-wave superconductor close to magnetic quantum critical point
- novel vortex structure
- High-field/low-temperature on a nonmagnetic neutron scattering instrument was crucial for a successful study