

Probing nuclear structure with slow neutrons: news from ILL

VIth Topical Workshop on Modern Aspects in Nuclear Structure - Bormio 6-11 February 2023

Caterina Michelagnoli | 8 February 2023

Institut Laue-Langevin

Outline

Thermal neutrons: how and why?

An introduction to a *complementary* probe for nuclear structure, astrophysics and fission

High resolution γ -ray spectroscopy after thermal neutron induced reactions

 (n,γ) reactions on stable (rare) and radioactive targets (shape coexistence, realistic Shell Model interactions, ...)

(n,fission) using a fission tag -systematic investigations in neutron-rich nuclei

Concluding remarks and future possibilities

"The future" for high-resolution prompt γ spectroscopy after thermal neutron induced fission Ideas for the (approaching!) proposal deadline

World's highest neutron flux for in-beam experiments

- $\checkmark~$ up to 1.5 $10^{15}~\text{n/s/cm}^2$
- ✓ in-pile irradiation of radioisotopes
- ✓ "slow" neutrons delivered to ≈ 40 instruments
- ✓ guided with little losses over hundreds of meters

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Neutron-induced reactions

Thermal neutron capture reactions

- ◊ Structure of nuclei close to stability
- \diamond Structure at low spin (below S_n)
- ◊ Cross-sections (applications)

78 N i

 Structure of n-rich nuclei (far from stability)

²³⁵U(n_{th},F)

Proton number Z

- ◊ Fission yields and dynamics
- \diamond ²³⁵U: σ_f =585 b; ²⁴⁵Cm: σ_f =2141 b

¹³²Sn

10-4 %

Fission yields

²⁰⁴Rn

L 187 T

Macroscopic Energy only (like a Liquid Drop) ground state saddle point ²⁴²Cf ²²⁹Th ²⁵⁸Fm ²²⁶Th Pu Pu 00 ²¹⁸Th 0 × 0 ²⁵⁶Fm 0 0 236UJ 'N Ac ^{Th Pa} m Fr Ra . Microscopic effects added ²²⁷Ra (nuclear shells and pairing) ground state saddle point Z=82 ²¹³At particle-induced, SF 201**TI** (b) × e.m.-induced \diamond , \bullet β -delayed fission N=126 + transfer-induced rgy, Me

A.N. Andevev et al., Rep. Prog. Phys. 81 (2018) 016301

Probing nuclear structure with slow neutrons: news from ILL Caterina Michelagnoli 2 16

Generation of angular momentum in fission

B. Back et al., Phys. Rev. C 41 (1990) 1495; A. Bulgac et al., Phys. Rev. Lett. 116 (2016) 122504; O. Litaize et al., Eur. Phys. J A 51 (2015) 177

Determination of *isomeric ratios* and/or detection of prompt γ rays from fission fragments

Shape of the fission fragments. Correlation between E^* and J.

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

The Lohengrin (PN1) fission fragment separator

- ✓ Target in-pile, few mg (²³⁵U, ²⁴¹Pu, ²⁴⁵Cm ...)
- \checkmark 10¹² fissions/s \Rightarrow mass-separated fission fragments, up to 10⁵ per second, t_{1/2} $\ge \mu s$
- $\checkmark~$ Up to $A/\Delta A$ ${>}1000$, $E/\Delta E$ ${>}1000$
- $\checkmark~$ Detection of γ rays, conversion electrons, and β rays

Kinetic energy dependence of fission fragment isomeric ratios for spherical nuclei ¹³²Sn

A. Chebboubi et al., Phys. Lett. B 775 (2017) 190

Realistic shell model calculations around ¹³²Sn

Lifetime measurement of the 11/2+ state in ¹³¹Sb via fast-timing techniques. Shell Model calculations with realistic interactions.

S. Bottoni et al., Phys. Rev. C 107 (2023) 014322; see poster!

The FIPPS instrument at ILL

Fission Product Prompt γ -ray Spectrometer

- ✓ 8HPGe clovers+Anti-Comptons (segmented)
- ✓ "pencil-like" thermal neutron beam (1.5cm diam., 5 10⁷ n/s/cm²)
- ✓ digital electronics
- 🗸 list mode
- ✓ tight polycarbonate casemate (radioactive targets)
- ✓ possibility to add ancillary detectors: LaBr₃, additional clovers from IFIN-HH, ...

C. Michelagnoli et al., EPJ Web Conf., 193 (2018) 04009; many Master/PhD theses

G. Colombi et al., in preparation

LN2 line, detectors cooling on structure, cabling and electronics connection

Learning from commissioning

Carbon fiber vacuum chamber

"Fighting" against n-induced gamma background

ILL 50th anniversary celebration, FIPPS was there!

Nuclear Physics News International 2017: on the cover!

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Installation of tight polycarbonate casemate, preparation for new ASI for handling of radioactive targets (signature ASI/DSI March 2018)

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

End 2018-Early 2019

~10 km cables ~80 l LN₂ per day Up to 70 TB raw data in one cycle

40% improvement in peak-over-Compton background ratio (gain of a factor of 6 in quality of $\gamma - \gamma$ coincidences)

Technical specifications, offers evaluation, reception, installation of antiCompton shields

experiments

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Shell model + realistic interactions around ²⁰⁸Pb

2mg $^{\rm 205}{\rm TI}$ target, 9 days beam time coincidence spectrum with primary γ ray

²⁰⁶TI: Sensitivity to non diagonal matrix elements

N. Cieplicka et al., Phys. Lett. B 802 (2020) 135222

Shape coexistence at zero spin: ⁶⁴Ni

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Shape coexistence at zero spin: ⁶⁴Ni

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Shape coexistence in Ca isotopes

 \approx 20% of existing enriched ⁴¹Ca (radioactive)!

Coincidence with primary γ ray

 $4^+ \rightarrow 2^+ \rightarrow 0^+$ angular correlation

M. Luciani, Univ. of Milan (Master thesis work)

⁸²Se(n, γ)⁸³Se: shape coexistence around N=50

Same active proton orbitals as the neutron ones in $^{62-66}$ Ni. Background reference for 82 Se double-beta decay. 82 Se target 95.3% provided by the CUPID collaboration ($\sigma = 0.044$ b).

F. Conca, Univ. of Milan (Bachelor thesis work)

Structure of rare-earth nuclei: the case of ¹⁶¹Gd

Rare-earth nuclei (Dy, Gd, Eu, ...)

Nuclear structure between Z=50 and Z=126 Single-particle orbitals in deformed potential *Scissor modes* Very complex level scheme

¹⁶¹Gd (Z=64, N=97)

Close to N=90 "questioned" magic number Medical interest (¹⁶¹Tb production) Only few excited states are known 160 Gd(n, γ)¹⁶¹Gd \Leftrightarrow highly isotopically pure target

Target produced at the ILL V4 position

Isotope	σ	A	fraction of	Compos.
	(b)	$\left(\frac{g}{mol}\right)$	captures (%)	(%)
¹⁵⁵ Gd	60330	155	0.3	$3.3 * 10^{-5}$
¹⁵⁷ Gd	254000	157	0.8	$4.2 * 10^{-6}$
¹⁶⁰ Gd	1.4	160	98.9	98.10

A. Saracino, Master Thesis, Univ. Milano ILL

(Almost) complete spectroscopy of ¹⁶¹Gd at low spin

35 new excited levels, 294 new γ transitions found Accepted experiment at IFIN-HH for multinucleon transfer experiment

A. Saracino, Master Thesis, Univ. Milano ILL; A. Saracino et al., to be submitted to Phys. Rev. C

S. Leoni, C. Michelagnoli and J. Wilson, Riv. Nuovo Cim. 45 (2022) 461

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

S. Leoni, C. Michelagnoli and J. Wilson, Riv. Nuovo Cim. 45 (2022) 461

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

Suppression of β -decay induced background

tag of fission events using ²³⁵U diluted in liquid scintillator

D. Reygadas et al., PhD Thesis Univ. Grenoble-Alpes and ILL

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

neutron beam target cell light guide tube

vacuum chamber (C fiber)

Tag of fission events: Pulse Shape Discrimination

time

106

direction light guide tube

neutron beam

vacuum chamber (C fiber)

Tag of fission events: Pulse Shape Discrimination

neutron beam target cell light guide tube

vacuum chamber (C fiber)

Tag of fission events: Pulse Shape Discrimination

time

Systematics of n-rich Br isotopes: combined analysis *III* NEUTRONS of FIPPS and AGATA+VAMOS data

New SM interaction (F. Nowacki, D. Dao, IPHC Strasbourg). Stay tuned!

D. Bevaadas, PhD Thesis, Univ, Grenoble-Alpes and ILL, 2021, D. Bevaadas, J. Dudouet, G

Probing nuclear structure with slow neutrons: news from ILL

High-sensitivity fission experiments at FIPPS

- \diamond Y focusing \Rightarrow large acceptance
- \diamond same Bho for all trajectories
- horizontal focusing (Thales circles)

- ◊ Fission fragment id via time-of-flight
- Technical development in collaboration with CEA (Cadarache and Saclay), CNRS Lyon and Grenoble (ANR project)

DAFFI performance

Approved test experiments at FIPPS and Lohengrin

Probing nuclear structure with slow neutrons: news from ILL - Caterina Michelagnoli

G. Colombi

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear structure, fission and astrophysics (complementary to other facilities)
 - nuclear structure close to stability (single particle vs collective degrees of freedom -²⁰⁸Pb, ¹⁶¹Gd, shape coexistence at zero spin -⁶⁴Ni, N. Marginean's talk)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...) L. Iskra's talk - lifetime measurements G. Colombi's talk

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear structure, fission and astrophysics (complementary to other facilities)
 - nuclear structure close to stability (single particle vs collective degrees of freedom -²⁰⁸Pb, ¹⁶¹Gd, shape coexistence at zero spin -⁶⁴Ni, N. Marginean's talk)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...) L. Iskra's talk - lifetime measurements G. Colombi's talk
- A fission fragment selection setup at a neutron beam will allow for high-sensitivity prompt spectroscopy of fission fragments (excellent performance expected, diamond technology)

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear structure, fission and astrophysics (complementary to other facilities)
 - nuclear structure close to stability (single particle vs collective degrees of freedom -²⁰⁸Pb, ¹⁶¹Gd, shape coexistence at zero spin -⁶⁴Ni, N. Marginean's talk)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...) L. Iskra's talk - lifetime measurements G. Colombi's talk
- A fission fragment selection setup at a neutron beam will allow for high-sensitivity prompt spectroscopy of fission fragments (excellent performance expected, diamond technology)
 Many projects/possibilities:
 - ◇ ¹⁷⁹Ta radioactive target (¹⁸⁰Ta nucleosynthesis -ILL, nToF, LANSCE)
 - fission data open for Lol
 - ◊ diamond-based fission tag test
 - ◊ possibility for ²⁴⁵Cm(n,fission)

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear structure, fission and astrophysics (complementary to other facilities)
 - nuclear structure close to stability (single particle vs collective degrees of freedom -²⁰⁸Pb, ¹⁶¹Gd, shape coexistence at zero spin -⁶⁴Ni, N. Marginean's talk)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...) L. Iskra's talk - lifetime measurements G. Colombi's talk
- A fission fragment selection setup at a neutron beam will allow for high-sensitivity prompt spectroscopy of fission fragments (excellent performance expected, diamond technology)
 Many projects/possibilities:
 - ◊ ¹⁷⁹Ta radioactive target (¹⁸⁰Ta nucleosynthesis -ILL, nToF, LANSCE)
 - ◊ fission data open for Lol
 - ◊ diamond-based fission tag test
 - ◊ possibility for ²⁴⁵Cm(n,fission)
- ◊ Next ILL proposal deadline February 15th 2023 -FIPPS, Lohengrin, PF1B (10¹⁰ cold neutrons/cm²/s, polarized 10⁹ n/cm²/s)

17th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics - CGS17

July 17 - 21, 2022 Grenoble, France

Deadlines:

- Abstract: 28/02/2023
- Registration: 31/03/2021

Contact:

https://workshops.ill.fr/event/188/ Email: CGS17@ill.fr

- Nuclear Structure
- Nuclear Reactions
- Nuclear Astrophysics
- Fundamental Interactions and Symmetries
- Nuclear Data
- Experimental Techniques and Facilities
- Interdisciplinary Studies and Applications

Activities: History, Mountains, Sport,...

Acknowledgements

G. Colombi, L. Domenichetti, R. Pommier, E. Ruiz-Martinez, M. Jenstchel, U. Köster, H. Faust, Y.H. Kim, J.-M. Daugas and other ILL colleagues and services

J. Dudouet et al. IP2I Lyon

N. Marginean, C. Mihai, A. Turturica et al., IFIN-HH

S. Leoni, S. Bottoni et al., University and INFN Milan

B. Fornal, N. Cieplicka et al., PAN Krakow

J.M. Regis, L. Knafla et al., IKP Cologne

and many many other collaborators!!!

Acknowledgements

