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Abstract

Understanding the mechanisms of high-temperature superconductivity in the cuprates remains
one of the great unsolved questions of condensed matter physics. Hole-doping the Mott-insulator
LaoCuQy4 with various chemical species creates a superconductor with a transition temperature T,
that depends heavily on the amount and type of doped species. While the amount of hole-doping
typically dictates the phase diagram, there are certain situations where superconductivity can be
suppressed or enhanced due to structural modifications caused by the dopant species. In this
thesis, I investigate these structural modifications and, in particular, related dynamics in order to
better understand any possible relationship to superconductivity.

A particular interesting sample in this context is Lag_,Sr,CuOy44s (LSCO+0), where doping
can be performed with two distinct chemical species, Sr and O. Doping with Sr is ‘quenched’,
meaning that Sr has a fixed, random distribution on La sites. On the other hand, doping with O
is performed after crystal growth using electrochemical methods. Oxygen dopants are ‘annealed’
in the sense that they sit on interstitial sites and are mobile at room temperature. In addition,
doping with O creates a superconductor with slightly better T; that is equipped with a number
of unique phenomena such as electronic phase separation and complex superstructures. In this
thesis, various aspects of phonon dynamics in LSCO+O are investigated through a combination
of theoretical and experimental methods. Density functional theory and molecular dynamics is
used to numerically estimate the phonon band structure and density of states. Inelastic neutron
scattering is used to probe phonon dynamics and the two methods are compared.

Despite the fact that Density Functional Theory is known to struggle with the electronic struc-
ture of the cuprates, excellent agreement between phonon dynamical simulations and experiments
are found. An analysis of this relationship reveals unique dynamics of octahedral tilt patterns due
to interstitial oxygen. We speculate that these tilt patterns may assist in relieving the inherent
frustration between magnetism and superconductivity in LSCO4O. Finally, anomalous features
in the Cu-O bond stretching phonon of two different LSCO+O samples is observed with neutron
scattering. This ‘phonon anomaly’ is suspected to be a signature of charge density fluctuations that
might be important for superconductivity. While previously observed in Sr-doped Lag_,Sr, CuQy,
this result rules out a phonon anomaly caused by structural mechanism related to the specific
dopant type.






Resumé

Forstaelsen af hgj-temperatur superledning i kupraterne er stadig et ulgst spgrgsmal i faststoffysikken.
Ved at huldope det Mott-insulatorende materiale LayCuO4 med forskellige kemiske arter, skabes
en superleder med en overgangstemperatur 7. der afhsenger kraftigt af typen og meengden af
denne kemiske ‘dopant’ Selvom meengden af huldoping typisk dikterer fasediagrammet, er der
situationer hvor superledning kan understrykkes eller forbedres pa baggrund af strukturelle modi-
fikationer forudsaget af den kemiske dopant. I denne athandling undersgges disse strukturelle
modifikationer, og iseer den relaterede dynamik, for bedre at forsta en eventuel relation til super-
ledning.

En seerligt interessant prove i denne sammenheeng er Las_,Sr,CuOy44s5 (LSCO40), hvor dop-
ing kan udfgres med to forskellige kemiske arter, Sr og O. Doping med Sr er ‘quenched’, hvilket
betyder at Sr har en fikseret, tilfeeldig distribution. P& den anden side, udfgres doping med O ved
brug af elektrokemiske metoder after krystallen er groet. Oxygen doping er derfor ‘annealet’ i den
forstand at O sidder pa interstitielle sites og er mobile ved stuetemperatur. Derudover skaber dop-
ing med O en superleder med lidt bedre T, der er udstyret med en rakke unikke feenomener som
elektronisk faseseperation og komplekse superstrukturer. I denne athandling undersgges diverse
aspeketer af fonon-dynamik i LSCO+O gennem en komination af teoretiske og eksperimentelle
metoder. Density Functional Theory og molekyledynamik bruges til at estimere fonon band-
strukuter og density-of-states. Inelastisk neutron spredning bruges til at undersgge fonon dynamik
eksperimentelt og de to metoder sammenlignes.

Selvom Density Functional Theory ikke kan beskrive den elektroniske struktur af kuprater,
finder vi en fremragende overensstemmelse mellem simulering og eksperiment i kontekst af fonon-
dynamik. En analyse af denne overensstemmelse afslgrer unik dynamik af octahedrale tilt-mgnstre
som konsekvens af interstitiel oxygen. Vi formoder at disse tilt-mgnste kan assistere til at lindre
den kendte frustration mellem magnetisme og superledning i LSCO+0. Afslutningsvis undersgger
vi en sakaldt fonon-anomali relateret til en Cu-O vibration i to forskellige LSCO+O prgver ved
hjelp af neutronspredning. Denne fonon-anomaly mistankes for at veere relateret til ladningsfluk-
tationer som igen misteenkes for at veere vigtigt for superledning. Selvom denne anomali tidligere
er observeret i Sr-dopet Las_,Sr,CuQO,4, udelukker dette resultat en fonon-anomali forudsaget af
strukturelle mekanismer relatret til den specifikke dopant.
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Chapter 1

Introduction

In this thesis, I explore certain aspects of the so-called high-temperature superconductors. While
these materials were discovered fairly recently (1986), they have a rich history with hundreds of
thousands of citations and, to this day, a lively debate surrounding the microscopic nature of this
mysterious macroscopic quantum state. The purpose of this chapter is to briefly state the ‘the
story so far’ in broad strokes, and then dive deeper into state-of-the-art research relevant for the
work performed in this thesis.

1.1 Superconductivity

Superconductivity is a state of matter where a material is able to conduct electricity with zero
DC resistance below a certain critical temperature T;. Since we, fortunately, live in a world where
the ‘spherical cow in a vacuum’ model is a very crude approximation to reality, it is remarkable
to find real materials where electrons can propagate without friction. In fact, experiments have
shown, that under the right conditions it is possible to keep a persistent superconducting current
running for 100000 years [1]!

Superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes, essentially as a
consequence of being able to liquefy helium in 1908 and reach temperatures close to absolute zero
(see ref. [2] and references therein for a breakdown of the experiments). His low-temperature
measurement of lead revealed a sudden drop in resistivity at 4.2 K, as seen in the historic plot on
figure 1.1

Despite this remarkable experimental result, it would take 20 years for the next major milestone
to appear. In 1933 the Meissner effect was discovered [4], showing that superconducting materials
would completely resist an applied magnetic field by exhibiting perfect diamagnetism as sketched in
figure 1.2. In 1935 this effect was phenomenologically explained by the London equations, showing
that the Meissner effect is due to superconducting currents on the surface of the material [5]. From
their relatively simple set of equations, an observable length scale known as the penetration depth

0,45,
g0z 3'53
008
0025
o5
0'004[’00 7 (27 % 40

Figure 1.1: Left: Kammerling Onnes (right) and his chief engineer (left) in their cryogenics lab.
Right: Resistivity as a function of temperature in elemental Lead. Both images from ref. [2].
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T>Tc T<Tc

Figure 1.2: The Meissner effect. As a superconducting material is cooled below T, the applied
magnetic field B is completely expelled due to superconducting currents on the surface. As a
consequence there is no magnetic flux inside the superconducting material, in contrast to the same
situation for ‘normal’ conductors. Figure from [3].

m
A= | ——
Hong

where pi is the permeability of free space, n the number concentration of the superconducting car-
riers, m the electron mass and q the electron charge. This length scale determines how an external
magnetic field penetrates the superconductor through the relationship B(x) = B(0) exp(—x/A). A
is typically on the order of 20nm to 100 nm [6].

Another roughly 20 years would pass until Landau’s work on phase transitions paved the way
to understanding the superconducting phase transition as a thermodynamic quantity through the
Ginzburg-Landau equations in 1950 [7]. T will not repeat the details here, but the idea is to make a
polynomial expansion of the free energy as a function of a complex superconducting wavefunction
1. As the material is cooled below T, v ‘chooses’ a phase and breaks gauge symmetry, analogous
to how a ferromagnet choses a common direction for the magnetic moment at the magnetic phase
transition. This description predicts an new characteristic length scale of the superconductor called
the coherence length £ and recasts the penetration depth in terms of v:

1> m
§ = )\ = 72 3
4m|a dpoe?vy

where « is a phenomenological parameter of the polynomial expansion. The ratio of these paramet-
ers, k = \/&, are used to classify superconductors into type-I (k < 1/v/2) and type-IT (k > 1/+/2).
The significance of k > 1/ V/2 can be understood as a threshold where the surface tension between
normal and superconducting phases becomes negative [8]. Intuitively, the coherence length &
defines the shortest length within which the superconducting carrier concentration are allowed
to change considerably. For elemental metals & can be on the nanometre to micrometre scale:
1600 nm in Al and 83nm in Pb [6]. In the cuprates (which will be discussed in detail in the next
section), £ is typically on the order of a few lattice spacings (1 nm in YBayCuzO7_s [9]).

Based on Ginzburg-Landau theory, Abrikosov predicted the existence of vortices in Type-II
superconductors, which showed excellent agreement with the measured magnetization of several
lead alloys [8]. These vortices can be pinned by defects and form a lattice that we have been
able to image using modern day microscopy techniques (see e.g. [10] for a recent example with
beautiful real-space images). The experimental evidence piled up [11, 12], and it quickly became
evident that Ginzburg-Landau theory is applicable to most known superconductors, including the
cuprates and iron-based varieties.

Despite the descriptive power of Ginzburg-Landau theory, we are left with no recipe on how to
construct, even theoretically, ‘better’ superconductors. In order to manipulate material properties,

was defined
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it is necessary to understand the microscopic properties that lead to macroscopic behaviour (e.g.
how phonons influence thermal properties or how magnetic exchange influences magnetic proper-
ties. Inspired by Ginzburg-Landau theory, rapid progress towards a microscopic theory was being
made in the mid 1950s, culminating in the famous BCS theory formulated by Bardeen, Cooper
and Schrieffer [13].

BCS theory is based on the assumption that an attractive interaction between electrons at
the Fermi level can result in so-called ‘cooper-pairs’, a bosonic quasi-particle consisting of an
electron pair with opposite momentum and spin. The bosonic nature of this quasi-particle can,
at low temperatures, result in a Bose-Einstein condensate where a large fraction of these electron
pairs occupy the lowest energy quantum state. This microscopic theory of superconductivity
made several testable predictions, such as the appearance of an energy gap with a temperature-
dependent width A(T') in the electronic density of states related to the critical temperature through
the relationship

2A(T =0) = 3.5kpT,,

where kp is the Boltzmann constant. A few years later electron tunnelling experiments confirmed
this prediction with reasonable accuracy [14, 15]. Additionally, Josephson predicted that super-
conducting currents could tunnel across an insulating barrier [16], experimentally verified a few
years later [17].

While BCS theory predicts an attractive interaction between electrons, the original paper
[13] makes no assumption about the nature of this interaction. Some experiments, performed
a few years prior, showed that T, of Hg'® was higher when compared to that of natural Hg
(avg. atomic weight of 200.6) [18, 19]. Since the chemistry of these materials can be assumed
identical, this experiment suggests a positive correlation between phonon frequencies and T, since
lighter elements have more energetic vibrations. Assuming an attractive potential due to lattice
vibrations, BCS theory could relate the attractive interaction to phonon frequencies and predict a
relative relationship between isotopic mass and critical temperature [20]:

1
\/ Mion ’

where my,, is the isotopic mass of the constituent ionic species. With BCS theory, supercon-
ductivity in many elemental metals were believed to be ‘solved’ with the identification of phonon-
mediated superconductivity. Unfortunately, this discovery also set a practical upper limit on T.
In order to increase phonon frequencies, and thus critical temperatures, we need materials with
low mass atomic species, while still being crystalline. At ambient pressure this practical upper
limit is often quoted to be around 30 K. A good demonstration of this principle is the case of HaS
where researchers were able to reach a critical temperature of T, = 200 K by applying a pressure
of 155 GPa [21]. This material contains the light atomic species we require, but cannot crystallize
at ambient pressures so we can only reach high critical temperatures under extreme conditions. A
different example is the highly unusual case of MgBs, where coincidences add up to an unusually
high electron-phonon coupling resulting in a critical temperature of T, = 39K [22].

While this thesis is about cuprates, which cannot be described within the BCS framework, I
believe that the history of conventional superconductivity emphasizes exactly what is desired from
a ‘solution’ to high-temperature superconductivity. It is also a fascinating story due to the fact
that the tools to solve the problem were not even close to being developed when the phenomenon
was discovered. It took roughly 50 years for a satisfying conclusion and we have only been working
on the cuprates for roughly 30 years.

T ox

1.2 Cuprates

With this brief introduction to superconductivity, I will proceed with an introduction to cuprate
superconductivity. While the previous section contains research results and explanations generally
accepted and agreed upon, it is difficult to capture an unbiased view of cuprate research. As
such, the following will be somewhat narrowly focused. While this is a reasonable choice for this
introduction, it is important to realize just how massive the field is and how impossible it is to
know every last detail.

Before we begin, I want to establish some of the nomenclature As the title of this thesis suggests,
I am working on the so-called ‘high-temperature superconductors’ This definition essentially only
concerns itself with the value of the critical temperature (usually above the ‘BCS-limit’ of 30 K),
without saying anything about other physical properties. On the other hand Type-I and Type-
II, as seen in the previous section, are rigidly defined with respect to their properties as defined
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Table 1.1: list of common cuprate families. In the case of La-214, doping is performed by ex-
changing La with Re = Sr, Ba or by the introduction of additional oxygen . In Y-123, doping is
performed by removing a small amount of oxygen d. n is the number of CuOs layers per ‘copper
oxide block’ (see figure 1.3)

Chemical Formula Name Optimal T [K] References
Las_Re,CuOyys La-214 / LSCO 40 [23]
YBaQCu3O7_5 Y-123 / YBCO 93 [24]
BigSrgCan_lcun02n+4 Bi—22(n—1)n 120 [25]
TisBasCay_1Cu,Osns  Ti-22(n-1)n 127 26-29]

[

HgBasCa,,—1Cu,O2, 2 Heg-12(n-1)n 133

through Ginzburg-Landau Theory. Finally, ‘conventional superconductors’ are those that can be
microscopically described with BCS theory, while "unconventional superconductors’ cannot. While
cuprates are relatively simple crystals, most of them have a variety of names and abbreviations
attached to them. Table 1.1 lists the most important ones along with their critical temperatures.

The discovery of LBCO

Roughly 30 years after BSC theory was nailed down, in 1986, Bednorz and Miiller discovered
a new type of superconductor while trying to manipulate the electronic properties of the anti-
ferromagnetic insulator LaoCuOy4. By effectively removing a small number of electrons from the
system by substitution of dopant species, they achieved a record T, of 30K. Shortly after, in
1987, the sister-compound YBasCu3zO7_s was discovered, shattering previous records and finally
achieving a critical temperature T, = 93 K that could be reached using liquid nitrogen [24].

While the increased critical temperatures are remarkable on their own, it quickly became
apparent that we were dealing with a completely new type of superconductivity which cannot be
explained with BCS theory. The normal state (T' > T.) of cuprate superconductors is as, if not
more, complex when compared to the superconducting state and the BCS assumption of being
metallic in the normal state is generally not fulfilled. In addition, the BCS relationship between
isotopic mass critical temperature (T, o< mi;?l‘S) is not fulfilled when performing O'6/0'® isotopic
substitution [32].

Similar to semiconductors, the properties of the cuprates are dramatically changed with the
introduction of dopant species. In general, we call the addition of electrons electron doping and the
removal of electrons hole doping. In the original paper, La;CuQO4 was hole-doped by exchanging
La** with Ba?t. We define the amount of hole-doping (ny,) as the fraction of holes added per
CuOs layer. The amount of electron doping (n.) is defined similarly. In general, the undoped
compounds ny, = 0 are anti-ferromagnetic insulators and you need a small amount of doping to
make the materials superconducting. It it also possible to dope too much (typically ny > 0.25)
and the materials become non-superconducting metals.

The fact that we need finite amounts of doping in order to make cuprates superconducting,
makes them inherently inhomogeneous materials. This inhomogeneity may or may not be import-
ant for cuprate superconductivity, but there is no denying that it exists. In fact, recent STM
studies on underdoped BisSroCaCusOs4s5 (nn, = 0.06, T, = 10K) have shown significant spatial
inhomogeneities due to random distributions of defects [33].

Structure

Cuprate superconductors are characterized by a layered structure where CuQOs layers are separated
by so-called charge reservoirs (or spacer layers). In general, the conventional Bravais lattice is either
tetragonal or orthorhombic with the CuOs layers in the a-b plane. A few examples of cuprate
crystal structures is shown in figure 1.3. The different structures are generally characterized by
the number n of subsequent CuOs layers. Interestingly, there appears to be a maximum T,
for compounds with n = 3. It has been proposed that this maximum at n = 3 is due to a
balance between Josephson tunneling between adjacent layers (tends to increase T, and the charge
imbalance between outer and inner layers (tends to decrease T¢) [34].

Doping is performed either by substitution or addition of dopant species as indicated by table
1.1. Doping thus necessarily changes the lattice either due to a difference in ionic radii of a
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La-214 Ti-2201 Y-123 Ti-2212
Cu0,
CuO, Ca
Y Cu0,
CuO,
Charge
Reservoir
Copper
oxide
block

Cu0,
Cu0, Ca
Cu0,
n=2 n=2

Figure 1.3: A selection of cuprates and a schematic of their layered structure. Left: The structure
of LapCuOy4 (La-214) in the tetragonal coordinate system. Modified from [35]. Right: The layered
structure of various cuprates with n = 1 and n = 2. For the naming scheme and chemical formulae,
see table 1.1

substitutional dopant or a strain in the lattice because of an interstitial species. In the case of
substitutional doping of LagCuOQy, the structural and electronic properties vary wildly (as we shall
see in section 1.3) depending on the dopant species (Ba, Sr).

Different members of the cuprate family have their own structural peculiarities. In single-layer
LSCO, many structural properties are linked to the CuOg octahedra which are not present in
structures with n > 2 and in YBCO, Cu-O chains form along the crystallographic b-axis. Despite
these specific structural properties of the various cuprates, they are all equipped with square CuO4
planes and have remarkably similar phase diagrams.

Phase diagram

A general phase diagram for the cuprates is shown in figure 1.4 illustrating the many macroscopic
and microscopic phases in the cuprates as a function of temperature and doping. First, figure 1.4
(left) shows a asymmetry between hole and electron-doping. Since cuprates are superconducting
for a wider range of doping on the hole-doped side, most research focuses on this side of the
phase diagram. Second, as shown in figure 1.4 (right), cuprates are only superconducting for a
narrow range of hole doping typically between nj = 0.05 and np = 0.25 with a maximum around
np = 0.15. This region is known as the ‘superconducting dome’.

I emphasize here the very different states of matter at the boundaries of the superconducting
dome at T = 0: Over-doped cuprates are typically metals while underdoped cuprates are magnetic
insulators. In some sense, superconductivity is optimized in a region between localized (magnet)
and itinerant (metal) behavior — a region also containing poorly understood normal state (T' > Tt.)
behavior such as the Pseudogap and strange metal phase.

The Pseudogap is a curious phenomena first observed in NMR measurements of YBCO [38]
and later on in the c-axis resistivity [39] and specific heat [40]. The name comes from the fact
that, by now, it is generally associated with the opening of a gap in the electronic density of states
(see below). The difficulty in finding a microscopic origin of the phase transition at the Pseudogap
temperature 1™ has attracted as much attention as the superconducting transition itself. Many
researchers believe that the key to understanding the superconducting transition is directly related
to the Pseudogap. One idea is that of ‘pre-formed pairs’, where Cooper pairs start forming at 7%,
but the macroscopic superconducting state fails to settle between T and T, due to incoherent
fluctuations in the phase of the pairing field [41, 42].

The strange metal phase is possibly the least understood part of the cuprate phase diagram
[37]. A ‘strange’ metal is essentially a phase of matter where the theory of ‘normal’ metals (Fermi
liquids) breaks down and is a phenomenon seen in a number of correlated electron systems, not
just the cuprates. A significant indicator of this behavior is a linear temperature-dependence of
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Figure 1.4: Left: Generalized phase cuprate phase diagram for selected electron- and hole-doped
materials, emphasizing the asymmetry between the two sides of the phase diagram. From [36].
Right: Generalized phase diagram for the hole-doped side annotated with microscopic ordering
phenomena. From [37].

resistivity (see e.g. [43] for a cuprate example), where a normal Fermi liquid varies as T2 at low
temperatures. A recent study even suggests that this linear-in-7T" resistivity in the cuprates is a
generic property related to a universal scattering rate [44].

By outlining the phase diagram in this way, I intend to illustrate both the difficulty of solving
the cuprate problem and the many experimental methods and theoretical tools necessary to invest-
igate the various features of this complex phase diagram. Until now, apart from crystallographic
information, we have mainly considered macroscopic behavior through bulk measurements such
as resistivity, specific heat, optical band gap or magnetic susceptibility. We now turn to a brief
overview of microscopic behaviour, starting with momentum-resolved measurements of the Fermi
surface.

Fermi Surface

Angle-Resolved Photoemission Spectroscopy (ARPES) is a method in X-ray spectroscopy that
directly probes the electronic band structure of materials. This method has been extremely im-
portant in strongly correlated electron systems in general and has a rich history with the cuprates
(see the extensive review by Damascelli et al. [45], which also serves as a good introduction to the
experimental method). Although a few ARPES experiments were carried out, (see chapter 9) this
thesis primarily concerns itself with neutron scattering as an experimental technique. Thus the
technical details of ARPES will not be reviewed here but can be found in literature ([46] is a great
introduction).

ARPES experiments are extremely surface sensitive experiments with a typical penetration
depth of a few lattice spacings, and thus requires samples that cleave naturally at the interface one
wants to probe. While cuprates have a layered structure, the materials themselves are also quite
brittle, so the in-situ cleaving procedure can be challenging. However, since superconductivity is
generally associated with a gap at the Fermi level due to Cooper pair formation, this technique is
extremely valuable for our understanding of unconventional superconductivity.

Figure 1.5A and figure 1.5B shows our ‘reference’ Fermi surface as calculated from Density
Functional Theory (more on this in chapter 2 and 3), representing the overdoped part of the
phase diagram. Here we see that the conduction band is made up of electrons from the d,2_,:
orbital that cross the Fermi level halfway towards the anti-ferromagnetic wave vector (, 7). This
crossing defines the so-called ‘Fermi arcs’ shown in figure 1.5B. As we move towards the optimally
underdoped or optimally doped part of the phase diagram, the Fermi arcs are broken up as shown
in figure 1.5C, revealing both the superconducting gap Ay and the Pseudogap A*. These gaps
have been identified and distinguished in experiments on Bi2212 as shown in figure 1.6. These
discontinuities at the Fermi surface are also direct experimental evidence that we are dealing with
a system that cannot be explained by conventional theories.

The structure of this superconducting gap (Ag) reveals certain symmetries of which, in turn,
reveals the ‘pairing symmetry’ of the Cooper pairs (see [50] for a review) which is related to their
total spin and orbital angular momentum. These symmetries are what gives rise to the naming
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Figure 1.5: Fermi surface of the cuprates with respect to the cupper oxide planes. A: Band
structure of overdoped Lag_,Sr,CuQy4, showing the Cu d orbitals along high-symmetry lines.
calculated with Density Functional Theory. Modified from ref. [47]. B: The same band structure,
this time represented in two dimensions, with the lines showing where the d,2_,2 band crosses the
Fermi surface. [45]. C: The gap structure of underdoped Lag_,Sr, CuOy, showing how the ‘arcs’
in B are broken [48].
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Figure 1.6: Experimental evidence of both the d-wave gap at T = 10K (below T. and the
Pseudogap at T = 130K (just above T¢) in the trilayer (n = 3) cuprate Bi2223. The data is
taken along the fermi arcs (figure 1.5B) and clearly show the momentum dependence of the two
distinct gaps. Figure from ref. [49].

scheme taken from electron orbitals, where s-wave superconductors have an isotropic gap and d-
wave superconductors have a gap with momentum dependence A* = |cosk, — cos ky|/2, where
(ky, ky) are wave vectors along the Fermi arcs (see A in figure 1.5C). Other symmetries have also
been found, such as p-wave in SroRuOy [51] and f-wave in UPt3 [52].

While these observations of the electronic band structure and Fermi surface thus tells us a lot
about the nature of the superconducting pairing, it does not directly give us a mechanism for the
pairing similar to how BCS theory and the isotope effect gave us Cooper pairs due to phonons.
While theoreticians have been working tirelessly to construct models that can explain all these
behaviours, no consensus have been reached at this point. For this reason, some experimentalists
are looking at microscopic correlations in order to uncover what the atoms and electrons are ‘doing’
at the various phase transitions summarized in figure 1.4.

Microscopic correlations

When any type of phase transition happens in a material it, by definition, must be caused by a
microscopic phenomenon. Any satisfactory theory in condensed matter physics should be able to
explain macroscopic behavior starting from the constituent parts and experiment that can probe
microscopic behavior are often essential. Sometimes, as with the isotope effect in conventional
superconductors, we can infer the microscopic behavior in indirect ways, but often it is necessary
to probe the atomic length scales directly. The microscopic probe used in this thesis is neutron
scattering, which is used to infer structure and dynamics through a scattering process between a
beam of neutrons and a sample. Technical details of the method will be covered in chapter 2, but



14 CHAPTER 1. INTRODUCTION
A B
Phtitety titatetd tlotitit tlotitit
Ptotitit lT—TOlTlT Vtodltitl  ltlotitd
tititety  titititd tiotitit  tiotitit

Figure 1.7: An illustration of how holes can get ‘stuck’ in an antiferromagnetic background. A: A
single hole is placed in on an antiferromagnetic lattice and tries to propagate to the right. As it
moves, ferromagnet links are created which is energetically unfavorable. B: One way to overcome
this problem is if the holes align next to each other, allowing for a 1-dimensional ‘stripe’, where
the electrons can propagate, despite the strong Coulomb repulsion. In addition, if (as shown) the
spins are anti-aligned across the stripe, transverse fluctuations can occur without creating these

ferromagnetic links.
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Figure 1.8: Left: The so-called ‘Yamada plot’ [54] of magnetic incommensurability ¢ as a function
of hole doping p in three different cuprates. x is the nominal Sr doping of Bi2201 which has been
translated into hole doping. From ref. [55]. Right: The dispersion of these incommensurate
structures, scaled by magnetic exchange. This hourglass dispersion is a ubiquitous, but not unique
[56, 57], feature of the cuprates.

for now we briefly state some of the important results.

As mentioned earlier, the undoped cuprates are anti-ferromagnetic insulators. While an odd
number of electrons in the system usually results in metallic behaviour, the localized shape of
the d orbitals results in static magnetism due to an exchange interaction J and the physics are
reasonably well-described within linear spin wave theory [53].

As one moves to finite values of hole doping, this antiferromagnetic order is interrupted and
some electrons can start to propagate through the material. A common analogy is that of magnetic
interactions causing a traffic jam of electrons that is then relieved as one moves from left to right
in the phase diagram (figure 1.4). A real-space visualization of this analogy is shown in figure 1.7.
It turns out that this gradual destruction of magnetic order happens in a peculiar way where the
antiferromagnetic ordering becomes incommensurate with respect to the crystal lattice, with an
‘incommensurability’ é that is linear in doping as shown in figure 1.8A.

Figure 1.8A also reveals a saturation of this incommensurability at ny =~ %, suggesting that
period-8 magnetic order is somehow important for cuprate superconductivity. On the other hand,
the phase diagram reveals that T, is supressed at exactly this doping in a number of compounds,
with optimal T¢ requiring a few percent more doped holes per CuOs plane at ny ~ 0.16. It thus
appears as if these observations are universal for the cuprates but at the same time detrimental for
superconductivity. This ‘% conundrum’ has given rise to the concept of competing orders [58-61],
where superconductivity emerges near a plethora of near-degenerate electronic phases where some
of them are detrimental to superconductivity.

The excitations of this magnetic order also reveals a ubiquity as shown in figure 1.8B. It
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turns out that the magnetic fluctuations from this incommensurate order has a highly unusual
‘hourglass’-shape, where the ‘neck’ of the hourglass is scaled by the strength of the magnetic
exchange in the parent compound. Additionally, when static magnetic order disappears the fluc-
tuations persist and become gapped. While this picture is appealing, some experimental results
deserve to be mentioned in this context. First, it was recently suggested that the magnetic order
and fluctuations are distinct phenomena due to a mismatch in wave vector [62]. Second, Kofu et al.
found evidence of gapped excitations and static order in samples close to ny = %. Third, an hour-
glass excitation spectrum was observed in cobalt-oxides with no stripe order or superconductivity
[56, 57].

These observations, together with the d-wave structure of the Fermi surface, intuitively points
to a picture where the behaviour of the d 2_,» band alone is the key to understanding cuprate
superconductivity. One popular approach is one where pairing happens not due to an external
attractive potential, but through spin fluctuations of the electrons themselves [64]. While these
models are not without their problems (Anderson has argued that the idea of a bosonic glue might
not even be appropriate [65]), they reproduce parts of the phase diagram quite well [66].

1.3 La214

I will now depart from general observations in the cuprates and focus on a particular class of
cuprates based on the parent compound LagsCuQy (see figure 1.3). Sometimes known as ‘La214’ or
with specific acronyms depending on the dopant species, these materials are single-layer cuprates
with a relatively simple crystal structure and a maximum critical temperature 7, ~ 40 K.

Crystal Structure

La214 generally exist with four different structural symmetries, ordered here from highest to lowest
symmetry:

o High-Temperature Tetragonal (HTT). Spacegroup 139 (I4/mmm)
o Low-Temperature Orthorhombic (LTO). Spacegroup 64 (Bmab)
o Low-Temperature Tetragonal (LTT). Spacegroup 138 (P42 /ncm)

o Low-Temperature Less Orthorhombic (LTLO). Spacegroup 56 (Pccn)

which can all be described with reference to the structure shown in figure 1.9. Comparing with
figure 1.3, we see that this structure is enlarged and rotated by 45°. The smaller structure is known
as the tetragonal coordinate system, and the larger is the orthorhombic coordinate system since
they represent the conventional cell of the HT'T and LTO phase, respectively. Unless otherwise
specified, we will generally use the orthorhombic coordinate system in this thesis.

The difference between the structural phases can be identified with respect to the tilting pattern
of the CuOg octahedra. We define the rotation Q; as a rotation along a (around b) and Q5 as a
rotation along b (around a) with respect to figure 1.9. The tilts Q1, Q2 along with the orthorhombic
strain n = Z;Z can fully describe the structural phase transitions [67].

Since this thesis is focussed on specific structural aspects and phonon dynamics, this ‘relatively’
simple crystal structure is a particularly strong point for us. Since we want to model the full
3-dimensional structure using computationally heavy simulation methods, it is advantageous to
consider the simplest system possible. In addition, since the lanthanum cuprates were the first so-
called ’high-temperature superconductors‘ to be discovered, there is a massive amount of literature
on which to build our ideas from.

Twinning

The structural transition from HT'T to LTT is associated with a process where the a and b directions
become inequivalent due to the orthorhombic strain. This strain is caused by a mismatch of the
Cu-O and La-O bond lengths due to their different thermal expansions. As the crystal is cooled
through this HTT-LTO structural phase transition, the inequivalent directions of a and b are
formed in domains separated by grain boundaries.

The result of this phenomenon is the formation of so-called ‘twin domains’, where both possible
choices of the new a and b directions happen in different parts of the crystal. The unfortunate
result of twinning is that our measurements will see both twin domains simultaneously, making us
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Figure 1.9: Crystal structure of LasCuQOy4. The Cu atoms are not shown in the structural schematic,
where the octahedral coordination is emphasized. The inset shows 6 basal CuQOs planes, where
the difference between the tetragonal and orthorhombic coordinate systems is emphasized.

Table 1.2: Atomic species which can be substituted into LasCuQy. La, Nd, Pr will not change the
doping. Ba, Sr will hole dope the system and Ce can be used for electron-doping. For Ce, the data
is from ref. [69], all other species from ref. [70]. When doping with oxygen, the procedure is not
substitutional, but rather the addition of an atomic species. Since the oxidation state of oxygen is
2-, we expect the addition of two holes.

Dopant  Oxidation State Ionic Radius [A]

La 3+ 1.216
Nd 3+ 1.163
Pr 3+ 1.179
Ba 2+ 1.47
Sr 24 1.31
Ce 3.84+ 0.998

unable to tell the difference between the a and b directions. In terms of scattering, it means that
any measurement will be a superposition of (hkl) and (khl). These effects will become important
in chapters 5 and 6. Further details about this phenomenon in Lag_,Sr,CuQO4 can be found in
ref. [68].

Stripe Order

LasCuOy4 can be doped by substitution of La with various atomic species where some of them
results in hole doping (e.g. Ba, Sr), while others have been used to modify the structure without
changing the effective hole doping (e.g. Nd, Eu). Table 1.2 shows the ionic radius and oxidation
state (which determines hole doping) of the species that can be used to dope variants of LagCuQOy.

It turns out that La214 cuprates have particularly pronounced physics with regards to beha-
viour at ny, = %. In Lay_,Ba,CuQ,, superconductivity is almost completely supressed at n;, = %,
while in Las_,Sr, CuO4 we only see a small plateau. In fact, by performing a combination of sub-
stitutions it is possible to create materials such as Laj 4sNdg 4Srg.12CuQO,4 where superconductivity
is completely supressed while being at an otherwise ‘optimal’ doping level. A common thread for
Las_;Ba,CuO4 and Laj 48Ndg.4Srp.12CuQy is that this suppression of T, happens simultaneously
with the tetragonal (LTT) phase. I note here that a tetragonal phase in itself does not inherently
prohibit superconductivity since Las_,Sr,CuQy4 is tetragonal, but with HTT symmetry, at low
temperatures for ny > 0.2125 [71]. We thus appear to be in a situation where crystal symmetry
has a non-trivial relationship with superconductivity. For a thorough discussion of this particular
topic, see the review by Hiicker [35].
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Figure 1.10: The stripe model in real (b) and reciprocal (a) space. Antiferromagnetic regions are
separated by lines of charge due to hole doping, creating a period-8 magnetic and period-4 charge
structure which can be observed by neutron scattering at the shown positions. From ref. [35].

It can thus be argued that La214 cuprates are the appropriate materials in which to examine
1

the significance of the n, = § phase and a lot of attention was given to these phenomena in the
early 1990s, culminating in the discovery of so-called ‘stripe order’ in non-superconducting LNSCO
[72]. The stripe model is one where the magnetic period-8 order appears simultaneously with a
period-4 charge order. These observations led to the stripe model as shown in figure 1.10, where
the magnetic order is separated by one-dimensional ‘stripes’ of charge.

This model is appealing because it suggests that superconducting electrons are locally segreg-
ated from the localized magnetic electrons. It also seems like a reasonable way to relieve the
frustration in the traffic jam analogy (figure 1.7). When discussing stripes, a distinction between
spin stripes and charge stripes is typically made. While evidence mostly points to a picture where
charge and spin stripes are simultaneous, charge stripes are much harder to detect and only seem
to be associated with the ny = % phase [73-75] where spin stripe order is seen in a large part of
the phase diagram 0.02 < ny, < 0.13 [76].

The excitations associated with the spin stripes exhibit the universal hourglass dispersion as
we saw in figure 1.8 [77] and the relationship between stripe order and the associated excitations
have been extensively studied as summarized by figure 1.11. In short, the ordering temperature of
spin stripe order increases with doping up to ny, ~ é where the excitations become gapped. In the
optimally doped region of the phase diagram, the size of the gap Fj is roughly of the order kpTt,
suggesting a direct connection between the magnetic excitation spectrum and superconductivity.

1.4 LSCO+O0O

Finally, we turn to the material studied in this thesis, Lag_;Sr,CuOy44s (LSCO+O0). In addition
to the substitutional doping outlined above, LasCuOy4 can be doped with additional oxygen using
electrochemical methods [78], yielding LagCuQO44s (LCO+0). These materials are sometimes called
over-stoichiometric or super-oxygenated and the additional oxygen can be combined with Sr-doping
yielding the ‘co-doped’ samples LSCO+0O. Due to the electrochemical method of introducing the
additional oxygen, it can be difficult to control the amount of nominal doping, and we are often
forced to use relatively imprecise or destructive methods such as titration (see e.g. MSc thesis by
Mariam Ahmad [79]) or Thermogravimetric Analysis (TGA) [80] in order to determine the doping
np.

With that in mind, a comparison of LSCO and LCO+O is sketched in figure 1.12. A peculiar
feature of doping with oxygen is the fact that only certain superconducting phases seem to emerge
(T, =~ 15,30,40K) and the amount of each phase can be tuned with oxygen content [81], pressure
[82] or thermal treatment [83]. The white parts of the LCO+0O phase diagram is the ‘miscibil-
ity gap’, where phases co-exist. I emphasize here that LSCO+O has a slightly better T, when
compared to LSCO.

Since the electrochemical doping procedure essentially pushes oxygen atoms into the lattice, we
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Figure 1.11: Phase diagram of LSCO with respect to T, and stripe order. Stripe I and II is static,
magnetic stripe order and are distinguished by a 45° rotation in propagation direction. Triangles
indicate the gap size of the magnetic excitations in units of kg. From ref. [63].
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Figure 1.12: Schematic phase diagram of Lay;CuQ,4 using different dopant species. When doping
with Sr, we get the familiar phase diagram (see e.g. figure 1.4 and figure 1.11). When doping with
oxygen, on the other hand, we get discrete phases separated by regions where these phases mix.
This ‘miscibility gap’ is shown in white. From ref. [84].

know that the oxygen is equipped with some level of mobility within the lattice and this mobility
is likely the reason for this ‘discretization’ of T,.. Another way of thinking about this is in terms of
an ‘annealed disorder’ [84], where the oxygen can achieve an optimal inhomogeneity [85]. This is
in contrast to the ‘quenched disorder’ [84] of LSCO where the positions of Sr ions are fixed during
the solid state synthesis at elevated temperatures (T ~ 1000 °C).

This annealed disorder results in a number of structural phenomena. First, a structural correl-
ation along the c-axis known as staging [86], shown in figure 1.13, is likely the result of the lattice
trying to accommodate the interstitial oxygens. There is little reason to believe that staging has
anything to do with superconductivity since it appears in a very similar way in the isostructural
non-superconducting nickelate LagNiOy4 + 6 [87] and no direct relation between the staging details
and T, was found in LSCO+0O [88].

A more complex three dimensional ordering has been observed both by neutrons [88, 89] and
by x-ray micro-diffraction [83, 85]. Since thermal treatments that modify the superconducting
phases simultaneously removes some of these structural features [85], it has been suggested that
these superstructures might be related to superconductivity through the ‘superstripes’ idea [90].

A peculiar feature of LSCO+O0, is the fact that the superconducting and magnetic phases
of LSCO+0 are distinct and separate. Magnetic susceptibility and muon-spin-rotation (uSR)
measurements have revealed a linear relationship between the volumes of the two phases, suggesting
that they are separated in real space [91, 92]. In the context of the LSCO phase diagram, it is
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Figure 1.13: Illustration of staging in LCO+40. A: Crystal structure of LasCuQOy, highlighting
the octahedra centred at the copper atom. B: Displacement pattern of these octahedra as viewed
from the side. C: Staging pattern due to intercalated oxygen. By creating anti-phase boundaries
the structure accommodates the oxygen atoms in an energetically favourable way. The number
of CuOs planes between the anti-phase boundaries determines the staging number (in this case
stage-6). From ref. [84].

believed that these two phases is one with exactly n, = % (magnetic) and one with ny, ~ 0.16
(optimally superconducting). Whether this phase separation is unique to LSCO+O is hard to say
— one could imagine a scenario where the annealed doping of LSCO+O allows these phases to
‘grow’ in contrast to LSCO with only quenched doping from Sr [92].

Finally, LSCO+40 (with one exception, see chapter 8) is equipped with static stripe order
despite having a T, reminiscent of optimally doped LSCO. In addition, the transition temperature
of this static order Ty coincides with T, [92], suggesting a unique and direct connection between
the two electronic phases in this compound.

LSCO+O0 is thus structurally and electronically distinct from LSCO, while still exhibiting the
universal features of the cuprates in a consistent way. This system is important in the larger
context because, as we learned in this chapter, 1) the cuprates are fundamentally inhomogeneous
systems and 2) the fact that crystal structure clearly interacts with the superconducting state
and/or stripe order. Since LSCO+O is unique on these two counts, an investigation of this system
can help us understand those unsolved issues.

1.5 Thesis objectives

The objective of this thesis is to investigate phonon dynamics of the LSCO4O system through
neutron scattering measurements and molecular simulations. The idea is to consider here the
full three dimensional lattice of the cuprates by trying to understand how the surrounding lattice
interacts with the CuOq planes (which are usually studied). The strategy is to primarily focus on
the dynamical aspects of the lattice by measuring and simulating phonons in the system. While
phonon-mediated superconductivity in the manner of conventional BCS theory is unlikely in the
cuprates, a better understanding of the lattice dynamical effects in the cuprates, and possibly
indirect effects on superconductivity could be useful to the community as a whole.

In this context I will mention a few experimental result that emphasizes this motivation. Re-
cently, a longitudinal study of several different cuprates suggested that the Cu-O distance to the
apical oxygen (the oxygen atoms directly above and below the copper atoms) has an effect on the
in-plane exchange interaction [93]. A different study on thin films showed a similar effect on the
in-plane Cu-O distances [94]. Finally, a measurement of atomic pair distribution functions as a
function of doping in LSCO has shown that the distribution of in-plane Cu-O distances is broadest
at optimal doping, suggesting that a phase separation picture might be relevant for LSCO [95].

Just as with stripes picture, the excitations are just as relevant as the static order. In the same
way, a study of phonons might reveal subtleties that we have not been able to discern from a purely
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structural viewpoint. The goal of this thesis is thus to carefully evaluate the phonon spectrum of
LCO, LSCO, LCO40 and LSCO+4O in theory and practice. This is done with various techniques
in neutron scattering and simulations with density functional theory (DFT). In a more concrete
way, this thesis tries to answer the following research questions:

1. Can a relationship between specific dopant type (quenched/annealed) and the phonon spec-
trum be established?

2. Is it possible to establish a relationship between superconductivity and the phonon spectrum?

3. To what extend can DFT-based simulation methods be used to explain observed changes in
the phonon spectrum?

Outline

In chapter 2, the experimental and simulation methods used in this thesis are outlined. Subsequent
chapters then deals with specific research projects pertaining to aspects of the research questions
outlined above. In chapter 3, phonon calculations on Lay;CuQy is performed in various structural
and electronic phases in order to obtain a ‘baseline’ for subsequent simulations. Chapter 4 uses
these results to perform molecular dynamics of structures with added dopants. The experimental
part of this thesis starts in chapter 5, where we look at structural correlations and compare these
to observables from molecular dynamics. In chapter 6 investigates low energy phonon dynamics in
order to 1) validate our simulations, 2) look at structural instabilities and 3) investigate dynamics
related to the observed superstructures seen in chapter 5. In chapter 7 I look at phonon density of
states measurements of powders with different dopants in order to directly answer question 2. from
above. In chapter 8 I look at an anomaly detected in a specific high-energy phonon mode, possibly
connected to stripes. In chapter 9 I report results from an electronic band structure measurement
on an oxygen-doped sample. Finally, in chapter chapter 10, the thesis is briefly summarized and
discussed.



Chapter 2

Methods

In this chapter, I give an overview of primarily neutron scattering and density functional theory.
Since these two methods are central to the experimental and theoretical work performed in this
thesis, the objective here is to give the background necessary to understand the remaining chapters.
In addition, I attempt to contextualize the reason for using these methods in the study of cuprate
superconductors.

2.1 Neutron Scattering

In this section, we give some of the key equations and concepts related to neutron scattering. Basic
concepts will not be dealt with in detail, since excellent literature already exists and does a much
better job than I would be capable of. See e.g. [96-98] for general theory and [99] for triple-axis
spectroscopy. Rather, I will attempt to take a more practical approach with three primary goals:

1. Understand what types of problems can be solved with neutron scattering.
2. Understand the relationship between correlation functions and neutron scattering.

3. Emphasize the equations relevant for our experiments.

General Theory

In neutron scattering, the idea is to illuminate a sample with a beam of neutrons and then record
the scattered neutrons. In order to have enough neutrons for our experiments, they are usually
produced through nuclear fission in a reactor or by bombarding a target with high energy protons
in a so-called spallation source.

The neutron is a neutral, spin—% particle with a mass m, = 1.675 x 10727 kg and a magnetic
moment pu, = —1.913 ug. Just like any quantum object, the neutron exhibits particle-wave duality
and as it propagates through a medium we can conveniently characterize it by a wavevector k that
has a magnitude k£ = 27”, where X is the wavelength, and points in the direction of propagation.
Given the wavevector k, along with the fact that typical neutrons for experiments can be treated
as non-relativistic particle, we can compute the neutron energy E = %"j and its equivalent
temperature through E = kgT. In neutron scattering we often categorize experimental methods
based on the temperature of the incident neutrons, as summarized in table 2.1.

In general, scattering experiments have optimal conditions when the wavelength of the probe
is similar to the studied length scale. Similarly, when studying excitations, it is preferable that the
energy of the probe is similar to that of the excitations. This is exactly why neutron scattering is so

useful for condensed matter since typical wavelengths matches interatomic distances (=~ 1071%m)

Table 2.1: Approximate values of of energies, temperatures and wavelength for the three classific-
ations of reactor sources. From [97].

Source  Energy [meV] Temperature [K] Wavelength [A]

cold 0.1-10 1-120 30-3
thermal 5-100 60-1000 4-1
hot 100-500 1000-6000 1-0.4

21
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and typical energies matches elemental excitations of matter (= 10meV). In addition, since the
neutron has a magnetic moment it can be used to study magnetic structure and excitations.

In order to describe the scattering experiment, we first need to understand how the neutron
interacts with the atomic species in our sample. The process is a neutron-nucleus scattering
process, where the potential of the nucleus is approximated by the Fermi pseudopotential

_ 2mh

My

V(r) bo(r), (2.1)
where b is called the nuclear scattering length and depends on the specific nuclear species involved
in the scattering process. The §-function in the pseudopotential is an expression of the fact that we
are using the Born approzimation, which is essentially a statement that the nucleus can be thought
of as a point-scatterer compared to the neutron. Since the wavelength of a typical thermal neutrons
(=~ 1071%m) is orders of magnitude larger than the range of nuclear forces (~ 10715 m), this is
a reasonable assumption. For a single, free nuclei, the scattering will be isotropic and the total
scattering is oyor = 4mb2.

The general geometry of a scattering experiment is outlined in figure 2.1. An incident beam
with wave vector k; is scattered from the origin to a final wave vector k¢ at an azimuthal angle ©
and a polar angle ® into a solid angle Q) distance r away from the origin. From this geometry we
define the differential scattering cross-section as

do B flux of neutrons into df2

dQ ~ incident flux of neutrons

Since we can only measure the neutron flux, do/d§) is our experimental observable, given that
we have neutron detectors before and after the sample. Since the neutron flux tells us nothing
about the wave vectors or energy, additional constraints are necessary to get information about
the scattering process from the experiment. In elastic scattering, we assume that no energy is
exchanged in the scattering process so that |k¢| = |k;|. By fixing one of them (typically k;), the
other is completely described by the geometry of figure 2.1 and we can measure do/d€ as a function
of k¢ since the location of our detector, and thus ® and © is known. In inelastic scattering, we
need to fix the lengths, and thus the energy, of both k; and k¢. This defines the partial differential
cross-section:

d%c _ flux of neutrons into d{2 with energy between Ey and Ef + dE¢

dQdE; incident neutron flux with energy Fj; ’

where Fj is the energy of the incident neutron and Ef is the energy of the final neutron. With the
observables now defined, we can start to discuss how to actually extract useful information about
the atomic/microscopic details of a sample from a neutron scattering experiment. Knowing k;
and kg, the coordinate system can be redefined with respect to our sample through the scattering
vector Q = k; — k¢. In addition, we define the energy transfer as the amount of energy gained (or
lost, for negative values) by the neutron in the scattering process hw = Ff — Fj.

The objective of neutron scattering theory (or really, any scattering theory), is then to find
a sample-dependent function S(Q,w) that can be related to the observable (partial) scattering
cross-section. In fact, as we shall see in the next section, it turns out that this scattering function
S(Q,w) not only exists, but have an intimate relationship with microscopic correlation functions
which can be derived from first principles.

This, somewhat abstract, introduction essentially covers most of what we need to know with
regards to the neutron scattering process and coordinate systems. The rest of this section is then
dedicated to 1) understanding what the scattering function S(Q,w) actually represents and 2)
outline some of practicalities involved in the neutron scattered methods used in this thesis.

Correlation Functions

After setting up the coordinate system, we are now left with the much more complicated task of
constructing models that can help us interpret the partial differential cross-section. As I previously
suggested, information about our samples comes from the pattern of d%c/dQdEf as a function of
Q and w, or equivalently: The angles ®, ©® and neutron energies F;, E:. Intuitively, the reason
we have any pattern at all is due to interference of the scattered waves. Since the scattering from
a single nucleus is isotropic, any pattern in S(Q,w) comes from the specific composition of, or
correlations between, atomic species in our sample.

It turns out that this can be conveniently described through the mathematics of correlation
functions, introduced by Van Hove in 1954 [100]. We start with the time-dependent pair-correlation
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Figure 2.1: Geometry of a scattering experiment. An incident beam of neutrons characterized
by the wave vector k; impinges on a sample at the origin. The neutron beam is scattered in the
direction of k¢, defined by the two angles ® and ©. The neutrons are detected at a solid angle d2
at a distance r. From [98]

function for a system of identical particles G(r,t), which describes the probability of finding a pair
of particles separated by the spatial vector = at time ¢. Similarly, the self time-dependent pair-
correlation function Gs(r,t) describes the probability of finding the same particle at a distance r
at a time ¢t. These concepts can be defined mathematically defined through position operators:

Glr t) = %Z / (6 — Ry (0))5(r" + 1 — Ri(t))) dr’

i#j

Go(r,t) = % > / (6(r' — R;(0)8(r' + 7 — Ry(t))) dr’ |

where i, j are particle indices and R;(t) is the position operator for particle ¢ at time ¢. Finally
the following functions can be obtained through Fourier transforms in time and space:

I(Q,t) = /G(’r,t) exp(iQ - r)dr
L(Q.1) = / Ga(r, t) exp(iQ - r)dr

S(Q,w) = Gy 1(Q, t) exp(—iwt)dt
S(Q, 1) = % 1.(Q, ) exp(—iwt)dt

where I(Q, t) is known as the intermediate function, Is(Q,t) the self intermediate function, S(Q,w)
the scattering function and S;(Q,t) the incoherent scattering function. The connection to the
partial differential cross-section can now be stated succinctly as

d?c d?c d?o
= + (2.2)
dQdE; dQdE; ) .., dQdE; /..

with
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where

-2
Ocon = 4mb

Cine = 471 (bf2 — 52>

In the above equations, N is the number of particles in the scattering system, b is the nuclear
scattering length as defined in equation (2.1) and the bars denote ensemble averages. The coherent
cross-section ocon is thus related to the average scattering length, while the incoherent cross-
section oy is related to the distribution of scattering lengths. These cross-sections are determined
experimentally and are tabulated for most elements [101].

In a neutron scattering experiment we thus see a superposition of pair-correlations through
coherent scattering and self-correlations through incoherent scattering. As an example involving
dynamics, phonons (correlated motion) are generally seen as coherent scattering while Brownian
motion (random motion) would show up as incoherent scattering.

It thus turns out that there is a direct relationship between the measured partial differential
cross-section in neutron scattering and microscopic correlation functions. In fact, many microscopic
theories can be translated directly into a theoretical S(Q,w) and compared 1-to-1 with experiment.
One illustrative example, used in this thesis, is that of a molecular dynamics simulation where we
record the atomic positions as a function of time. From this trajectory it is trivial to compute a
classical version of G(r,t) and thus obtain predictions for neutron scattering experiments.

Even more generally, given a Hamiltonian (quantum or classical) and assuming a weak (linear)
perturbation, it is possible to invoke linear response theory (see e.g. [102, chapter 3]). Importantly,
linear response theory provides a link between the spontaneous fluctuations of a system and the
response to an external perturbation. The object of interest in this context becomes the dynamic
susceptibility x(Q,w), which can be thought of as

‘response’

X(Q,w) = X/(Q’w) + XH(va) =

‘force’

where the real part x’'(Q,w) describes a response in phase with the perturbation (reactive), while
the imaginary part x”(Q,w) describes an anti-phase response (dissipative). The real and imaginary
parts are linked through the Kramers-Kronig relation

V(@)

b
w —w

1 oo
X”(Q7w) = 777)/
™ —00
where P is the Cauchy principal value. Finally, the scattering function is related to the imaginary
part of the dynamic susceptibility through the fluctuation-dissipation theorem:

5(Qw) = — (@), (23)
1 —eksT
Since the real and imaginary parts of the susceptibility are uniquely connected through the
Kramers-Kronig relation, neutron scattering experiments can directly probe predictions of linear
response theory. A particularly illustrative example in the context of this thesis is that of a damped
harmonic oscillator (DHO). Consider the classical system shown in figure 2.2, with the equations
of motion:

m{E(t)) + mwg (z(t)) = —my(@(t)) .

Assuming an impulsive perturbation (a d-function displacement) and going through the mathem-
atics of linear response theory (see [96] for details), we arrive at the dynamic susceptibility

1 1 1 Wi — w? { Yw

_ 1 _1 G . 2.4
X[l mwi—w?+iw mwd—w?)?+72w?  m(wi —w?)?+y2w? (2:4)

From the last term we thus see that damped harmonic motion can be observed as a Lorentzian
as a function of energy in a neutron scattering experiment, where the position wy denotes the
fundamental frequency and the width -y is the damping constant. In fact, this expression is typically
used as a fitting function when measuring phonons [103]. While rudimentary, the purpose of this
example is to emphasize the intimate relationship between observables in neutron scattering and
microscopic theories.
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Figure 2.2: Mechanical version of the damped harmonic oscillator. Left: A mass on a spring
moving with velocity v under the influence of a restoring spring force (blue arrow) with force
constant w2 and a frictional force v which is linear in velocity. Right: Position of the spring as a
function of time after applying a an impulsive perturbation, analogous to quickly pulling the mass
and letting go.

Resolution

When performing actual neutron scattering measurements, the incident and final wave vectors are
not completely defined by a single vector, but rather by some finite distribution. In fact, since
neutrons are relatively sparse, it is not uncommon to relax this distribution in order to increase
the signal. This finite distribution of wave vectors will broaden the signal in both @ and w. Since
the optics of the instrument is responsible for this broadening, we call the effect instrumental
resolution.

To make matters more complex, the resolution is not a constant object, but rather varies as
a function of both @ and w. It is therefore important to understand the instrumental resolution
for any particular measurement to make sure that, for example, a broad feature is due to the
sample and not the instrument. In many cases, the resolution can be measured with respect to
a standard and subtracted in the same way for every experiment. In some cases, such as the
triple-axis spectrometer, the experimental condition vary wildly between experiments and it might
be beneficial to calculate the resolution beforehand.

The resolution is quantified by the resolution function R(Q,w). which can be represented by a
4 dimensional ellipsoid if we assume that the distribution of neutrons follow a normal distribution
as they propagate through the instrument. The 4 major axes of this ellipsoid then represents the
Gaussian width ¢ in each direction. By projecting this ellipsoid onto the scattering plane, one can
gain an intuitive understanding of how the resolution affects the experiment.

I will not go into further detail at this point, but rather refer to [99, Chapter 4] for a much
more in-depth discussion of this topic in the context of triple-axis spectroscopy. Finally, the best
way to understand how resolution affects measurements is to play around with software that can
simulate and visualize the resolution ellipsoid in various conditions [104, 105].

2.2 Specific Scattering Methods

Departing from the abstract concepts of the preceding section, I will now outline specific neutron
scattering techniques used in the experimental part of this thesis. Despite the significant power
generated in a neutron reactor, the number of neutrons expelled from the source is typically small
with respect to neutron experiments, especially when compared to X-ray synchrotron radiation.
In addition, the neutrons have a wide distribution of wavelengths and propagate in all directions.
Neutron facilities and instruments thus take advantage of various optical elements in order to
define the neutron beam.

Transporting the neutrons to the instruments is done with neutron guides, which are rectangular
tubes where the insides are coated with mirrors that can cause total reflection of neutrons at
sufficiently small angles (0.1°¢01°). When neutrons reach the instrument, we have so-called a
white beam with a wide distribution of wavelengths, but most experiments needs a well-defined k;.
Details about neutron instrumentation quickly becomes complex, so we stop the detailed discussion
here since it would divert from the purposes of this thesis.
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Monochromator

Beam stop‘

Figure 2.3: Layout of the IN8 instrument at ILL [106]. Neutrons from the thermal source hits
one of the 3 optional monochromators (PG002, Cu200, Silll) and continues towards the sample
where it is scattered towards the analyser that selects the final energy.

Triple-Axis Spectroscopy

In some way, the triple-axis spectrometer (TAS) is the easiest neutron scattering instrument to
understand because it has a one-to-one correspondence with the geometry from figure 2.1. Figure
2.3 shows the view from above of the TAS instrument IN8 at ILL. The triple-axis (or triple-angle)
name comes from the fact that all the angles defined by the beam path can be adjusted by moving
the motors of the instrument. These angles then completely define k;, k¢ and we essentially have
a two dimensional version of figure 2.1, known as the scattering plane.

Because the instrument is essentially two-dimensional, single crystal samples must be aligned
with a desired crystal plane in the scattering plane. With the sample in place, we can now
completely explore S(Q,w) with the restriction that @Q is restricted to the scattering plane. The
sample is placed on a rotating sample stick that, together with the scattering angle, allows us
to access the two dimensions of Q. The energy transfer hw is controlled by monochromator and
analyser.

As one might have noticed, figure 2.3 features just a single detector. While other options
exists (see chapter 6), this is typical for TAS instruments. As a consequence, measurements
are performed along pre-defined paths in (Q,w) space step-by-step. The main purpose of TAS
instruments is then generally to look at specific features in S(Q,w) with high counting statistics
and tight resolution. Since inelastic scattering is orders of magnitude weaker than elastic scattering,
spectroscopic measurements are usually the primary focus for TAS instruments.

In this thesis, most TAS measurements are of specific phonon branches. The 1-phonon cross-
section gives an expression for the differential coherent cross section of phonons, indexed by the
phonon band v [97].

SQuw) = o S IF(Qa )Py + D~ we )@ — g - G) (25)

with
ho - 1 o , .
F(Q.av) =3 S, U O (—2<|Q ~u(50)| >> exp[—i(Q — q) - 7(j0)]|Q - e;(q, v)

where @ and w are the wave vector and energy of our measurement. v is a phonon band and g
is the phonon wave vector. wq, is the energy of phonon band v at wave vector g and ng, is the
Bose factor at this energy. Atomic species are designated with index j, their mass is m; and their
coherent neutron cross-section is b;. u(j0) and 7(j0) is the displacement and position of atom j
in unit cell 0, respectively. Finally, G is any reciprocal lattice vector and e;(q,v) is the phonon
eigenvector of atom j, band v and wave vector gq.

While this expression rests on some microscopic details that we might not have knowledge of,
close inspection of equation (2.5) allows us to extract information from an experiment without
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Figure 2.4: Layout of the IN4 instrument at ILL [107]. Neutrons are chopped into discrete packets
before hitting the monochomator and continuing towards the sample position. A Fermi chopper
is used to make very short neutron pulses, such that their (Q,w) can be determined from the
time-of-flight from the Fermi chopper to the detector,

any prior knowledge of the system. The J-functions makes sure that we only see scattering at the
phonon dispersion. In addition, the Q- e;(g,v) term tells us that scattering is strongest when the
eigenvector of the phonon mode is parallel to @ (and vanishes when perpendicular). This allows us
to distinguish longitudinal and transverse phonons, since they vibrate parallel and perpendicular
to Q, respectively. For an example of this, see figure 6.5 in chapter 6.

As it turns out, it ¢s possible to obtain prior knowledge about the phonon spectrum through
microscopic simulations. These simulations give us direct access to eigenvectors and we can make
a detailed analysis of equation (2.5). More information about this type of calculation is given in
section 2.4.

One caveat with equation (2.5) is the fact that phonons can be broadened, on top of broadening
due to resolution, such that the delta function in energy is replaced with a Lorentzian as we saw
in equation (2.4) and (2.3). This is known as lifetime broadening and the Lorentzian width can be
interpreted as the reciprocal lifetime of the measured phonon.

Time-of-Flight Spectroscopy

In Time-of-Flight (ToF) spectroscopy, we take advantage of the fact that thermal neutrons move at
speeds that we can accurately determine experimentally (10 meV neutrons has a speed of roughly
1400 ms—!). Figure 2.4 shows a schematic of the IN4c spectrometer at ILL. Neutrons from the
reactor are chopped up into discrete packets using two rotating discs (background choppers) and
then monochromatized using a crystal monochromator. Before impinging on the sample, the
neutrons pass through a ‘Fermi chopper’ which produces very short neutron pulses (10 ps to 50 pis).
Neutrons are then detected radially in one of the many detectors. By recording the time-of-flight
from the Fermi chopper to a specific detector, we can determine the energy transfer through the
velocity as determined from the flight time and @ from the angle to the detector where the neutron
was measured.

Time-of-Flight spectrometers thus perform many simultaneous measurements, but can in some
sense be used to probe many of the same things as TAS instruments. The better choice depends,
of course, on the sample and phenomena that you are using it to probe. In the case of this thesis,
we used the IN4 spectrometer to measure the phonon density-of-states of powdered samples. Since
the powder is rotationally averaged, the result of a measurement is a (Q,hw) map where Q is
defined as the length of Q. An example of such a dataset is shown in figure 7.2 in chapter 7. By
integrating the full map onto the energy axis we obtain the experimental phonon density-of-states.

While equation 2.5 is still valid since most of our scattering is 1-phonon processes at low

temperature, we use the confusingly named incoherent approximation. The physical reasoning is
that the rotational averaging due to the powder cancels out correlations between distinct atoms.
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Figure 2.5: Schematic layout of the D4 instrument at ILL [109]. The neutron beam from the hot
source hits the monochromator and directed towards the sample position. The scattered neutrons
are collected at the nine detectors each containing 64 cells. The detector bank can be moved during
the experiment in order to cover the full Q-range.

Mathematically, it is due to factor

Z Q © €5 (q7 14
J
which in the incoherent approximation is replaced by [108]
> Q% (ej(q,v))
J

essentially eliminating the cross terms. With this approximation, the 1-phonon incoherent cross-
section becomes:

Q2 1 1 Uzcatt
+
FE (nt3 2 2 3/

S4(Q, E) = exp (-2W(Q)) %

gk(E)]

2mk

where gi(F) represents the phonon density of states. With this, much simpler, expression we can
transform our (Q, E) dataset into the phonon density of states, only supplying the mean-squared
displacement and atomic composition. Similar to the phonon bands, the phonon density of states
can also be directly obtained from simulations methods. ToF spectroscopy on powders thus allows
us to investigate properties of the overall phonon spectra, in contrast to the distinct phonon bands
as measured by TAS spectroscopy.

Real-space diffraction

The last method I will cover here is a diffraction instrument focussed on obtaining real space
structures. In terms of the correlation functions defined in section 2.1, we are interested in the
time-averaged value of G(r,t) which can be found as the Fourier transform of S(Q,w = 0). In
order to perform this Fourier transform, it is desired to measure at a wide range of @ in order to
avoid artefacts related to the Fourier transformation pocedure itself.

Figure 2.5 shows the D4 diffractometer at ILL. Since diffraction assumes elastic scattering, the
instrument is equipped with a monochromator before the sample, but no energy analysis of the
scattered neutrons is performed. Rather, the neutrons are directly measured at the radial detectors.
In order to optimize the Q-range of the instrument, we want to minimize the wavelength (Bragg’s
law), so D4 is placed at a hot source so that we can get a large number of high-energy neutrons.
For our particular experiment the monochromator selected neutrons with a wavelength A\ = 0.35 A,
corresponding to an energy of £ = 668 meV.

The object of interest in this case is the total pair distribution function G(r), which tells
you the probability of finding two atoms separated by a distance r, weighted by the product of
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their coherent neutron scattering lengths b. As we shall see in section 2.6, these distributions can
be found from a molecular dynamics simulation. In order to compare with experiment we then
consider

G =2 S cacsbabplgas(r) = 1),

b a=1,>a

where gop(r) is the partial radial distribution function which describes the probability of finding
a particle with label 8 at a distance r away from a particle with label a. ¢; = ]JVV is the number
concentration, b; is the coherent neutron cross section of species i, and

()

In the research community working with pair distribution functions (PDF) there is a large number
of conventions regarding how to normalize and represent pair-correlation functions in theory and
experiment (see review by Keen [110]). The G(r) presented here is typically called the Total Pair-
Distribution Function. Details about the definitions of gog(r) and G(r) and how to obtain them
from molecular dynamics trajectories can be found in section 2.5

2.3 Density Functional Theory

We now turn to the computational framework used in this thesis, Density Functional Theory
(DFT). Similar to the section on neutron scattering, this is a vast subject that is impossible to
fully explore on a few pages, but I will once again try to outline the key concepts, advantages
and disadvantages. For more comprehensive material, I recommend the books by Giustino [111]
(introduction to the subject) and Martin [112, 113] (comprehensive reviews). The review paper by
Hoffmann [114] discusses what kinds of problems DFT can solve and is recommended for anyone
curious about DFT.

DFT is a computational method in quantum chemistry, where the objective is to compute the
many-body Schréodinger equation for molecules and solids:

Z Zle iy Zln—ml U =FEU, (2.6)

where 7; is the position of electron ¢ and Ry, Z; is the position, charge of nucleus I. As one might
have noticed, the kinetic energy of nuclei and nuclei-nuclei interactions have been omitted. This
is known as the clamped nuclei approximation, which assumes immobile nuclei. This results in
a vanishing kinetic energy and a constant Coulomb repulsion which can be subtracted from the
energy on the right-hand-side of equation (2.6):

ZiZy
E = Etotal Z
17“ IR — Ry|

These equations are written in the so-called Hartree units (see [111, chapter 2.3]), such that energies
are in units of Hartree energies (1 E}, = 27.2114eV), distances are in units of the Bohr radius ag
and masses are in units of electron masses m.. Since the nuclear coordinates are considered fixed,
the many-body wavefunction ¥ in equation (2.6) is a function of electron positions

U(ry,re,...,Th)

While this object seems innocent at first glance, the many-body Schrodinger equation quickly
becomes a completely unmanageable object. Imagine that we want to calculate this object for a
small molecule such as Benzene (CgHg) containing 12 nuclei and 42 electrons. This wavefunction
exists in 42-3 —3 = 123 dimensional cartesian space! If we want to store this object on a computer
with a modest precision of 10 grid points per coordinate, it would require 10'°6 complex numbers
or 64 - 101 bits (assuming single-precision floating points numbers of 32 bits). Lloyd estimated
the total number of bits available for computation in the observable universe to be 10%° [115].
Even with the entire universe at our disposal this object is completely unmanageable. In order to
arrive at a reasonably manageable theory, we assume that electrons are independent such that the
many-body wavefunction can be written as a product of single-electron wavefunctions:

\I/(r17r27...,rn) —>¢1(T1)¢2(T2)...¢N(TN) (27)
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Where each of the wavefunctions ¢; are found as solutions to the single-electron Schrodinger

equation
Vo 4
2 7 |r - R1|

Using these definitions, the many-body Schrédinger equation becomes

V2 Zr
Z [_2 B ZI: |’l"i — R[|

%

i = €iP; .

U= E0, (2.8)

where ¥ = €1 + €3 +. .. €y, with the single-electron energies being ordered from smallest to largest.
This corresponds to the situation usually taught in condensed matter physics where the lowest
energy configuration is found by filling up electronic orbitals starting from the lowest eigenvalue
[6]. Inspection of equation 2.8 reveals that the independent electron approximation, as the name
implies, has completely ignored the Coulomb repulsion between electrons. To rectify this fact, we
make a mean-field approzimation, such that each electron feels an electrostatic ‘Hartree potential’:

V2V (r) = —4mn(r)

where the electron density is defined as the sum of single-electron densities:
n(r) =Y léi(r)]. (2.9)

Starting with the many-body Schrodinger equation we have thus arrived at an approximate version
that can be approached from a computational point of view. However, at this stage we have
ignored exchange (equation (2.7) is not anti-symmetric with regards to a change of variables) and
correlation (the mean field approximation used for the Hartree potential). As we shall see, DFT
gives us a way to correct for both of these effects in a surprisingly accurate manner.

The Kohn-Sham equations

The main idea behind DFT is expressed through the ‘Hohenberg-Kohn theorem’, which is the
simple but powerful statement that the total energy of a many-electron system is a functional of
the electron density. In addition, the ‘Hohenberg-Kohn Variational Principle’ tells us that the
ground state density is the functional that minimizes the total energy. To quote the original paper
[116]:

This paper deals with the ground state of an interacting electron gas in an external
potential v(r). It is proved that there exists a universal functional of the density,
F[n(r)], independent of v(r), such that the expression E = [ v(r)n(r)dr + F[n(r)] has
as its minimum value the correct ground-state energy associated with v(r).

The theorem states the existence of the functional F[n(r)], but leaves us with no recipe on how to
construct this functional. The ‘game’ in DFT thus consists of constructing functionals and test the
computational results against experimental observations. Since the universal functional has not
been found, hundreds of functionals [117] have been created with specific purposes in mind. With
that being said, very good ‘universal’ functionals exist and most people stick to a small subset of
this ‘functional zoo’ Returning the objective at hand, the idea of Kohn and Sham [118] was to
split the contributions to the functional F[n(r)] into terms of kinetic and coulomb energy and an
additional term with ‘everything else’:

E:/%@MMM+FWﬂ] (2.10)
men=§2/¢ﬂmz¢wmw+;/yﬁfmg?m@w+Emmw» (2.11)

This expression thus lets us evaluate the total energy of our approximate many-body Schrodinger
equation given a set of one-electron orbitals ¢;, the electronic density n(r) and the exchange
correlation functional Exc[n(r)]. These are evaluated using the Kohn-Sham equations [118]:

|57+ Vi) ) = o). (2,12
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where

Viot = Va(r) + Vi (r) + Vxe(r) (2.13)
Va(r) = _zl:h«ZIRﬂ (2.14)
V2V (r) = —4mn(r) (2.15)
Ve = 5E§7§[”](r). (2.16)

Where the last equation defines the exchange correlation potential. Methods to actually solve
equation 2.12 numerically are outside the scope of this thesis and can be found in literature [112,
part IV]. In general, this depends on the representation of our one-electron orbitals ¢, also known
as the basis set. In this thesis, we make use of a basis set which is expanded in plane waves. Plane
wave DFT is particularly popular for computing crystalline materials, since we are guaranteed
that ¢ are cell-periodic (Bloch functions). The main disadvantage is that you need a large number
of plane waves to have a reasonable representation of electronic orbitals.

What we have done so far is to reduce the electronic structure problem into one that is
completely described by the electronic density. In addition, the contributions to the equations
have been split up into well-understood terms (kinetic energy, nuclear-electron potential, mean-
field Hartree potential) and the unknown exchange-correlation functional Exc. When the phrase
‘choice of functional’ comes up in the context of DFT, one actually means the choice of exchange-
correlation functional since everything else is fixed in the Kohn-Sham equations.

Exchange-Correlation Functional

With the large number of XC functionals in existence, it may seem a bit daunting to make a
reasonable choice. In fact, if we need to build new functionals for every peculiarity, is there
even any merit to this method? It turns out that the simplest possible model for interacting
electrons, the homogeneous electron gas (HEG), gives a surprisingly good representation of real
systems where the distribution of electrons is inhomogenous. In fact, the original paper on the
Hohenberg-Kohn theorem was titled ‘Inhomogeneous Electron Gas’ [116].

The most basic functional to express the exchange-correlation functional is the so-called Local-
Density Approximation (LDA) [119, 120], where parameters of the HEG was found using quantum
monte carlo methods. For this reason, this functional is entirely non-empirical and built from
simple principles, both desirable qualities in any theory. While successful in these respects, it
quite significantly overestimates atomization energies [121].

The ‘local* in local-density approximation refers to the fact that Exc depends only on the
local density. To improve on this, functionals based on the Generalized Gradient Approximation
(GGA) also takes into account the gradient of the local density. Of these, especially the Perdew-
Burke-Ernzerhof (PBE) functional has gained popularity due to its relatively simple derivation
that retains the important features of the LDA while incorporating non-locality and having a
better agreement with experiment.

It seems reasonable that adding more non-local components to the Fxc will approve accuracy.
Perdew and Schmidt suggested that the road to a universal potential should be constructed with
respect to the so-called Jacob’s Ladder [121] as shown in figure figure 2.6, where the lowest rung
is the LDA and the second-lowest is the GGA. Successive improvements should be done in a way
that keeps the principles of the previous rungs intact, but include orbital contributions. In the
context of this thesis, we stick to the second rung of Jacob’s ladder.

The Self-Consistent Field (SCF) Cycle

In order to actually perform a DFT calculation, we need to evaluate the Kohn-Sham equations.
The solution to (2.12) depends on the density and gives the one-electron orbitals ¢;, but at the
same time the density is defined with respect to the orbitals, equation (2.9). For this reason, the
Kohn-Sham equations are solved with the Self-Consistent Field method, where we keep performing
the calculations of equation (2.12) until the density of successive iterations agree within some pre-
defined accuracy. This procedure is outlined schematically in figure 2.7.

The initial guess of the electron density is typically generated as a superposition of atomic
charge densities, but can also be supplied to the program from a previous run, significantly speeding
up calculations on continuation jobs. Once again, there are many subtleties regarding the actual
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Figure 2.6: Jacob’s Ladder of exchange-correlation potentials. At the lowest rung we only consider
the local density. At the second rung, we include the gradient of the density. At the third,
we include the kinetic energy density for the occupied orbitals 7(r), in the so-called meta-GGA
functionals [122]. At the fourth rung we find Hybrid functionals which includes exact exchange
and at the fifth we include both exact exchange and orbital contribtions. The original paper [121]
‘only guarantees safety on the two lowest rungs’. From [121]
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Figure 2.7: The self-consistent field (SCF) cycle used in most DFT calculations. V; is a fixed
quantity due to the clamped nuclei approximation and will not change during the SCF cycle. The
Hartree Viz and exchange-correlation Vxc potentials are updated throughout the run due to a
change in density and finally the orbitals and electronic density is computed. This is performed
until the successive iterations agree on the density. Adapted from ref. [111].
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computation of the different steps in figure 2.7 which are outside the scope of this thesis. We will
see some of these concepts in the context of the actual calculations in chapter 3.

DFT+U

Despite the success of DFT for many materials, it generally struggles with the so-called strongly-
correlated electron systems. One prominent example of this problem is exactly the materials
studied in this thesis — the cuprates. While DFT is able to include magnetism through inequi-
valent spin-up and spin-down densities, LDA and GGA functionals generally fail to describe the
anti-ferromagnetic ground state of LapCuO,4. The strong correlations of the d-orbitals cannot be
described at the orbital-independent LDA and GGA level of theory.

DFT+U is an attempt to approximately treat strong correlations of specific orbitals by introdu-
cing a non-local screened Coulomb potential. This screened Coulomb interaction U is only added
to a sub-system consisting of the ‘correlated orbitals’, while the remaining orbitals are treated as
normal. This results in occupied states of the correlated orbitals to be shifted by —U/2 while
the unoccupied states are shifted by +U/2, essentially creating a gap with the size of U [123].
However, as we shall see in chapter 3, the actual band gap is usually smaller since the interaction
is only added to the d orbitals of Cu.

While DFET+U helps us with an accurate description of Mott insulators, it departs slightly from
the spirit of ab-initio simulations since we are forced to input external parameters. A different
choice could be to move up a rung on Jacob’s Ladder (figure 2.6), but this comes at a significant
computational cost and exact exchange ignores the screened nature of U [123].

The Hellman-Feynman Theorem and Molecular Forces

Until now, we have only been concerned with calculating the free energy E through computations
through the electronic density n and the electronic orbitals ¢;. Since we are interested in dynamics,
we need some tools to manipulate the atomic positions, despite the fact that we are in the clamped
nuclei approximation. The Hellman-Feynman theorem [124]
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turns out to be extrordinarily helpful in this regards. Intuitively, the theorem states that any
derivative of the total energy can be obtained by evaluating a matrix element constructed from
the derivative of the hamiltonian H. Since the atomic forces are simply derivatives of E with
respect to atomic postions Ry, this derivative can be performed directly on the first term of
equation (2.10), since the second term is a function of electronic coordinates only. This results in
the remarkable fact that we can calculate the forces on every atom in our system from a single
groundstate energy, significantly reducing the computational effort.

For our purposes, the obtained forces are then treated classically with Newton’s equations of
motion. This will then be used to find equilibrium structures, phonon frequencies and to generate
molecular dynamics trajectories. Since phonons are of particular interest to the scope of this thesis,
the next section outlines how to obtain phonon frequencies from DFT and in chapter 3 I will show
the result of such computations on LasCuQy4 in various structural and electronic phases.

2.4 Phonon Calculations

In most textbooks (e.g. Kittel [6]), phonon calculations are exemplified by simple models in one
dimension consisting of only one or two inequivalent atoms. While these models are useful for
providing basic results of lattice dynamical models, the extension to realistic models requires some
level of abstraction in order to be useful. In particular, it is essential to cast the problem in terms
of linear algebra. In this section, I will start from the (somewhat abstract) formalism used in
practice and work backwards towards a physical understanding. While software such as PHONON
[125] and Phonopy [126] can be used without prior knowledge of the formalism, it is always useful
to have some insights about our frequently used ’black boxes’ In order to calculate the phonon
spectrum for a given system in the harmonic approximation, we require the following objects:

1. Primitive unit cell and fractional atomic coordinates

2. Symmetry operations
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3. The mass of each atomic species

4. The force constants

Ttems 1-3 are familiar to most condensed matter physicists and can usually be found in various
databases. The force constants, on the other hand, contains information about interatomic forces
and is not directly obtainable from experiment. For this reason, phonon calculations requires some
modelling either through semi-empirical or ab-initio methods. In the following I will attempt to
explain what the force constants represents and how we use them to get phonon band structures.

Theory

We start completely generally in one dimension with an arbitrary number of unit cells containing
an arbitrary number of atomic species at equilibrium. Displacements from equilibrium positions
are denoted wu(jl), where [ is the unit cell index and j € {1,...,n} is the atomic index. If we
consider the displacements u to be small, the total energy of our system can be expressed as a
Taylor series
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where r; is the equilibrium position of atom j in unit cell /. The main approximation in phonon
calculations is the so-called harmonic approzimation which ignores terms with power greater than 2
in the series. Higher-order contributions are denoted anharmonic terms and can become important
at higher temperatures (phase transitions, thermal conductivity, thermal expansion). The fact that
our system is in equilibrium can be stated succinctly as

oF
—_— = O7
du(jl)
for all values of j and [. Physically these assumptions together correspond to atoms being at rest in
a parabolic (harmonic) potential. Since we are interested in dynamics, it is convenient to consider
the harmonic energy E of the system
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u(5') (2.17)

If we set j = j' and [ = I’, we see that the harmonic energy of a single atom has the familiar form
of a harmonic oscillator E = %K u?, where K is the spring constant. We define
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where ® is the so-called the force constant with respect to total energy and © is the force constant
with respect to bond energy. We can now write the harmonic energy as
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Figure 2.8: Diatomic chain. Two atomic species with masses m; and mqy are connected by springs.
The system is periodic with a unit ‘cell’ of length a. Displacements are denoted u;;, where j is an
atomic index, and [ is a unit cell index.

and it becomes evident that the harmonic energy can be described with respect to atoms or
bonds in mathematically equivalent ways. Since the bond-centered description does not include
individual atomic displacements, it is necessary to add a self-term to ®. As a visual aid to these
index-heavy equations, Figure 2.8 illustrates the one-dimensional diatomic chain, which is often
used in introductory texts. If we consider only nearest-neighbour interactions and identical springs,
the bond-centered harmonic energy can be written

1
E:Z®Z2[u(l, ) —u(2,0)]* + 922 u(1,1+ 1))
:-@Z ) —u(2,)]” + @Z (2.0) = u(1,1+ 1)

where the factor of 2 comes from double-counting. The purpose of this example is to show that
the (somewhat abstract) harmonic energy in equation (2.17) is equivalent to our intuitive under-
standing of coupled harmonic oscillators. With this in mind, we can return to the matter at hand
and write the equation of motion for an atom j in cell [ through Newtons second law F' = ma:

qu’(u'> G0,

where m; is the atomic mass of atom j. Solutions to this equation is given as a sum of travelling
harmonic waves with wave vectors ¢ and band indices v € {1,...,n}

u(il,t) = > i(j, g, v) expligr(jl)) exp(—iw(q, v)t)

q,v

where w(q,v) is the frequency, r(jl) is the position of atom j in cell I, w(q,v) is the frequency
and the complex number « is called the displacement vector. If we insert these solutions into the
equations of motion and just consider one band at one wave vector we obtain

w(q, v)*a(j, q,v) exp(iqr(jl)) ZZQ(H,> a(j', q,v) exp(igr(j'l'))

ol 08,0, ZZ‘I’(U/) (7 .0) expligle(5') — (i)
ol a,v ZZ@(Q,)m 0.v) expliar (1)~ r(GO)), (219

where the last equality is simply a change of origin in order to follow the convention of most
software. The full account of phonon frequencies w and displacements % can be found as solutions
to equation (2.19). At a given ¢ and v, the equations are indexed by j and we will have n equations
with 7 unknowns with respect to 4(j, ¢, ), where n is the number of atoms in the unit cell. In
fact, equation (2.19) can be written as an eigenvalue equation:

D(q) - e(q,v) = w(q,v)* - e(q,v), (2.20)

where
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Vvmia(l,q,v)
Vmai(2,q,v)

e(q,v) = :
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and the elements of D(q) are given
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DY) = e S (4, ) el ) ~ (i) (2.21)
D(q) is known as the dynamical matrix and can be constructed solely from force constants.
Furthermore, equation (2.21) reveals that the dynamical matrix is Hermitian so the eigenval-
ues w(q, v)? are real and the eigenvectors e(q, v) are orthonormal. In addition, the eigenvalues and
eigenvectors are trivially obtained numerically (e.g. numpy.linalg.eigh in the Python numpy
library). In order to get the full dispersion, this diagonalization is performed for each of the n

bands v at the desired wave vectors in the first Brillouin Zone (FBZ).
The extension to 3 dimensions is done by treating the Cartesian components separately and
considering g and r as vectors. The eigenvector then becomes a column vector of 3n components

Vmiiis(1,q,v)
\/TTlﬂy(la q, V)

Vvmii:(1,q,v)
e(‘la”) = \/m721~%(2,q7y)

V mnﬂz (n7 q7 l/)

the number of bands increase to 3n and we get a 3n x 3n dynamical matrix, where each component
(2.21) is a 3 x 3 block of the form

where

-/
D(jjas = e S @ (”,) exp(iglr(j'1') — r(j0)]) (2.22)
m;m;: 0 0l ap

While the path was somewhat involved, it is useful to take a step back and consider the con-
sequences of our outlined formalism. Everything we need to know about our phonon system can
be obtained from the dynamical matrix that, in turn, is constructed from force constants through
equation (2.22). Finally, all of these objects can be constructed in computationally trivial way
from force constants.

Practical considerations

At this point, it is useful to consider how we construct elements of the dynamical matrix in
practice. Inspection of equation (2.22) contains a sum over all unit cells I’ and thus approaches
an infinite sum. On the other hand, it is reasonable to assume that the dominant force constants
® are short range. The compromise is to use a finite supercell such that the second derivatives
involved in calculating force constants outside this cell are minimized. While the reasonable size of
such a supercell obviously depends on the system and model, quantum contributions to the force
constants generally vanish within a distance of roughly 10 A to 15 A. If the force constants can be
obtained analytically from a semi-empirical potential, calculation is computationally simple and
we can use large supercells. However, since force constants are usually obtained from DFT, we
are limited by computational resources and are usually restricted to supercells with a maximal
interatomic distance of roughly 5A (e.g. a cubic system with a = 10 A).

Since the number of force constants needed is at least equal to the size of the dynamical matrix,
the number of calculations to perform is at least 3n x 3n. Even for a fairly small system such as
LCO in the I4/mmm space group (HTT, n = 7) the number of elements in the dynamical matrix is
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Figure 2.9: Cu-O bond stretching mode in LayCuQOy4 at three different values of g referring to the
orthorhombic coordinate system (Bmab) as shown by the grey outline in the leftmost figure. Blue
markers are oxygen and red markers are copper. The phase is set to ¢ = %ﬂ' in equation 2.23 in
order to get displacement vectors of equal length.

(3-7)? = 441. In the finite displacement method, each force constant is the result of a self-consistent
DFT calculation, so the computational effort appears prohibitively expensive at first glance. For
this reason we use a numerical fitting of symmetry inequivalent force constants (see section 2.4).
In the case of LCO in the I4/mmm space group the number of necessary displacements is reduced
to only 7 (6 if we ignore magnetism), making the problem much more manageable.

Phonon eigenvectors

The phonon dispersion is contained within the eigenvalues w(q, v)?. We can plot the bands v along
high-symmetry lines in the FBZ by carefully choosing the values of ¢ where the dynamical matrix
is diagonalized. Similarly, we can sample the dispersion in a dense g-mesh in order to evaluate the
phonon density of states. In addition, many thermodynamic properties can be calculated by only
considering the eigenvalues.

The eigenvectors e(g,v) are more subtle in nature. Each component of e(g,v) is a complex
number that describes the wave amplitude and phase of one atomic species j in one cartesian
direction «. In addition, the eigenvector is normalized and thus only describes relative atomic
motion. In order to visualize the collective displacement due to a phonon mode v at q we can
displace all atoms j in unit cells [ by

Aji = Re [exp(i¢)e;(q,v) exp(i2m q - (jl)] (2.23)

J

where e;(q,v) is the j’th component of e(q,v) and A is an arbitrary amplitude. The phase ¢
describes periodic motion of atoms. An animation can be produced by varying ¢ between 0 and
2.

In Phonopy the eigenvectors are always given with respect to the primitive unit cell and the 3
Cartesian components are along the basis vectors of this primitive unit cell. If we want, for example,
to visualize the bond-stretching mode in the HTT phase of LCO at ¢ = (i, %, 0) in orthorhombic
notation, we look at atoms in primitive unit cells with origin (0,0,0), (1,0,1), (2,0,2) and (3,0,3)
using the eigenvectors at ¢ = (0.125,—0.125,0.125). For this specific mode, the movement of
oxygen along the Cu-O bond dominates. Figure 2.9 shows this phonon mode at the zone center,
halfway through the zone and at the zone boundary.

Imaginary modes

In contrast to real-world phonons, there is no guarantee that the energies obtained from equa-
tion (2.20) are positive. Negative energies in a calculated phonon dispersion are called imaginary
modes and corresponds to a situation where the system gains energy by a displacement corres-
ponding to the eigenvector of the imaginary mode. In other words, we are not at equilibrium
with respect to that particular phonon mode. While this is at odds with one of our assumptions,
imaginary modes can reveal that a chosen symmetry might be unstable. In the case of LasCuQy,
our calculations correctly predict unstable modes in the high-temperature tetragonal phase. The
information gathered from imaginary modes is of course limited by the fact that DFT calculations
are performed at T'= 0K.
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Obtaining Force Constants from DFT

Force constants from DFT are found in a surprisingly simple way. In the previous sections we
defined the force constant with respect to total energy as

o1\ __ OB 0BG
op  Oual
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where Fg(j'l’) is the force on atom (j'1’) in the direction 8. Notice that everything is now labelled
by a Cartesian direction and these directions are treated individually. In practice the Cartesian
directions correspond to the unit cell vectors, but to reduce confusion we use the labels (x,y, 2).
We can approximate the derivative by performing a finite displacement Au, (j1) and simply taking
the numerical derivative

3\ o FsU'; Aua(il) — Fp (')
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where Fg(j'l'; Auy(51)) is the force on atom (j'I’) in the direction 2 after performing the displace-
ment Auq(jl). At equilibrium we assume Fg(j'l’) = 0 and we only need to calculate the forces
due to a finite displacement. In ab-initio methods, there is no reason to assume a particular shape
of the potential energy landscape and we can only expect the harmonic approximation to be valid
for small finite displacements. For this reason, displacements have to be chosen large enough so
that we are not subject to numerical noise and small enough to avoid anharmonic contributions.
In Phonopy the default value is 0.01 A, while PHONON uses 0.03 A.

As mentioned in section 2.4, we need a large number of force constants to construct the dy-
namical matrix, even when dealing with small systems. For this reason, a numerical fitting of
forces and displacements, known as the Parlinski-Li-Kawazoe method [125], is used to find force
constants. We notice that equation (2.24) can be written as a matrix equation for one pair of
atoms (j1) and (5'1'):

F(§'l") = U P(jl; 5'T)

where

F(jU)=(Fe F, F.),

U@l = (Aug (1) Auy(Gl)  Au-(51))

and
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If we perform m finite displacements, we get m simultaneous equations for each pair of atoms:

Fi (') U1 (j1)
Fy(5'l') _ U:(j1) PULJT) .
Fu(5') Unn (1)

which can be solved by a Moore-Penrose pseudo-inverse matrix (in Numpy: numpy.linalg.pinv)
given a sufficient number of displacements. Since U only depends on (jl), we can build up the full
force constant matrix by iterating this procedure over (j'I’). The minimum number of displace-
ments is equal to the number of non-equivalent atoms in the crystal primitive unit cell multiplied
by a number of independent x,y,z coordinates in the site symmetry of a given atom [125]. For
this reason, software such as Phonopy and PHONON determines the primitive unit cell, the supercell
expansion matrix and all the symmetry operations before generating displacements.
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2.5 Molecular Dynamics

The objective of a molecular dynamics simulations is to generate a trajectory of atomic positions
as a function of time. This method has a rich history in materials science since it can be use to
study ensembles explictely. The general idea is to build a real space model containing particles
and their interactions and then integrate the Newtons equations of motion for this many-body
system. By analyzing the resulting trajectory, one can obtain information about thermodynamic,
structural and (of course) dynamical properties.

In the context of this thesis, the forces for our simulation is obtained through a DFT calculation,
so that every configuarion of atomic postions requires a self-consistent calculation. For this reason,
the forces are obtained ab-initio and we only have to worry about integrating the equations of
motion. This can be done very efficiently using the Verlet algorithm [127]:

ri(t 4+ At) = —ri(t — At) + 27;(t) + a;(t) At? + O(At?)

where 7; is the position of atom i, a; is the acceleration, At is the time step. This equation can
easily be obtained by summing the Taylor expansions of r;(t + At) and »;(t — At). The time
step is a crucial choice for any MD simulation. On one hand, it is important to have a small
enough time step such that the dynamics are accurately described. On the other hand, if the total
simulation time is too short, we might not probe a large enough part of phase space to make the
ensemble averages represenatative. In other words, short simulation times might trap you in a
local minimum of phase space.

MD simulations are, unlike DFT ground state calculations, generally performed at finite tem-
peratures. Generally this temperature is initialized by giving every atom an initial velocity taken
from the Boltzman distributon at the initial temperature. During the simulation, the temperat-
ure can be controlled in different ways, depending on the thermodynamic ensemble one wishes to
simulate. While energy should be conserved, the Verlet algorithm might cause the total energy to
drift, especially if the system is out of equilibrium. For this reason, it is usually desirable to have
a thermostat that controls the temperature. For the simulations performed in this thesis, we use
the Nosé-Hover thermostat [128]. I will not repeat the details here, but the general idea of MD
thermostats is to scale the velocities such that the temperature is kept constant.

After having performed a MD simulation, we want to be able to compare with experiment. The
trajectories can be analyzed in a variety of ways, but there are a few basic observables that are
easy to compute in the case of crystalline materials: The phonon density of states and the pair-
distribution function. In the following, I outline how these observables are obtained in practice.

VACF and gDOS

It turns out [129] that the phonon density of states can be found from the power spectrum of the
mass-weighted velocity autocorrelation function (VACF). The VACF is, as the name implies, an
expression of the correlation between velocites at different times. In liquids, the VACF will rapidly
decay to zero and in solids the VACF will fluctuate due to coherent vibrations around equilibrium
positions. The VACF for a single atomic species « is defined as

1

2 (va(to) - va (1))

Co(t) = 3

By invoking ergodicity, the ensemble average can be replaced with a time average with respect to
to.

T—
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where T is the total simulation time and v,g is the velocity of atom « in direction 3. The total
VACEF is defined as

(t) = Z maCol(t)

where m,, is a weight depending on the atomic species and the terms of the sum are the partial
VACFs. To get the mass-weighted VACF m,, is equal to the atomic weight of species a divided
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Figure 2.10: Visualization of the radial distribution function. Centered on an atom « (blue), we
count the number of atoms S (green) that can be found in a spherical shell at a distance r with a
with dr. As shown in the text, this can be used to construct the radial distribution function g(r).
Figure from [130].

by the average weight of atomic species. The density of states is obtained as the power spectrum
of the mass-weighted velocity autocorrelation function:

1 [T
DOS(w) = za: Tagy / dt exp[—iwt]m,Cy(t),

— 00

where the terms of the sum, once again, determines the partial density of states for atomic species
a. To get the neutron-weighted DOS, we set o, equal to the coherent neutron cross-section of
species a. In practice both the VACF and DOS is found numerically by FFT methods. The
neutron-weighted phonon DOS obtained from simulations in this thesis are all evaluated using the
tools created in appendix A.

Radial distribution function

The radial distribution function is defined as

_plr)
g(r) = ,

)

where p(r) is the particle number density at a distance r from an arbitrary atomic origin and
p= g is the number density of the unit cell. A visual representation of this quantity is shown in

figure 2.10. Formally this can be found from atomic positions

1 N
g(r) = N, <ZZ5(T - Tij)>

i it

where ¢ and j are particle indices and r;; is the distance between particle ¢ and j. N is the total
number of particles and the brackets denote an ensemble average. Due to the delta function, this
expression is not particularly useful when analysing MD trajectories of discrete particle positions.
To overcome this, we define n(r,dr) as a function that counts the number of particles at a distance
r within a spherical shell of thickness dr.

o) — 2nr.ar)

= 2.2
NpVi(r,dr)’ (2:25)

where V(r,dr) ~ 4mr2dr is the thickness of the spherical shell. Due to the ergodic hypothesis, the
ensemble average is replaced with a time average, so that

| XM
(n(r,dr)) = i Z ng(r,dr)
k=1
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where M is the number of time steps. In practice n; is evaluated by creating a list of all particle-
particle distances in the frame k and generating a histogram with bin size dr. The factor of two
in equation (2.25) comes from the fact that nj only counts each pair once.

The g(r) we just defined treats all particle pairs on an equal footing. In order to compare
simulations with neutron scattering data it is necessary to weigh distinct particle pairs by the
product of their neutron cross sections. First, we define the partial radial distribution function
gap(r) as the probability of finding a particle with label 8 at a distance r away from a particle
with label « plus the probability of finding a particle with label a at a distance r away from a
particle with label S.

(nap(r,dr)) (nap(r,dr))
NoppgVs(r,dr) — NgpaVs(r,dr)
2V (ngp(r,dr))
NoNg  Vi(r,dr)

Gap(r) =

where NN; is the number and p; is the density of particle species i. The reason to define it in ‘both
directions’ is that n,g is symmetric to exchange of particles. From the partial pair distribution
functions, G(r) can be trivially computed and optionally weighted by neutron cross sections, as
we saw in section 2.1:

G =5 Y cacsbabslgas(r) — 1),

b a=1,>a

Atomic distance histograms

If our MD simulations fulfils the ergodic hypothesis, it is useful to look at various distributions that
can be extracted from the simulation. While a lot of this information is contained in the radial
distribution function, the system studied in this thesis is not isotropic. In fact, the 2-dimensional
nature of the cuprates appears to be essential for the electronic properties. By generating histo-
grams for certain atoms, we can ask a few pertinent questions such as:

o What is the distribution of Cu-O¢q distance?

o What is the distribution of Cu-O,, distance?

o What is the distribution of octahedral tilts (@1, Q2)7
e« What is the nature of Oj;, diffusion?

All of these questions are well-defined in the context of molecular dynamics trajectories, but it
can be tedious for large systems to label all the relevant atoms. To overcome this, we generate
pairs of atomic species based on certain conditions. For example, if we want to find pairs of Cu
and Ocq, we loop over all Cu-O pairs and only list the pairs where the distance vector is less
than r = (2.1,2.1,1) A. After building the pair-lists it is trivial to generate histograms of certain
distances.

Similarly, we can build the CuOg octahedra by applying the same idea to both equatorial and
apical oxygen atoms. We can identify the 6 corners of the octahedron simply by checking the signs
of the 6 distance vectors (e.g. the ‘top’ apical oxygen will have a positive z component). @ and
@2 can then be computed and we can generate histograms of the octahedral tilts.

Finally, we can also use these pairs to generate symmetry operations in a fairly simple way.
Since we know that the octahedra have alternating tilt patterns, we can check the tilt pattern at
frame 1 and generate a list of the 4 different combinations of Q1 and Qo ((+,+),(+,-),(-,4),(-,-))-
Applying these symmetry operations to our calculations then lets us obtain a histogram of the
symmetry-adapted octahedral tilts.

2.6 Comparing Simulation and Experiment
Finally, we conclude this chapter by giving examples of how to compare the simulation methods
with neutron scattering experiments. As we saw in section 2.1, this thesis features 3 types of

neutron measurements.

1. Direct measurements of phonon bands with TAS spectroscopy
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2. Phonon density of states on powders with time-of-flight methods.

3. PDF measurements of powders

All of these can be compared directly with simulations in various ways, but there are some subtleties
on how to perform this comparison correctly. In this section we thus treat them one at a time.

Phonon bands with TAS

The master equation for phonon scattering can be found in [97] and directly relates the measured
differential cross-section to the phonon band structure as we saw in section 2.2, equation (2.5)
(repeated here for clarity)

SQuuw) = 15 Y IF(Q .0y + D )@~ — G) (2:26)

F(Q,q,v) = Z aniuqybj exp (—;(IQ : u(j0)|2>> exp[—i(Q — q) - 7(j0)]Q - €;(q,v) (2:27)

Note that the equations have been rewritten slightly when compared to Squires [97] (similar to
what is presented on the Phonopy website [131]), such that S(Q,v,w) is defined separately for
each phonon band. In addition, the sum in the phonon structure factor runs over atomic indices
in unit cell 0, consistent with the definitions made earlier in this chapter.

By close inspection of equation (2.26) and (2.27), we realise that the information obtained by the
calculation of phonon band structures provides us with all the information necessary to construct
S(Q,v,w). Since normalization on an absolute scale is usually not possible when performing a
TAS experiment, the neutron-weighted band structures are shown with Nk¢/k; = 1.

The §-functions in equation (2.5) tells us that a neutron measurement will only have intensity
if we measure at values of @ and w that correspond to a point of the dispersion of band v. We
thus reduce our calculations to sampling S(Q,v,w) at (g,wqy). The only computationally heavy
part then becomes the Debye-Waller factor

W= 2 (1Q u(j0))

which has to be sampled at some finite grid in unit cell 0 in order to get a reasonable estimate
of the ensemble average. In many cases we compare measurements to a phonon dispersion in the
first BZ where W varies only slightly, so if we want to sample a large number of Q-points it can
be advantageous to simply omit the Debye-Waller factor. As of this writing, this is not possible
in Phonopy directly, so we have to live with someone heavy computations for now.

With these equations in mind, we can now plot the neutron-weighted phonon bands and com-
pare them with TAS-measurements. We can represent the neutron weighted bands either by
colouring the band-structure lines according to intensity or by giving the dispersion curves a finite
Gaussian width to replicate a finite instrument resolution and/or linewidth broadening. Figure
2.11 shows examples of the two kinds of representations. By adding obtained neutron data to
these plots, we can then directly compare theory and experiment. We note here that a comparison
with MD simulations is not possible since these simulations give no information about the discrete
phonon bands.

Phonon Density of States

The phonon density of states (DOS) is a simple projection of the phonon bands onto the energy axis.
While this obviously reduces the amount of information due to the reduction of dimensionality,
the phonon DOS is a useful object for a couple of reasons:

1. Often only powders are available for experiments and resolving bands can be difficult due to
the rotational averaging.

2. Many neutron scattering instruments are specifically designed for DOS measurements.

3. DOS can be obtained from molecular dynamics as well as band structure calculations.
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Figure 2.11: Neutron weighted phonon band structure of LasCuQO, in the high-temperature tetra-
gonal phase. On the left, the bands are shown as a line plot where the lines are colored according
to neutron intensity. On the right the same simulation is shown, but the bands are given a
Gaussian width along the energy axis of ¢ = 0.5 meV, giving a better idea of what the measured
neutron spectrum would look like. Additionally, this plot is produced with a minimum threshold of
neutron intensities in order to remove bands with very little intensity (the calculation will allways
return a finite intensity).

The last point is particularly important in the case where we are working with defect structures
such as oxygen interstitials. Here, the (local) symmetry is usually severely broken (often to P1
symmetry) and a phonon calculation would be prohibitively expensive. As shown in section 2.5,
the phonon DOS can be obtained, in the harmonic approximation, rather simply from a MD
trajectory.

To obtain the DOS from a band-structure calculation, we perform an integration over a com-
mensurate grid in the 1st BZ and project the result onto the energy axis for each atomic species j
in the following way:

P@= Y 50wl eslan)f

A={zyz} 4w

o) = > ')

where 71 is the unit vector in the three cartesian directions. Comparing this equation with equation
(2.5) we notice that we only need to weigh by mass and the neutron cross-section in order to go from
the true density of states g(w) to the neutron S(w). If we performed a TAS experiment on a single
crystal with perfect resolution at every relevant (g, wq,) point, these definitions would be correct
and we could perform the integration on our massive 4-dimensional dataset. However, due to the
nature of typical DOS measurements, we need to invoke the so-called incoherent approximation and
use the incoherent 1-phonon partial differential cross-section when treating the data. In practice
this means using the total neutron cross sections (oyot) with the incoherent 1-phonon S(q,w) as
shown in section 2.2.

Pair-density function measurements

When performing neutron PDF measurements, it is possible to extract the normalized total neutron
PDF (construction of partials require several measurements, see ref. [132]). As such, we should be
able to compare directly with the PDF as extracted from molecular dynamics as shown in section
2.5. PDF from phonon band structure calculations are in principle possible since we can extract
thermal displacements, but it is currently not a feature in Phonopy, so this analysis has not been
performed here.






Chapter 3

Phonon Calculations

In this chapter, results from ab-initio simulations are presented independent of experimental data.
It turns out that a careful investigation of various phases of Lay;CuQ, presents us with valuable clues
regarding the average and local structure. While DFT is unable to capture the strongly correlated
nature of the cuprates, it turns out to be a reasonable description with regards to intermolecular
forces. The subsequent strategy is to carefully validate our simulations and establish a ‘one-electron
baseline’ for the studied systems. Experimental deviations from this baseline can then be analysed
for clues possibly pertaining to superconductivity or other phenomena not captured at the DFT
level of theory.

One example of such a deviation is shown in Chapter 8, where we can detect potentially interest-
ing physics by following how a certain phonon mode diverges from our otherwise robust simulation
results. In this chapter we perform DFT simulations based on the LayCuO,4 parent compound
across three structural and two electronic phases, all of which have been observed experimentally in
the lanthanum-based cuprates. We then calculate phonons within the ‘Frozen-Phonon’ approach
and obtain the neutron-weighted phonon band structure. Since the computational requirements
of phonon calculations are heavily influenced by symmetries, we do not consider defects such as
interstitials in this chapter as this would make the computational effort unmanageable. To under-
stand the dynamics due to dopant species, molecular dynamics simulations based on the results of
this chapter are presented in Chapter 4.

3.1 Computational Details

The theory and principles behind Density Functional Theory (DFT) is presented in chapter 2,
section 2.3. DFT simulations in this thesis are performed using the Vienna Ab-Initio Simulation
Package (VASP) [133-136] using Projector Augmented-Wave Pseudopotentials (PAW) [137, 138]
to describe the atomic wavefunctions. While ab-initio loosely translates to ‘from the beginning’,
There are several choices to be made with regards to computational parameters. First, we need
to define the pseudo-potentials that describes the valence electrons of each atomic species in our
system. For L(S)CO(40), the relevant pseudo-potentials are listed in Table 3.1 along with their
electronic configuration. For both La and O we used the recommended potentials, while for Cu we
used a more accurate version where all 6 3p electrons are included (_pv is short for ‘p in valence’).
The reason for this is simply because it was difficult to have the simulations converge with the
standard potential — not because we necessarily believe that the Cu 3p states are important for
the chemistry of our system. To run a simulation in VASP, or in any DFT software, the following
information (files) is required:

o Crystal lattice and atomic coordinates (POSCAR)
o Pseudopotential configuration (POTCAR)
o k-point mesh (KPOINTS)

o Computational parameters (INCAR)

The choice of crystal lattice and atomic positions are typically taken from experiment, but it is
important to realize that the simulation might not ‘agree’ completely. This is especially important
if we want to calculate phonons through the evaluation of forces due to displacements away from
equilibrium positions. The pseudopotential configuration is usually taken from a database since
the generation of consistent, transferable potentials is a difficult, time-consuming task. In fact,

45
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the main selling point of VASP is their high-quality pseudopotentials. The k-point mesh defines
the number of k-points where the wavefunctions and density is evaluated and has a huge impact
on computational effort (going from e.g. a 2 x 2 x 2 grid to a 4 x 4 x 4 takes 8 times as many
evaluations). Luckily, the amount of k-points needed for an accurate calculation usually converges
rapidly and we often check this convergence explicitly. Since the density of the k-point mesh
depends on the system size, it is common to state the k-point density which is defined as the
number of k-points per reciprocal atom (or simply #k-points X #atoms).

Finally, there is a large number of computational parameters that can be tweaked depending
on the desired type of calculation. The VASP INCAR file has more than 300 optional tags [139],
but usually only a few needs to be tweaked depending on the desired type of simulation. For the
simulations performed in this thesis the following keywords are important:

e ENCUT: The plane-wave cut-off and thus the size of the basis set. Usually the default performs
well, but for accurate forces, this needs to be increased. In the manual they recommend 1.3
times the default cut-off, but there are cases where even this is insufficient [140].

e EDIFF: The threshold for the the self-consistent cycle to terminate. For accurate forces this
needs to be increased.

e PREC: A tag that defines the ‘precision’ by setting new defaults for certain parameters. I
generally increase this to ‘Accurate’ for all simulations. ‘Normal’ is the default.

e LREAL: A PAW pseudopotential specific tag which determines if an evaluation of a certain
projection operator is performed in real or reciprocal space. This operation is faster in
real space, but at the cost of accuracy. For phonons we want to perform the operation in
reciprocal space.

o GGA: Sets the exchange-correlation functional (see section 2.3). Usually the default (PBE) is
a good starting point, but experimentation is encouraged!

e ISPIN and MAGMOM: Turns on a spin-polarized calculation.

e IBRION and ISIF: How and when to update the ionic positions. This can be used to perform
molecular dynamics and structural optimizations in different ways.

e ISMEAR and SIGMA: A tag that controls ‘fermi surface smearing’, which is important for
metallic systems where we need to evaluate a discontinuous function at the fermi level due
to partial occupancies. This can be done in several ways, and it is usually good practice to
test the convergence and performance of these methods.

o LDAU: Switches on LDA+U (see section 2.3) which can alleviate the intrinsic problem of DFT
when dealing with localized d- and f-orbitals. This is needed in our simulations if we want
to describe the anti-ferromagnetic structure of LasCuQy.

e ISYM: Controls how VASP deals with space group symmetry.

The take-home message here is that phonon calculations generally needs increased precision with
respect to the recommended default values. When one is mainly concerned with the electronic band
structure the dominant energies are typically on the order of eV, where typical phonon energies are
on the order of meV, 3 orders of magnitude smaller. In addition, forces are evaluated as derivatives
of the total energy (per the Hellmann-Feynmann Theorem, see section 2.4) so numerical noise is
amplified. For molecular dynamics this precision is less crucial since the many time steps will
average out this numerical noise.

Z  Core (# electrons) Valence (# electrons)
La 57  1522s%2p°®3s23p63d104s24p®4dt0 (46) 5s25p55d16s? (11)
Sr_sv 38 1s%2s?2p63s23p63d10 (28) 4524p55s? (10)
Cu_pv 29 1s22s%2p%3s? (12) 3pb3dio4st (17)
0 8 152 (2) 2522p? (6)

Table 3.1: PAW pseudopotential electronic configuration used in VASP calculations. While
lanthanum is typically placed in the f-block on periodic tables it’s electronic configuration has
no f-electrons. This is fortunate since DFT (in)famously struggles with highly localized orbitals.
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Functional and Energy Cut-off

As we discussed in Section 2.3, a large number of functionals have been developed for DFT cal-
culations. At the GGA level of theory 24 functionals are available in VASP and choosing one can
seem like an daunting task at first glance. It is, however, important to realize that most functionals
have been created to treat a specific problem. This is an expression of the fact that, despite our
best efforts, no universal functional exists currently. With that in mind, functionals with high
transferability do exist and the default PBE functional in VASP has been used to describe a wide
variety of systems, emphasized by the 40000+ citations of the original paper [141].

While PBE is technically a semi-empirical functional, the only experimental parameter is de-
rived from the uniform electron gas. The simplicity and transferability of this functional thus
makes it an excellent starting point for any DFT calculation. Generally one would start with PBE
and then turn to other functionals if calculations fail to line up with empirical data. As we shall
see, we run into this exact problem when evaluating forces in our system and we have to change
our functional to PBESol (PBE revised for solids) in order to get a reasonable description of low
energy phonons.

We run into a similar problem with the plane wave energy-cutoff when evaluating forces. The
default energy-cutoff is generally set by the element with the highest recommended cut-off, in our
case oxygen at 400eV. For accurate forces it is recommended to increase this by a factor of 1.3,
but for phonon calculations, we see improvements all the way up to an 800eV cut-off. The lesson
here is a cautionary tale — at times, the lack of precision in the calculation might not reveal itself
before having performed an expensive phonon calculation.

3.2 Electronic and Structural Phases

With an understanding of the functionality and limitations of DFT, and in particular VASP, we
can begin to formulate a strategy to investigate the LayCuO4 (LCO) system. From diffraction
studies, we know that LCO can exist in (at least) three structural phases depending on doping and
temperature (see section 1.3). While the electronic structure of superconducting cuprates cannot
be accurately described within DFT, undoped and overdoped Las;CuO4 can be described as Mott-
Insulator and Fermi-Liquid, respectively. Both of these electronic phases can be approximately
described with DFT.

In order to say anything about the superconducting cuprates with DFT, we are thus limited
to a study of limiting cases in terms of the electronic structure. On the other hand, if we want
to study phonons through atomic forces, many-body theories will struggle with realistic system
sizes. Quantum Monte Carlo methods are making progress, but accurate forces are still a significant
limitation [142]. Since we are working with the knowledge that the exact behaviour of the electrons
are poorly described in our theory, our simulations must be carefully evaluated against experiments
to ensure that our simulations are capturing the dominating contributions to atomic forces.

Electronic Structure

Since ‘electronic structure’ is the output of a DFT calculation, one might object to the statement
that we want to investigate different electronic structures of LayCuQOy4. Without any additional
constrains, DFT at the GGA level of theory generally results in a metallic state [143], where
the observed antiferromagnetic (AFM) solution requires a non-local theory [144]. Since non-local
theories (beyond GGA) are computationally expensive, they become impractical for our purposes.
Some authors have reported an AFM solution using certain GGA functionals [145], but I have not
been able to reproduce this result in a consistent way. If a magnetic solution is found, the magnetic
moment usually vanishes by small changes to the k-point mesh or energy cut-off, suggesting that
the magnetic ground state is a local minimum.

A compromise developed specifically for correlated electron systems is the LDA+U (sometimes
called DFT4+U or GGA+U) method [123] described in section 2.3. This ad-hoc method treats the
strong on-site Coulomb interaction of localized electrons with a Hubbard-like term parametrized
through an on-site repulsion U and an exchange parameter J. In the method by Dudarev et al.
[146] these are reduced to one parameter Usg = U — J. The LDA+U method was developed
specifically to treat Mott-Insulators [123], but has been used to calculate hole doped LagCuO4 and
LasNiOy4 [123]. Some recent studies have even looked at stripe ordered phases of Lag_,Sr,CuQOy
[147, 148]. In these studies, hole doping is done by removing electrons and adding a neutralizing
background, rather than the introduction of actual dopant species. Since LDA+U comes at a much
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Table 3.2: Crystal structures found in various lanthanum-based cuprates. All structural phases can
be parametrized with respect to LTLO, where @1 and ()2 represent octahedral tilts as described

in the text and n = Il:_—z is the orthorhombic strain.
Space Group (#) Name (shorthand) Tilts 7
I4/mmm (139) High-Temperature Tetragonal (HTT) Q1=Q2=0 =0
Fmmm (69) Qi=Q>=0 £0
Bmab (64) Low-Temperature Orthorhombic (LTO) QRQ2#0,Q1=0 #0
P45 /nem (138) Low-Temperature Tetragonal (LTT) Q1 =Q27#0 =0
Pcen (56) Low-Temperature-Less-Orthorhombic (LTLO) Q1 # Q2 # 0 #0

lower computational cost compared to e.g. hybrid functionals and since it was developed with the
cuprates in mind, it becomes an obvious choice for our purposes.

Crystal Structure

The observed structural phases of lanthanum based cuprates fall into a moderate number of space
groups as listed in Table 3.2 and introduced in section 1.3. All of the structural phases can be
described with reference to Figure 1.9 where we define ()1 as a rotation along a (around b) and Q-
as a rotation along b (around a). In addition, we define the orthorhombic strain as n = 2;—2. In
our simulations we have chosen to focus on three structural phases

e HTT: The parent high-symmetry phase observed at high temperatures and/or overdoped
samples.

e LTO: The most common structural phase at low temperatures for relevant superconducting
samples.

o LTT: A lower symmetry phase than LTO observed in Las_,Ba,CuO4 and La g_,Ndg.4Sr, CuOy.
Appears to supress superconductivity with the notable exception of Laj ggBag.12CuOy (Tt &
5K)

3.3 Coordinate systems

Having decided on the phases to investigate, we take a short detour to describe the coordinate sys-
tems used in real and reciprocal space. Since we are dealing with several electronic and structural
phases, we need a common description to compare between phases. In real space, we use the @1,
@2, 1 description from above and in reciprocal space we use the HT'T Brillouin Zone.

Octahedral Tilts

In order to quantify the octahedral tilts for use in simulations, we use the coordinate system
sketched in Figure 3.1. All possible tilts can be described with reference to the lowest symmetry
space group (LTLO, Pccn). The octahedra are described with two in-plane oxygens (O1, Oz) and
one apical oxygen O3 and the Pccn space group is the only one with three inequivalent oxygen
atoms. Due to symmetry constrains, a rotation of this octahedron will cause a displacements in
the c-direction of the in-plane oxygen and in the a, b direction of the apical oxygen (a reasonable
approximation at small angles). Following [67], we define )1 as a rotation around the (010) axis
and @ as a rotation around the (100) axis in orthorhombic notation. In more intuitive terms, Q4
‘tilts’ the octahedron along a, while Q5 ‘tilts’ along b.

By inspection of Figure 3.1, a 1 rotation will displace O3 in the z-direction and Op, Os in
the negative z-direction. A (o rotation will displace Oz in the y-direction, O; in the positive
z-direction and O in the negative z-direction. If we want to express @1 and ()2 as angles, the
displacements become:
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Figure 3.1: Left: Geometry of octahedral tilts in the with the c-axis vertical. Right: Illustration
of the two inequivalent in-plane oxygens. Q7 is a rotation around the (010) axis while Q5 is a
rotation around the (100) axis.

05 = O, sin(Qu) =~

0y = 0, sin(Qz)%

OF = 1. [-asin(Qy) + bsin(Qa)]
05 = i [—asin(Q1) — bsin(Q2)] ,

where O; is the i-component of oxygen j in fractional coordinates. Since these equations uniquely
define displacements in terms of tilt angles, we can also find tilt angles from structural displace-
ments from either the apical oxygen:

0 a
_an-1( Vs @
@1 = sin (ng X c)
oY b
a1 3 0
Q2 = sin (Oszc> ,

or the equatorial oxygen:

2
Ql = Si1171 (—ac X (Oiz + O;))

4
Qy =sin! (—bc x 05 — % X sin(Q1)> .

To apply an orthorhombic strain 7 to a tetragonal structure with an in-plane lattice parameter a’,
while keeping the volume constant (which is important when comparing DFT simulations due to
Pulay Stress, [149]), the following equations can be used to find the a and b lattice parameters:

!

he 8
1+
b= (1+mn)d .

These equations can then be used to generate desired tilts and extract tilt angles from any given
structure. Since every tilt is defined with respect to only 3 oxygen atoms, these equations require
at least Pcen symmetry which is preserved for geometry optimizations and phonon calculations.
For lower symmetries (in e.g. MD simulations) we define a ‘symmetrized average tilt’ (see chapter
4). Code to generate these structures and extract rotation angles from any structure can be found
in appendix A. This methodology can also be used with any software that can generate crystal



50 CHAPTER 3. PHONON CALCULATIONS
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Figure 3.2: Brillouin Zones of the HTT, LTO and LTT phases (see Table 3.2). Modified from [152]
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Figure 3.3: Left: BZ of a primitive tetragonal cell with high-symmetry lines. Right: The in-plane
BZ with the same labels and the usual I'-X-M-I" path. If the large BZ is the crystallographic HT'T
phase, then the broken blue lines represent the LTO/LTT/LTLO BZ and we can consider the I'-
X —%-F path, since M becomes I for this (smaller) BZ. In literature the labels are often confused,
while (7, 7) and (w,0) are universally agreed upon. In any band structure diagrams presented
here, the labels in this figure is used.

structures from space group symmetry and fractional coordinates (e.g. ASE [150] and VESTA
[151]). The same result can, of course, also be obtained by considering each of the space groups
individually and then figuring out how to generate tilts and transform the lattice to a common
coordinate system. If one is only interested in atomic coordinates, starting from Pccn is convenient.
This way, atomic indices are also identical for all structures.

Reciprocal Space: Band Structures

Band structures are described with respect to the reciprocal lattice. Due to the enlargement of the
real-space crystal structure as we move through HTT — LTO — LTT, the Brillouin Zone (BZ)
shrinks by the same amount. Similar to how it is useful to describe our real-space lattice with
respect to the Pcen coordinate system, it is useful to describe reciprocal space with respect to a
common coordinate system when comparing results. As we can see in Figure 3.2, the BZs of HT'T,
LTO and LTT have vastly different shapes, so it is difficult to superimpose results.

For this reason, we chose a primitive tetragonal BZ to describe the HT'T phase (note that this
shape is different from the actual HTT BZ in figure 3.2) and then construct the smaller LTO and
LTT BZZs with respect to this construction. The idea is sketched in Figure 3.3. This construction
also helps emphasize the 2-dimensional nature of the cuprates. In all following simulations, the
band labels in Figure 3.3 will be used, keeping in mind that the nature of high-symmetry points
can change depending on the considered structural phase. One example is that the M point, which
is the zone boundary of HT'T, becomes the zone centre of LTO and would thus usually be denoted
.

While this construction is useful for our intuitive understanding of the different phases, phonon
calculations require k-vectors with respect to the primitive unit cell. For this reason, we need the
transformation matrices from our constructed coordinate system to the primitive HTT and LTO
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unit cells (the LTT transformation is the identity matrix). This conversion can be done with the
following matrices.

0o 0 1 1100

PAgTT = % % 0 PArro=10 0 1
11 1 11
2 2 2 2 2

these matrices can be used to generate k-points starting from the more ‘intuitive’ notation outlined
in Figure 3.3. For example, the X-point ((40) with respect to our coordinate system) in the HTT

111).

phase becomes (%%0) ‘PAgrr = (313

3.4 Strategy

To find a connection between the structural phases, we start with the highest symmetry phase
(HTT) using cell parameters and fractional positions approximated from literature [71]. The AFM
structure is based on LasCuQOy4 that has been modified in a way such that n = 0 and @1 = Q2 = 0.
The metallic structure is based on Laj 775510.225CuQOy, which is tetragonal (HTT) at 10K.

The structure is then optimized and we calculate the electronic and phonon band structures.
We then break the symmetry by applying a small rigid tilt Q2 = 5° along with small orthorhombic
strain n = 0.005, resulting in the LTO phase which we then optimize and finally perform the
same set of calculations. A HTT-LTT transformation is performed in a similar fashion with
Q1 = Q2 =5° and n = 0. This procedure is then performed in parallel for the anti-ferromagnetic
solution using LDA+U and the metallic solution. The resulting band structures, density-of-states
and total energies are then analysed and validated against experimental data.

All calculations in this chapter is performed on LasCuQy in the conventional orthorhombic unit
cell, which corresponds to the primitive Pccn lattice that we use to generate the structures. This
cell contains four formula units and is large enough to accommodate anti-ferromagnetism. Since
VASP can handle symmetry through the ISYM keyword, we don’t need an input cell corresponding
to the primitive cell of the considered structural phase. Before starting any ‘production’” DFT
calculation, it is advantageous to benchmark certain computational parameters in order to get an
idea of how well-behaved the SCF convergence is and what energy scales we can expect to probe.

3.5 Benchmarking

When performing DFT calculations in VASP there are a few parameters that have significant
impact on the precision of the calculation. Increasing the precision also results in significantly
longer computation time, so it is important to find a compromise.

Figure 3.4 shows a benchmark of AFM LCO with respect to the k-point mesh and smearing
width o. Since there are no states at the Fermi level, the smearing width converges rather quickly,
and we can safely use a value of ¢ = 0.1eV. The k-point density also converges rather quickly,
and we achieve a precision of 0.1 meV using a fairly coarse MP-grid of 8 x 8 x 4 (7168 k-points
per reciprocal atom). In AFM LCO we also checked the effect on electronic structure due to the
on-site repulsion U. The result is shown in Table 3.3 and the values of U = 8¢V, J = 0.8V are
chosen based on the proximity to experimental evidence [153, 154] and previous theoretical studies
of the LayCuOy4 system, where the values of U and J where found self-consistently [147, 155].

Table 3.3: LDA+U Benchmarking of the parameters U and J calculated with LDAUTYPE=4 in the
HTT phase of LayCuOy4. Experimentally the Cu moment is (0.48 £+ 0.15) up [153] and the optical
gap is &~ 2eV [154]. As a reasonable compromise we chose U = 8eV and J = 0.8eV, a set of
values also used in a previous study of the same system [147].

U [eV] J[eV] Moment [up] Optical gap [eV]

4.0 0.4 0.330 0.348
6.0 0.6 0.481 1.016
8.0 0.8 0.588 1.686
10.0 1.0 0.676 1.877

12.0 1.2 0.755 2.042
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Figure 3.4: Simulation Benchmarks: GGA+U with U = 8eV and J = 0.8eV. Left: Energy as
a function of k-point density with o = 0.1eV. AF is total energy (with entropy) with respect to
the 13 x 13 x 5 mesh. Right: AE = Ey — F as a function of Gaussian smearing o, F is the total
energy and Ej is the energy where o = 0 calculated with the tetrahedron method (ISMEAR=-5 in
VASP). The inset is a zoom of the 4 lowest points.

1 o -O- ISMEAR=1, SIGMA=2.0 2
,‘lI ? ISMEAR=1, SIGMA=1.5
I 1 -©- ISMEAR=2, SIGMA=2.0 o 9_———”0\\ 0
44 [ ¢\\\ _@r \
qg " Q \\\\\e,,/:% \\\
§ N <ad \ - -2
4] l? i o s N
L I A 9 N :
S i ' QN ® b\ L4 =
[ H iy e \ \ \ (]
§. i\ 8(\ \\ \\ \ g
W \ o\ \ %\ k \ W
< 0 \ 7\ N \b -6 4
A ‘
| ) g AN
,‘l AY = _8
L il ) é, AN
_2 - -
[ _d, 8 -©- ISMEAR=1 \\\ L _10
Ad | | ISMEAR=2 N -1
—a 00 -©- ISMEAR=3 b,/
T T T T T T T T T -12
10000 30000 50000 70000 0.0 0.1 0.2 0.3 0.4
k-point density [k-points per reciprocal atom] o[eV]

Figure 3.5: Simulation Benchmarks: Paramagnet/Metal. Note the significant variation in energy
compared to the insulating case (see figure 3.4), even with much higher k-point density. Left:
Energy as a function of k-point density for three combinations values of ¢ and smearing type. AE
is total energy (with entropy) with respect to the 18 x 18 x 8 mesh. Right: AF as a function of ¢
with the Methfessel-Paxton method (orders 1, 2, 3) while using a 16 x 16 x 8 k-point mesh (57344
k-points per reciprocal atom). o = 0 corresponds to the tetrahedron method (ISMEAR=-5). Below
o = 0.4eV the entropy term is 0.5 meV per atom or lower, so forces should be well-behaved.

Due to partial occupancies, metallic systems are generally more sensitive to k-point density and
smearing width/method. For this reason, we performed a more comprehensive set of benchmarks
as shown in Figure 3.5. While the numerical fluctuations are within a few meV, the precision on
total energy is decreased by a few orders of magnitude. Based on these results, we evaluate the
metallic simulations at twice the k-point density with a mesh of 16 x 16 x 8 (57344 k-points per

reciprocal atom).

Electronic Structure

While we are generally interested in lattice dynamics, a DFT calculation is leveraging the electronic
structure in any simulation. It is thus worthwhile to check if the electronic structure, at least
approximately, represents reality in the benchmarking phase of our simulations. In the cuprates,
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Figure 3.6: Electronic density of states for HT'T phase with two different functionals in a metallic
(paramagnetic) and AFM (GGA+U) states. The two functionals appear to describe the system
identically. The AFM state is shifted by —1eV for comparative purposes (which is why the Fermi
level is in the middle of the gap).

it is well known that DFT is unable to explain the peculiarities in the superconducting phase.
However, we can get fairly close in the limit of zero doping (AFM Mott Insulator) and over-doping
(fermi liquid). Figure 3.6 compares the electronic density of states of the Mott Insulator and fermi
liquid for our chosen functionals. We clearly see how the DFT+U opens a gap by pushing states
below the Fermi level. We also notice that, in terms of DOS, the functionals behave qualitatively
similar.

To further illustrate this point, Figure 3.7 and 3.8 shows the electronic band structures coloured
by atomic projections in the AFM and metallic state, respectively. We now notice that DET+U is
pushing the Cu states down by about 8 eV, as expected from the on-site repulsion U. Comparing
our band structures to literature we have, as expected, a qualitative agreement in both the AFM
[144] and metallic [47, 156] cases. The question of LDA+U being an appropriate model for the
undoped AFM system is still not settled [45].

3.6 Geometry optimization

Having settled on a set of appropriate computational parameters, we can proceed with the original
goal of optimizing the geometry of the various structural phases. Optimizing geometry in VASP
can be performed with 3 different algorithms controlled by the IBRION tag:

1. RM-DIIS
2. Conjugate Gradient (CG)

3. Damped molecular dynamics

All algorithms requires to set the POTIM tag which controls the step-size. Usually the default value
of 0.5 is reasonable. Damped molecular dynamics requires a damping factor in addition, set by
the SMASS tag. For this reason RM-DIIS and CG require less user intervention and are good first
choices. While RM-DIIS is usually a good choice for systems close to equilibrium, it struggles with
rigid unit modes such as octahedral tilts in perovskites. Since these tilts are at the centre of our
investigation, we use CG in all geometry optimizations.

The optimization routine is constrained by the point group symmetry as determined by VASP.
The ISIF tag controls how the positions, cell shape and cell volume is updated during the optimiz-
ation. It might seem obvious to simply optimize everything, but for complex problems convergence
can be problematic. In addition, changing the cell volume affects the plane-wave basis set. Intuit-
ively, this can be understood through thinking of the plane waves as standing waves in our finite
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Figure 3.7: GGA+U: AFM Electronic Band Structure of the Bmab LTO structure along the I'-
X-M-T path (HTT high symmetry lines). The upper and lower Hubbard bands are clearly visible

and are separated by 8eV as expected.
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Figure 3.8: Metallic Electronic Band Structure of the I4/mmm HTT structure. Path is through
the high-symmetry points as defined in Figure 3.3 with respect to the conventional unit cell. The
I'-Z path is shown to illustrate the 2-dimensional nature of the electronic structure (The dispersion

is relatively flat).
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box. Changing the size of the box necessarily changes the plane waves. This is also true when con-
sidering changes to the cell shape, but in a less significant way. These effects are known as ‘Pulay
stress’ [149] and are important to keep in mind when performing geometry optimizations. The
effect of this can be avoided by changing the size of the basis set through the energy cut-off or by
avoiding volume relaxations all together. In practice, there are two primary strategies for getting
accurate geometry optimizations in VASP. The first is a step-wise optimization of parameters in
the scheme

Coordinates — Coordinates/Shape — Coordinates/Shape/Volume,

where we are susceptible to significant Pulay stress only in the last step. The second is per-
form successive coordinate+shape optimizations at a set of fixed volumes and fit the resulting
volume-energy curve to an equation-of-state (EOS). This avoids the most significant contribution
to Pulay stress by never performing a volume optimization explicitly. While this method is more
computationally expensive, it is more accurate and provides us with additional information about
volume-dependent behaviour such as the bulk modulus, tilt patterns and orthorhombic strain. In
practice we use the exponential EOS formulated by Vinet et al. [157]:

2B,Vs
By~ 1)?
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E(V)=Eo+

x{z_

where Vj is the equilibrium volume, By is the bulk modulus and

0By
I -
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where P is pressure and T is temperature. There exists several alternative energy-volume EOS
formulations in literature [158-160] designed for different conditions and materials. By testing
several of these formulations on the same data, we get practically indistinguishable results, so the
choice of the Vinet formula is somewhat arbitrary. In practice, roughly 10 volumes ranging from
+5% of the equilibrium are chosen, adding more volumes to fill out the graph if necessary. While
performing the fits, we extract information about the volume-dependent tilt angles and cell ratios.
Since forces are more susceptible to the energy cut-off, test were performed at the recommended
cut-off; 1.3 times the cut-off and 2 times the cut-off. While the latter seems extreme at first glance,
our phonon calculations show that we iron out certain artefacts of low-energy modes by using a
large cut-off. A similar effect was seen in simulations of CsSnlsz [140], a perovskite with distorted
octahedra. As we shall see, the forces related to tilting octahedra is quite subtle in DFT.

3
exp |5 (By—1)

Geometry of AFM LCO

We performed equation-of-state fits to AFM LasCuQy in all three structural phases. Figure 3.9
shows the Energy-Volume fits, Figure 3.10 shows the volume dependence of the cell ratios and
Figure 3.11 shows how the angles in the LTO and LTT phases change as a function of volume.
Contrary to experiment, the LTO phase is energetically unfavourable and the favoured phase is
LTT. In the tetragonal phases, the optimal ¢/a ratio is reduced as a function of volume while the
LTO phase has a maximum at optimal volume. The orthorhombicity in the LTO phase increases as
a function of volume and tilts in the LTO and LTT phases increase wit increasing volume. Figure
3.11 additionally reveals that the ; and @2 are not completely rigid, consistent with experiment
[71]. Intuitively, it is ‘easier’ to move the apical oxygen due to the interlayer region being less
dense. The observations on LTO are consistent with structural studies of LSCO under pressure
[161], where both the orthorhombic strain and tilt angle are decreased with increasing pressure.

Geometry of metallic LCO

The same geometry optimization was performed in the metallic state of LaoCuOy4. EOS fits are
shown in Figure 3.12, cell ratios are shown in Figure 3.13 and the LTO/LTT angles are shown
in Figure 3.14. Qualitatively, we notice very similar behaviour to AFM LCO with regards to
cell ratios and tilt angles, but for these calculations LTT and LTO are the preferred phases with
very similar total energies. This is inconsistent with, the electronically well-described, over-doped
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Figure 3.9: Equation-of-state fits (AFM). Optimal volume of simulated structures are found by
performing optimization of fractional coordinates and cell shape at a series of fixed volumes. The
resulting Energy/Volume curve is then fit to a Vinet exponential equation of state [157]. This is
done for the HTT, LTO and LTT phases with the PBESol functional.
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Figure 3.10: Cell Ratios (AFM). During the equation-of-states fits from Figure 3.9, the cell shape
is modified, changing the b/a ratio (orthorhombicity) and ¢/a ratio (larger values correspond to a
cell that is elongated along ¢). Due to symmetry b/a = 1 for the HTT and LTT phases. Vertical
line is the optimal volume from the fit.
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Figure 3.11: LTO/LTT Angles (AFM) During equation-of-state fits, we record the tilt angles for
the LTO and LTT phase. Here, they are plotted as a function of Volume. Note that for LTO
@1 = 0 and for LTT @1 = Q2. However, the rotation angle is measured differently from the
equatorial (eq) and apical (ap) oxygen. The difference in values can be thought of as ‘non-rigidity’
of the rotation.
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Figure 3.12: Equation-of-state fits (Metal). Optimal volume of simulated metallic structures are
found by performing optimization of fractional coordinates and cell shape at a series of fixed
volumes. The resulting Energy/Volume curve is then fit to a Vinet exponential equation of state
[157]. This is done for the HTT, LTO and LTT phases with the PBESol functional.
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Figure 3.13: Cell ratios (Metal). During the equation-of-states fits from Figure 3.12, the cell shape
is modified, changing the b/a ratio (orthorhombicity) and ¢/a ratio (larger values correspond to a
cell that is elongated along ¢). Due to symmetry b/a = 1 for the HTT and LTT phases. Vertical
line is the optimal volume from the fit.

phase where the structure is actually HTT at low temperatures [71]. Since the difference is roughly
0.2eV = 200meV and our uncertainty in energy is around 2meV (see Figure 3.5), it is hard to
imagine a scenario where the discrepancy is due to numerical noise, especially since the calculations
were performed with a very dense k-point mesh of 16 x 16 x 8. It is, however, worth noting that
the evaluation of forces is quite different between metallic and insulating solutions in plane wave
DFT.

Summary of geometry optimization

A summary of all the geometry optimizations are shown in Table 3.4. Additional data from
simulations with a different functional have been added to this table. We notice that the PBE
functional finds a volume closer to experimental value, but phonon calculations show a more
consistent behaviour of the PBESol functional.

3.7 Phonons

Phonons are calculated using the Phonopy software using the finite displacement (also known as
the direct method or the frozen phonon method). Details on the methodology is given in section
2.4. Phonon calculations were performed on both metallic and AFM LCO in the HTT, LTO and
LTT structural phases. We use the same computational parameters as in the preceding sections,
but expand to a 2 x 2 x 1 supercell in order to compute phonon energies at finite values of g. Since
the cell is expanded, we reduce the k-point mesh to 4 x 4 x 4 for both the metallic and magnetic
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Figure 3.14: LTO/LTT angles (Metal). During equation-of-state fits, we record the tilt angles for
the LTO and LTT phase. Here, they are plotted as a function of Volume. Note that for LTO
@1 = 0 and for LTT @Q; = Q3. However, the rotation angle is measured differently from the
equatorial (eq) and apical (ap) oxygen. The difference in values can be thought of as ‘non-rigidity’
of the rotation.

Table 3.4: Resulting structure due to EOS fits to various structural phases and functionals. The
two values given for Q1 /Q2 are angles calculated from equatorial and apical oxygens, respectively.
Interestingly, in terms of energy LTT < HTT < LTO, while the phonons are ‘more unstable’ for
HTT than LTO (See Figures 3.16, 3.17, 3.18). For the metallic cases, we note the optimal geometry
is similar to the magnetic case. While the energy is lower, it is not meaningful to compare total
energies between GGA+U and GGA.

structure phase encut XC EO Vo c/a 7 Q1 Q-

HTT afm 520 PBE -194.352 383.410 2.431 0.000 0.000 0.000
HTT afm 800 PBE -194.494 383.297 2.430 0.000 0.000 0.000
HTT afm 800 PBESol -206.390 367.310 2.443 0.000 0.000 0.000
LTO afm 800 PBESol -205.476 370.500 2.437 1.465 0.000 5.786
LTT afm 800 PBESol -206.565 372.282 2.410 0.000 4.612 4.612
HTT metal 800 PBESol -217.546 368.774 2.456 0.000 0.000 0.000
LTO metal 800 PBESol -217.735 373.793 2.430 1.795 0.000 6.421
LTT metal 800 PBESol -217.735 373.948 2.428 0.000 4.528 4.528

solutions. While it would be preferable to perform the metallic simulation at a higher k-point
density, memory requirements became a problem when performing computations on a supercell
with P1 symmetry. While we can rely on most of the computational parameters chosen/obtained
in the preceding sections, we check the effect of functional choice and energy cut-off (ENCUT) on
phonon bands since these are more susceptible to instabilities in forces. In Figure 3.15, we show
the phonon band structure in the AFM phase with ENCUT=520 and ENCUT=800. While the effect of
increasing the plane wave cut-off is small, we see immediately that it fixes some instabilities at I'.
While we do expect instabilities at the M point in the HTT phase, the results could be improved.

For this reason, we keep the 800eV cut-off and perform the same phonon calculation using
the PBESol [162] functional. This functional has been successful for phonon calculations in other
perovskite systems with tilt disorder [140], so it is a likely candidate for improvement.

Band structures

Figure 3.16 shows phonon band structures in the HTT phase using both AFM and metallic elec-
tronic structures. We immediately notice improvements on two fronts. First, the low-energy modes
are ‘more stable’ and the low-energy optic modes have been moved up. In addition the unstable
modes are localized around M where we expect a structural phase transition. Second, the high-
energy bond-stretching mode (I'-X) has increased in energy and is much closer to experimental
values. In addition, we reproduce the softening of this mode at X due to doping.
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Figure 3.15: Phonon band structure of LCO in the HTT phase using the PBE functional with
a 520eV (low prec) and 800eV (high prec) plane wave cut-off. Both simulations are performed
using a magnetic electronic structure within the DFT+U formalism.
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Figure 3.16: Phonon band structure of LCO in the HTT phase using the PBESol functional and an

800 eV plane-wave cut-off. The high-symmetry lines are with respect to the primitive tetragonal
BZ (See Figure 3.3)
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Figure 3.17: Phonon band structure of LCO in the LTO phase using the PBESol functional and an
800 eV plane-wave cut-off. The high-symmetry lines are with respect to the primitive tetragonal
BZ (See Figure 3.3)
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Figure 3.18: Phonon band structure of LCO in the LTT phase using the PBESol functional and an
800 eV plane-wave cut-off. The high-symmetry lines are with respect to the primitive tetragonal
BZ (See Figure 3.3)

While there, in principle, are a huge number of functionals one could try, phonon calculations
are quite expensive and the PBESol results are reasonable in the context of lattice dynamics.
We thus stick to the PBESol functional in simulations moving forward. To check the stability
of structural phases in LCO, we perform phonon calculation in the LTO and LTT phases, shown
in Figure 3.17 and 3.18. Qualitatively, we see similar features to HTT (apart from the obvious
increase of bands). The most significant result is that the LTO and LTT phases clearly stabilizes at
the M-point, suggesting that our simulations reproduce the observed structural phase transitions.
The stability of LTT is particularly interesting in this case, since this phase is believed to suppress
superconductivity. In particular when combined with the fact that LTO and LTT are very close
in energy when looking at the metallic simulations.

Density of states

As discussed in section 2.6, the the calculation of phonon bands makes it trivial to compute the
(partial) phonon DOS by evaluating the bands on a grid and integrating onto the energy axis. By
evaluating the partial DOS and weighing each partial by scattering cross section (o*°*!) and ionic
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Figure 3.19: Neutron-weighted phonon density of states in the various structural and electronic
phases of LCO. Both the partial and total density of states is shown in the plot.

mass, we obtain the generalized phonon DOS as seen by a time-of-flight neutron spectrometer in
the incoherent approximation.

Figure 3.19 shows the neutron weighted partial and total density of states due to the 6 dif-
ferent phonon calculations we performed. The density of states was evaluated on a 48 x 48 x 48
grid, integrated using the tetrahedron method and an applied Gaussian smearing of ¢ = 1 meV
(2.35meV FWHM). To get comparable values of g(w), the plots are normalized to the BZ volume
(4Viifr = 2Vigh = Vid).

Qualitatively, the main difference between the structural phases is a modification of the peak
at =~ 30 meV as you go to progressively lower symmetries. A quick inspection of the eigenvectors
of the HTT calculation reveals 4 modes in this energy-range (inspection performed at I'):

1. 26.3meV: An in-plane oxygen mode where the oxygens move along ¢ and the two diagonals
of the octahedra is out of phase.

2. 27.2meV: An apical oxygen mode where apical of the same ‘plane’ move together with the
direction alternating between each plane

3. 27.9meV: A mode where every oxygen-atom moves in-phase along ¢, keeping the rest of the
lattice still.

4. 28.6meV: A lanthanum mode where the atoms move out of phase along c.

The metallic simulations mainly have the effect of generally pushing phonon energies down and
a ‘smoothing’ of high-energy modes. Extrapolating from the HTT phase, this is directly linked
to the softening of the Cu-O bond-stretching mode at the zone boundary, as will be discussed
in chapter 8. In addition, the two peaks at 50 meV and 60 meV have weight shifted towards the
latter. The mode at 50 meV is a bond-stretching mode of the apical oxygen, while the mode at
60 meV involves vibration of all oxygen-atoms along the c¢ axis, with in-plane and apical oxygen
atoms being relatively out of phase.

3.8 Validation of simulations

Since LSCO is such an extensively studied system, there is data available in the literature to
compare our band structures. By inspection of the band structure plots in the previous section,
it seems like a difficult task to actually separate the bands in a neutron scattering experiment.
Luckily, there are a few modes that can be distinguished. Figure 3.20 compares our HT'T band
phonons band structures along I'-X with experimental data from a range of LSCO samples. The
highlighted modes is the Cu-O half-breathing mode (=~ 80 meV) and the apical oxygen stretching
mode (=~ 60meV). We will discuss this mode in detail in Chapter 8
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Figure 3.20: Comparison of phonon band structures in the HTT structural phase along the I'-X
path with data from literature. Data for LSCO 15% taken from ref. [163], data for LSCO 20%
and 0% taken from ref. [164]. Modes associated with data are highlighted in red.

Further validation of our simulations are performed in the experimental Chapters 6 and 7
where we look at low-energy phonon modes and density-of-states measurements, respectively. In
addition, some of the ideas developed here will be used in the investigation of simulations with
O/Sr defects using ab-initio MD in the following chapter.

3.9 Summary

I summary, we performed ab-initio phonon calculations of LayCuQOy in 3 structural and two elec-
tronic phases, using the PBESol functional and an increased plane wave energy cut-off in order to
correctly stabilize low-energy phonons. We discover imaginary modes at the M point of the HT'T,
consistent with the observation of the HTT-LTO structural phase transition due to octahedral
tilts. The relationship between the LTO and LTT phases are less consistent and we get different
results for the metallic and AFM solutions. For the AFM case, LTT is the stable phase (and LTO is
‘less stable’ compared to HT'T), never seen in experiments on the undoped compound. In fact, the
orthorhombic strain and octahedral tilt are both largest at zero doping [71]. For the metallic case,
LTO and LTT are nearly degenerate (indistinguishable energies within our numerical precision),
while experiments tells us that HTT is the stable phase at overdoing, at least for Las_,Sr,CuQOy.

Despite our results being inconsistent with regards to total energies and observed structural
phases, we proceed our investigations based on the computational parameters decided on through-
out this chapter. There are two reasons for this. First, we have a remarkable agreement with
phonons at both high (chapter 8 and Figure 3.20) and low (Chapter 6) energies. Second, we know
that a one-electron theory such as DFT is unable to explain the correlated nature of the cuprates
at optimal doping, so we settle on the best description possible in the edge cases and try to extra-
polate from that. The electronic structure of the cuprates at intermediate doping is essentially an
unsolved problem outside the scope of this thesis.



Chapter 4

Molecular Dynamics

Using the lessons learned in the previous chapter and after a reasonably successful validation of
simulations (see section 3.8), we can use the computational parameters at a lower precision and
perform Molecular Dynamics simulations in VASP. The purpose of this chapter is to discuss the
computational details, outline the chosen defect structures and finally present how defects (inter-
stitial or otherwise) modifies the structure and dynamics of the parent compound. While molecular
dynamics simulations are unable to provide information about the phonon band structure directly,
it is possible to extract the phonon DOS and other relevant dynamical information as outlined in
section 2.5. In order to distinguish the simulations, we use a similar notation as in the previous
chapter, but with the option to add dopants: [HTT/LTO/LTT][m]+[Sr/O;], where omitting the
[m] refers to the AFM electronic structure. For example, LTOm+Sr refers to a calculation starting
from orthorhombic (Bmab) symmetry, in the metallic phase, with added Sr dopant.

4.1 Computational Details

Since Molecular Dynamics simulations require a large number of SCF cycles, it is necessary to
drastically reduce the precision of our simulation. In general, the most drastic approximation
comes from only running the simulation at one k-point (I"). Other parameters are benchmarked
by small test runs of a couple hundred steps and then evaluating the computational resources/time
available. In our case we end up with the following additional reductions in precision:

o Planewave cut-off at the default: 400V (ENCUT=400)
o Threshold for the SCF to stop reduced to 107°eV (EDIFF=1E-5)
o A faster algorithm for electronic minimization (ALGO=F)

o Projection operators calculated in real space (LREAL=A)

We keep the PREC tag set to ‘Accurate’, since changing to ‘Normal’ resulted in convergence
issues. In addition, we need to specify the temperature and type of ensemble (see section 2.5).
For all simulations, we run at 7' = 300 K (TEBEG=300) within the canonical (NVT) ensemble using
the algorithm of Nosé with a Nosé-mass such that the temperature fluctuates with a frequency of
roughly 38 THz (SMASS=1). In order to get reasonable statistics we run with a time step At = 21s
(POTIM=2) for a total of 21000 (NSW=21000) steps, corresponding to a simulation time of 42 ps. For
the analysis, we discard the first 2 ps in order to let the system equilibrate.

For the initial structures where defects have been added, we perform a geometry optimization of
the supercell in order to find a structural minimum from which to start the MD simulation. Due to
the reduced symmetry (compared to the phonon calculations in chapter 3) this is a fairly expensive
computation, so we perform the optimization with the same parameters as the MD simulation,
except that we increase the k-point mesh to 4 x 4 x 4 and the SCF threshold to 107%¢eV. Similar
to the phonon calculations, we use the conjugate gradient algorithm for this minimization.

4.2 QOctahedral tilts

In order to obtain octahedral tilts from MD simulations where symmetry is turned off, we are
forced to define the octahedral tilts for each octahedra in the supercell. In fact, by writing which
octahedra each oxygen atom (excluding interstitials) in our simulation belongs to, we can extract

63
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Figure 4.1: Finding octahedral tilts from arbitrary oxygen positions. @5 angles can be found in
an analogous way by replacing z with y and ‘pairing up’ Oy with O4 and O5 with Og.

the (Q1,@2) tilt as seen from that oxygen. Since the tilts alternate, each tilt belongs to one of
four symmetries with respect to (Q1,Q2): (+,+), (+,-), (-,+), (-,-). In practice, we analyse the
initial ¢ = 0 structure with the following steps for each Cu atom in the supercell:

1. Record the position of the Cu atom
2. Find apical oxygens by searching for (Cu, O) pairs with a distance less than r = (1,1,2.7) A

3. Find equatorial oxygens by searching for (Cu, O) pairs with a distance less than r =
(2.1,2.1,1) A

4. Determine the @1, Q2 tilt as seen from each of the 6 oxygen atoms in the list.
5. Apply the symmetry operations.

6. Save the 4 (Q1, Q2) value pairs.

Step 4 is performed by first converting fractional coordinates to real-space coordinates and then
finding angles as outlined in Figure 4.1. The symmetry operations in step 5 is a matrix with 8
columns corresponding to the 8 tilt values and a number of rows equal to the number of octahedra
— 16 in the case of our 2 x 2 x 1 supercell. Each element of the matrix is either 4+1 or -1, where -1
will reverse the tilt direction and +1 will keep it as-is. The matrix can be generated by examining
the output of the starting structure (which has the correct space group symmetry) and then
constructing the matrix such that all (@1, Q2) tilts agree. While the same result can be archived
by manually assigning the different atoms of our manageable supercell, this methodology allows
the code to eventually be expanded to other systems, since we can set up arbitrary local coordinate
systems.

After having performed this analysis, we can apply the same operations to every time step and
obtain statistics about the time-evolution of the octahedral tilts in our system. This is similar to the
Positional Recurrence Maps (PRM) methodology [165] that has been used to extract information
about the apical oxygen dynamics in NdaNiOg4s [166].

4.3 Structures with dopant ions

Since the introduction of dopant ions breaks the crystal symmetry, we cannot perform phonon
calculations using the direct method without making an excessive amount of high-precision cal-
culations. Our typical 2 x 2 x 1 supercell containing 112 jons with P1 symmetry would require
112 x 3 = 336 displacements just to describe phonon frequencies and eigenvectors at I'. The worst
case phonon calculation (LTT with magnetism) in the preceding chapter required just 21 displace-
ments. For this reason, we are essentially forced to use molecular dynamics. In the following, the
model for placing the initial dopants is outlined for Sr- and O-doped systems separately.

LCO+0O

We start by considering the LasCuOy4ys System, which is simply LCO with added oxygen atoms at
interstitial sites. It is generally accepted that the oxygen enters in the middle of the rock-salt layer,
the least dense area of the crystal structure. Figure 4.2 shows possible interstitial positions for the
LTO (Bmab) and LTT (P45/ncm) phase, taken from a model proposed for the LagNiOy4 s system
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Figure 4.2: Tlustration of interstitial oxygen in-plane (a-b) location with respect to the apical
oxygen displacements in the rock-salt layer. Open squares represent apical oxygens ‘hanging down’
while closed squares represent apical oxygens ‘sticking up’. Interstitial oxygen are red circles and
are shown on every possible interstitial site for clarity. Adapted from ref. [87].

[87]. Simulations in the defect phases are denoted by subscript ‘defect’. We ignore the HT'T phase
for molecular dynamics since the symmetry is broken and the preliminary geometry optimization
would tend to tilt the octahedra similar to the LTT phase. To represent a reasonable doping level,
we consider the addition of a single interstitial. It is generally accepted that the oxidation state
is, at least approximately, O?~, such that each dopant adds two holes. In our 2 x 2 x 1 supercell
with 16 formula units, this corresponds to a doping of ny = 12—6 = 0.125.

To see how the symmetry is broken, Table 4.1 shows the resulting space groups when inserting
an interstitial into various starting symmetries. As expected, the symmetry is lowered substantially,
especially if the z-component of the interstitial is different from i. While the symmetry isn’t
reduced to P1, it is difficult to imagine that any of the space groups in Table 4.1 could be used
solve the observed superstructures in LCO+4O (see section 1.4). Diffraction studies point to the
interstitial being placed at either (%%z) with z close to i or on a general (xzyz) position [167].
When modelling this position in diffraction studies, it is possible to keep the parent symmetry
by assigning an occupation factor to the interstitial and thus keeping the symmetry of the parent
phase. Since we are not afforded that luxury when building structures for molecular dynamics,
defects will naturally break the symmetry of our parent phase. Table 4.1 should thus not be seen
as proposed models, but rather as an illustration of our inability to model partial occupancies in

a small real-space box.

LSCO

In the Lag_,Sr,CuQ,4 system, our current best guess is that the distribution of the doped Sr
species is completely random and homogeneous. Since randomness is difficult to implement in a
(relatively) small system with periodic boundary conditions, we initially place them at a distance
of about half the box side in order to represent homogeneous doping. Replacing La3* with Sr2*
adds one hole, so we add two dopants in order to be at ny = 0.125 doping.

4.4 Geometry Optimization

We performed high-precision geometry optimizations of ionic positions only on these LCO+O
defect structures starting from the various relevant symmetries. The starting structures were the
optimized structures from chapter 3 with an interstitial inserted according to Table 4.1. The
defect structures were created by reversing certain tilts according to Figure 4.2. For the geometry
optimization we kept the volume fixed at the value obtained from the parent structures without tilt
defects, substitutions or interstitials. Performing an equation-of-state geometry optimization for
all structures as in section 3.6 is computationally expensive for the defect supercells, but Figure 4.3
shows a EOS fit of the LTT structure with a limited number of points, revealing that the Volume
does not change significantly due to the interstitial.

Table 4.2 shows the resulting total energies and (@1, Q2) tilts for a variety of starting structures
including oxygen interstitials. A few trends emerge from this investigation. First, the defect
structures in Figure 4.2 has the effect of reducing the average tilt of the structure, if we keep the
symmetry operations from the non-defective phase. In the case of LTO the average tilts completely
cancel out, while in the case of LTT they are cut in half. In addition, both the average and local
tilts move towards the tilt pattern of the non-defective phase during optimization. In general,
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Table 4.1: Space group symmetry due to the introduction of an interstitial oxygen in various
structures all described in a 2 x 2 x 1 supercell of the Bmab (conventional) coordinate system.
HTT, LTO and LTT are the usual phases as described in literature [35]. The structures labelled
defect is (1) in the LTO case: A stacking fault where the middle layer has its tilts reversed and (2)
in the LTT case: A line along [110] with reversed tilts. Both are described in [87] and are designed
in order to ‘make room’ for the interstitial oxygen (see Figure 4.2).

Phase Space Group Of 0)4 Of
HTT 14/mmm (139)

HTT + O; P-42m (111) 0.125 0.125 0.25
HTT + O; Cmm2 (35) 0.125 0.125 0.24
LTO Bmab (64)

LTO + O P2 (3) 0.125 0.125 0.25
LTO + O P2 (3) 0.125 0.125 0.24
LT Ogetect Pmna (53)

LTOgetect + Oi P2 (3) 0.875 0.375 0.25
LTOgetect + Oi P2 (3) 0.875 0.375 0.24
LTT P4, /nem (138)

LTT + O P-4 (81) 0.375 0.125 0.25
LTT + O; P2 (3) 0.375 0.125 0.24
LTT gefect Pmma (51)

LTTgefect + O;  Cmm?2 (35) 0.875 0.375 0.25
LTTgefect + O;  Cmm?2 (35) 0.875 0.375 0.24
-8285 ¢ e data

best-fit
— ]
E —829.0 o
3
S _g29.5 -
w

o o
—830.0 A I

1425 1450 1475 1500 1525 1550
Volume [43]

Figure 4.3: Equation-of-state fit to LasCuQy4 gg25 starting from the LTT phase with one added
interstitial oxygen in our supercell. The broken vertical line is the minimum of the fit, showing
that our starting volume was reasonable. Each minimization was performed without symmetry
while relaxing both ionic positions and the cell shape. The orthorhombic strain due to the cell
shape change was below 1 = 0.0004 for all volumes, suggesting that the tetragonal crystal shape
is a stable minimum.
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our simulations find that it costs more energy to reverse the tilts compared to the addition of
the interstitial. This is inconsistent with the observation of staging (see section 1.4) and is likely
related to the limited size of our simulation. Since a well-defined energy minimum is important for
the initial configuration of the MD simulations, we stick with the parent, undistorted phases when
investigating LCO+-O. Finally, we notice that the tilts tend towards an ‘LTT-like’ tilt-pattern in
the optimization of metallic LTO, while keeping a significant orthorhombic strain.

Table 4.3 shows the same optimizations performed on Sr-doped LasCuQOy. The results here are
as we expect from the small difference between the ionic radius of La®™ and Sr?T (see table 1.2).
We seem to be in a well-defined minimum and the average tilt is only modified slightly. While
geometry optimizations are only able to locate a local minimum, the results in Tables 4.2 and 4.3
point toward the expected conclusion that interstitial oxygen has a more significant effect on the
octahedral tilt patterns compared to Sr doping. The nature of these effects cannot be obtained
from geometry optimizations alone, and we turn to molecular dynamics for the detailed analysis
of structure and dynamics.

4.5 Benchmarking

Similar to our phonon calculations in the previous chapter, molecular dynamics simulations are
typically benchmarked in various ways. Depending on the type of ensemble and thermostat, either
the temperature or total energy is expected to be conserved. It is, however, possible for numerical
noise to cause these quantities to drift. In our case the Nosé thermostat controls temperature
through velocities, so it can be useful to plot the temperature as a function of simulation time to
see if the fluctuations are reasonable. The temperature can be calculated from the MD trajectory
by first computing the velocities through the Verlet algorithm (see section 2.5) and then evaluating

1
T=- N M2
3kB(Nions _ 1) ; J|v3‘ 9

where Njons is the number of atoms, M; is the mass of atom n and v, is the velocity of atom j.
We divide by (Nions — 1) rather than Njoys, since temperature is defined with respect to degrees
of freedom and we can arbitrarily redefine our coordinate system with respect to a particular

Table 4.2: Oxygen interstitial phases, geometry optimization. Geometry optimization performed
on ionic positions only. FEjy corresponds to the energy after inserting the interstitial oxygen, but
before geometry optimization. FEj is the total energy after optimization. The octahedral tilts
(Q1,Q2) are similarly defined before and after the optimization.

Ey [eV] Ey [eV] (Q1,@2)0  (Q1,Q2)
HTT + O; -827.27669 -829.76250 (0.00, 0.00) (1.00, 1.00)
LTO + O -828.29890 -830.39658 (0.007 5.79) (1.217 5.92)
LTOudeocs + O -823.09516  -830.03588  (0.00, 0.00)  (2.12, 4.48)
LTT + O -828.04663 -830.08248 (4.61, 4.61) (3.77, 3.72)
LTTuetecs + O;  -826.03173 -820.94243 (2.31, 2.31)  (2.80, 2.70)
LTOm + O; -872.73074 -876.56079 (0.00, 6.42) (3.76, 3.90)
LTTm + O;  -872.35546 -876.56195 (4.53,4.53) (3.85, 3.85)

Table 4.3: Sr doped phases, geometry optimization. Fy corresponds to the energy after replacing
La with Sr, but before geometry optimization. Fj is the total energy after optimization. Geometry
optimization performed on ionic positions only. The octahedral tilts are similarly defined before
and after the optimization.

Ey [eV] E; [eV] Q1,Q2)o

LTO + Sr -858.73485 -859.48650  (0.00, 5.79

( Q1,Q2)1
(
LTOm + Sr -858.57712 -859.39905 (0.00, 6.42
(
(

(

(0.00, 5.38)
(0.00, 5.69)
(3.87, 3.97)
(3.98, 4.08)

LTT + Sr -858.68994 -859.49712 (4.61, 4.61

)
)
)
LTTm + St -858.57810 -859.40170  (4.53, 4.53)
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Figure 4.4: Benchmark of molecular dynamics, using LCO in the LTO phase with no dopant ions
or defects. Top: Temperature fluctuations for a simulation stitched together with the first 10 ps
using a 1fs time step and the last part of the simulation using a 2 fs time step. Bottom: Density
of States weighted by neutron-cross sections and broadened by a Gaussian with ¢ = 0.5meV
(1.18 meV FWHM) evaluated at the same two parts of the simulation.

atom. When considering the instantaneous temperature in this way, we expect the mean-squared
temperature fluctuations to be [168]

oy _ 215
(AT%) = 55—

Four our simulation with Njons = 112 at Ty = 300K we thus expect temperatures fluctuations
of +23.15K. Figure 4.4 is a summary of benchmarks performed on the LCO in the LTO phase
with no dopant ions or defects. Simulations were performed with two different time steps and
the difference in temperature fluctuations and the resulting phonon DOS was recorded. In terms
of temperature fluctuations, there is little effect of going from 1 to 2 fs time steps, but there are
slight modifications to the DOS, especially in the region around 30 meV. While this may be seen
as problematic, it is important to realize that we are probing a relatively small number of steps,
and it is unlikely that our simulation is completely ergodic. In other words, we may be probing
a different area of phase space in the two simulations. It is unlikely that the time step resolution
itself is causing the effects on DOS, since an energy of 30 meV = 7.3 THz is probed by simulation
times of roughly 137fs. While higher precision is always desirable, we stick with a time step of
2fs in order to be able to probe dynamics for longer time scales in more systems. Now, almost
by definition, different time steps do probe different dynamics. I emphasize that any comparison
between MD simulations is done at the same time step.

4.6 DOS and PDF

Molecular dynamics simulations have been performed with 7 starting configurations based on
geometry optimizations in Table 4.2 and 4.3 as well as references without dopant ions. Since the
full matrix of combinations now includes 3 structural phases, 2 dopant ions, 2 electronic phases
and 2 ‘defect’ phases, the total number of desired simulations is 20. In order to limit the scope and
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focus computational resources, we chose to focus on the LTO phase and end up with the following
list of simulations:

1. LTT: LTT in AFM phase.
2. LTO: LTO in AFM phase.
LTO+Sr: LTO in AFM phase with added Sr dopants.

- W

LTO+0: LTO in AFM phase with added O dopant.

5. LTOm: LTO in metallic phase.

6. LTOm+Sr: LTO in metallic phase with added Sr dopants.
7. LTOm+O: LTO in metallic phase with added O dopant

Our primary observables when comparing to experiment is the phonon density of states and
pair-density-function. We start by considering the DOS of all simulations, calculated with the
method described in section 2.5 and the scripts developed in appendix A. Figure 4.5 shows the
neutron-weighted phonon DOS for all 7 simulations. While the overall shape of the phonon DOS
is mostly unchanged, there are some subtleties that we might consider for further analysis. For the
magnetic simulations, we see a similar modification of modes at &~ 30 meV when comparing the
LTO and LTT phases. Interestingly, the sharp dip in DOS at 30 meV is seen in LTO+0O as well.
In fact, the LTT and LTO+O phases appear to share more qualitative features with each other
compared to the parent LTO phase. This is consistent with the initial geometry optimization of
LCO+O0 in table 4.2 moving towards a LTT-like tilt pattern. LTO++Sr, on the other hand, mostly
seem to broaden features rather than directly modify then.

For the metallic simulations, we see similar trends but in a much more smeared out fashion,
possibly due to reduced accuracy of these simulations due to the fermi surface smearing (see figure
3.5 in section 3.5). Similar to the observations in chapter 3, the main modification of the phonon
DOS compared to the magnetic simulations is related to the high energy modes.

In order to compare more directly these observations, Figure 4.6 shows a direct comparison of
DOS and PDF of our LTO, LTO4O and LTT simulations. This comparison clearly shows that
the LTT and LTO+O share common features especially around 30 meV (various c-axis modes, see
section 3.7 and 60 meV (apical oxygen bond-stretching mode). The PDF in the same figure show
only very subtle deviations, most notably around 5.2 A where, once again, the LTT simulation
shares features with LTO+O.

4.7 Microscopic analysis

In addition to observables for comparison with experiment, the purpose of molecular dynamics
simulations is to relate microscopic phenomena to these observables. For this reason, we will
try to extract relevant information from the simulation trajectory in order to understand what is
causing the changes in the phonon DOS and PDF. In the cuprates, there is much experimental
evidence of the fact that Cu-O distances and distributions are important for superconductivity [93—
95]. Inspired by these results, Figure 4.7 show the distribution of Cu-Oequatorial and Cu-Ogpical
distances for selected simulations. In general, they follow a normal distribution showing that the
harmonic approximation works well for our system, with the notable exception of the apical oxygen
distance in LTO+O.

Table 4.4 summarizes these distances for all of the performed simulations. As expected from the
almost identical PDF across simulations, the mean Cu-Ocquatorial distances does not seem to have
any discernible trends, but there is a slight widening of the distributions in the systems containing
dopants. In some sense this is expected since we have created different local environments by the
introduction of impurity dopants. The same trend can be seen in the Cu-Oapicar distanced, but
here we additionally have an shortening of the mean distance due to the introduction of oxygen
(notice also that this shortening is identical to the LTT distance in magnetic case). For Sr-doping
there is an elongation in the magnetic simulation but a shortening in the metallic simulation. It
is, however, important to note that these differences are extremely subtle and may just be due to
numerical peculiarities.

Using the definitions of octahedral tilts described in section 4.2, Figure 4.8 shows a histogram
of (Q1,Q2) tilts from all of our performed MD simulations on a logarithmic scale. Similar to
observations from DOS and PDF, the tilt patterns of LTO+4O are LTT-like, while the Sr-doped
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Figure 4.5: Neutron-weighed density-of-states for all molecular dynamics simulations performed
in this chapter. The filled grey area is the total DOS and the lines are the partial atomic DOS.
The initial conditions for the MD simulation is annotated on each plot according to the notation
outlined in the beginning of this chapter. The density-of-states was obtained through the power
spectrum of the velocity autocorrelation function (see section 2.5). The power spectrum was
smoothed by a Gaussian kernel with width ¢ = 0.5meV (1.18 meV FWHM).

Table 4.4: Cu-O Distances distance statistics for all MD simulations performed in this chapter.
Columns 2 and 3 show the mean distance and standard deviation for the Cu-O equatorial distance.
Column 3 is the R? value of a linear regression assuming a normal distribution. Columns 4-6 show
the same values for the Cu-O apical distance.

name (Oeq) [A] 0 (Oeq) [A] R? (Oeq)  (Oap) [A] o (Oap) [A} R? (Oap)
LTO 1.898 0.0455 0.9972 2.421 0.113 0.9989
LTO+0O 1.902 0.0464 0.9972 2.406 0.127 0.9608
LTO+Sr 1.898 0.0507 0.9947 2.438 0.146 0.9995
LTOm 1.909 0.0514 0.9951 2.462 0.140 0.9997
LTOm+0O 1.908 0.0532 0.9934 2.440 0.156 0.9992
LTOm+Sr 1.905 0.0523 0.9947 2.451 0.151 0.9992

LTT 1.907 0.0461 0.9971 2.406 0.109 0.9992
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Figure 4.6: Top: Total DOS for selected MD simulations. In general, differences are subtle, but
we see some surprising similarities between the LTO+0 and LTT simulation, indicating LTT-like
behavior due to the interstitial (see text). Bottom: PDF of the same simulations, showing almost
identical spectra for the 3 simulations. At roughly 5.2 A there is a small modification where, once
again, LTO+0 and LTT simulations show similarities.
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Figure 4.7: Distance histograms of Cu-O distances with respect to the equatorial oxygen (Oeq)
and apical oxygen (Oap) in the three simulations we compared in Figure 4.6. The data was
generated by recording all appropriate distances at every time step of the simulation. The y-axis
is normalized to unity and the broken line is a Gaussian function with expected value and variance
calculated from the data. The histograms are normalized to unity.
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Figure 4.8: Tilt histograms of all performed molecular dynamics simulations. Plots are generated
by obtaining the tilt as seen from apical oxygens and pairs of equatorial oxygens (as described
in section 4.2) for each time step and then plotting a 2D histogram of the resulting data on a
logarithmic scale. The red circle denotes the starting tilt. As discussed in the text, we distinguish
between LTT-like tilts sitting on the diagonals of this figure and LTO-like tilts sitting along the
main axes. The same symmetry operations are applied at each time step, such that transitions
between symmetrically equivalent configurations is visible in this plot.

and parent compounds have tilts distributed around (Q1,Q2) = (0,5) which is the equilibrium
LTO structure. We also notice that the LTT-like simulations (LTT, LTO+0O, LTOm+O) are able
to transition between the symmetrically equivalent tilt patterns, while the LTO-like simulations are
‘stuck’ in the initial configuration. This is an indication that LTT-like tilts have distinct dynamics
compared to LTO-like tilts.

Finally, figures 4.9 investigates the dynamics of the placed interstitial in LTO4O by following
the in-plane location of the interstitial by plotting a histogram of its location as well as a line
depicting its time evolution at equally spaced points in time. Additionally, we plot the c-axis
evolution with a 1d histogram. For contrast, Figure 4.10 shows the same plots for a ‘normal’
apical oxygen. Finally, Figure 4.11 shows the distribution of the apical oxygen near the interstitial,
revealing a very similar distribution. These figures together show that the interstitial forms a
‘binary system’ with the closest apical giving rise to a very localized effect. At T'= 300 K we thus
see no indication of diffusion. In some sense this is not surprising since diffusion is likely slow and
not accessible within our relatively short 40 ps simulation times. In fact, the estimated ‘annealing
time’ for LagCuOy44 has been estimated to be one week at room temperature [89] (1 week divided
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Figure 4.9: Distribution of the interstitial oxygen in LTO+0O. (A): In-plane distribution of the
interstitial. Circles denote apical oxygens ‘sticking up’, while crosses denote apical oxygen ‘hanging
down’ (similar to Figure 4.2). (B): Zoomed-in version of (A) with the line marking the time-
evolution of the interstitial sampled at isochronal points. C: c-coordinate distribution of the
interstitial with the initial and average position marked in red and orange, respectively.
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Figure 4.10: Distribution of a normal apical oxygen in LTO+0O. (A): In-plane distribution of the
apical. Circles denote apical oxygens ‘sticking up’, while crosses denote apical oxygen ‘hanging
down’ (similar to Figure 4.2). (B): Zoomed-in version of (A) with the line marking the time-
evolution of the interstitial sampled at isochronal points. C: c-coordinate distribution of the
apical.

by 40 ps is roughly 10%6).

4.8 Summary

The main take-home message from chapter is the fact that interstitials seem to have a very subtle
effect on structure but a more significant effect on dynamics. In particular, an observable such as
PDF will se barely any difference between our simulations but high-quality DOS measurements
should be able to see subtle differences due to dopants.

If we can obtain a reasonable validation of these simulations, the microscopic analysis reveals
very clearly that oxygen interstitial phases move towards LTT-like tilt dynamics. Since the average
structure of LCO+O at accessible temperatures is LTO, a possible explanation is that this tendency
toward LTT-like tilts can result in the observed superstructures (and/or staging) [83, 88] if we had
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Figure 4.11: Distribution of an apical oxygen in LTO+O near the interstitial. (A): In-plane distri-
bution of the apical. Circles denote apical oxygens ‘sticking up’, while crosses denote apical oxygen
‘hanging down’ (similar to Figure 4.2). (B): Zoomed-in version of (A) with the line marking the
time-evolution of the interstitial sampled at isochronal points. C: c-coordinate distribution of the
apical, with the average position marked in orange.

access to bigger simulation boxes and longer simulation times. It might be valuable to examine
this more closely with real-space methods such as reverse monte-carlo (RMC) or by performing
classical MD based on the results obtained in this chapter.

Before moving on to experimental comparisons, Figure 4.12 shows a comparison of phonon
DOS as calculated from the previous chapter and the one obtained from molecular dynamics here.
While there is a definite distinction between the spectra, it is important to realize that they are
obtained by very different methods, while being based on the same computational background. In
addition, molecular dynamics are not constrained by symmetry.

A direct comparison between molecular dynamics and phonon calculations should thus only be
performed with extreme caution. For this reason, we mainly use the phonon calculations to identify
the kinds of bands that correspond to certain features in the phonon DOS. When analyzing the
role of dopants, simulations will all be done in the context of molecular dynamics (e.g. figure 4.6).
In the experimental chapters I will leverage the phonon band structure calculations in context of
triple-axis measurements of single crystals. Molecular dynamics simulations, on the other hand,
will be used in the context of PDF and inelastic time-of-flight measurements of powdered samples.
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of phonon bands calculated using the direct method (see chapter 3). Both simulations are based

on the low-temperature orthorhombic (LTO) structural phase.






Chapter 5

Local structure

In this chapter, we look at structural correlations in Las_,Sr,CuO41s (LSCO+O) containing oxy-
gen interstitials. As discussed in section 1.4, LSCO+O is known to form complex superstructures
that shows up in single-crystal diffraction. To recap, ‘staging’ [84, 88] was discovered early on
and appears unrelated to superconductivity. On the other hand, novel superstructures, known as
‘Local Lattice Distortions’ (LLD) and ‘Oxygen Interstitials’ (O;), are suggested to have a connec-
tion with superconductivity [169]. In fact, it appears that these two orderings are anti-correlated
in real space, forming ‘puddles’ on pm scale [85].

The data shown in this chapter is a collection of experiments performed on three different
instruments: IN8 [106], ThALES and D4 [109] at Institut Laue-Langevin in Grenoble, France. In
the first part, we explore some of the superstructures mentioned above in two single crystals of
LSCO+40: LagCuOyts (T. = 43K) and Laj 94Sr.06CuO44s5 (Tc = 37.5K). In the second part,
we perform a diffraction experiment on powders of LSCO+O with the purpose of looking at real
space correlation through pair-distribution-function (PDF) analysis.

5.1 Superstructures in single crystals

While superstructures in LSCO+4O have been extensively studied in the past, it is always useful
to check if your samples comply with previous observations. The measurements shown here were
mostly performed as a reference for some of the work shown in chapter 6, but I present it here
since it has relevance for structural correlations and can help us with the analysis of the PDF data
in the following section. Superstructures in LCO+O are generally observed at Q2 = (0,0.21,0.29)
and Q3 = (0.09,0.24,0.50) [170] and should thus mainly be observable in the a-c (or equivalently
b-c due to twinning) plane.

When using certain Triple-Axis spectrometers (IN8, IN20, ThALES) at the ILL, we have the
option of a secondary spectrometer (everything after the sample) called FlatCone [171] where we
can probe a large part of reciprocal space simultaneously. In particular, the FlatCone analyser
system is built in such a way that you probe a large part of the scattering plane at a constant energy
transfer hw. In the following we are interested in structural correlations, so we are measuring at
hw = 0. In chapter 6 we will investigate finite energy transfers in detail.

Figure 5.1 shows the result of such a measurement of LasCuQOyys on the thermal TAS INS,
performed in the a-b plane using the orthorhombic coordinate system (see section 1.4). The
coverage of our measurement is such that we see the (200), (020) and (220) fundamental Bragg
peaks. Some satellite peaks are visible at roughly @ = (0.2, £0.05,0) as marked on the zoomed-in
right-hand-side of the figure. Satellite peaks with zero I-component was previously observed by
our group [172], but the nature of these peaks are currently unknown. We can, however, make
the simple observation that this peak corresponds to a real-space structural periodicity with a
characteristic length scale d; ~ 26 A in the a-b plane.

Figure 5.2 shows the same type of measurement, but this time of Laj 94510.06CuO4.4s on the cold
triple-axis spectrometer ThALES. While similar features are visible, the satellites seen in figure 5.1
are smeared out, suggesting that the tiny amount of Sr in this sample causes a significant amount
of disorder which shows up as diffuse satellites.

Finally, in figure 5.3, we show a measurement of LaaCuO44s in the a-c plane also performed
on ThALES. This measurement is entirely consistent with superstructures known from literature
[170], and we can clearly index the peaks as Q2 = (0.19,0,0.31) (even showing 2" and 3@ order
reflections) and Q3 = (0.25,0,0.5). I note here that, because of twinning, we can not distinguish

7
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Figure 5.1: Reciprocal space map of single crystal LagCuOy4s, measured in the a-b plane with
the unconventional Bmab orthorhombic coordinate system. Left: Full map, showing mainly the
fundamental Bragg peaks. Circular arcs are powder lines from Al. Right: Zoomed-in view of the

are marked in red. We notice satellite peaks around (220) at @ = (0.2, 40.05,0) (|Q| = 0.241 Ail).
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Figure 5.2: Reciprocal space map of single crystal Laj 94S1g.06CuQOy4.ys, measured in the a-b plane
with the unconventional Bmab orthorhombic coordinate system. Left: Full map, showing mainly
the fundamental Bragg peaks. Circular arcs are powder lines from Al. Right: Zoomed-in view of
the are marked in red, showing diffuse scattering. The marks are at identical locations to figure

5.1 as a reference for comparison.
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Figure 5.3: Reciprocal space map of single crystal LagCuOy44s, measured in the a-c plane with
the unconventional Bmab orthorhombic coordinate system. Left: Full map, showing mainly the
fundamental Bragg peaks. Circular arcs are powder lines from Al. Right: Zoomed-in view of the

are marked in red. We notice satellite peaks around (002) at Q2 = (0.19,0,0.31) (|Q=2| = 0.267 A_l)
and Q3 = (0.25,0,0.5) (|Qs] = 0.378 A1),

between a and b (see section 1.3). The length scales associated with these peaks are dy ~ 24 A
and ds ~ 17 A, respectively.

While none of these measurements are new (see [172, Chapter 10]), they help to confirm that the
samples we use for spectroscopic measurements in chapters 6, 8, 9 are comparable to observations
from literature. While constructing models for these superstructures is outside the scope of this
thesis, they help identify some general length scales that might be relevant in a real-space model.
Unfortunately, we also immediately notice that these correlations are inaccessible in our DF'T MD
simulations from chapter 4, where the maximal simulation box is a 2 x 2 x 1 cell such that the only
non-zero @ we can represent is (%%O) These length scales, while rather large, are still accessible
by PDF measurements as we shall see below.

5.2 Real-space correlation in powders

We now turn to experiments performed on a series of powdered samples, where we use an in-
strument well-suited for obtaining real-space correlations (see section 2.2, chapter 2) using the
pair-distribution function (PDF). There are multiple purposes to this experiment.

First, we want to simply measure oxygen-doped Las_,Sr,CuQOy.s with the PDF method.
From single-crystal measurements, as we saw above, it is well known that the presence of oxygen
interstitials result in intricate long-range ordering phenomena. This ordering is, to my knowledge,
usually not detectable in standard powder diffraction experiments with a limited @Q-range. As
explained in chapter 2, the large Q-range provided by hot neutrons allows for PDF analysis well-
suited for determining correlations at 5 A to 30 A.

Second, we wanted to see if oxygen ordering we could detect oxygen re-ordering caused by
cooling rate. Single crystal measurements have shown that certain structural peaks can be removed
by ‘quenching’, that is, rapid cooling from 300 K to 200K in single crystal samples of LasCuOyys
[85, 89].

Third, PDF measurements of Las_,Sr,CuO,4 have shown that the distribution of Cu-O dis-
tances is heavily influenced by doping [95]. In addition, the distribution is widest at optimal T
as shown in figure 5.4. Since we are using a completely different dopant species, it is interesting
to ask this same question for our samples. Finally, we want to compare high and low temperature
phases to look for any peculiarities related to superconductivity or other low-temperature phases.

Samples

Three powdered samples were measured:

e LCO: LayCuQy (2.7844 g, insulating)
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Figure 5.4: Relationship between strontium content z in Lag_,Sr,CuO4 (LSCO) and the width of
the Cu-O equatorial bond distribution o. For reference, LSCO is superconducting from x = 0.05
to = 0.25 and reaches the largest T, at = 0.15. Figure from [95]

e LCO+0: LagCuOy 5 (0.7403 g, T. ~ 40K)

. LSCO3+O La1,97Sr0,03CuO4,05 (3.3612 g, TC ~ 40 K)

Measurements were performed at the Disordered materials diffractometer D4 at Institut Laue-
Langevin in Grenoble, France. Reduction and transformation of data was performed at the instru-
ment with software specifically built for D4. All steps of the data treatment is saved, but we will
mainly use the fully reduced and normalized datasets in both - and r-space. When comparing
subtle differences between spectra (such as the same sample after different cooling procedures),
we might construct a difference curve from the raw data since the background subtractions will
cancel out.

Experiment

Table 5.1 contains a list of the measurements performed in the order which they were performed.
The quenching was performed by submerging the 300 K sample in liquid nitrogen and then trans-
ferring to the 100 K cryostat. Annealing was performed by heating the cryostat to 350 K for about
an hour which is known to disorder the oxygen [85]. The reason we performed the quenching before
the annealing was due to time constraints. Each acquisition was approximately 2 hours.

In summary we have a total of three samples to compare at 300 K. For the oxygen-doped
samples we can additionally look at the low temperature phase as well as the difference between
‘quenched’ and ‘annealed’ doping.

Results

We start with the second objective of figuring out if there is any difference due to cooling procedure.
Figure 5.5 shows the difference between cooling procedures for the two oxygen-doped samples. In
general there are no systematic differences apart from the slight decline of the difference curve
for the LCO+4+0O sample. This is likely due to a small amount of hydrogen in the cryostat as a
consequence of the quenching procedure. The preliminary conclusion is that there is no difference
between quenched and annealed measurements to a high degree of certainty. This is somewhat
surprising since it is well known that certain structural peaks can be removed from quenching in
single crystals [85]. We cannot conclude if our result is due to the sample being a powder or due
to rotational averaging. Since we detect no difference in the spectra, we can use the annealed 15K
data and initial 300 K data for the remaining analysis.

In Figure 5.6 we compare the three samples at 300 K in both real and reciprocal space. While
the differences are quite small, the difference curves (green) seem to be larger between parent/oxy-
genated compounds compared to the two oxygenated compounds. This is consistent with a picture



5.2. REAL-SPACE CORRELATION IN POWDERS

index sample temperature state

0 LCO 300 initial

1 LCO+0 300 initial

2 LCO+0O 100 quenched
3 LCO+0 15 quenched
4 LCO+0O 300 quenched
5 LCO+0 350 annealing
6 LCO+0O 300 annealed
7 LCO+0 100 annealed
8 LCO+0 15 annealed
9 LCO+0O 300 annealed
10 LSCO3+0 300 initial

11 LSCO3+0 100 quenched
12 LSCO3+0 15 quenched
13 LSCO340 350 annealing
14 LSCO3+0 15 annealed

81

Table 5.1: List of measurements performed at D4 in chronological order. ‘Quenched’ refers to the

rapid cooling as described in the text, and annealing refers to keeping the sample at 350K for
roughly 30 minutes.
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Figure 5.5: Difference between quenched and annealed cooling procedures for LCO+O and
LSCO3+0 samples. The topmost plots are comparisons of the reduced and corrected do/dw
in absolute units, while the difference curves are extracted from the raw g data.
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Figure 5.6: Comparison of the three different samples at 300 K in both real and reciprocal space.
On the left we compare LCO with LCO+O in order to see if there is an effect of oxygen. On the
right we look at LCO+O versus LSCO3+0 to have a similar comparison between two different
oxygen-doped samples.
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Figure 5.7: Temperature dependence of 300 K and 15K for LCO+0 and LSCO3+0 in both real
and reciprocal space.

where oxygen distorts the lattice in a meaningful way, while the effect of a small amount of stron-
tium is negligible. Figure 5.7 shows the high- and low-temperature data for the two oxygen-doped
samples. At first glance there seems to be nothing out of the ordinary, peaks are shifting slightly
due to thermal expansion (this is particularly easy to spot in the real-space data).
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Figure 5.8: Cu-O distance Gaussian fits. For each of the five temperature/sample combinations
(figure text), the short range PDF is shown along with a Gaussian fit of the first peak. In order

to compare between the fits, the constant background has been fixed to —12bA7?

Sample Temperature [K] Cu-O mean distance Cu-O sigma

LCO 300 1.9010 £ 0.0003 0.0941 £ 0.0003
LCO+0O 300 1.9005 £ 0.0012 0.1112 4+ 0.0014
LSCO3+0 300 1.8995 =+ 0.0003 0.0989 =+ 0.0004
LCO+0 15 1.8983 £ 0.0009 0.1096 + 0.0010
LSCO3+0 15 1.8944 £ 0.0003 0.0951 £ 0.0004

Table 5.2: Cu-O distances in all samples at all available temperatures as extracted from the fits in
figure 5.8.

Analysis

Without performing detailed modelling, we can take a look at the first peak in the real-space data
which corresponds to the Cu-O in-plane bond. This bond-length is suspected to be important
for superconductivity by controlling the Coulomb interaction (the Hubbard-U) [94]. Previously,
as mentioned above, measurements on Las_,Sr,CuO4 have shown that the width of the Cu-
O bond-length distribution is largest at optimal doping x = 0.15 and qualitatively tracks the
superconducting dome [95]. We fit the first peak of all relevant datasets to a single Gaussian as
shown in Figure 5.8 and report the fitting parameters in Table 5.2.

Comparing to Las_,Sr,CuOy, our samples have roughly the same peak position at r» = 1.9 A.
At 300 K LCO has a smaller width compared to LCO+0O and LSCO3+0. At 15K the widths are
slightly smaller as one would expect from the reduced temperatures. Our measurements are thus
consistent with the observations of [95], that the Cu-O bond-length tracks T, , but with an entirely
different dopant species. Interestingly, the sample with a small amount of Sr has a slightly smaller
o, indicating that the addition of Sr restricts the Cu-O bond lengths.

In figure 5.9, we take a closer look at the PDF from the three samples obtained at 300 K. As we
mentioned earlier, any differences between the plots are quite subtle, but our initial analysis that
there is a ‘larger’ difference between LCO and LCO4O when compared to the difference between
LCO+0 and LSCO3+0 seems to be correct. Marked in figure 5.9 are regions where there is a
qualitative difference between the curves. That is, we don’t just see sharpening/broadening, but
the shape of the peaks are noticeably different. In addition, I marked the possible correlation
lengths identified in the previous section.
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Figure 5.9: PDF at 300 K for the three samples studied here across the accessible range. Differences
between stoichiometric and oxygen-doped samples are highlighted with grey circles. Grey vertical
lines mark the correlation lengths identified in section 5.1.
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Figure 5.10: Comparison of short-range PDF between experiment and molecular dynamics simula-
tion. Top: Data for LCO and LCO+0O at 300K (left side of figure 5.6 shows the full range). Bot-
tom: PDF obtained from molecular dynamics trajectory from LasCuOy4 (LCO) and LagCuOy ggos
(LCO+0), at 300K (see chapter 4).

Unfortunately, there seems to be no real signature of a change due to interstitial that is related
to the superstructures identified earlier. In addition, even though there are differences where we
can clearly separate the oxygen-doped samples from LasCuQy, the changes that we do see are
barely noticeable.

Finally, in figure 5.10 I compare LCO and LCO+0O at 300 K with molecular dynamics simu-
lations in the LTO phase also at 300 K on an absolute scale. In general, we seem to have a quite
good agreement between experiment and simulation, especially with regards to the short range
correlations around 3 A. Noticeably, the shortest Cu-O bond is significantly sharper in the simu-
lation, so perhaps we are not accurately describing short range forces. At higher r, the simulation
PDF naturally dies out due to limited system size.
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5.3 Summary

In this chapter, we performed experiments with the intention of gaining a further understanding
of the various superstructures present in LSCO40O. Through single-crystal measurements we in-
dependently confirmed the existence of the superstructures reported by various groups [170] and
additionally observed in-plane satellites only seen by us [172].

We performed high-quality PDF measurements of 3 powdered samples with and without in-
terstitial oxygen, confirming subtle differences due to interstitials. A direct connection to the
superstructures observed in single crystals could, however, not be made. If this is a consequence of
superstructures not being visible in the rotationally averaged diffraction pattern or if the powders
are different with regards to superstructure signatures, is hard to say. Our measurements appears
consistent with the observation of Bozin et al. [95] and have an increased distribution of in-plane
Cu-O distances in superconducting samples, slightly more so in LCO+O compared to LSCO3+0.

Finally, the MD simulations performed in chapter 4 are consistent with the shape of the meas-
ured PDF, especially in the 2 A to 4 A range. In order to properly describe the differences we see
at higher correlation lengths, some real space modelling and/or reverse monte-carlo fitting of the
PDF would be required to properly analyse the data. The work performed in this chapter could
thus be used as a first step for constructing real-space models of non-stoichiometric oxides.






Chapter 6

Low Energy Lattice Dynamics

In this chapter we investigate the lattice dynamics of Laj 94Srg.06CuQO445 as observed by neutron
scattering with the intention of comparing with simulations performed in chapter 3. Similar to
the elastic reciprocal space maps done with the FlatCone analyser in the previous chapter, we
now look at the same maps with finite energy transfers. These are compared to experiment by
constructing neutron-weighted band structures and 2D (Q, Q) maps from simulation data.

We also look at soft phonons related to the LTO-LTT transition in LasCuOyys. These phon-
ons have shown interesting behavior in Las_,Sr,CuQO,4, and we are interested in how this picture
changes when working with oxygen-doped samples. Finally, we look at the superstructures dis-
cussed in the previous chapter and search for possibly related dynamics.

6.1 Acoustic Phonons and Simulation Validation

We start by considering measurements performed on IN8 at ILL, using the FlatCone secondary
spectrometer as described in section 5.1. By measuring a large region of @ while changing the
energy transfer fw, we can build up a three-dimensional data-set of low energy phonon dispersions.
The sample is a single crystal Laj 94Sr9.06CuO445 (T = 37.5K) aligned in the a-b plane. The
elastic signal was shown in the previous chapter, figure 5.2. The spectroscopic measurements were
performed from 1 meV to 16 meV in steps of 1 meV.

Figure 6.1 shows representative data at 3meV, 9meV and 12meV in the top row. The bottom
row shows simulations results of LagCuQOy in the Low-Temperature Orthorhombic structural phase
(see figure 3.17 for the phonon band structure along high-symmetry lines). As shown in section
2.4, phonon band structure calculations result in a data structure where we can obtain phonon
eigenvectors at arbitrary reciprocal wave vectors ). By combining this fact with the coherent
one-phonon dynamic structure factor (equation (2.5), we can evaluate the neutron intensity at any
point in reciprocal space due to phonon scattering.

Technically, the output from a phonon calculation gives you the band structure as a list of
energies, corresponding to the number of bands, at every value of . This means that they
are d-functions in 4-dimensional (Q, hiw) space and we need to give them a finite width in order
to produce plots as in figure 6.1. This is done by evaluating the phonons as Gaussian along the
energy-axis with a width o. Details about this implementation and the production of 2-dimensional
phonon colorplots are described in appendix A.

Now, as we can see in figure 6.1, there is a nice qualitative correspondence between theory and
experiment. I emphasize here that the experimental and simulation data is shown without any
scaling in energy. In order to quantify our experimental data, one dimensional spectra have been
extracted by interpolation along the annotated directions in figure 6.1 using the nplot software
[173]. Transverse polarization of phonon modes are annotated by ‘I’, while longitudinal motions
are annotated with ‘L’ Due to the polarization factor @ -e (see equation (2.5)), different directions
in @ distinguish different polarization components. At the fundamental Bragg peak position
(400), the steeper acoustic phonon modes with longitudinal polarization along the [100] direction
are visible as inner shell, while the outer acoustic modes along [010] have transverse character
(figure 6.1 top middle). At (220) essentially longitudinal acoustic modes (parallel to [110]) and
transverse longitudinal modes (parallel to [1-10]) are visible. In addition, we noticed a small
amount of spectral weight at 7meV to 10meV at the (310) position.

Figures 6.2 and 6.3 shows the peak positions as a function of energy along the transverse and
longitudinal directions, respectively along with a naive fit to the shape of a monoatomic phonon
dispersion [6]. Details about the peak finding feature and plots of the data is shown in appendix

87
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Figure 6.1: FlatCone data of LagCuOy44s in the a-b plane at three energies and simulation data
of LagCuOy4 at the same energies. Top: Raw data at 6 meV, 9meV and 12meV annotated with
cut directions in the leftmost figure. In addition, the middle figure highlights a small amount of
spectral weight observed in a narrow range of energies near (310). Bottom: Simulation data at
energies corresponding to the top row. Details about the simulation data is given in the text.
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Figure 6.2: transverse flatcone dispersions at 220 (left) and 400 (right). Fit is a simple acoustic
phonon dispersion for monoatomic systems: w = 1/4C/M|sin(7(q — qo))|, where M is the mass C
is the spring constant and qq is an offset to adjust for possible misalignment of the sample. ¢ is in
reciprocal lattice units.
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Figure 6.3: Longitudinal flatcone dispersions at 220 (left) and 400 (right). Fit is a simple acoustic
phonon dispersion for monoatomic systems: w = 1/4C/M|sin(m(q — qo))|, where M is the mass C
is the spring constant and g is an offset to adjust for possible misalignment of the sample. ¢ is in
reciprocal lattice units.
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Figure 6.4: 310T flatcone raw data. The dispersion appears quite flat: §; = {0.06,0.12,0.25,0.35}
for the 4 energies shown, with the last one (10meV) being a very rough estimate from visual
inspection. The direction is (400)-(220).
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Figure 6.5: Data obtained from FlatCone measurements LasCuQOg44s in the a-b plane ar shown
in red (figure 6.2 tranverse in top row) and figure 6.3longitudinal in bottom row ) superimposed
on the neutron-weighted simulation data of LayCuQOy in the orthorhombic phase. The simulation
data is given a small Gaussian width in order to emphasize what a neutron experiment should
look like according to simulations.
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Figure 6.6: FlatCone data of the shallow features observed in the transverse direction near (310)
(figure 6.4), superimposed on neutron-weighted simulation data in the same direction.

B. We have the expected results that longitudinal acoustic phonons are steeper since they are
essentially bond stretching motions, where transverse phonons resembles a shear motion with a
flatter dispersion. Finally, in Figure 6.4 we show the raw data for the four spectra where we see a
signature of excitations around (310).

Once again, we can use this extracted dispersion to compare with our simulation data. In figure
6.5, we see the data from figures 6.2 and 6.3 together with a simulated neutron weighted band
structure plot along the same directions. Once again, the simulations have been broadened along
the energy axis in order to emphasize the neutron cross-section. This also means that there are
certain bands not visible in these plots because their intensity vanishes (see figure 2.11 for a visual
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Figure 6.7: Simulation data in the a-b plane of LayCuO4 at 9 meV in the low-temperature or-
thorhombic phase. The first two images show the effect of exchanging the a and b directions when
generating the plot and the last shows the superposition of the two.
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Figure 6.8: Simulation data in the a-b plane at 9meV from the six different phonon calculations
performed in chapter 3.

explanation of this point). As indicated by the two dimensional color plot in figure 6.1, we have
excellent agreement between measurement and simulation. I mention here that that it was only
possible to fit the steeply dispersive acoustic phonons as shown in appendix B. Since FlatCone
measurements are constant energy scans, flat modes are difficult to extract unambiguously. Where
fitting was not possible, the peaks were assigned from visual inspection.

As the attentive reader might have noticed, we performed simulations of several different ver-
sions of LagCuQy in chapter 3. The comparison shown here is the low-temperature orthorhombic
structural phase in the insulating state with static magnetism. This was chosen using through a
visual inspection of the different simulations. The remaining five plots are shown in appendix B.

In addition, the bottom row of figure 6.1 was generated taking twinning (see section 1.3) into
account. Since a and b directions in the low-temperature orthorhombic phase are close in length,
twinning essentially makes the two directions indistinguishable. To show how this affects the
dynamics, figure 6.7 gives a visual indication of this superposition at 9 meV. While the HK0/KHO
planes have a similar overall shape, it becomes clear that the superposition has the strongest
resemblance to our data.

For the sake of completeness, figure 6.8 shows all six simulations from chapter 3 at 9meV.
Once again, it seems likely that the ‘LTO AFM’ simulation is the best representation of the
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Figure 6.9: Soft phonons in Lag_,Sr,CuQy4. Left: Schematic of the phonons related to struc-
tural phase transitions, with HTT being high-temperature tetragonal, LTO low-temperature or-
thorhombic and LTT low-temperature tetragonal. Decreasing the temperature across the struc-
tural phase transition temperature Tg, the X-point phonon becomes soft and finally splits into I'
and Z-point phonon branches. If the Z-point phonon softens completely, the LTT phase is realized.
Right: Measurements of the Z-point phonon in Laj 955r¢.05CuQO4 and Laj g55rg.15CuQy4, showing
a softening of this mode where the phonon energy wqy decreases with decreasing temperature. This
softening is associated with a sharpening of the linewidth ~.

sample chosen for this experiment, Laj 94Srg.06CuO445.

While they may not be groundbreaking in terms of scientific impact, I believe that these
comparisons confidently shows that our simulations can be trusted to some degree with regards
to lattice dynamics. In addition, I hope that the tools (appendix A) developed to generate these
plots can be helpful for neutron scatterers in the future. To end this section, I direct the reader
to a video at https://youtu.be/LC-qV3CjgBM which illustrates the dispersive features of the 2D
colorplots in this section by moving through the energy axis which may be instructive for the
reader to predict what may be observed at constant neutron energy measurements besides the
ones explicitly plotted in this thesis.

6.2 Structural instabilities

In this section, we investigate a peculiarity with regards to the low-temperature orthorhombic
phase in Lay_,Sr,CuOy4. In the mid 2000s, it was discovered that this material is unstable to-
wards a low-temperature tetragonal phase. This shows up as the softening of a phonon at (104) and
the temperature-dependence has been measured in optimally doped La; g5Srp.15CuQ4 and insu-
lating Laq 9551(.05CuQy4, summarized in figure 6.9. Back then, it was suggested that the softening
abruptly stops at T, for the optimally doped sample, essentially preventing the tetragonal phase
from emerging — or at least stopping the instability in its tracks.

These ideas are consistent with the idea that lanthanum cuprates near xz = % have their
T, suppressed due to the proximity of this tetragonal phase. This is particularly apparent in
Las_,Ba,CuO4 where the tetragonal phase appears and T, drops to a few Kelvin [35].

We set out to do a similar experiment on the cold Triple-Axis ThALES at ILL. The sample is a
single crystal LasCuQOyys aligned in the a-c plane. Measurements were constant-@Q scans, and the
temperature dependence is shown in figure 6.10 and the summary of the fits are shown in 6.11.

We immediately notice that our experiment stands out when compared to Las_,Sr,CuQy.
First, the energy dependence resembles that of Laj g55r9.15CuQy4, but shifted up by roughly 1 meV
and our linewidth increases with decreasing temperature. In this case, the Sr-doped samples are
unusual, since soft phonons is usually accompanied by an increased linewidth. I stress here that
we performed these experiments with an extremely tight energy resolution (roughly 0.1 meV, see
figure 6.12), so the broadening is definitely unique to this system.

I foresee two scenarios causing this broadening. Either it is the expected broadening that is
typically observed with soft phonons or it is caused by a splitting or distribution of modes at this
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Figure 6.10: Measurements of the Z-point phonon in LagCuQOy44s. At each temperature an energy
scan from 0.5 meV to 5.5meV is performed, clearly showing the phonon at ~ 2.5 meV. The strong
Bragg tail comes from the fact that we are measuring (104) and (014) simultaneously as a result
of twinning. (104) is Z in the orthorhombic phase, while (014) is I'. The data is fitted to a sum of
two Gaussian functions, describing the Bragg tail and phonon plus a constant background. The
use of a Gasussian rather than Lorentzian for the phonon is phenological, since it described the
data much better.
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Figure 6.11: Temperature dependence of the Z-point phonon in LasCuO44s compared to
Lag_;Sr,CuOy4 with = 0.05 (insulating) [174] and = = 0.15 (T, = 37K) [175]. Left: Phonon
energy as a function of temperature. The left energy axis correpsonds to the z = 0.15 data.
Right: Phonon linewidth as a function of temperature, with the width measured as Full-Width
Half-Maximum in meV.
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Figure 6.12: Energy resolution of ThALES in the conditions used to measure soft phonons. An
energy scan at an arbitrary @ = (0.8,0,3,8) close to the (104) peak we are interested in reveals
an energy resolution with a ¢ = 0.04 meV Gaussian with corresponding to 0.10 meV Full-Width
Half-Maximum.

energy. Since we know that the interstitial oxygen in LasCuQOy4s is spatially inhomogeneous, it
would not be surprising to have spatially separated regions with different ‘spring constants’ for
this phonon modes. In particular, we know that this mode is related to octahedral tilts which are
affected by the interstitial near the apex of the CuOg octahedra. While not conclusive, this points
to abnormal behavior which would be in favor of the second scenario.

6.3 Low energy modes of superstructures

Finally, we take a look at the superstructures observed in chapter 5 and use the Triple-Axis Spectro-
meter ThALES to look for a dynamic signature of these satellites. It is well known that structural
peaks, per Goldstone’s theorem, should have acoustic modes emerging from their position.

We start by looking at these dynamics with the FlatCone analyser as shown in figure 6.13. We,
once again, clearly see the elastic scattering from the superstructures, but as we move up in energy,
we only see the acoustic phonon emerging from the Bragg peak. It should however be noted that
since the FlatCone analyser measures at a fixed energy, it can be difficult to detect flat modes.

For this reason, we switched to a single detector and made detailed measurements along the
line shown in figure 6.13. The result is shown in figure 6.14, revealing that we do not observe any
phonon-like signature, despite very strong satellite reflections (roughly 20000 neutron counts per
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Figure 6.13: FlatCone data of LagCuOy4s in the a-b plane in the elastic condition (top left) and
at 1meV, 2meV, 3meV and 4meV as indicated by the figures. In general, the energy-dependant
features show no signature of superstructures, and we only see the acoustic phonon from the (200)
Bragg peak.
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Figure 6.14: Data collected with a single-detector setup, designed to search for fundamental excit-
ations from the satellite peaks as shown in figure 6.13, which also shows the direction where this
data was obtained. The red and white markers indicate features visible in the individual scans,
see appendix B for details. Due to the linear shape of these features, it seems likely that these are
artifacts of the experiment.
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Figure 6.15: Resolution in the experiment where we look for dynamics associated with super-
structures. Left: Schematic of reciprocal space where we measured the energy-resolution of the
instrument. I remark here that the superstructures are seen in the direction of B. Subfigures A
and B, shows the raw data with a Gaussian fit at the two locations corresponding to the schematic.
Since we are measuring close to the elastic Bragg peak, the increased intensity at B suggests that
our resolution ellipsoid has points along the (200)-B direction.

second). We even confirmed that we were in the best conditions possible with regards to resolution
as shown in figure 6.15.

I do not currently have a satisfying explanation for these observations and I would be cau-
tious about insisting that the excitations simply do not exist. Since we have no idea about the
polarization fo these modes, I would suggest additional experiments at different @ values. In
particular, I note that our measurements were performed around [ = 0. For the phonos associated
with CuOg tilt patterns in section 6.2, a finite l-component is necessary in order to get phonon
intensity. Since we believe that the superstructures are associated with tilt patterns, we might be
in a similar situation.

6.4 Summary

In this chapter, a few experiments concerning low-energy phonons were bundled together in order
to help us better understand the dynamic nature of octahedral tilts in oxygen doped LasCuQOy.
We have shown that our simulations are highly reproducible in experiment, suggesting that we can
expand our models to include interstitals through molecular dynamics in the next chapter.

We also observed unusual behavior in LapCuOy44s when trying to investigate soft phonons re-
lated to a structural instability. The behavior is significantly different from that of Las_,Sr, CuQOy,
but we still see a correlation between this phonon and T,.. It was suggested that this behavior
could be associated with a distribution of domains, each with different ‘tilt dynamics’.

Finally, we found no evidence of dynamics related to the well-known superstructures in LagCuO445,
which is highly unusual if we expect the dynamics to behave like acoustic phonons. We interpret
this lack of intensity as either a consequence of the measurement conditions with respect to the
mode eigenvectors or as an extremely flat dispersion. Since these superstructures are associated
with a long-range modulation, the dynamics are not likely to be very energetic.



Chapter 7

Phonon Density of States

In this chapter, we take a closer look at the phonon Density-of-States (DOS) in a series of insulating
and superconducting samples with different dopant species. In the previous chapter, we looked
at certain low-energy phonon branches which could be properly separated and measured due to
the sparse nature of bands from O0meV to 10meV. This was due to the fact that the neutron
differential cross-section ‘sees’ preferentially vibrations parallel to the neutron wave vector due to
the @Q - e; factor in equation (2.5). At higher energies, the phonon bands are heavily entangled
(in the literal sense) making it difficult to separate different contributions to a measured spectrum
where we have a finite resolution.

As a reminder, figure 7.1 shows the neutron-weighted bands in LasCuO,4 with orthorhombic
symmetry. At energies from 10 meV to 40 meV we have a lot of intensity originating from multiple
bands. Even if we took the data in all these directions, which would be a very laborious task,
comparing experiment and simulation would be much harder compared to the analysis performed
in chapter 6. On the right-hand side of figure 7.1 we see the neutron-weighted DOS, which is found
by essentially summing up the three dimensional band structure onto the energy axis.

The advantage of using the phonon DOS; is that we can obtain a ‘dynamical fingerprint’ of
a specific sample and consequently compare different samples, temperatures or other parameters
of interest. In addition, the phonon DOS can be obtained experimentally by measuring powders
with a Time-of-Flight (ToF) spectrometer as we covered in section 2.2, chapter 2.

Energy [meV]

Figure 7.1: Neutron weighted phonon bands and DOS computed for LasCuQy in the orthorhombic
(LTO) crystal structure and magnetic, insulating electronic structure. Left: Band structure shown
with neutron intensity where the energy axis have been given a Gaussian width of 0.3 meV Full-
Width Half-Maximum (FWHM). The white lines shows the d-function dispersion and thus reveal
certain bands invisible to neutrons. Right: Phonon DOS obtained by integration of the first
Brillouin Zone on a 20 x 20 x 20 grid and broadening the spectra with a Gaussian width of 1 meV
FWHM. Certain Features that we observe in experiments are marked with grey horizontal lines.
See discussion in the text, figure 7.4 and table 7.4.
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Table 7.1: Samples used in the experiment, along with a naming scheme used in this chapter,
the composition and the superconducting transition temperature as obtained from susceptibility
measurements. For additional details about these powdered samples see the MSc thesis by Ahmad
[79].

Name Composition T,
LCO Lag CuO4 =
LCOO LagCuO4,05 ~ 40K

LSCO3 Lal,97Srg_03 CuO4 =
LSCOO03 La1_97Sr0_OgCuO4+5 ~ 40K

Table 7.2: Overview of incident energies and corresponding monochromators used in the experi-
ments on IN4C.

A [A]  Monochromator k& [A~'] E [meV] Sapphire Filter

1.6 PG004 3.93 31.95 IN
1.1 PGO004 5.71 67.61 IN
0.85  Cu220 7.39 113.22 ouT
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Figure 7.2: A: S(Q,w) map of LSCO3 at 10K with A = 1.6 A incident wavelength. Data has
normalized by the Bose factor. B: Sample mounted in cadmium frame.

7.1 Experiment

We performed inelastic neutron time-of-flight experiments on a series of Lag_,Sr, CuOy4s powdered
samples in order to better understand the relationship between mobile (O) and static (Sr) dopants
similar to the objectives outlined for Pair-Distribution Function analysis in chapter 5. The samples
used here are listed in table 7.1 and are identical to the ones as used in 5 [79]. The naming scheme
of table 7.1 will be used throughout this chapter.

Experiments were performed at the thermal neutron time-of-flight spectrometer IN4c at Institut
Laue-Langevin in Grenoble, France. In order to see excitations in the 5meV to 100 meV range,
each sample/temperature was measured at three different incident neutron wavelengths as shown
in Table 7.2. Sample was mounted in a cadmium frame as shown in Figure 7.2B. Each of the 4
samples was measured for 3.5-4 hours per temperature/wavelength combination.

The raw time-of-flight data was reduced to S(Q,w) using the Mantid [176] software and the
measured background was corrected by subtracting measurements of a sample of polycrystalline
vanadium from our data. Due to the isotropic nature of the powder, we only consider the magnitude
of @ and the resulting data can be viewed in two dimensions as shown in Figure 7.2A. Obtaining
the density-of-states is done in Mantid with the ComputeIncoherentD0S [177] algorithm, using the
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Table 7.3: @ and FE-ranges used in the computation of DOS. For all spectra a mean squared
displacement of (u?) = 0.015 A® was used.

AMA] Quin A Quax [A™'] Ewin [meV]  Epay [meV]  AE [meV]

1.6 2.0 7.0 4.0 26.0 0.2
1.1 3.0 10.0 7.0 59.0 0.4
0.85 4.0 12.0 15.0 98.0 1.0
0.0040 A
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Figure 7.3: Visualization of the data ‘stitching’ procedure. Our spectra are obtained at low
temperatures and we thus only consider neutron energy loss, meaning that the maximal energy
of the spectrum is limited by the incoming neutron energy. For this reason, a full spectrum is
obtained from three separate measurements and are put together as shown. The energies where
data is stitched together is determined by a visual inspection such that we minimize artifacts
created by this procedure.

following expression for the one-phonon incoherent scattering function (see section 2.2 for details):

2 O.scatt
SIQ.E) = exp (-2W(Q) Tolnt 5+ 5) | Y T gkua)] ,

where W = Q?(u?)/2 with (u?) being the average mean-squared displacement. n is the Bose
factor and F is the energy transfer. Finally, the term in brackets is the neutron-weighted density
of states with k running over the different elements in our sample. The calculated DOS is given in
milibarns/steredians per formula unit per meV. The mean squared displacement is set to (u?) =

0.015 Az, which is a good compromise between qualitatively describing our data and the actual
values of (u?) as obtained from experiments [178] and simulations.

In order to get meaningful results from this procedure, reduction of the raw data is usually
required. Generally, one chooses a range of ) and E to sum over along with a binning of F (which
is measured through time-of-flight and thus on a continuos scale). Since the measured (Q,E)
space is different between incident energies, the integration ranges are chosen for each of the three
configurations independently (see Table 7.2). The parameters used for our data reduction are
shown in Table 7.3.

7.2 Results

In order to visualize our spectra, we start by stitching the different wavelengths together. Since
the energy resolution of the instrument decreases with increasing incoming energy E; we stitch
together data from the different wavelengths, such that the A = 1.6 A data describes low energies
up to ~ 24meV, X\ = 1.1 A data describes intermediate energies up to ~ 43meV and A\ = 0.85 A
data describes high energy data.
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Figure 7.4: DOS of all measured samples (see table 7.1 for naming scheme) at 10K. Data was
reduced with Mantid and stitched together from several measurements as described in the text.

Table 7.4: Peaks in the phonon DOS at 10K of samples considered in this chapter, obtained
through visual inspection of figure 7.4 (grey vertical lines).

Sample E1 E2 E3 E4 E5 E6 E7 Eg Eg

LCO 10.2 128 - 189 - 275 382 56.4 80.0
LCOO 115 - - 184 - 28.9 385 9554 795
LSCO3 107 13.6 165 189 229 288 39.1 564 83.5
LSCO0O3 11.6 - - 18.8 232 289 388 56.5 795

Data is stitched together by choosing some cut-off energies such that no features are introduced
when we combine the data. The data for A = 1.1 A and X\ = 0.85 A is then scaled such that we get
a continuous spectrum across the full range. For this reason, the absolute values of the DOS is only
representative for the A = 1.6 A data. Figure 7.3 shows the result of such a concatenation of data.
In addition, vertical lines have been added to show qualitative ‘peak’ features of the spectrum.

Applying this procedure to all 4 samples, figure 7.4 shows the phonon DOS for all samples at
10 K. Since no noticeable temperature dependance was found, apart from a tendency to smooth
out features, spectra at 60 K and 300K are not shown here, but can be found in appendix C.
Vertical lines in the plots mark peaked features in the spectra and are obtained from a visual
inspection. These features are mainly a convenient way to quantify certain differences between
samples.

Table 7.4 shows these features in a list of peak-energies Ej, indicating that we can generally
identify four separate high-energy peaks at ~ 28 meV, 39meV, 56 meV and 80meV which are
general similar between our samples. Comparison with figure 7.1 shows that these features are
qualitatively consistent with the calculated spectrum and that the two highest energy features
originate from distinct bands. Features below 30 meV are much more subtle and will have to be
analyzed based on changes in the shape of our measured DOS.

Comparing between samples with and without interstitial oxygen, our visual inspection reveals
two distinct features. First, we see a subtle modification of the high-energy mode at ~ 80 meV,
where it seems that spectral weight is moved to lower energies. This is consistent with softening
of the Cu-O bond-stretching mode which we will return to in the next chapter. Second, there
is a general smoothing of features below 30meV when introducing interstitial oxygen into the
sample. Intuitively, one would expect a smoother DOS with increased disorder, so this observation
is, at least qualitatively, consistent with what we would expect. On the other hand, we also see a
slight sharpening of features when comparing Sr-doped LSCO3 with the parent compound LCO,
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Figure 7.5: Left: Phonon DOS data for LSCO3 and LSCOO3 at 10K. Features are numbered
and dissimilarities between the samples are highlighted Right: Simulations from LCO AFM and
LCO+0O AFM (see chapter 4 for details) with the same highlighted features as from the data.
The simulation data is smoothed by a width that depends on the energy such that FWHM =
1.4 + 0.024F, with F being the energy in meV.

inconsistent with the intuitive notion of disorder-induced smoothing of the spectra. On the other
hand, it does seem consistent with the sharper distribution of Cu-O in-plane distances that we
observed in the previous chapter (see table 5.2). LCO has a peculiar broad feature at high energies
(65 meV to 85meV), that is unique to that sample and cannot be explained by the logic we used
so far.

7.3 Comparison with Simulation

Since the high energy features are either very similar between samples (28 meV, 39meV and
56 meV) or considered separately in the next chapter (80meV), the following analysis will be
focussed on the low-energy part of the phonon DOS. Since the differences between spectra are
quite subtle, we consider the effects of oxygen-doping of LSCO3 first, since we are free of the
peculiar features of the LCO sample.

Figure 7.5 shows a comparison of LSCO3 and LSCOO3 in the low-energy regime below 40 meV
alongside a comparison of phonon DOS obtained by molecular dynamics for LCO and LCO+O.
Since the Sr content is very low in this sample (z = 0.03), it is reasonable to assume that it is,
at least, approximately similar to LCO with x = 0. While we had reasonable success in chapter
6 when comparing band structures directly, the correspondence between spectra are not quite
as convincing in this case. We recover general features as shown in the figure, but the spectral
weight and absolute energies deviate slightly from the experimental spectrum (notice the different
energy-axes between experiment and simulation).

While the agreement is not perfect, we can still assign the features with some confidence as
shown in the labeled features in figure 7.5. In both the experiment and simulation we see the
double-peak at (1) merging, the peak at (2) disappearing and a modification of spectral weight
to higher energies at (4) when adding oxygen to the sample. Features at (3), (5) and (6) stay
roughly the same.

Figure 7.6 shows the same idea, but this time for the effect of Sr-doping. We note here that the
simulation has roughly four times the doping (x = 0.125) of the experimental sample (z = 0.03).
The minimal possible doping (one substitution) in our simulation cell would be z = 0.0625. It
appears as if the addition of strontium has a similar effect to that of oxygen, but with a smaller
magnitude — there is an overall smoothing of the spectrum due to the introduction of disorder.
Interestingly, we reproduce the ‘dip’ at &~ 30meV in our simulation. One thing that we cannot
explain in these measurements, is the very sharp features of LSCO3 when compared to LCO,
especially at ~ 20 meV.

For the sake of completeness, figure 7.7 shows the experimental phonon DOS as a function of the
two dopants (oxygen, strontium), where it becomes clear that the modification of spectral weight
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Figure 7.6: Left: Phonon DOS data for LCO and LSCO3 at 10 K. Right: Simulations from LCO
AFM and LCO+Sr AFM (see chapter 4 for details). The simulation data is smoothed by a width
that depends on the energy such that FWHM = 1.4 + 0.024F, with E being the energy in meV.
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Figure 7.7: Dopant dependence of measured phonon DOS. Left: Effect of oxygen through a
comparison of LCO and LCOO. Notice in particular the modification at low energies. Right:
Effect of strontium through a comparison of LCO and LSCO3. While the LSCO3 spectra is much
sharper, low energy features are similar in energy when compared to the effect of oxygen.

at low energies (= 5meV to 15meV) are more dramatic in the case of oxygen. A corresponding
comparison of the simulations can be found in figure 4.5, chapter 4.

7.4 Summary

In this chapter we measured several samples of LasCuQO4 with different dopant species in order
to shed light on the effect of specific types of chemical disorder on the phonon density of states.
While it is possible to discern certain features in the experimental spectra related to the dopant
species, differences are in general quite subtle.

With that in mind, we have been able to identify features at low energies which are qualitatively
reproduced by our molecular dynamics simulations. At higher energies we only see a modification
of the topmost phonon band which will be discussed in the following chapter.

It thus appears, despite the significantly reduced simulation precision, that our molecular dy-
namics simulations can be used to identify a microscopic origin of the modified phonon DOS. The
analysis of molecular dynamics simulations concluded that the inclusion of interstitial oxygen spe-
cies resulted in local ‘LTT-like tilts’ despite the structure being LTO. In fact, it is quite remarkable
that the structure of these samples are almost identical in our diffraction experiments (the data
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in chapter 5 is from the same samples), but we clearly see a signature of the dopant species in the
dynamics.

While our simulations reproduce the general features of the phonon spectrum, there are still
a few unexplained phenomena. The addition of oxygen seem relatively well-understood through
the comparison with simulations; features around 10meV and 20 meV are broadened due to the
interstitial. The effect of Sr-doping, on the other hand, is difficult to explain as a purely structural
phenomena. It appears as if the LSCO3 sample is sharpening features quite substantially, opposite
to the effect we see from simulations. From an intuitive, structural perspective, one would also
expect disorder to broaden features when compared to the stoichiometric compound. While the
LSCO3 sample is insulating, it lies in the underdoped region where the magnetic properties are
similar to samples with x < 0.125 [76].

To summarize, it appears that our simulations can explain features in the phonon dos due to
oxygen doping, but not due to a small amount of strontium doping. One way to think about
this is a scenario where the effect of oxygen dopants is dominated by phenomena which we can
explain in a semi-classical way without having to consider the complex electronic structure. Since
strontium-doping barely modifies the structure, it is possible that the sharpening of the phonon
DOS is mostly due to electronic correlations. This is also somewhat consistent with the fact

that structural correlations due to interstitials take over, once again, when comparing LSCO3 and
LSCOO03 (figure 7.5).






Chapter 8

Phonon Anomalies

In this chapter we focus on a specific phonon mode which has been extensively studied in the
cuprates and is believed to be related to stripe order and, consequently, superconductivity. The
idea is that Cu-O bond-stretching phonons interact with stripe order, causing a softening at certain
wave vectors. We perform measurements of this phonon anomaly in two distinct samples of oxygen
doped LSCO+4O in order to establish if the anomaly is related to dopant disorder. In order to
establish a connection with stripe order, we also measure the phonon in high magnetic fields known
to modify the spectral weight of magnetic stripes. We find that this phonon in LSCO+O has a very
similar signature to that of optimally doped LSCO (z = 0.15) and that a magnetic field of 10 T has
no effect on the phonon spectral weight. Part of the material in this chapter has been submitted
to Physical Review Letters. The manuscript is currently available at arXiv:1908.09546v1.

8.1 Motivation

As discussed in the introduction (section 1.3), stripe order and excitations related to stripe order
appear to be ubiquitous in cuprate superconductors and in particular in the lanthanum cuprates.
However, while the magnetic component of stripes have been extensively studied with neutron
scattering, the charge component in this model is much more elusive. Static charge stripes only
show up in superconducting samples close to the z = % anomaly [72-75, 179] and direct evidence
of dynamic charge stripes has only been reported for isostructural, but insulating Las_,Sr,NiO4
[180].

If we believe that the charge rivers in the stripe model carries the superconducting current, we
need additional information about their behavior. For this reason, researchers have been looking
for alternative methods of probing charge stripes. Additionally, since static charge order is usually
associated with a suppression of superconductivity, one is naturally pushed towards understanding
the fluctuations associated with static charge stripes. While the importance of ‘fluctuating stripes’
were known early on [181], I believe it is fair to say that we still know very little about their
behavior. Just this year (2019), evidence of dynamic charge in a large area of the cuprate phase
diagram was found using resonant X-ray techniques [182]. It has also recently been suggested
that these fluctuating charge stripes are characterized by diffusive dynamics [183] — that is, the
dynamics is similar to brownian motion rather than coherent oscillations (e.g. phonons).

8.2 Phonon Anomalies

Since direct, spectroscopic evidence of fluctuating charge stripes in superconducting cuprates is
lacking, it may be possible to find an avenue of progress through indirect measurements. Recently,
it was discovered that the dispersion of the Cu-O bond-stretching longitudinal-optical (LO) phonon
in SC La1_855r0_15CuO4 (LSCOI5, TC = 38K) [184] and Lal_gosl‘o_gocu04 (Tc ~ 35K) [164]
displays a strong anomalous softening interpreted as a coupling to a novel charge collective mode
[164]. Furthermore, merely a weak signature of the anomaly is visible in the phonon linewidth
of Laj 93S19,07Cu0y4 (T = 15K) and La; 755r9.25CuOy4 (T = 15K), suggesting that the strength
of the anomaly tracks the doping-dependence of T, [164]. Similar phonon anomalies have been
observed in BigSI‘QC&CUQOg.HS [185], La14875Ba0_125CuO4 (LBCO) [186], La1_48Nd0.4Sr0_12CuO4
(LNSCO) [184] and YBayCu30¢.6 [187] hinting at a ubiquitous feature of cuprate superconductors.

These phonon anomalies have been extensively reviewed by Reznik [188] and we give just a
brief overview in this chapter. In the specific case of the lanthanum cuprates, the phonon mode
of interest is related to a stretching of the Cu-O bond in the CuO; plane. Intuitively, we can
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Figure 8.1: Possible scenarios of the phonon anomaly. In the first two scenarios, only the movement
of the oxygen atoms are shown and the bars represent charge stripe dynamics with the propagation
as shown. In these cases the charge oscillation can be either in-phase (shown top rown) or out-
of-phase (shown in middle row) with the phonon [189]. In the last scenario (shown in the bottom
row) open circles represent Cu atoms with magnetic ordering and closed circles are charge stripes
running perpendicular to the chain. The static charge order then lowers the energy of the phonon
[186].

already see why this phonon mode might be interesting to look at since the vibrational frequencies
could be modified by charge modulations in the CuOs plane. In addition, phonon anomalies have
been observed at exactly the charge ordering wave vector Qco = (330) in the Bmab orthorhombic
coordinate system (see section 1.3).

Figure 8.1 shows a sketch of possible scenarios involving a chain of Cu atoms (circles) separated
by oxygen atoms with a certain displacement pattern (arrows). In one scenario [189], the charge
stripes are fluctuating and the phonon ‘resonates’ with this fluctuation, essentially lowering its
energy. In the second scenario [186], static charge order changes the forces between certain Cu-O
pairs, an effect that is also minimized at Q., as shown in the figure. A third possibility is one
where the phonon anomaly is found in the perpendicular direction to the one shown in figure 8.1.
In this case the phonon would resonate with the modulation ‘within’ the charge stripe. Since the
softening happens close to Q. it seems more likely that one of the first two cases are responsible,
but it has technically not been settled.

8.3 Experiment

We measured the phonon dispersion highlighted in figure 3.20 in two oxygenated single crystal
samples: LasCuOyys and Lag 94S19.06CuOyys at the triple-axis spectrometer IN8 at ILL. Measur-
ing this phonon dispersion turned out to be more difficult than anticipated, and several attempts
were spent in order to reach optimal conditions where we could actually observe the phonon dis-
persion with relative success.

After our initial attempts, we realized that our signal was contaminated by so-called spurious
scattering. While not immediately apparent to us, we identified this ‘spurion’ as accidental Bragg
scattering from the analyzer [99]. This means that we are in the unfortunate situations where the
analyser is at angle where the sample scatters strongly from a structural Bragg peak. While the
‘job’ of the analyser is to select a desired final energy, Bragg scattering is so strong that the signal
at the detector will be contaminated by incoherent, scattering from the analyser crystals.

Figure 8.2 shows the geometry of this accidental Bragg scattering in reciprocal space. From this
sketch we see that the spurious scattering comes from the (8,4,0) reflection. In order to quantify
where we would observe this scattering in our measurements, we can make a simulation where we
evaluate the strength of the spurion at the desired values of (Q,w). This is done by constructing
the geometry as in 8.2 (top) and then defining the spurious strength through the distance to (8,4,0).
The result of such a simulation is shown in figure 8.2 (bottom), and we clearly see that this signal
intersects the expected phonon dispersion.

Two measures were taken to avoid this spurious scattering. First, by using the goniometers
installed on IN8 we can effectively rotate the sample around the [110] axis, which has no affect
on our measurements in the [hh0] direction, but does move further away from the condition for
spurious scattering since (8,4,0) will be out of the scattering plane. Second, we installed a position-
sensitive detector (PSD) with the hope that the spurious scattering is spatially separated from
the phonon scattering. It turns out that the spurious scattering indeed can be separated from the
phonon as shown in Figure 8.3. Unfortunately, this background subtraction procedure is associated
with a large increase in error bars as shown in the figure.
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Figure 8.2: Left: Scattering triangle responsible for the A-type spurious scattering (broken lines)
at Q@ = (4.7,4.7,0). Green points represent Bragg peaks in the (h,k)-plane. The (8,4,0) Bragg
refection is responsible for the spurious scattering. Right: Simulated effect of the (8,4,0) reflection
on a @-hw map assuming a Gaussian spurious signal depending on distances in ). Broken line
represents a ‘normal’ sinosoidal dispersion in this region as described in the text.
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Figure 8.3: Illustration of the data reduction performed using the PSD. Left: Summed raw
data from an energy scan at Q = (4.65,4.65,0). The dashed lines denote the regions of interest
(ROI) used in the data reduction. The geometry of the instrument ensures that the desired
phonon scattering will occur in the ‘Phonon’ ROI. Right: Corresponding raw (diamonds) and
reduced /normalized (circles) data. The raw data is obtained by only considering the ‘Phonon’
ROI, while the reduced data is obtained by subtracting the intensity from the two ‘BG’ ROIs. The
solid line is a fit to a DHO lineshape as described in the text.
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Figure 8.4: Left: Reduced data at selected wavevectors of the form @ = (h,h,0) for both
LSCO6+0 and LCO+0 at T = 5K. Data at Q@ = (5,5,0) and Q = (4.85,4.85,0) was scaled
by a factor of % for clarity due to an increase of intensity from the phonon form factor. Data
at different h are offset for clarity. Solid lines are fits to a DHO lineshape (see text). Right:
(A) Dispersion of the LO phonon obtained from the peak positions of individual spectra of both
LCO+40 and LSCO6+0 (offset by 5meV for clarity). Error bars smaller than the markers are
not shown. Dashed line is the normal sinusoidal dispersion as described in the text. All data was
obtained at T'= 5 K. (B): Difference between sinusoidal and measured dispersion in LagCuQO44s
(LCO+O) Lag,erxCuO4+5 (LSCO-F())7 L31_85SI'0_15CUO4 (LSCO].5) and La1,4gNdo_4Sr0,1QCuO4
(LNSCO). Data for LSCO15 and LNSCO adapted from [184].

Using these procedures, we were able to measure the phonon as shown in figure 8.4 for both
LayCuOy44s (LCO+0)and Laj 94Srg.osCuOqqs (LSCO6+0). The raw data is fit to a Damped
Harmonic Oscillator (DHO) model [103] (see also chapter 2), which has a Lorentzian shape:

1

S(q.w) = phﬁ—%m +Ing, (8.1)
where I}, is the phonon intensity, wq the phonon energy at wave vector g, -y the phonon linewidth
and Igg the background intensity. The extracted dispersion from the data is shown in Fig. 8.4
along with a normal sinusoidal dispersion, fiwg, = a cos(2mq) + 3, inferred from phonon calculations
on LSCO using Density Functional Theory as shown in figure 3.20. We fit the cosine-function to
points near the zone center (Q = (0,0,0)) and edge (Q = (3, 3,0)) to obtain the dashed curves of
Fig. 8.4A. To quantify the magnitude of the anomaly, we define the ‘anomaly signal’ as the differ-
ence between the normal dispersion and the measured data (gray shaded area in Fig. 8.4A). Fig.
8.4B shows our anomaly signal for LagCuOy44s and Laj g4Srg.06CuQOy1s along with previous res-
ults from optimally doped Laj g5Srg.15Cu0O,4 and insulating, stripe-ordered Laj 48Ndg.4Srp.12CuOy4
[184]. We emphasize the presence of similar anomaly signals on an absolute scale across all studied
samples.

8.4 Phonon Anomaly and Magnetic Stripe Order

Since we have now confirmed the presence of a Cu-O bond stretching phonon anomaly in both
LagCuOy4s and Laj 94519.06CuO445, we wanted to see if this phonon dispersion could be mod-
ified by magnetic fields. The background for this idea is the fact that magnetic stripe order in
Lag_;Sr,CuOy4 has a significant response to magnetic fields in a wide range of doping [60, 63,
190-192]. In general, the application of a magnetic field appears to ‘fill in’ the gap of the magnetic
excitation spectrum for = > %. While this, in general, is consistent with a picture where the gap is
directly related to the superconducting gap, there is evidence that the filled states have a different
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Figure 8.5: Magnetic fluctuations in Laj 94Srp.06CuO445. Left: Example spectrum obtained as a
constant-energy scan in the k direction with A = 0.125. Solid line is a fit to the functional form
outlined in ref. [194]. Right: Amplitude of the magnetic excitations, as extracted from the fitting
procedure, in at a variety of fields and temperatures as a function of energy transfer.
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Figure 8.6: Comparison of representative constant-Q (h,h,0) scans of Laj 94Srg.06CuO445 in zero-
field and with an applied field of 10 T. All measurements performed at T'= 5K

origin [63]. Since one could write books about the spin excitation spectrum in Lag_,Sr,CuQOy, I
will keep the discussion somewhat limited and refer to the excellent review by Tranquada [193].

Returning to the objective at hand, our idea was to both measure the spin excitation spectrum
and anomalous phonons in the same experimental conditions in order to directly probe any cor-
relation (or lack thereof) between the two phenomena. These measurements were only performed
for the Laj 94510.06CuOy44s sample. Figure 8.5A shows the amplitude of the magnetic fluctuations
as a function of energy transfer and figure 8.5B shows an example of the neutron scattering data
used to extract this amplitude. The figure clearly shows that Laj g94Srg.06CuO4ys has gapped
excitations which are filled in with the application of a magnetic field (or raising the temperature
above T¢). This is in contrast to other oxygen-doped samples (e.g. LagCuOy4ys [62]) where the
excitations are not gapped.

In figure 8.6 we have measured the phonon at a ‘normal’ and anomalous wavevector at T' = 5 K
with and without an applied field of 10 T. From this measurement it is thus clear that a field of
10T has no effect on the bond stretching phonon at anomalous wave vectors.

8.5 Discussion
To begin the discussion of our results, we remark that softening and/or broadening of phonon

modes is generally a signature of an incipient structural or electronic instability. Typical examples
include structural phase transitions, Q-dependence of the electron-phonon matrix element, Fermi
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surface nesting and electronic correlations [188]. In order to determine the origin of a given phonon
anomaly, it is therefore important to carefully exhaust alternatives before making statements about

the connection to novel phases such as dynamic charge stripes [188].

The phonon anomaly appears in vicinity of the wave vector Q.o = ( i, i, ), consistent with

charge stripe ordering as illustrated in Fig. 8.1. Measurements of LNSCO [195], LSCO15 [184] and
LBCO [184] have shown a suppression of the anomaly as one moves away from the bond-stretching
direction [195], supporting a one-dimensional stripe-like picture. Additionally, the phonon anomaly
in LSCO15 and LBCO has almost no temperature dependence apart from a slightly sharper peak
shape when heating from 10K to 300 K [184, 186]. These phenomena rule out anharmonicity and
structural inhomogeneity as mechanisms for the phonon anomaly in these systems.

A combination of inelastic X-ray and ARPES measurements on overdoped LSCO (z = 0.2
and x = 0.3) have shown that the phonon anomaly wavevector is inconsistent with Fermi surface
nesting [164, 196], contradicting the idea of a phonon softening due to a Kohn anomaly. A different,
possibly Q-dependent, electron-phonon coupling could still be responsible for the phonon anomaly.
Such an effect would renormalize the electronic quasiparticle dispersion (the so-called ‘ARPES kink’
[197]) at energies similar to the phonon softening. The ARPES kink has been observed in LSCO
x = 0.2 and x = 0.3, but since of these two dopings only LSCO z = 0.2 shows anomalous phonons,
the two phenomena appear to not be connected [164].

Thus, all previous studies are unable to explain the phonon anomaly through conventional
means and any coupling to stripe order is likely dynamic. One possible scenario is a coupling
of the Cu-O bond-stretching phonon with steeply dispersing charge fluctuations. Kaneshita et
al. performed calculations based on the Hubbard model of this scenario, predicting anomalous
phonon dispersions due to both transverse (meandering) and longitudinal (compression) coherent
stripe fluctuations [189] (see Fig. 8.1 for a sketch of the transverse mode). We emphasize that
the observed phonon anomaly reported here (see Fig. 8.4) and in LBCO/LSCO [184, 186] is
remarkably similar to the calculation by Kaneshita et al. (see Fig. 5 in [189]).

Despite differences in the magnetic excitation spectra as recorded by neutron scattering (in-
cluding low and zero energy transfers), the three materials LCO+0, LSCO6+0 and LSCO15 have
remarkably similar in-plane Cu-O bond-stretching dispersions (Fig. 8.4). Furthermore, static
charge order at zero field has been observed in a different sample of LCO+O [198] and in LNSCO
[179] but so far not in LSCO6+0 nor in LSCO15. These observations together indicate that there
is no direct connection between static stripes (spin and charge) and the phonon anomaly. In or-
der to further confirm this point, we performed scans of LSCO6+0 at selected wave vectors in
a H = 10T magnetic field which is known to induce a considerable volume of stripe-like mag-
netic order in this particular sample [199]. While static charge order has not been observed in
LSCO6+0, measurements on LSCO (z = 0.12) have shown that static charge and spin stripes
respond identically to magnetic fields [73].

Figure 8.6 contains data at two wave vectors with and without an applied magnetic field of 10 T,
clearly showing the absence of any detectable field effect on the in-plane Cu-O bond-stretching
phonon at Q = (i, %, 0). These measurements were performed simultaneously with measurements
of the low-energy magnetic fluctuations as shown in figure 8.5, confirming a significant increase
in the magnetic spectral weight towards lower energies consistent with the appearance of field-
induced stripe-order [199]. Thus, the appearance of static magnetic stripe order does not affect
the phonon anomaly in LSCO6+0. A similar insensitivity of the phonon anomaly to an applied
magnetic field has been observed in underdoped (T, = 66 K) YBayCuOg g [200].

8.6 Summary

In this chapter, I showed that the phonon anomaly is a robust feature in optimally doped as well
as stripe-ordered cuprates which is independent of the structural details related to the doping
process. Since it is equally well-formed in stripe-ordered and optimally doped systems, where the
latter show no static magnetic order, the anomaly is surprisingly insensitive to low-energy magnetic
characteristics. This is further confirmed by the absence of a magnetic field effect of the charge
dynamics in which is known to introduce static magnetic stripe-order in the same LSCO640O
sample.

The phonon anomaly is strongest in the doping region around optimal 7. (0.125 < n;, < 0.20)
(LSCO15, LNSCO [184], LBCO [186], LSCO6+0, LCO+0), regardless of the presence of static
charge order (LNSCO [72], LBCO [201]), suppression of bulk superconductivity (LNSCO [179]) or
dopant disorder (LCO+40, LSCO6+0). In addition, the phonon anomaly is unaffected by magnetic
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fields (LSCO6+0, YBazCuOg 6 [200]) and temperature (LBCO, LSCO15) [184]). Thus it appears
to be an intrinsic, robust signature of doped cuprates near optimal doping.

If fluctuating stripes are the fundamental degrees of freedom relevant for the cuprates, it is
appealing to draw a connection to Pair-Density-Wave superconductors [202]. In this system, the
fundamental degrees of freedom are transverse charge fluctuations in an ‘electronic liquid crystal’
phase without long range order [203]. In this scenario, the phonon anomaly in materials without
static stripe order is due to a matching of the phonon wavevector with, otherwise undetectable,
short-range transverse stripe correlations. The x = é anomaly then corresponds to the special
case where stripes exhibit long-range order.

To summarize, we measured the in-plane Cu-O bond-stretching phonon in LSCO6+0O and
LCO+0 and provided evidence for significant anomalous behavior. Since one sample (LCO+0O)
exhibits charge order [198] while the other (LSCO6+0) does not [199], and since the samples
also have different magnetic spectra with distinct field dependencies [62, 199] we conclude that
the phonon anomaly has no direct, trivial relationship to either magnetic or charge static order.
In addition, the unique structural characteristics of oxygen-doped samples rule out a connection
between the specific dopant species and the phonon anomaly. We proceed to conclude that the
phonon anomaly is a signature of transverse charge stripe fluctuations, which is a common char-
acteristic of the cuprate family and appears to be a pre-requisite to optimal superconductivity in
these systems.






Chapter 9

Electronic Structure

In this brief chapter, we take a look at the Fermi surface as measured by Angle-Resolved Pho-
toemission Spectroscopy (ARPES) on a sample of LasCuQOy445. Tha majority of the experimental
work was performed with assistance from Johan Chang’s group at the Laboratory for Quantum
Matter Research (LQMR) in Ziirich, Switzerland. I mention in particular Masafumi Horio, who
helped me prepare the samples and did all of the data analysis. I was present at the measurements,
but success would not have been possible without the expertise of the LQMR group.

While the analysis presented here is very preliminary, I include it because it is, to my knowledge,
the first ARPES experiment performed on an oxygen doped LasCuOy4s sample. Since these
samples are known to phase separate electronically [92], we expect a superposition of a magnetic
‘L phase and an optimally superconducting phase. It is possible that we could see some of this

8
behavior in an ARPES experiment.

The fermi surface evolution of Las_,Sr, CuQy is shown in figure 9.1, indicating how the broken
Fermi arcs at (%, %) become connected at optimal doping. Since LasCuQO4y s is phase separated,
we would expect to see signatures of either x = 0.1, x = 0.15 or both. The naive expectation
would be a superposition of the two, removing any signature of the % phase. In this context, I also
mention the fact that Laj 48Ndg.4Sr0.12CuOy (stripe ordered, insulating) and Laj g5Srg.15CuOy
(optimally doped, T. = 37K) have curiously similar Fermi surfaces despite being electronically

distinct [205].

9.1 Sample

The sample is a small piece (~ 1cm?) of LagCuQ4.4, carefully cut with the c-axis vertical. Before
cutting the sample, we characterized it with a Laue camera and magnetization measurements as
shown in figure 9.2. When performing ARPES experiments, you need an atomically flat surface.
Since LasCuQy is a very brittle material, the only way to do this is by gluing on a small pin,
knocking it off and hoping that the sample breaks in an atomically sharp way. Luckily, the 2-
dimensional nature of the cuprates also translate to their structural integrity, so they are likely
to cleave naturally at the CuOs interface. Before going to the ARPES experiment, the procedure
was tested in the lab as shown in figure 9.3.
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Figure 9.1: Fermi surface evolution of under- (x = 0.1), optimally- (z = 0.15) and overdoped
(x = 0.22) Lag_,;Sr;CuOy4. From ref. [204].

113



114 CHAPTER 9. ELECTRONIC STRUCTURE

0.0
T 0.2
(0]
o
;
£ —0.4 A
o
=}
1
9 0.6
>
_0.8 -
T T T T T
10 20 30 40 50

TIK]

Figure 9.2: Left: Laue diffraction pattern of the LagCuQOy44s sample, aligned with the ¢ axis ver-
tical. Right: Vibrating Sample Magnetometry (VSM) performed on a Quantum Design MPMS.
"‘52—;{?, where p is the measured signal, V' is the volume,
H,,p is the applied field and NV is the demagnetization factor. Vertical line marks the onset

superconducting transition temperature 7, = 41 K

Normalization performed through x = 47

L

Figure 9.3: Cleaving procedure. 1: The sample is mounted using Torr Seal Low Pressure Epoxy.
2: A stainless steel pin (L = 6 mm, d = 1 mm) is glued to the top of the sample and subsequently
3: knocked off with a regular screwdriver.

9.2 Experiment

ARPES experiments were carried out on the LasCuOy5 sample at the Surface/Interface Spectro-
scopy (SIS) beamline at the Swiss Light Source. The sample was cleaved in situ at ~ 20 K under
ultra high vacuum (< 5 x 107! Torr) by employing the top-post technique as shown in figure 9.3.
Cleaving in vacuum is essentially the same procedure as our ambient test-case, made possible with
a screwdriver that we can control from outside the vacuum chamber. Ultraviolet ARPES spectra
were recorded using a SCIENTA R4000 electron analyser with horizontal slit setting. All the data
were recorded at the cleaving temperature. Figure 9.4 shows the Fermi surface map at T' = 22K
recorded using circularly polarized 160eV phonons. Detailed cut along the nodal direction with
circularly polarized light is shown in Figure 9.5. A comparison of different photon polarizations
along with data from Laj 77Srg.23CuQy is shown in Figure 9.6.

9.3 Summary

The area of the Fermi surface as shown in Figure 9.4 corresponds to a carrier (hole) doping
ny = 0.16 and a hopping parameter tt—/ ~ —0.14, according to analysis performed by Masafumi
Horio from the LMQR group. It turns out that the measured spectra as e.g. the cut shown in Figure
9.5 are very similar to what was observed by the LMQR group in overdoped Laj 775r(p.203CuOy4

[156]. There is thus no indication of ‘%—physics’ which is generally characterized by the formation
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Figure 9.4: Fermi surface of at 22 K represented as raw and symmetrized data. k, and k, are in

tetragonal (I4/mmm) units. The cut indicates the nodal direction as used in subsequent measure-
ments of the band structure.

Raw BG subtracted
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Figure 9.5: Cut along the nodal direction (see Figure 9.4) with 160 €V circularly polarized photons.
The subtracted background is defined by the minimum Momentum Distribution Curve (MDC)
intensity at each binding energy.

of Fermi arcs. We cannot however rule out that such arcs are not observed due to an unfavorable
superposition of photoemission from the 1/8 phase and optimally doped phase in our sample.

By using different polarizations of light (linear horizontal and linear vertical) Figure 9.6 shows
that we can separate the d,2_,> band from the d,» band. In the same figure, data from overdoped
Lay 77510.23Cu0y4 [156] is shown. The band structure is very similar except that the d,» band is
moved down by about 0.2eV. This could be due to an elongation of the c-axis, but while oxygen-
doped samples are elongated when compared to the parent compound, LasCuO,44s has a similar
(or even smaller) c-axis when compared to Laj 77Srg.23CuQy.

Thus there must be another explanation for the decreased energy of the d, band further away
from the Fermi energy. Maybe the coupling along ¢ is weakened by oxygen-doping and this in
fact enhancing T, for oxygen doped samples? There is some evidence that relieving Josephson
frustration along ¢ gives 2D superconductivity with T, = 40K [206].
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Figure 9.6: Cut along the nodal direction (see Figure 9.4) with 160 €V photons using different
polarizations. Left: Linear horizontal polarization, showing clearly the d.> band dispersing from
roughly -—1eV to —1.5eV. Right: Linear vertical polarization, showing the steeply dispersing

dy2_,2 band. Center: Comparison with data of Laj 77Srg.23CuOy4 from ref. [156], showing similar
features to our sample.



Chapter 10

Conclusion

In this chapter, I will attempt to condense the thesis as a whole in order to discuss what was learned
through the process of the various experimental and theoretical exercises. In a broad sense, the
objective of this thesis is to investigate the effects of chemical disorder through different dopant
species in LagCuQy4 as introduced in chapter 1 with the methods presented in chapter 2. This was
primarily done through DFT simulations being compared to a neutron scattering experiment. The
challenge with this objective is that we know that the exact electronic structure of the cuprates,
at the relevant doping levels, is an unsolved problem in condensed matter. DFT, in particular, has
not been very successful in the underdoped part of the phase diagram and many-body methods
are usually necessary to explain phenomena such as stripe order and fermi arcs.

Figure 10.1 attempts to visualize this problem by showing how superconductivity is squeezed
between localized electrons giving rise to antiferromagnetic order and a fermi liquid with itinerant
electrons and a continuous Fermi surface. The solution to this problem was to simply consider the
two cases available to us and perform the calculations with this drawback in mind. In some sense,
we are trying to figure out how well this level of theory can explain experimental observations.
Exactly for this reason, I think a crucial part of this thesis is a careful evaluation of theory with
experiment — essentially we need to know ‘how wrong’ the theory is.

Now, we are certainly not the first to consider LayCuQO4 within a one-electron theory. Since
DFT was well-established when the high-temperature superconductors were discovered, this meth-
odology was applied right away (see review by Pickett [143]). Various levels of theory have applied
to LagCuOy, including pure Hartree-Fock [207], and semi-local potentials [144]. Correlated phe-
nomena, such as stripes [147] and broken up Fermi arcs [208, 209] have even been calculated within
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Figure 10.1: Schematic of the electronic structure as a function of hole doping ny. As one moves
from left to right, n;, increases. On the left we have the undoped compound where there is a gap
in electronic density of states due to the antiferromagnetic ground state. As doping is increased,
the strong antiferromagnetic interactions are disrupted and novel phenomena such as stripe order
and broken Fermi arcs emerge [37]. Finally, on the right, the hole doping is sufficient such that the
material becomes a normal metal and the strong correlations are destroyed. The electronic band
structures are calculated and presented in chapter 3.
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DFT, albeit with ad-hoc methods such as DFT+U.

In this thesis, I make no attempt to contribute to this discussion. Rather, I prioritize getting
accurate inter-atomic forces such that we get the best possible representation of the phonon spec-
trum. We thus stick to the generally accepted GGA level of theory. As we saw in chapter 3, some
experimentation lead us to the PBESol functional and a significantly increased plane-wave cutoff
in order to get reasonable acoustic phonons.

Within this framework, it was possible to get a good description of the unstable modes re-
lated to the structural phase transitions observed in La;CuQO4. However, it turns out that the
low-temperature tetragonal (LTT) phase is the ‘most stable’ structural phase both with respect
to total energy and unstable phonons. Since this LTT phase is known to be suppressing supercon-
ductivity, our calculations are consistent with a picture where superconductivity competes with
this structural phase and thus prevents the structural phase transition. In this context, I remark
that the isostructural, non-superconducting compound LasNiOy is LTT at low temperatures [87].

While more experimentation with structural phases, functionals and computational parameters
is always desireable, I decided to move on with the relatively successful description of phonon
dynamics in LasCuQO,4 within DFT. In chapter 4, we use these simulations to approach the actual
objective of treating doped LasCuQy as a defect structure with molecular dynamics. Our analysis
of the trajectories show that oxygen interstitials tend towards a LTT-like structure, while undoped
and strontium-doped compounds stay LTO-like. While our simulation box and total simulation
time is somewhat limited, these results is a good indication of distinct dynamics associated with
interstitials. Importantly, these distinct dynamics are associated with a modification of the phonon
density-of-states which can be observed experimentally.

10.1 Oxygen Interstitial Observables

A large part of this thesis has been dedicated to finding signatures of oxygen interstitials. As
mentioned in the introduction, these materials appear to optimize the superconducting transition
temperature T, and it is suspected that the mobile, interstitial nature might be important for
the elevated T.. As we also show in chapter 5, the ‘annealed doping’ [84] associated with inter-
stitial oxygen is mainly observed in diffraction experiments. Remarkably, our high-quality PDF
measurement shows almost no signature of oxygen interstitials. The superstructures observed
in single-crystal measurements are so strong that this absence must be due to either rotational
averaging or because powdered samples simply don’t have these superstructures.

However, the dynamics of the same powdered samples (measured in chapter 7) does have a
signature of oxygen interstitials through a broadening of the phonon DOS in the 10 meV to 25 meV
range. We can qualitatively identify this broadening, through our simulations, as a signature of
oxygen disorder. In the case of strontium-doping, on the other hand, we see a sharpening of features
which cannot be explained through our simulations. It is possible that the electronic structure of
the LSCO x = 0.03 sample modifies the phonon spectrum in a novel way, but more experiments
are required to understand the observations. The fact that we can identify the features in this
manner suggests that our model captures some of the dynamics associated with interstitials. This,
in extension, is evidence for LTT-like tilts in LasCuQOy4s in a sample that is always observed to
be structurally LTO.

This intimate relationship to an incipient tetragonal phase is also observed in our measurements
of soft phonons in chapter 6. While none of these measurements are conclusive on their own, taken
together they point to LTT-like behavior being important in LagCuO4is (LCO+0). To briefly
recap, I have found that LCO+O features

1. LTT-like tilt dynamics.
2. Instability towards LTT which is stabilized at Tt.

3. Phase separation into distinct ny = % and optimally superconducting phases [91, 92].

Allowing myself to speculate wildly, this is consistent with a scenario where LagCuQOy4,s is able to
optimize the relationship between a stripe phase and a superconducting phase by leveraging LTT-
like tilts. In this way, the annealed oxygen order, optimally superconducting phase can be ‘close’
to the static stripe phase without actually being pinned by LTT symmetry. This is consistent with
a situation where ‘stripe degrees of freedom’ are necessary for superconductivity, but where we
need to be sufficiently far away from static order. Essentially, one could think of a situation where
the mobile dopants in LayCuQOys self-organize in a way that optimizes the conditions for these
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Figure 10.2: Left: YBay;Cu3O7_s5 and Nd; 4, Bas_,Cu3zO7_; phase diagram showing charge fluctu-
ations in a wide doping/temperature range [182]. Right: Schematic of where the phonon anomaly
appears in a generalized cuprate phase diagram (see dicussion in chapter 8).

competing orders. A similar idea has been put forward by Poccia et al. [210], where it is suggested
that grain boundaries help optimize this mechanism.

10.2 Phonons and Stripes

The relationship to stripe order in LCO+0O was also investigated through measurements of the
phonon anomaly in chapter 8. Contrary to what we saw in the preceding chapters, the phonon
anomaly appears to be unrelated to the type of dopant or stripe order. In fact, when reviewing
the samples where the phonon anomaly has been observed it appears to be a signature of doping
0.12 < ny < 0.20.

We interpret this as fluctuations of charge stripes, i.e. the stripe degrees of freedom mentioned
above. Following the logic from before, this then suggests that charge fluctuations are a necessary
but not sufficient condition for optimal superconductivity. In addition, the anomaly persists to high
temperatures, so the phenomenon must be intrinsic to the doped samples in a large temperature
range.

Very recently, resonant X-ray methods were used to determine ‘charge density fluctuations’
(CDF) in samples of YBayCus07_5 and Nd;,Bas_,CuzO7_s over a large doping range. Similar
to what has been observed in the phonon anomaly, the CDF’s are constrained in the phase diagram,
but persists well above the pseudogap temperature 7. Figure 10.2 shows a summary of their
results and a schematic of where one finds the phonon anomaly. The similarity of these phenomena
strongly supports the suggested [188] connection between the phonon anomaly and dynamic stripes.

Finally, we discovered that the electronic structure as observed by ARPES in LasCuOyys is
remarkably similar to that of overdoped Laj 77Srg.23CuQy4. Since LagCuOyy4s is known to phase
separate into stripe ordered and superconducting phases, this is interpreted as a superposition of
the two phenomena in the ARPES spectrum in chapter 9






Appendix A

PhononNeutron

During the thesis, a selection of Python classes were developed with the intention of generalizing
some of the tasks required to get the correct neutron weights out of simulations. While software
such as MDANSE [211] does a good job with respect to molecular dynamics, I wanted something
focussed on analyzing phonons specifically from different levels of theory (MD and ‘Frozen Phon-
ons’). The code be found at https://github.com/tejsner/phonon_neutron and features two
modules

1. md_ tools.py

2. phonopy__tools.py

md__tools.py

This module is used to perform various task on molecular dynamics trajectories as obtained from
VASP. VASP trajectories are saved in XDATCAR files, which can be analysed, for example, in the
following way:

O UL W N

from md_tools import VaspMD
md_data = VaspMD('XDATCAR', dt=1)
md_data.compute_velocity ()
md_data.compute_temperature ()
md_data.compute_pdf ()
md_data.compute_dos (sigma=0.5)

Line 1 simply imports the module, line 2 reads the VASP trajectory and lines 3-6 computes
velocity, temperature, the pair distribution function and the phonon density of states with a
Gaussian smearing width of o = 0.5 meV. Everything is now saved in the md_data object, and
can be plotted, for example, using matplotlib in the following way:

O © 0O Ui WwWwN

—_

import matplotlib.pytplot as plt

# temperature

plt.figure()

plt.plot(md_data.vtime, md_data.temperature)
# PDF

plt.figure ()

plt.plot(md_data.pdf_x, md_data.pdf)

# DOS

plt.figure()

plt.plot(md_data.omega, md_data.dos)

Many additional features are present in this module and can be found by inspecting the code. A
current limitation is that it only contains neutron cross sections for the atomic species used in this
thesis (La, Sr, Cu, O), but it is a fairly simple procedure to add scattering lengths at the top of
md_tools.py.
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phonopy__tools.py

This module contains a number of helper functions used to manipulate output from a Phonopy
[126, 131] calculation. In particular, I wanted easy access to neutron-weighted band structure
plotted in different ways as shown throughout this thesis (in particular chapter 6). In order for
the code to load Phonopy data, we require two files

1. phonopy_disp.yaml: Contains information about the input structure and phonon calcula-
tion.

2. FORCE_SETS: Contains the force constants obtained from DFT calculations.

With those files, neutron weighted band structure plots can be generated in the following way

from phonopy_tools import PhonopyNeutron
import matplotlib.pyplot as plt
f, ax = plt.subplots()

ph_data = PhonopyNeutron('phonopy_disp.yaml', 'FORCE_SETS')
ph_data.set_path([[0,0,0],[0.5,0.5,0],[1,0,0],[0,0,01])
ph_data.set_labels(['$\Gamma$', 'X', 'M', '$\Gamma$'])

ph_data.compute_bands ()
ph_data.compute_neutron_bands ()
ph_data.plot_neutron_bands(ax, plotype='lines', sigma=0.2)

Line 1 imports the module, and line 4 imports the Phonopy data. In order to get the band
structure, it is necessary to set the path in reciprocal space that you want to plot as shown in
line 5. The coordinates are here with respect to the input cell, so not necessarily the primitive
cell. Line 5 simply labels these paths, line 6 and 7 computes the bands and line 8 plots them. A
different option is to plot in 2 dimensions of @ at a selected energy as we also saw in chapter 6.
An example of how to get this plot is:

from phonopy_tools import PhonopyNeutron, get_xy_colormap
import matplotlib.pyplot as plt

ph_data = PhonopyNeutron('phonopy_disp.yaml', 'FORCE_SETS')
cmap_data = lco.get_sqw_xy([1,5,-1,3], 100, 100)

X, y, I = get_xy_colormap(cmap_data, 9, sigma=1)
plt.pcolor(x, y, I)

We load the modules in line 1, and the Phonopy data in line 3. In line 4, we generate the S(Q,w)
in a grid where (), ranges from 1 to 5 and @), ranges from -1 to 3 with a grid size of 100 in each
direction. The evaluation of this can be quite slow, so start with a small grid size. Finally, the
get_xy_colormap() function uses this data to generate a colormap at a certain energy with some
fixed resolution o (in meV).




Appendix B

Low energy phonons, additional plots

This appendix contains the plot and fits used to compare low energy phonons with simulation data
in chapter 6. Figures B.1, B.2, B.3 and B.4 is data obtained from interpolation of FlatCone data
in various directions. Figures B.5, B.6, B.7, B.8 and B.9 show the comparison of this data with
simulations in various structural and electonic phases.
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Figure B.1: Interpolated data from FlatCone measurements of Laj 94Srp.06CuQOy4ys taken around
the (400) peak in the transverse direction. Fits are two Gaussians.
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Figure B.2: Interpolated data from FlatCone measurements of Laj 94Srg.06CuQOy4ys taken around
the (200) peak in the transverse direction. Fits are two Gaussians.
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Figure B.3: Interpolated data from FlatCone measurements of Laj 94Srp.06CuOy4ys taken around
the (400) peak in the longitudinal direction.
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Figure B.4: Interpolated data from FlatCone measurements of Laj 94Srg.06CuQOy4ys taken around
the (220) peak in the longitudinal direction.
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Figure B.5: Red datapoints are measured by neutron spectroscopy using a Flatcone analyser and
lines are neutron weighted simulation data. HT'T AFM simulation data.
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Figure B.6: Flatcone dispersion and neutron weighted simulation data. LTT AFM simulation
data.
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Figure B.7: Flatcone dispersion and neutron weighted simulation data. LTT AFM simulation
data.
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Figure B.8: Flatcone dispersion and neutron weighted simulation data. LTO metal simulation
data.
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Figure B.9: Flatcone dispersion and neutron weighted simulation data. LTT Metal simulation
data.



Appendix C

Phonon DOS, additional plots

This appendix contains additional temperatures of the density of states measurements performed
in chapter 7. Figure C.1 contains data for 60 K and C.2 contains data for 300 K
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Figure C.1: Phonon density of states of all four samples at at 60 K
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Figure C.2: Phonon density of states of all four samples at at 300 K
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