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Abstract

The general subject of the present work concerns the action of time-
dependent, spatially restricted magnetic fields on the wave function
of a neutron. Special focus lies on their application in neutron inter-
ferometry.

For arbitrary time-periodic fields, the corresponding Schrödinger equa-
tion is solved analytically. It is then shown, how the occurring ex-
change of energy quanta between the neutron and the modes of the
magnetic field appears in the temporal modulation of the interference
pattern between the original wavefunction and the wavefunction al-
tered by the magnetic field. By Fourier analysis of the time-resolved
interference pattern, the transition probabilities for all possible energy
transfers are deducible. Experimental results for fields consisting of
up to five modes are presented. Extending the theoretical approach
by quantizing the magnetic field allows deeper insights on the under-
lying physical processes. For a coherent field state with a high mean
photon number, the results of the calculation with classical fields is
reproduced.

By increasing the number of field modes whose relative phases are
randomly distributed, one approaches the noise regime which offers
the possibility of modelling decoherence in the neutron interferometer.
Options and limitations of this modelling procedure are investigated
in detail both theoretically and experimentally. Noise sources are ap-
plied in one or both interferometer path, and their strength, frequency
bandwidth and position to each other is varied. In addition, the in-
fluence of increasing spatial separation of the neutron wave packet
is examined, since the resulting Schrödinger cat-like states play an
important role in decoherence theory.





Kurzfassung

Übergeordneter Gegenstand der vorliegenden Arbeit ist die Wirkung
zeitabhängiger, räumlich beschränkter Magnetfelder auf die Wellen-
funktion eines Neutrons mit spezieller Berücksichtigung ihrer Anwen-
dung in der Neutronen-Interferometrie.

Für beliebig zeitperiodische Felder wird die entsprechende Schrödinger-
gleichung analytisch gelöst. Es wird gezeigt, wie der dabei auftretende
Austausch von Energiequanten zwischen dem Neutron und den Moden
des Magnetfeldes anhand der zeitlichen Modulation des Interferenz-
bildes von ungestörter und vom Magnetfeld veränderter Wellenfunk-
tion bestimmt werden kann. Durch Fourieranalyse des zeitaufgelösten
Interferenzmusters lassen sich die Übergangswahrscheinlichkeiten für
alle möglichen Energietransfers bestimmen. Messergebnisse für Fel-
der, die bis zu fünf Moden beinhalten, werden präsentiert. Ein erwei-
terter theoretischer Ansatz, in dem auch das Feld quantisiert wird,
gewährt zusätzliche Einblicke in die zugrunde liegenden physikali-
schen Vorgänge und führt für den kohärenten Feldzustand mit hoher
mittlerer Photonenzahl wieder auf die Resultate der Rechnung mit
klassischen Feldern.

Wird die Anzahl der im Magnetfeld vorkommenden Frequenzen, de-
ren relative Phasenlage völlig zufällig zueinander ist, weiter erhöht,
bewegt man sich in Richtung Rauschfelder. Mit ihnen kann man De-
kohärenz im Neutroneninterferometer modellieren. Theoretisch und
experimentell wird gezeigt, auf welche Weise diese Modellierung zu
verstehen ist, welche Möglichkeiten sie bietet und wo ihre Grenzen
liegen. Die Untersuchungen beziehen sich dabei auf Rauschquellen in
einem oder beiden Interferometerpfaden, auf die Stärke und den Fre-
quenzbereich der Rauschfelder, ihre Lage zueinander und auf den Ein-
fluss der räumlichen Trennung der Neutronen-Wellenpakete. Letzteres
führt auf die sogenannten Schrödingerschen Katzenzustände, die auf-
grund ihrer makroskopischen Abmessungen in der Dekohärenztheorie
eine besondere Rolle spielen.





Acknowledgements

First of all, I want to thank my supervisor Prof. Helmut Rauch who
gave me the opportunity to work as PhD-student in the neutron in-
terferometry group in Vienna. He also allowed me great latitude in
developing and pursuing my own ideas and thus making this thesis
more than just a contract work for me.

Since I graduated in the purely theoretical field of phenomenological
high energy physics, the success of this work would have been impos-
sible without the assistance of my colleagues Jürgen Klepp, Stephan
Sponar, Hartmut Lemmel, and Yuji Hasegawa who helped me realiz-
ing the experiments at the institute Laue-Langevin in Grenoble. In
this context, I also want to mention Matthias Baron whose prelim-
inary works on noise induced dephasing have been essential for my
investigations related to this matter.

I also enjoyed numerous, fruitful discussions on theoretical issues
throughout my PhD-studies with Katharina Durstberger-Rennhofer
and Prof. Johann Summhammer. For the special topics of field quan-
tization and path integrals, I benefitted from the profound skills of
Stephan Nimmrichter and Iva Brezinova respectively who I got to
know during the Vienna doctoral program on complex quantum sys-
tems (CoQuS).

Special thanks go to Prof. Wolfgang Herfort who unhesitatingly pro-
vided his mathematical knowledge in solving differential equations,
especially for formal details that are not present in the education of
a physicists.

Last but not least, I’m indebted to Eva Haberl and Robert Bergmann
for their help in overcoming all logistic and bureaucratic barriers
whose complexity sometimes seems to exceed the one of quantum
theory.

This work was funded by the Vienna doctoral program on complex
quantum systems (CoQus) of the Austrian Science Fund (FWF), by
the FWF project P18943 and by the PhD program of the Central
European Neutron Initiative (CENI).





Contents

1 Introduction 1

2 Energy exchange in a time-dependent magnetic field 5

2.1 Schrödinger equation with a classical field . . . . . . . . . . . . . 6
2.1.1 Single mode case . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Conservation of momentum and energy . . . . . . . . . . . 12
2.1.3 Generalisation to arbitrary number of field modes . . . . . 17

2.2 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Polarized neutrons . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Unpolarized neutrons . . . . . . . . . . . . . . . . . . . . . 30

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Single mode magnetic field . . . . . . . . . . . . . . . . . . 33
2.3.2 Magnetic field with two modes . . . . . . . . . . . . . . . . 43
2.3.3 Magnetic field with three modes . . . . . . . . . . . . . . . 51
2.3.4 Magnetic field with five modes . . . . . . . . . . . . . . . . 53

2.4 Quantized field treatment . . . . . . . . . . . . . . . . . . . . . . 55
2.5 Phaseshift picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Modelling Decoherence with magnetic noise fields 71

3.1 Density matrix formalism in quantum mechanics . . . . . . . . . . 71
3.2 Physics of composite systems . . . . . . . . . . . . . . . . . . . . 72
3.3 Open quantum systems . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Density matrix formalism for the IFM . . . . . . . . . . . . . . . 77

3.4.1 Experimental verification . . . . . . . . . . . . . . . . . . . 84
3.4.2 Momentum modulation measurements . . . . . . . . . . . 90

3.4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . 93

4 Finite mode number noise 101

4.1 Noise generation with random phases . . . . . . . . . . . . . . . . 101
4.2 Alternative noise generation . . . . . . . . . . . . . . . . . . . . . 110

ix



CONTENTS

5 Conclusion and Outlook 113

A Error propagation for Discrete Fourier Transformations 117

Bibliography 123

x



1

Introduction

Without exaggeration, one can say that, together with the theory of relativity,
quantum mechanics has changed the physicist’s view of the world at the begin-
ning of the twentieth century. Fundamentals concepts of the former, often called
”classical” physics, like the rigorous distinction between particles and waves or
the principle of complete determinism, had to be abandoned in order to explain
the phenomena observed on the microscopic scale. The impact of these scientific
findings was not limited to the physicist’s community, all nature sciences and even
the humanities have been influenced by the development of quantum theory.

Due to the often counter-intuitive predictions of quantum mechanics, at least
schematically simple experiments are invaluable to enhance the understanding of
quantum mechanical principles. In this context, the Mach-Zehnder interferometer
plays a key role.

Originally invented for light [Zeh1891, Mac1892], a collimated beam is split
up by a semipermeable mirror in two spatially separated parts that are then
reflected again to pass a second semipermeable mirror behind which two detectors
are placed. If the beam was split up coherently, i.e. if it takes both paths at the
same time and not exclusively one or the other, a continuous change of the optical
path length in one beam path causes the intensity to oscillate between the two
detectors. The fact that interferometers could also be implemented for massive
particles, like electrons [DG1927, MJ1959], neutrons [RTB1974], and recently
even atoms and molecules with high mass numbers [Ber1997, ANVA+1999] is
therefore a beautiful demonstration of their wave properties. The superposition
principle, one of the main features of quantum mechanics, is thus also valid for
massive particles.

For neutrons, this demonstration was achieved by using monolithic silicon
perfect crystals. Since their lattice plane distances are comparable to the wave-
length of thermal neutrons, diffraction takes place and the silicon plates can be
used as mirrors and beam splitters to build up the interferometer [RP1978]. This
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1. INTRODUCTION

technique was used before for X-rays [BH1965] of similar wavelength. Due to
the low velocity of thermal neutrons in comparison to the speed of light it is not
sufficient to ensure fixed positions of the plates by cutting them out of a single
ingot, but also suppression of vibrations and temperature-induced lattice fluctua-
tions is necessary and was first achieved at the TRIGA MARK reactor in Vienna
[RTB1974].

Once a stable interferometric setup has been installed, the coherent super-
position can be exploited to investigate the quantum behaviour of the involved
particle, since every operation in one path of the interferometer has an effect on
the interference pattern. Interacting with all four fundamental forces, the neu-
tron can be manipulated by nuclear [RTB1974], magnetic [RZB+1975], electric
[COK+1989] or gravitational [COW1975] potentials.

If the interacting potential is time-dependent a change of the neutron’s energy
is to be expected. If the energy shift is larger than the initial energy width direct
observation is possible and has been measured for very cold neutrons impinging
on a vibrating surface [FGRG1996] and for neutrons in an oscillating magnetic
field that is in resonance with an orthogonally aligned guide field [ABR1981].
For energy exchanges that are not directly observable in the energy spectrum the
interferometer’s sensitivity to smallest phase shifts can be exploited to indirectly
verify the energy transfer. The method was theoretically described [Sum1993]
and also experimentally demonstrated [SHK+1995] for thermal neutrons exposed
to oscillating magnetic fields.

As mentioned above, the interferometer serves as a tool to demonstrate the
coherence of massive particle beams. In some way or the other, for all kinds
of particles this demonstration can only be achieved if the setup is sufficiently
isolated from its environment. Therefore, by inducing controlled disturbances the
loss of coherence can be studied as well, i.e. the interferometer is also a tool to
test predictions of decoherence theory [Zur2003, Zur1991]. Decoherence theory
exactly deals with the problem of open quantum systems that can no longer be
considered isolated. The combined evolution of the system and its environment
and the extraction of the system’s state from it enables the understanding of
physical processes inexplicable for isolated systems. In particular, it is so far the
most intuitive and commonly accepted explanation for the transition from the
quantum to the classical behaviour of physical objects [JZK+2003, BP2002].

For electrons, this transition could be observed by coupling the electrons to
electron and phonon gas inside a semi-conducting plate [SH2007]. In atom in-
terferometry, the beam was exposed to a laser field in order to study loss of
coherence [CHL+1995]. For C60-molecules, collision with background gases was
used as source for decoherence [HUB+2003].

To model decoherence in the neutron interferometer, one has to use the result
of [SAI1990] stating that the loss of coherence can also be described by statisti-
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cally distributed phase accumulations of the interfering waves. Via the magnetic
dipole interaction described by the Zeeman-Hamiltonian these phases can be at-
tached in the neutron interferometer by applying magnetic noise fields inducing
decoherence [SHK+2010].

This work deals with the action of time-dependent magnetic fields in the
neutron interferometer. It thus covers both the topics of energy/photon exchange
and noise induced decoherence. In both cases, the neutron passes a finite region
with a time-dependent magnetic field.

In chapter 2.1, we investigate the most simple case, namely a field sinusoidally
oscillating in a fixed direction parallel to a guide field. We treat the field classically
and solve the corresponding Schrödinger equation analytically.

After investigating the conservation of energy and momentum (section 2.1.2),
we generalize to the case of a field arbitrarily oscillating in a fixed direction. That
means, the magnetic field signal can now consist of an arbitrary high, countable
number of modes with random relative phases.

In sec.2.2, we show how the calculations can be verified in an interferometric
setup and then present the measurement results in sec.2.3.

In sec.2.4, we extend our theoretical model by performing quantization of
the magnetic field. The Schrödinger equation of the composite quantum system
consisting of neutron and magnetic field is analytically solvable. After presenting
the general solution, the correspondence to the classical calculation in case of a
coherent field state is discussed in detail.

To complete the theoretical approaches, we also show a semiclassical calcula-
tion relying on the Glauber eikonal approximation for path integrals (sec.2.5).

In the next chapter, we turn to the issue of modelling decoherence with mag-
netic fields. Therefore, we recapitulate the main ingredients necessary for un-
derstanding decoherence theory. We start with the density matrix formalism in
quantum mechanics (sec.3.1), proceed with physics of composite quantum sys-
tems (sec.3.2), apply the results to open quantum systems (sec.3.3), and finally
arrive at the density matrix formalism for the neutron interferometer (sec.3.4).

Equipped with this theoretical background, we can now investigate the action
of magnetic noise fields on the interferogram and interpret the experimental re-
sults in the framework of decoherence theory (sec.3.4.1). Noise is applied in one
or both interferometer arms, its strength and frequency bandwidth are varied.
In sec.3.4.2, the separation width of the neutron wave packets is increased and
the effects on the interference pattern that is shifted to momentum space are
examined.

In the last chapter (chap.4), we build the bridge between the energy/photon
exchange and the decoherence chapters by showing that magnetic fields with a
finite number of modes can be used to model a noise signal and therefore cause
loss of coherence in the interferometer.
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1. INTRODUCTION

In fig.1.1, a simplified outline is depicted.
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Figure 1.1: Graphical outline of the present work: a spatially finite, time de-
pendent magnetic field is placed in the neutron interferometer (IFM). The effects
on the neutron wave function are determined from the interference pattern. For
magnetic signals consisting of only a few modes, energy/photon exchange can be
derived from Fourier transformation of the time-dependent interferogram. The
transition to a high number of modes (i.e. noise) leads to decoherence that can be
investigated for varying parameters (signal strength, frequency bandwidth, wave
packet separation,...).
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2

Energy exchange in a

time-dependent magnetic field

If a neutron passes a spatially restricted, time-dependent magnetic field emission
and absorption of energy take place. For a sinusoidally varying classical mag-
netic field the Schrödinger equation has already been solved [Sum1993, HR1982]
and the transition amplitudes for various energy transfers have been measured
[SHK+1995]. For strong magnetic fields, the energy transfer can be directly deter-
mined, as done for example in [ABR1981, WBRS1988] with high energy resolu-
tion spectrometers. For weaker fields, the interferometer’s sensitivity to smallest
phaseshifts can be exploited to indirectly verify the exchange of energy between
the neutron and the magnetic field. In [Sum1993, SHK+1995], both cases of an
orthogonal and of a parallel arrangement of the static field component and the
time-dependent part of the field are discussed. The orthogonal arrangement is
closely related to the Jaynes-Cummings model [JC1963] that is very common in
quantum optics. The static field defines two different potential energy levels de-
pending on the spin orientation. In case of resonance, the oscillating field leads to
a spin flip. A quantum field theoretical treatment of this process shows that the
spin flip is accompanied by the exchange of a photon between particle and field.
In the case of parallel orientation of the static field component and the oscillating
one, no resonant spin flip occurs. Nevertheless, energy exchange between the
time dependent field and the neutron happens. The transferred energy leads to a
change of the neutron’s kinetic energy, i.e. its momentum. This energy transfer
can be measured with the help of time-resolved interferometry [SHK+1995]. An
exact quantum field theoretical treatment of this physical process is still missing.

In this chapter, we want to extend the theoretical and experimental investiga-
tions of the parallel field configuration. Therefore, we recapitulate the calculation
for the classical single mode field and then generalize by allowing an arbitrary
number of frequencies to be contained in the time-dependent field (sec.2.1). In
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2. ENERGY EXCHANGE IN A TIME-DEPENDENT MAGNETIC

FIELD

section 2.2 we show how the results of the calculations can be verified in an
interferometric setup. In section 2.3, we present measurements performed with
unpolarized neutrons in an interferometer. In chapter 2.4, the magnetic field is
quantized, so that the energy exchange can be properly explained on the funda-
mental level of exchanged photons.

2.1 Schrödinger equation with a classical field

The quantum mechanical behaviour of spin-1
2
particles like the neutron is gov-

erned by the Dirac equation [Dir1928], resulting in a four component spinor wave
function. For thermal neutrons (velocity v ≈ 2000 m/s), relativistic effects can
be neglected and the Dirac equation is well approximated by the Pauli equation
[Pau1927]. Its solutions are two-component spinors, i.e. spin-up and spin-down
component of the particle (no anti-particle exists, pair production can practically
not happen for such low kinetic energies). In presence of an external magnetic
field, the Pauli equation for the uncharged neutron is given by the kinetic term
and the Zeeman interaction

−~

i

∂

∂t
ψ(x, t) =

(

p2

2m
+ µ~σ ~B

)

ψ(x, t) (2.1)

where ~σ = (σx, σy, σz) denote the common Pauli matrices generating the SU(2)
spin group and µ stands for the neutron’s magnetic dipole moment. The Pauli
equation can be considered to be the Schrödinger equation for non-relativistic
spin-1

2
particles.

We focus on the case where the spatially restricted, time-dependent field oscil-
lates parallel to the static component and both are chosen to point in z-direction.

~B(~r, t) =





0
0

B0 +B(t) · (Θ(x)−Θ(x− L))





As indicated by the Heavyside step-function Θ, the time-dependent field is con-
fined to the region 0 ≤ x < L. Since we are interested in the behaviour of the neu-
tron when it passes the time-dependent field, we only consider the x-dependency
of the wavefunction1. The Schrödinger equation for the two-component neutron
spinor ψ in this region thus reads

−~

i

∂

∂t
ψ(x, t) =

[

− ~2

2m

∂2

∂x2
+

(

µ(B0 +B(t)) 0
0 −µ(B0 +B(t))

)]

ψ(x, t)

1This can be done formally correct by a solving the differential equation with a product
ansatz ψ(x, y, z, t) = X(x) · Y (y) · Z(z) · T (t) and then focussing only on ψ(x, 0, 0, t) ≡ ψ(x, t)
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2.1 Schrödinger equation with a classical field

It can be seen that the two components of the neutron spinor stay uncoupled
and the Schrödinger equation can be solved separately for each of them. This
also holds outside the field region where only the static field B0 is present. The
one-dimensional Schrödinger equation for each component of the neutron spinor
corresponds to the problem of a time dependent potential barrier (see fig.2.1).
It can be solved by determining the wave function in the three different regions

x0 L

B(x)

B0

Figure 2.1: Spatial characteristics of the magnetic field potential, in region II the
field is varying in time

separately and then applying appropriate matching conditions. The Hamiltonian
for each region reads

ĤI = − ~2

2m

∂2

∂x2
+ µσzB0, x < 0 (2.2)

ĤII = − ~2

2m

∂2

∂x2
+ µσz(B0 +B(t)), 0 ≤ x < L (2.3)

ĤIII = − ~2

2m

∂2

∂x2
+ µσzB0, x ≥ L (2.4)

where σz is now just a number taking the values +1 (−1) for the spin-up (spin-
down) component. In the further, we only perform the calculation for the spin-up
component, but still denote it with ψ for simplicity’s sake. The result for the down
spin component can be obtained by just replacing every µ with −µ. For thermal
neutrons, it can be assumed that the kinetic energy of the incoming neutron
is much larger then the potentials generated by the magnetic fields (~2k20/2m≫
µ(B0+B(t))) and therefore, reflection can be neglected in region I and the ansatz
for the incident plane wave reads

ψI(x, t) = eik̃0xe−iω0t, k̃0 =

(

k20 −
2m

~2
µB0

)1/2

, ω0 =
~k20
2m

(2.5)
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2. ENERGY EXCHANGE IN A TIME-DEPENDENT MAGNETIC

FIELD

In region II, a superposition of plane waves has to be combined with a time-
dependent phase containing the primitive of B(t) to solve the time-dependent
Schrödinger equation (eq.2.3). The general solution reads

ψII(x, t) = e−iµ
~

∫
B(t′)dt′

∫

cII(k) e
ik̃xe−iω(k)tdk (2.6)

with

k̃ =

(

k2 − 2m

~2
µB0

)1/2

, ω(k) =
~k2

2m
(2.7)

In region III, the neutron propagates freely (apart from a constant shift due to
B0) and thus, the wave function is given in general by

ψIII(x, t) =

∫

cIII(k) e
ik̃xe−iω(k)tdk, k̃ =

(

k2 − 2m

~2
µB0

)1/2

, ω(k) =
~k2

2m
(2.8)

These ansatzes, together with the matching conditions at x = 0 and x = L

ψI(0, t) = ψII(0, t) , ψ′
I(0, t) = ψ′

II(0, t) (2.9)

ψII(L, t) = ψIII(L, t) , ψ′
II(L, t) = ψ′

III(L, t), (2.10)

solve the Schrödinger equation and analytic expressions for the wave function can
be found for time-periodic magnetic potentials B(t).

2.1.1 Single mode case

The most simple case of a periodic potential consists of only one frequency:

B(t) = B1 cos(ω1t+ ϕ1) (2.11)

Then, the overall time-dependent phase in eq.2.6 reads

µ

~

∫

B(t)dt = α1 sin (ω1t+ ϕ1) , α1 ≡
µB1

~ω1
(2.12)

With the help of the Jacobi-Angers expansion

eizsinφ =
+∞
∑

n=−∞

Jn(z) e
inφ (2.13)
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2.1 Schrödinger equation with a classical field

the phase factor can be rewritten which allows the determination of the constants
c(k) in eq.2.6 from the matching condition eq.2.9 by equating coefficents of eiωt:

ψI(0, t) = ψII(0, t)

e−iω0t = e
−i

µB1
~ω1

sin(ω1t+ϕ1)

∫

cII(k)e
−iω(k)tdk

e−iω0teiα1 sin(ω1t+ϕ1) =

∫

cII(k)e
−iω(k)tdk

+∞
∑

n=−∞

Jn(α1) e
inϕ1 e−i(ω0−nω1)t =

∫

cII(k)e
−iω(k)tdk

+∞
∑

n=−∞

(−1)nJn(α1) e
−inϕ1 e−i(ω0+nω1)t =

∫

cII(k)e
−iω(k)tdk

⇒ cII(k) =

+∞
∑

n=−∞

(−1)nJn(α1) e
−inϕ1δ(k − kn) (2.14)

where

kn =

(

k20 +
2m

~
nω1

)1/2

(2.15)

whence follows

ω(kn) =
~k2n
2m

=
~

2m

(

k20 +
2m

~
nω1

)

= ω0 + nω1 ≡ ωn (2.16)

Inserting the explicit form of cII(k) in the general ansatz for region II (eq.2.6)
yields (also to be found in [Sud2001])

ψII(x, t) = e−iα1 sin(ω1t+ϕ1)
+∞
∑

n=−∞

Jn(α1)(−1)n e−inϕ1 eik̃nxe−iωnt (2.17)

with

ωn = ω0 + nω1; k̃n =

(

k20 −
2m

~2
µB0 +

2m

~
nω1

)1/2

(2.18)

Note, that due to the special form of the Jacobi-Angers expansion of the time-
dependent phase factor, the matching condition could be fulfilled already with a
discrete sum over equidistant k-values. The second condition in eq.2.9 containing
the derivative of ψ is satisfied by the cII(k) obtained from the first condition
because mω1/~k0 = ω1/v0 can be neglected against k0. This would not be valid

9



2. ENERGY EXCHANGE IN A TIME-DEPENDENT MAGNETIC

FIELD

if kn appeared in the exponent, but in the derivative of ψ it occurs as a prefactor
(a similar argumentation was used for example in [GGK1994]).

ψ′
II(0, t) = e−iα1 sin(ω1t+ϕ1)

+∞
∑

n=−∞

ik̃nJn(α1)(−1)n e−inϕ1 e−iωnt

= e−iα1 sin(ω1t+ϕ1)e−iω0t
+∞
∑

n=−∞

ik̃nJn(α1) e
in(ω1t+ϕ1)

≃ e−iα1 sin(ω1t+ϕ1)e−iω0tik̃0

+∞
∑

n=−∞

Jn(α1) e
in(ω1t+ϕ1)

= e−iω0tik̃0 = ψ′
I(0, t)

At x = L, the expression for ψII (eq.2.17) has to be matched with the gen-
eral ansatz for region III (eq.2.8). Again, we use the Jacobi-Angers expansion
(eq.2.13). All occurring sums run from −∞ to +∞.

ψIII(L, t) = ψII(L, t)

. . . = e−iα1 sin(ω1t+ϕ1)
∑

n

Jn(α1)(−1)n e−inϕ1 eik̃nLe−iωnt

. . . =
∑

m

Jm(−α1) e
im(ω1t+ϕ1)

∑

n

Jn(α1)(−1)n e−inϕ1 eik̃nLe−iωnt

. . . =
∑

n,m

(−1)n+mJn(α1)Jm(α1) e
−i(n−m)ϕ1 eik̃nLe−iωn−mt

. . . =
∑

l,m

(−1)lJl+m(α1)Jm(α1) e
−ilϕ1 eik̃l+mLe−iωlt

∫

cIII(k) e
ik̃Le−iω(k)tdk =

∑

l,m

(−1)lJl+m(α1)Jm(α1) e
−ilϕ1 eik̃l+mLe−iωlt (2.19)

Equating coefficients of e−iωt shows that cIII(k) must have the form

cIII(k) =
∑

l

cIII,l · δ(k − kl), k2l = (k20 +
2m

~
lω1) (2.20)

so that

ω(kl) =
~kl
2m

=
~

2m
(k20 +

2m

~
lω1) = ω0 + lω1 = ωl (2.21)

Inserting the special form of cIII(k) (eq.2.20) in eq.2.19 leads to

cIII,l = (−1)l e−ilϕ1
∑

m

Jl+m(α1)Jm(α1) e
i(k̃l+m−k̃l)L (2.22)

10



2.1 Schrödinger equation with a classical field

Due to the high kinetic energy of the incoming neutron compared to the magnetic
potentials we may expand

k̃n =

(

k20 −
2m

~2
µB0 +

2m

~
nω1

)1/2

≃ k0 −
m

~2k0
µB0 +

m

~k0
nω1 (2.23)

=⇒ (k̃l − k̃n)L ≃ (l − n) ω1
mL

~k0
= (l − n)ω1T (2.24)

where T denotes the neutron’s time of flight through the field region. This leads
to

cIII,l = (−1)l e−ilϕ1

∑

m

Jl+m(α1)Jm(α1) e
imω1T (2.25)

The sum can be further evaluated by using Graf’s addition theorem for Bessel
functions [AS1964].

Jn(w)e
inχ =

+∞
∑

k=−∞

Jn+k(u)Jk(v)e
ikγ (2.26)

If u, v ∈ R+ and 0 ≤ γ ≤ π there exists a geometrical relationship between the
parameters u, v, w, γ, and χ (see fig.2.2). In our case, α1 = µB1/~ω1 is negative,

γ

χ

w
u

v
γ

χ

w
u

u
χ

= 2 u sin 
γ
2

χ = γ
2

π −

Figure 2.2: The geometrical relation for the parameters in Graf’s addition theo-
rem, if u, v ∈ R

+ and 0 ≤ γ ≤ π for general and equal-sided triangles.

because µ < 0. We therefore have to apply the identity Jn(x) = (−1)nJ(−x) to
be able to use the geometrical relation from which we deduce in our case where
u = v = −α1 and γ = ω1T that w = −2α1 sinω1T/2 and χ = (π − ω1T )/2.
Inserting this expressions in eq.2.25 and performing the summation according to
Graf’s addition theorem yields

cIII,l = (−1)l e−ilϕ1(−1)l+2m
∑

m

Jl+m(−α1)Jm(−α1) e
imω1T

cIII,l = e−ilϕ1Jl(−2α1 sin
ω1T

2
)eil(π−ω1T )/2 , |(−1)l = e−ilπ|,

cIII,l = e−ilϕ1Jl(2α1 sin
ω1T

2
)e−il(ω1T+π)/2 (2.27)
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2. ENERGY EXCHANGE IN A TIME-DEPENDENT MAGNETIC

FIELD

Now, the coefficient cIII(k) in the general ansatz (eq.2.8) is determined and the
final result for ψIII reads

ψIII(x, t) =

+∞
∑

n=−∞

Jn(2α1 sin
ω1T

2
) e−inη1 eik̃nxe−iωnt (2.28)

with

ωn = ω0 + nω1, k̃2n = k20 −
2m

~2
µB0 +

2m

~
nω1, η1 = ϕ1 +

ω1T + π

2
(2.29)

The result (eq.2.28) shows that the incoming plane wave with wave vector k0 and
energy ~ω0 is coherently split up into a superposition of plane waves whose ener-
gies are given by the initial energy ~ω0 plus an integer multiple of the frequency
of the applied magnetic field n~ω1. Thus, the energy transfer effected by passing
the time-dependent magnetic field is quantized and the modulus of the transi-
tion amplitude for the exchange of an energy amount n~ω1 between neutron and
field is given by the Bessel function of n-th order. The probabilities for emission
and absorption of the same amount of energy are equal. A seemingly obvious
interpretation of this result would be that the neutron exchanges n photons of
frequency ~ω1 with the magnetic field. We will discuss that conclusion in detail in
sec.2.4. From the argument of the Bessel function, we deduce that increasing the
field amplitude B1 leads to a higher probability of exchanging large amounts of
energy. For ω1T = 2nπ, all amplitudes for energy exchanges vanish. The neutron
exactly experiences integer multiples of the oscillation period and yet no resulting
energy transfer can remain. Note, that the transition amplitudes become equal
for different time of flights T1 and T2 if ω1(T1 − T2) = 2n 2π, thus obeying the
4π-spinor symmetry [RZB+1975].

2.1.2 Conservation of momentum and energy

The fact, that the transition probabilities for emission and absorption are equal
suggests that the expectation values for energy and momentum after passing the
field stay unchanged. To calculate the expectation values in regions I and III,
one has to define the scalar product in a sense, that the set of plane wave forms
an orthonormal basis. In region I we thus define1

〈φ|ψ〉 ≡ lim
R→∞

1

R

∫ 0

−R

φ⋆(x, t)ψ(x, t)dx (2.30)

1This definition strongly resembles the limits occurring in the theory of ”almost periodic
functions” [Boh1925]. The possibility of defining ”almost orthogonal” function in a similar
sense may be an interesting subject for further, more mathematically oriented investigations.

12



2.1 Schrödinger equation with a classical field

yielding for two different plane waves

〈k|k′〉 = lim
R→∞

1

R

∫ 0

−R

e−ikx+iωkteik
′x−iωk′ tdx (2.31)

= ei(ωk−ωk′)t lim
R→∞

1

R

∫ 0

−R

e−i(k−k′)xdx (2.32)

= ei(ωk−ωk′)t lim
R→∞

1

R

i

k − k′

(

1− ei(k−k′)R
)

(2.33)

= ei(ωk−ωk′)tδk,k′ = δk,k′ (2.34)

For k 6= k′, the limit is zero because the imaginary exponent leads to a purely
oscillating behaviour and can thus not compensate for the increasing divisor R.
To prove the result for the case k = k′, we start from the defining eq.2.30

〈k|k〉 = lim
R→∞

1

R

∫ 0

−R

e−ikx+iωkteikx−iωktdx

= lim
R→∞

1

R

∫ 0

−R

1 · dx = lim
R→∞

1

R
·R = lim

R→∞
1 = 1

Now, we can calculate the expectation value of the momentum in region I:

〈ψI | p̂ |ψI〉 = lim
R→∞

1

R

∫ 0

−R

ψ⋆
I (x, t)

~

i

∂

∂x
ψI(x, t) (2.35)

= lim
R→∞

1

R

∫ 0

−R

e−ik0x
~

i

∂

∂x
eik0xdx = ~k0 ≡ p0 (2.36)

As expected for a plane wave with wave vector k0, the momentum is ~k0, the
definition of the scalar product (eq.2.30) was therefore reasonable. Now we turn
to region III where we define the scalar product in a similar way

〈φ|ψ〉 ≡ lim
R→∞

1

R− L

∫ R

L

φ⋆(x, t)ψ(x, t) dx = lim
R→∞

1

R

∫ R

L

φ⋆ψ dx (2.37)

13
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Hence, we get for the expectation value of the momentum for the state ψIII using
the abbreviations defined in eq.2.29

〈ψIII | p̂ |ψIII〉 = lim
R→∞

1

R

∫ R

L

ψ⋆
III(x, t)

~

i

∂

∂x
ψIII(x, t) dx

= lim
R→∞

1

R

∫ R

L

∑

n

Jne
inη1e−iknxeiωnt ×

~

i

∂

∂x

∑

m

Jme
−imη1eikmxe−iωmt dx

= lim
R→∞

1

R

∫ R

L

∑

n,m

JnJme
i(n−m)η1e−i(kn−km)xei(ωn−ωm)t

~km dx

=
∑

n,m

JnJme
i(n−m)η1ei(ωn−ωm)t

~km lim
R→∞

1

R

∫ R

L

e−i(kn−km)x dx

=
∑

n,m

JnJme
i(n−m)η1ei(ωn−ωm)t

~kmδnm

=
∑

n

J2
n~kn

∼= ~k0
∑

n

J2
n + ~

ω

v0

∑

n

nJ2
n = ~k0

In the last line, we have expanded the k-vector in the usual way and then used
the identity

∑

n J
2
n = 1, valid for summation from −∞ to +∞. The second

second term vanishes due to the relation J2
n = J2

−n. The expectation value of the
momentum is thus equal before and after passing the field region, as expected
for a harmonically oscillating potential. Note, that we have omitted the constant
shift due to the static field B0. It can be taken into account without changing
the calculation by just using k̃0 (for exact definition see eq.2.5) instead of k0. To
calculate the probability distribution of the momentum, we write the states in the
Heisenberg picture, i.e. we can omit the time dependence and use Dirac-notation
instead of position space representation

|ψI〉 = |k0〉 , |ψIII〉 =
∑

n

Jne
−inη1 |kn〉 (2.38)

In this way, the calculation of the momentum distribution P (k) can be performed
more transparent

PI(k) = | 〈ψI |k〉 |2 = | 〈k0|k〉 |2 = |δk0,k|2 = δk0,k (2.39)

PIII(k) = | 〈ψIII |k〉 |2 = |
∑

n

Jne
inη1 〈kn|k〉 |2 (2.40)

= |
∑

n

Jne
inη1δkn,k|2 = J2

n δkn,k (2.41)

14



2.1 Schrödinger equation with a classical field

The momentum distribution has thus changed after passing the oscillating mag-
netic field (see fig.2.3), but the expectation value stays the same.

0.2
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Figure 2.3: The momentum distributions PI(k) = | 〈ψI |k〉 |2 and PIII(k) =
| 〈ψIII |k〉 |2. Only discrete amounts of kinetic energy/momentum are exchanged.
kn corresponds to an exchange of n~ω. The probabilities for absorption and emis-
sion of the same amount of energy are equal. The strength of the magnetic field is
chosen in a way that the argument of the Bessel functions equals 1.25.

The calculation of the total energy Etot works quite analogously

〈ψI |Etot |ψI〉 = lim
R→∞

1

R

∫ 0

−R

ψ⋆
I (x, t)

(

−~

i

∂

∂t

)

ψI(x, t) dx (2.42)

= lim
R→∞

1

R

∫ 0

−R

e−i(k̃0x−ω0t)

(

−~

i

∂

∂t

)

ei(k̃0x−ω0t)dx (2.43)

= ~ω0 lim
R→∞

1

R

∫ 0

−R

e−i(k̃0x−ω0t)ei(k̃0x−ω0t)dx (2.44)

= ~ω0 lim
R→∞

1

R

∫ 0

−R

1 · dx = ~ω0 (2.45)

For ψIII we need

−~

i

∂

∂t
ψIII(x, t) =

∑

n

~ωn Jn(β1) e
−inη1eik̃nxe−iωnt
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2. ENERGY EXCHANGE IN A TIME-DEPENDENT MAGNETIC

FIELD

to calculate

〈ψIII |Etot |ψIII〉 = lim
R→∞

1

R

∫ 0

−R

ψ⋆
III(x, t)

(

−~

i

∂

∂t

)

ψIII(x, t) dx

= lim
R→∞

1

R

∫ 0

−R

∑

m

Jm e
imη1e−ik̃mxeiωmt ×

∑

n

~ωn Jn e
−inη1eik̃nxe−iωnt dx

=
∑

n,m

~ωn JnJm e
−i(n−m)η1e−i(n−m)ω1t ×

lim
R→∞

1

R

∫ 0

−R

ei(k̃n−k̃m)x dx

=
∑

n,m

~ωn JnJm e
−i(n−m)η1e−i(n−m)ω1t δn,m

=
∑

n

~ωn J
2
n = ~ω0

∑

n

J2
n + ~ω1

∑

n

n J2
n = ~ω0

The total energy after passing the magnetic field is conserved as well. For com-
pleteness’s sake, we also give the expectation values of the kinetic energy.

〈ψI |Ekin |ψI〉 = 〈ψI |
p̂2

2m
|ψI〉 =

= lim
R→∞

1

R

∫ 0

−R

ψ⋆
I (x, t)

(

− ~2

2m

∂2

∂x2

)

ψI(x, t) dx

= lim
R→∞

1

R

∫ 0

−R

e−i(k̃0x−ω0t)

(

− ~
2

2m

∂2

∂x2

)

ei(k̃0x−ω0t)dx

=
~2k̃20
2m

=
~2k20
2m

− µB0 = ~ω0 − µB0

In region III we have

− ~2

2m

∂2

∂x2
ψIII(x, t) =

∑

n

~2k̃2n
2m

Jn(β1) e
−inη1eik̃nxe−iωnt
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2.1 Schrödinger equation with a classical field

leading to

〈ψIII |Ekin |ψIII〉 = lim
R→∞

1

R

∫ 0

−R

ψ⋆
III(x, t)

(

− ~2

2m

∂2

∂x2

)

ψIII(x, t) dx

= lim
R→∞

1

R

∫ 0

−R

∑

m

Jm e
imη1e−ik̃mxeiωmt ×

∑

n

~2k̃2n
2m

Jn e
−inη1eik̃nxe−iωnt dx

=
∑

n,m

~2k̃2n
2m

JnJm e
−i(n−m)η1e−i(n−m)ω1t ×

lim
R→∞

1

R

∫ 0

−R

ei(k̃n−k̃m)x dx

=
∑

n,m

~2k̃2n
2m

JnJm e
−i(n−m)η1e−i(n−m)ω1t · δn,m

=
∑

n

~2k̃2n
2m

J2
n =

~2k20
2m

∑

n

J2
n − µB0

∑

n

J2
n + ~ω1

∑

n

n J2
n

= ~ω0 − µB0

The kinetic energy is conserved and equals total energy minus the potential energy
arising from the static field.

2.1.3 Generalisation to arbitrary number of field modes

The results for the single mode field can be generalized to a time dependent
field consisting of an arbitrary, countable number of frequencies whose ratio is a
rational number, i.e. an arbitrary periodic field

B(t) =
N
∑

i=1

Bi cos (ωit+ ϕi) (2.46)

The periodicity of B(t) is given by greatest common denominator ωg of the oc-
curring frequencies ωi. The calculation consists basically of the same steps due
to the possibility of factorization of a sum in an exponent. To obtain a compact
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notation we will use vectors and scalar products in the form

~n = (n1, n2, . . . , nN), ~ω = (ω1, ω2, . . . , ωN), . . .

~n~ϕ = n1ϕ1 + n2ϕ2 + . . .+ nNϕN , . . .

c~n = cn1,n2,...,nN
∑

~n

=
∑

n1,n2,...,nN

In region I, we have the same wavefunction ψI as in eq.2.5, i.e. a single plane
wave with wave vector k0. In region II, the time-dependent phase factor (see
eq.2.6) changes according to the altered magnetic field (eq.2.46).

e−iµ
~

∫
dt′B(t′) = e−i

∑N
i=1 αi sin(ωit+ϕi), αi ≡

µBi

~ωi
(2.47)

The matching condition at x = 0 therefore reads

ψI(0, t) = ψII(0, t)

e−iω0t = e−i
∑N

i=1 αi sin(ωit+ϕi)

∫

cII(k)e
−iω(k)tdk

e−iω0tei
∑N

i=1 αi sin(ωit+ϕi) =

∫

cII(k)e
−iω(k)tdk

We can now use the Jacobi-Angers expansion to rewrite the exponent

+∞
∑

~n=−∞

J−n1(α1) . . . J−nN
(αN ) e

−i~n~ϕ e−i(ω0−~n~ω)t =

∫

cII(k)e
−iω(k)tdk

⇒ cII(k) =
+∞
∑

n1,..,nN=−∞

J−n1(α1) . . . J−nN
(αN) e

−i~n~ϕ δ(k − k~n) (2.48)

where

k~n =

(

k20 +
2m

~
~n~ω

)1/2

(2.49)

whence follows

ω(k~n) =
~k2~n
2m

=
~

2m

(

k20 +
2m

~
~n~ω

)

= ω0 + ~n~ω ≡ ω~n (2.50)

Inserting the explicit form of cII(k) (eq.2.48) valid for arbitrary periodic fields in
the general ansatz for region II (eq.2.6) yields

ψII(x, t) = e−i
∑N

i=1 αi sin(ωit+ϕi) ×
+∞
∑

n1,..,nN=−∞

J−n1(α1) . . . J−nN
(αN) e

−i~n~ϕ eik̃~nxe−iω~nt (2.51)
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2.1 Schrödinger equation with a classical field

with

ω~n = ω0 + ~n~ω; k̃~n =

(

k20 −
2m

~2
µB0 +

2m

~
~n~ω

)1/2

(2.52)

As already mentioned, the steps of the calculation are in principle the same as
in the case of the single-mode field. Above that, one could obviously obtain the
results for the single-mode field from the general expressions by simply setting
N = 1. Nevertheless, it is more comprehensive to explicitly solve the differential
equation for the less complex case of the single mode field where the notation is
more transparent and one can follow the steps of calculation more easily. When
the single-mode case is understood, the extension to the arbitrary number of
modes is just a matter of conclusion by analogy.

To perform the matching at x = L, we rewrite ψII with the help of the Jacobi-
Angers expansion. Summations over i all run from 1 to N whereas summations
over the ni’s, mi’s and li’s are meant to run from −∞ to +∞.

ψII(L, t) = e−i
∑

i αi sin(ωit+ϕi)

∑

n1,..,nN

J−n1(α1) . . . J−nN
(αN) e

−i~n~ϕ eik̃~nLe−iω~nt

. . . =
∑

m1,..,mN

Jm1(−α1)..JmN
(−αN ) e

i~m(~ωt+~ϕ)

∑

n1,..,nN

J−n1(α1) . . . J−nN
(αN) e

−i~n~ϕ eik̃~nLe−iω~nt

. . . =
∑

~n,~m

(−1)
∑

i ni+miJn1(α1)Jm1(α1)..JnN
(αN)JmN

(αN)

e−i(~n−~m)~ϕ eik̃~nLe−iω~n−~mt

. . . =
∑

~l,~m

(−1)
∑

i liJm1+l1(α1)Jm1(α1)..JmN+lN (αN)JmN
(αN)

e−i~l~ϕ eik̃~m+~l
Le−iω~lt

Comparison with the general solution in region III (eq.2.8) at x = L thus reads
∫

cIII(k) e
ik̃Le−iω(k)tdk =

∑

~l,~m

Jm1+l1(α1)Jm1(α1)..JmN+lN (αN)JmN
(αN )

(−1)
∑

i lie−i~l~ϕ eik̃~m+~l
Le−iω~lt (2.53)

Equating coefficients of e−iωt shows that cIII(k) must have the form

cIII(k) =
∑

~l

cIII,~l · δ(k − k~l), k2~l = (k20 +
2m

~

~l~ω) (2.54)
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so that

ω(k~l) =
~k~l
2m

=
~

2m
(k20 +

2m

~

~l~ω) = ω0 +~l~ω = ω~l (2.55)

Inserting the special form of cIII(k) (eq.2.54) in eq.2.53 and expanding the k-
vector like in eq.2.23 leads to

cIII,~l = (−1)
∑

i li e−i~l~ϕ
∑

~m

Jm1+l1(α1)Jm1(α1)..JmN+lN (αN )JmN
(αN) e

i~m~ωL (2.56)

This expression can be fully factorized

cIII,~l =
N
∏

i=1

(

(−1)lie−iliϕi

+∞
∑

mi=−∞

Jmi+li(αi)Jmi
(αi)e

imiωiL

)

(2.57)

The summation over the mi’s can be further evaluated by using Graf’s addition
theorem (eq.2.26) like in the single-mode field case.

cIII,~l =

N
∏

i=1

(

e−iliϕiJli(2αi sin
ωiT

2
)e−ili(ωiT+π)/2

)

(2.58)

The general solution in region III can now be written in compact notation as
follows

ψIII(x, t) =
∑

~n

Jn1(β1) · . . . · JnN
(βN ) e

−i~n~η eik̃~nxe−iω~nt (2.59)

with

ω~n = ω0 + ~n~ω, k̃2~n = k20 −
2m

~2
µB0 +

2m

~
~n~ω (2.60)

ηi = ϕi +
ωiT + π

2
, βi = 2αi sin

ωiT

2
(2.61)

One can see that different values of the ni’s can lead to the same ω~n, i.e. the same
value for ~n~ω. Thus, all possible combinations of the ni’s leading to the same ω~n

contribute to a certain energy exchange ~n~ω . For example, if some frequencies ωi

contained in the magnetic field signal (eq.2.46) have an integer-number ratio, the
situation of no energy transfer can be obtained for all nj = 0, but also for a set of
ni’s containing positive and negative values in a way, that the energy absorption
and emission of different frequencies exactly cancel each other.

Again, one has to be careful with the interpretation of the end result (eq.2.59)
in the general case of arbitrary frequencies. One could conclude that Jk(βl)
means that k photons of frequency ωl have been transferred between neutron
and field. But till now, we are only dealing with classical fields, the formally
correct introduction of photons requires the quantization of the magnetic field,
as performed in chapter 2.4.
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2.2 Experimental verification

2.2.1 Polarized neutrons

The transition amplitudes to different energies derived in section 2.1 and given
essentially by combinations of Bessel functions Jn can be measured in an interfer-
ometric setup. Therefore we place the time-dependent magnetic field generated
by an ac-coil (field length L = 42 mm) in one beam path and in the other one we
leave the neutrons unchanged (see fig.2.4).

ψΙ

ψΙ
ψΙ

ψΙ

ψ

ψΙΙ

e
χi

ψe
χi

ψΙ +

coil with 
magnetic
field

phase shifter

ψe
χi

ψΙ +
+ π

ΙΙΙ

ψΙΙΙ

ΙΙΙ

ΙΙΙ

Figure 2.4: Schematic setup for the measurement of the transition amplitudes.
Analysis of the time dependent intensity pattern after the third plate resulting
from the superposition of ψI and ψIII allows the determination of the coefficients
of the different plane waves of ψIII , i.e. the transition amplitudes.

After the third interferometer plate the two beams interfere and the normed
intensity in the O-beam reads

IO(x, t) =
1

4
|ψI(x, t) + eiχψIII(x, t)|2

=
1

4

(

|ψI(x, t)|2 + |ψIII(x, t)|2 + 2Re {ψ⋆
Ie

iχψIII}
)

=
1

2

(

1 + Re {ψ⋆
Ie

iχψIII}
)

(2.62)

where χ denotes the phase difference due to the auxiliary phase shifter and ψI

and ψIII are given by eq.2.5 and eq.2.59 respectively. At first, we want to focus
on the case of a single-mode magnetic field. When the explicit forms of ψI and
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ψIII are inserted and kn is expanded like in eq.2.23

ψIII =

+∞
∑

n=−∞

Jn(β1)e
−inη1eik̃nxe−iωnt

≈ eik̃0xe−iω0t

+∞
∑

n=−∞

Jn(β1)e
−inη1e

in
ω1
v0

x
e−inω1t

ψI = eik̃0xe−iω0t

ψ⋆
IψIII =

+∞
∑

n=−∞

Jn(β1)e
−inη1e

in
ω1
v0

x
e−inω1t

the intensity reads

IO(x, t) =
1

2

(

1 + Re { eiχ
+∞
∑

n=−∞

Jn(β1)e
−inη1e

in
ω1
v0

x
e−inω1t}

)

(2.63)

=
1

2

(

1 + Re {eiχ
+∞
∑

n=−∞

Jn(β1)e
−in(ω1t+ξ1)}

)

(2.64)

=
1

2

(

1 + Re {eiχe−β1 sin(ω1t+ξ1))}
)

(2.65)

=
1

2
(1 + cos (χ− β1 sin(ω1t+ ξ1))) (2.66)

where we used the Jacobi-Angers expansion (eq.2.13) and the abbreviations

β1 = 2α1 sin
ω1T

2
, η1 = ϕ1 +

ω1T + π

2
, ξ1 = η1 −

ω1

v0
x, v0 = ~k0/m (2.67)

From eqs.2.63-2.66, it can be deduced that the intensity pattern has the same
periodicity as the magnetic field, i.e. 2π/ω1. Above that, the transition ampli-
tudes occurring in ψIII , namely the Bessel functions Jn can be obtained from the
Fourier components of the intensity pattern. Therefore, we rewrite the intensity
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from the second line (eq.2.64)

IO(x, t) =
1

2
+

1

2
Re {eiχ

+∞
∑

n=−∞

Jn(β1)e
−in(ω1t+ξ1)}

. . . =
1

2
+

1

2

+∞
∑

n=−∞

Jn(β1) cos(χ− nω1t− nξ1))

. . . =
1

2
+

1

4

+∞
∑

n=−∞

Jn(β1)(e
i(χ−nω1t−nξ1) + e−i(χ−nω1t−nξ1))

. . . =
1

2
+

1

4

+∞
∑

n=−∞

J−n(β1)e
i(χ+nω1t+nξ1) + Jn(β1)e

i(−χ+nω1t+nξ1)

. . . =
1

2
+

1

4

+∞
∑

n=−∞

(

Jn(β1)(−1)neiχ + Jn(β1)e
−iχ
)

einξ1einω1t

and compare it with the ordinary Fourier decomposition valid for every function
with period 2π/ω1.

IO(x, t) =

+∞
∑

n=−∞

cne
inω1t

=⇒ c0 =
1

2
(1 + J0(β1) cosχ) (2.68)

c2n =
1

2
ei2nξ1J2n(β1) cosχ (2.69)

c2n+1 = − i

2
ei(2n+1)ξ1J2n+1(β1) sinχ (2.70)

Thus, we can extract the transition amplitudes of ψIII calculated above from the
Fourier components of the time-resolved interference pattern of ψI and ψIII .

These calculations can of course be generalized to the case of arbitrary periodic
magnetic fields (eq.2.46), where ψIII is given by eq.2.59. We again expand the
k-vector and obtain ψIII in the form

ψIII(x, t) =
∑

~n

Jn1(β1) · . . . · JnN
(βN) e

−i~n~η eik̃0xe
i~n~ω
v0

x
e−iω~nt (2.71)

= eik̃0xe−iω0t
∑

~n

Jn1(β1) · . . . · JnN
(βN) e

−i~n~ξ e−i~ω~nt (2.72)

= ψI(x, t)
∑

~n

Jn1(β1) · . . . · JnN
(βN) e

−i~n~ξ e−i~ω~nt (2.73)
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where

ω~n = ω0 + ~n~ω, k̃0
2
= k20 −

2m

~2
µB0 (2.74)

ηi = ϕi +
ωiT + π

2
, βi = 2αi sin

ωiT

2
, ξi = ηi −

ωi

v0
x (2.75)

The intensity then reads

IO(x, t) =
1

2
+

1

2
Re { eiχ

∑

~n

Jn1(β1) · ... · JnN
(βN)e

−i~n(~ξ+~ωt)} (2.76)

=
1

2

(

1 + Re {eiχ
N
∏

i=1

+∞
∑

ni=−∞

Jni
(βi)e

−ini(ωit+ξi)}
)

(2.77)

=
1

2

(

1 + Re {eiχ
N
∏

i=1

e−iβi sin(ωit+ξi)}
)

(2.78)

=
1

2

(

1 + Re {eiχe−i
∑N

i=1 βi sin(ωit+ξi)}
)

(2.79)

=
1

2

(

1 + cos

(

χ−
N
∑

i=1

βi sin(ωit + ξi)

))

(2.80)

Again, the period of the intensity is equal to the period of the applied field B(t),
i.e the inverse of the greatest common denominator ωg of the occurring frequencies
ωi. The intensity can therefore be expanded in the Fourier series

IO(x, t) =
+∞
∑

m=−∞

cm(x)e
imωgt (2.81)
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whose coefficients can be determined starting from eq.2.76.

IO(x, t) =
1

2

(

1 + Re { eiχ
∑

~n

Jn1(β1) · ... · JnN
(βN)e

−i~n(~ξ+~ωt)}
)

=
1

2

(

1 +
∑

~n

Jn1(β1) · ... · JnN
(βN) cos(χ− ~n~ξ − ~ω~nt)

)

= |{Jni
} ≡ Jn1(β1) · ... · JnN

(βN)| =

=
1

2

(

1 +
∑

~n

{Jni
}1
2
(ei(χ−~n~ξ−~ω~nt) + ei(−χ+~n~ξ+~ω~nt))

)

=
1

2

(

1 +
1

2

∑

~n

{Jni
}ei(χ−~n~ξ−~ω~nt) + {Jni

}ei(−χ+~n~ξ+~ω~nt)

)

=
1

2

(

1 +
1

2

∑

~n

{J−ni
}ei(χ+~n~ξ+~ω~nt) + {Jni

}ei(−χ+~n~ξ+~ω~nt)

)

=
1

2

(

1 +
1

2

∑

~n

{Jni
}
(

(−1)
∑

i nieiχ + e−iχ
)

ei~n
~ξei~ω~nt

)

Comparison with the general expression for the Fourier transformation gives for
m 6= 0

cm =
1

4

∑

~n;~n~ω=mωg

Jn1(β1) · ... · JnN
(βN )

(

(−1)
∑

i nieiχ + e−iχ
)

ei~n
~ξ (2.82)

The summations runs over all combinations of ni’s where the equality ~n~ω = mωg

holds. For m = 0, the result has to be modified

c0 =
1

2
+

1

4

∑

~n;~n~ω=0

Jn1(β1) · ... · JnN
(βN)

(

(−1)
∑

i nieiχ + e−iχ
)

ei~n
~ξ (2.83)

In either case, the summand given by a certain combination of ni’s can be written
as

2Jn1(β1) · ... · JnN
(βN )e

i~n~ξ cosχ, if
∑

i

ni even (2.84)

−2iJn1(β1) · ... · JnN
(βN)e

i~n~ξ sinχ, if
∑

i

ni odd (2.85)

To illustrate the general expressions, we will discuss the Fourier expansion of the
intensities actually measured for 2-, 3- and 5-mode fields in detail.
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Before, we want to investigate the dependence of the interference pattern from
the occurring parameters χ, β1, ξ1 and ω1 in the single-mode field case and thus
start from eq.2.66.

IO(x, t) =
1

2
(1 + cos (χ− β1 sin(ω1t+ ξ1))) (2.86)

with

β1 = 2α1 sin
ω1T

2
, ξ1 = ϕ1 +

ω1T + π

2
− ω1

v0
x, v0 = ~k0/m (2.87)

At first, we vary the phase shifter angle χ for the following neutron and field
parameters

v0 = 2060.43 m/s (λ = 1.92Å), B1 = 20 Gauss,

ω1 = 1 kHz, T = L/v0 = 19.4µs

The position coordinate x is fixed, determined by the distance between third
interferometer plate and detector. We choose the phase of the magnetic field
ϕ1 so, that ξ1 = π. It can be seen in figs.2.5 and 2.6 that the intensity changes
considerably for different values of χ, but the transition amplitudes are unaffected
because they are obtained by dividing the Fourier components with sinχ and cosχ
respectively (see eqs.2.70, 2.69). In [SHK+1995], various χ-values, i.e. phase
shifter positions are used to determine possible experimental differences between
emission and absorption amplitudes for the same energy amount.

Changing the phase ξ1 only causes a shift of the intensity and varying ω1

mainly rescales the curve on the abscissa. As far as the transition amplitudes
are concerned, a variation of the field amplitude B1 corresponding to a change
of β1 being proportional to B1 is the most interesting case. With increasing field
strength, the interference pattern gets a more and more wiggles. That means
that Fourier components belonging to higher frequencies increase as well what
goes hand in hand with a higher probability of exchanges of larger amounts of
energy between the neutron and the magnetic field. We depict the characteristics
of the intensity pattern for B1 = 0 − 45 Gauss (χ = π/4, ω1 = 1kHz, ξ1 = 0)
and the corresponding Fourier transformation in fig.2.7.

If we plot the modulus of a Fourier component belonging to a certain frequency
for increasing field strength the Bessel function characteristics becomes visible as
predicted by eqs.2.68 - 2.70 (see fig.2.8).
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Figure 2.5: The time resolved intensity pattern between ψI and ψIII when a
single-mode field with ω1 = 1kHz, ξ = π and B1 = 20Gauss is applied for different
phase shifter values χ = 0− 4π/5.
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Figure 2.6: The time resolved intensity pattern between ψI and ψIII when a
single-mode field with ω1 = 1kHz, ξ = π and B1 = 20Gauss is applied for phase
shifter values χ = π − 9π/5.
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Figure 2.7: The time-dependent intensity pattern in the O-beam when a single-
mode field is applied in one interferometer arm (ω1 = 1kHz, ξ = π and χ = π/4)
with the corresponding Fourier transform. The field amplitude is varied from 0−45
Gauss showing an increase of Fourier components belonging to higher frequencies,
i.e. higher amounts of energy have been transferred between neutron and field.
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Figure 2.8: Modulus of some Fourier components (cn is the Fourier component
belonging to (n~ω1)) plotted against the amplitude B1 of the magnetic field.
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2.2.2 Unpolarized neutrons

It is possible to reduce the effect of the phase shift χ on the form of the intensity
pattern (see figs.2.5 and 2.6) by using unpolarized neutrons in the experiment. In
this case, the measured intensity results from adding the intensities for the up and
down polarized neutrons respectively (the unpolarized neutron beam can always
be understood as an incoherent superposition of two beams polarized in opposite
direction). The intensity for the down-polarized case is obtained by replacing µ
with −µ, i.e. β with −β (see calculation in sec.2.1). We start from eq.2.66 to
obtain the most compact form for the intensity

IunpolO =
1

2

(

I↑O + I↓O

)

(2.88)

=
1

4
(1 + cos (χ− β1 sin(. . .))) +

1

4
(1 + cos (χ+ β1 sin(. . .)))

=
1

2
(1 + cosχ cos (β1 sin(ω1t + ξ1))) (2.89)

where we used the addition theorem

cos(α± β) = cosα cos β ∓ sinα sin β

A change of the interferometer phase χ now only shrinks or shrinks and mirrors
the whole intensity pattern. In addition, near χ = 0 and χ = π the cosine is
very smooth and thus, fluctuations of χ have a little effect on the form of the
intensity (see fig.2.9). The cosine is an even function and also 2π-periodic and
cos(x) = cos(2π−x) is valid. Therefore, the plots for χ ranging from π−2π look
the same as the ones for χ ranging from π − 0.

The intensity patterns for increasing field strengths will be shown in the next
section together with the measured points.

Another important difference to the case of polarized neutron can be seen
from the Fourier transformation of eq.2.88. Therefor, we rewrite eq.2.89 with the
help of the relation

cos(α sin(β)) =

+∞
∑

n=−∞

J2n(α)e
2inβ (2.90)

giving

IunpolO =
1

2

(

1 + cosχ
+∞
∑

n=−∞

J2n(β1)e
2inξ1e2inω1t

)

(2.91)
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Figure 2.9: The time-resolved intensity pattern in case of unpolarized neutrons
for different phase shifter values χ when a single-mode field with ω1 = 1kHz, ξ = π
and B1 = 20Gauss is applied.

from which we deduce the Fourier coefficients

c0 =
1

2
(1 + J0(β1) cosχ) (2.92)

c2n =
1

2
ei2nξ1J2n(β1) cosχ (2.93)

c2n+1 = 0 (2.94)

One can see that the even Fourier components vanish (this could already be
assumed from the periodicity of the intensity in fig.2.9). As a consequence, we
can also only deduce the transition amplitudes for even multiples of ~ω1 from
the time-resolved intensity pattern. This is a bit unsatisfying, but, as we will
see later, for fields with more modes the restrictions are more complex, so that
the use of unpolarized neutrons to verify the theoretical calculations of sec.2.1 is
justified. Using unpolarized neutrons, we don’t need the guide field B0 as well
which has anyway no influence on the transition amplitudes.

For the arbitrary periodic field we have to insert eq.2.80 into eq.2.88 yielding

IunpolO =
1

2

(

1 + cosχ cos

(

N
∑

i=1

βi sin(ωit + ξi)

))

(2.95)

To get the Fourier coefficient in the case of unpolarized neutrons for an arbitrary
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periodic field, we add the Fourier coefficients of the up- and down-polarized case

IunpolO =
1

2

(

I↑O + I↓O

)

(2.96)

+∞
∑

m=−∞

cunpolm eimωg =
1

2

(

+∞
∑

m=−∞

c↑me
imωg +

+∞
∑

m=−∞

c↓me
imωg

)

(2.97)

=⇒ cunpolm =
1

2

(

c↑m + c↓m
)

(2.98)

The up-polarized case (c↑m) is given by eq.2.82, the down-polarized version (c↓m) is
obtained by replacing µ with −µ, i.e. β with −β resulting in Jn(β) → Jn(−β) =
(−1n)Jn(β).

c↓m =
1

4

∑

~n;~n~ω=mωg

{J−ni
}
(

(−1)
∑

i nieiχ + e−iχ
)

ei~n
~ξ (2.99)

cunpolm =
1

8

∑

~n;~n~ω=mωg

({Jni
}+ {J−ni

})
(

(−1)
∑

i nieiχ + e−iχ
)

ei~n
~ξ (2.100)

The terms in the sum can be further evaluated

({Jni
}+ {J−ni

})
(

(−1)
∑

i nieiχ + e−iχ
)

=

= {Jni
}
(

1 + (−1)
∑

i ni
) (

(−1)
∑

i nieiχ + e−iχ
)

=

= {Jni
}
((

(−1)
∑

i ni + (−1)2
∑

i ni
)

eiχ +
(

1 + (−1)
∑

i ni
)

e−iχ
)

=

= {Jni
}
((

(−1)
∑

i ni + 1
)

eiχ +
(

1 + (−1)
∑

i ni
)

e−iχ
)

=

= 4{Jni
} cosχ, if

∑

i

ni even

0, if
∑

i

ni odd

giving for the Fourier coefficient

cunpolm =
1

2

∑

~n;~n~ω=mωg∑
i ni even

Jn1(β1) · . . . · JnN
(βN) cosχ e

i~n~ξ (2.101)

The special case for m = 0 the is given by

cunpol0 =
1

2
+

1

2

∑

~n;~n~ω=0∑
i ni even

Jn1(β1) · . . . · JnN
(βN) cosχ e

i~n~ξ (2.102)
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2.3 Experimental results

Now, after having highlighted the connection between the theoretical calculations
and the experimental demonstration, we want to turn to the actual measurements.
All experiments described here have been performed at the S18 neutron interfer-
ometry setup at the high-flux reactor of the Institute Laue-Langevin in Grenoble,
France. A silicon perfect crystal monochromator is placed behind a neutron guide
to extract neutrons of mean wavelength λ = 1.92 Å(δλ/λ ≃ 0.01) and a beam
cross section of 6× 8 mm. The neutrons impinge on the skew-symmetric silicon
interferometer under an angle of 30◦ and the Bragg-condition is fulfilled for the
220-lattice planes. In one arm of the interferometer, a water-cooled AC-coil is
placed to generate the rectangular, time-dependent magnetic field. Using unpo-
larized neutrons, no guide field is needed.

2.3.1 Single mode magnetic field

In the first experiment, the magnetic field contains only one frequency (ω1 =
1kHz). This case has already been measured in [SHK+1995] with polarized neu-
trons. We did all experiments with unpolarized neutrons.

To get the time-resolved interference pattern one synchronizes a counter with
the signal period, i.e. 1ms, which is equal to the period of the intensity. This
time interval is further divided into 64 channels in which the neutrons are sorted
according to their detection time. After a full period the counter is reset to zero.
By applying this procedure, the time dependent interference pattern is obtained.
Counting and synchronisation were performed with the help of a National Instru-
ments FPGA card (NI PXI-7842R). The time resolution is limited by the detector
(He3 under 5 bar) and is given by ∼ 140kHz. In figs.2.10 - 2.17 one can see the
time-resolved interference pattern for various amplitudes of the oscillating field.

The fit functions used in figs.2.10 - 2.17 are obtained from eq.2.89 by addi-
tionally taking background intensity u = a− b and reduced contrast c = b/a into
account

IO(x = xdet, t) = a + b cos (α1 sin(ω1t+ γ1)) (2.103)

Although all its contributions are measurable in principal, the phase ξ1 has also
become a fit parameter called γ1 because of the unknown exact detector position
xdet and phase of the magnetic field. Note, that the signal generator only fixes
the phase of the current. The cosχ-factor is absorbed in the fit parameter b. In
α1, we fix the value for T = L/v0 ≃ 19, 4µs and use the field amplitude B1 as fit
parameter. Nevertheless its value has to be related to the field value measured
with the gaussmeter. By subtracting the underground and dividing with 2b, the
intensity can be properly normed to lie between 0 and 1. The measured points
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are normed as well and then, their discrete Fourier transformation allows the
determination of the transition amplitudes.

2000

3000

4000

5000

6000

7000

8000

0.0 0.2 0.4 0.6 0.8 1.0
time[ms]

in
te

n
si

ty
 [c

o
u

n
ts

/9
0

0
se

c]

Figure 2.10: The time-resolved interference pattern for B(t) = B1 cosω1t with
frequency ω1 = 2π · 1kHz and amplitude B1 = 14Gauss. The fit function is given
by eq.2.103.
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Figure 2.11: The time-resolved interference pattern for B(t) = B1 cosω1t with
ω1 = 1kHz and B1 = 20Gauss. The fit function is given by eq.2.103.

As already pointed out, for unpolarized neutrons in a single-mode field, the
intensity pattern only reveals the transition amplitudes belonging to even mul-
tiples 2n~ω1 (see (eq.2.93)), which are given in principle by the Bessel functions
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Figure 2.12: The time-resolved interference pattern if a magnetic field B(t) =
B1 cosω1t with ω1 = 1kHz and B1 = 28Gauss is applied. The fit function is given
by (eq.2.103).
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Figure 2.13: The time-resolved interference pattern if a magnetic field B(t) =
B1 cosω1t with ω1 = 1kHz and B1 = 35Gauss is applied. The fit function is given
by (eq.2.103).

J2n(β1). Inserting the values of the known parameters, the argument of the Bessel
functions explicitly reads

β1 = 2
µB1

~ω1
sin

ω1T

2
≃ 1777.6B1

From the discrete Fourier transformation of the 64 measured (and normed) points,
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Figure 2.14: The time-resolved interference pattern for B(t) = B1 cosω1t with
ω1 = 1kHz and B1 = 42Gauss. The fit function is given by eq.2.103.
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Figure 2.15: The time-resolved interference pattern if a magnetic field B(t) =
B1 cosω1t with ω1 = 1kHz and B1 = 49Gauss is applied. The fit function is given
by (eq.2.103).

one could in principle obtain Fourier coefficients belonging to the frequencies 0,
1, .. , 31 ω1, but for the maximally applied field strength of about B1 = 67
Gauss only coefficients up to 16 ω1 contribute (see fig.2.27). The even Fourier
coefficients vanish and we depict the first one belonging to an energy exchange
of 1 · ~ω1 (see fig.2.19). The transition amplitudes for emission and absorption of
a certain amount of energy are equal, obeying energy conservation.
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Figure 2.16: The time-resolved interference pattern if a magnetic field B(t) =
B1 cosω1t with ω1 = 1kHz and B1 = 54Gauss is applied. The fit function is given
by (eq.2.103).
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Figure 2.17: The time-resolved interference pattern for B(t) = B1 cosω1t with
ω1 = 1kHz and B1 = 60Gauss. The fit function is given by eq.2.103.
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Figure 2.18: Transiton amplitudes for an energy transfers of 0~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J0(β1) = J0(1777.6B1).
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Figure 2.19: The Fourier component belonging to 1 · ~ω1 vanishes for all field
strengths. The same holds for all even coefficients.
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Figure 2.20: Transition amplitudes for an energy transfers of 2~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J2(β1) = J2(1777.6B1).
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Figure 2.21: Transition amplitudes for an energy transfers of 4~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J4(β1) = J4(1777.6B1).
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Figure 2.22: Transition amplitudes for an energy transfers of 6~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J6(β1) = J6(1777.6B1).
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Figure 2.23: Transition amplitudes for an energy transfers of 8~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J8(β1) = J8(1777.6B1).
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Figure 2.24: Transition amplitudes for an energy transfers of 10~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J10(β1) = J10(1777.6B1).
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Figure 2.25: Transition amplitudes for an energy transfers of 12~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J12(β1) = J12(1777.6B1).
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Figure 2.26: Transition amplitudes for an energy transfers of 14~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J14(β1) = J14(1777.6B1).
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Figure 2.27: Transition amplitudes for an energy transfers of 16~ω1 as function of
the field amplitude B1 obtained by discrete Fourier transformation of the measured
time-resolved interference patterns. The measured points are compared to the
theoretical curve, i.e. Bessel functions J16(β1) = J16(1777.6B1).
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2.3.2 Magnetic field with two modes

Now we extend the experimental investigations by applying a magnetic field con-
sisting of two modes in one arm of the interferometer.

B(t) = B1 cos (ω1t+ ϕ1) +B2 cos (ω2t+ ϕ2) (2.104)

where ω1 = 2π · 2kHz, ω2 = 2π · 3kHz, ϕ1 = 0 and ϕ2 = 2.55. The period
of this signal is given by the greatest common denominator ωg = 2π · 1kHz of
the two frequencies ω1 and ω2. Again we divide the period into 64 channels and
record the time-resolved interference pattern for various field amplitudes, where
B2 = 0.95B1 is always maintained (e.g. fig.2.28-2.29).
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Figure 2.28: The time-resolved interference pattern when B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 2kHz, ω2 = 2π · 3kHz, B2 = 0.95B1 and B1 = 7.5
Gauss is applied in one beam path. Full period (=2π/ωg=1ms) divided into 64
channels. The fit function is given by eq.2.105.

For higher amplitudes, the interference pattern gets more and more fine struc-
tures so that we increased the number of channels to 128 to resolve them (see
fig.2.30-2.33).

The fit function for the intensity pattern when fields consisting of an arbitrary
number N of modes are applied is deduced from (eq.2.95). For two modes it reads
explicitly

IO(x = xdet, t) = u+ c cos

(

2
∑

i=1

αi sin(ωit+ γi)

)

(2.105)

In section 2.2, we have shown how the Fourier coefficients are related to the
transition amplitudes. For this purpose, we have inserted the general solution
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Figure 2.29: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 2kHz, ω2 = 2π · 3kHz, B2 = 0.95B1 and B1 = 15
Gauss. Full period (2π/ωg=1ms) divided into 64 channels. The fit function is given
by eq.2.105.
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Figure 2.30: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 22kHz, ω2 = 2π · 23kHz, B2 = 0.95B1 and B1 =
19Gauss. Full period (2π/ωg=1ms) divided into 128 channels. The fit function is
given by eq.2.105.

for ψIII (eq.2.59) into the intensity formula (eq.2.62), then added intensities for
up- and down-polarized neutrons and finally compared the expression with the
ordinary Fourier transformation which gave for coefficient cm, belonging to eimωgt,
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Figure 2.31: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 22kHz, ω2 = 2π · 23kHz, B2 = 0.95B1 and
B1 = 22.5Gauss. Full period (2π/ωg=1ms) divided into 128 channels. The fit
function is given by eq.2.105.
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Figure 2.32: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 22kHz, ω2 = 2π · 23kHz, B2 = 0.95B1 and B1 =
30Gauss. Full period (2π/ωg=1ms) divided into 128 channels. The fit function is
given by eq.2.105.

the expression (eq.2.101). For N = 2 it reads

cunpolm =
1

2
δm,0 +

1

2

+∞
∑

n1,n2=−∞
n1ω1+n2ω2=mωg

n1+n2 even

Jn1(β1)Jn2(β2) cosχ e
i(n1ξ1+n2ξ2)
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Figure 2.33: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 2.55) with ω1 = 2π · 2kHz, ω2 = 2π · 23kHz, B2 = 0.95B1 and B1 =
35Gauss. Full period (2π/ωg=1ms) divided into 128 channels. The fit function is
given by eq.2.105.

We can omit the cosχ-term, because it has already been absorbed in the fit
parameter b. Like in the N = 1 case, the phases ξi are now given by the fit
phases γi and βi is replaced by the fit parameter αi To illustrate this expression
we want to perform the summation for special cases: For example, if we are
interested in the case m = 0, we have

n1ω1 + n2ω2 = 0 · ωg

0ω1 + 0ω2 = 0 , 3ω1 − 2ω2 = 0 ,

−3ω1 + 2ω2 = 0 , 6ω1 − 4ω2 = 0 , . . .

(2.106)

Thus, from the first conditions to the summation we get the tuples

{n1, n2} = {(0, 0), (3,−2), (−3, 2), (6,−4), (−6, 4), (9,−6), (−9, 6), . . .}
= {(3j,−2j); j ∈ Z}

The requirement, that n1 + n2 is even, is then fulfilled for every second of these
tuples

{n1, n2} = {(0, 0), (6,−4), (−6, 4), (12,−8), (−12, 8), . . .}
= {(6j,−4j); j ∈ Z}
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Thus, to agree with theory, the measured Fourier coefficient c0 should be given
by

c0 =
1

2
+

1

2

+∞
∑

j=−∞

J6j(α1)J−4j(α2)e
i(6jγ1−4jγ2) (2.107)

=
1

2
+

1

2

+∞
∑

j=0

(2− δj,0)J6j(α1)J4j(α2) cos(6jγ1 − 4jγ2) (2.108)

where we have splitted the sum, performed an index transformation (j → −j) for
the negative j’s, and then used the identity J−n = (−1)nJn for even n’s. Since we
know that for the maximally applied field strengths of about 50 Gauss, the higher
order Bessel functions vanish, we can restrict the summation to j = −3, ...,+3.
The measured Fourier coefficient c0 is depicted in fig.2.34 and shows a very good
agreement with the theory curve given by (eq.2.107).
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Figure 2.34: Fourier coefficient c0 obtained by discrete Fourier transformation of
the measured time-resolved interference patterns for the two mode magnetic field
(ωg = 1kHz). The measured points are compared to the theoretical curve given by
(eq.2.107).

In similar fashion, we calculate the theoretically expected curves for various
Fourier coefficients and we can see that they all agree with the measured results
(see fig.2.35-2.40).
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Figure 2.35: Fourier coefficient c±1 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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Figure 2.36: Fourier coefficient c±2 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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Figure 2.37: Fourier coefficient c±3 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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Figure 2.38: Fourier coefficient c±4 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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Figure 2.39: Fourier coefficient c±5 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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Figure 2.40: Fourier coefficient c±6 obtained by discrete Fourier transformation
of the measured time-resolved interference patterns for the two mode magnetic
field (ωg = 1kHz). The measured points are compared to the theoretical curve is
deduced from (eq.2.101).
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2.3 Experimental results

2.3.3 Magnetic field with three modes

The magnetic field now contains three frequencies

B(t) = B1 cos (ω1t+ ϕ1) +B2 cos (ω2t+ ϕ2) +B3 cos (ω3t + ϕ3) (2.109)

where ω1 = 2π · 3kHz, ω2 = 2π · 5kHz, ω3 = 2π · 7kHz, ϕ1 = 0 , ϕ2 = 0.62 and
ϕ3 = 2.46. The period of this signal is given by the greatest common denominator
ωg = 2π ·1kHz of the three frequencies ω1, ω2 and ω3. We divide the signal period
into 128 channels and record the time-resolved interference pattern for various
field amplitudes, where B2 = 0.94B1 and B3 = 0.89B1 is always maintained (e.g.
fig.2.41).
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Figure 2.41: The time-resolved interference pattern for B(t) = B1 cos (ω1t) +
B2 cos (ω2t+ 0.62) + B3 cos (ω3t+ 2.46) with ω1 = 2π · 3kHz, ω2 = 2π · 5kHz,
ω3 = 2π · 7kHz, B2 = 0.94B1, B3 = 0.89B1 and B1 = 16 Gauss. Full period
(=2π/ωg=1ms) divided into 128 channels.

Again, the Fourier components of the time-dependent intensity contain the
transition amplitudes for the various energy transfers. We have used unpolarized
neutron and as a consequence, not all combinations of the three basic frequencies
belonging to a certain energy transfer contribute. For example, odd multiples of
the greatest common denominator ωg = 2π · 1 kHz vanish completely. The less
experimental effort by using unpolarized neutrons has therefore be compensated
with a higher effort in the analysis. As an example we depict the characteris-
tics of some Fourier components versus field amplitude (fig.2.42). The Fourier
components are closely related to the transition amplitudes (see eq.2.101).
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Figure 2.42: Fourier components obtained by discrete Fourier transformation of
the measured time-resolved interference patterns for the three mode field (ωg =
1kHz).
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2.3 Experimental results

2.3.4 Magnetic field with five modes

The highest number of modes we have experimentally investigated was five, i.e.
the magnetic field was

B(t) =

5
∑

i=1

Bi cos (ωit+ ϕi) (2.110)

where ω1 = 2π · 3kHz, ω2 = 2π · 5kHz, ω3 = 2π · 7kHz, ω3 = 2π · 11kHz,
ω3 = 2π · 13kHz and all ϕi = 0. The relation between the Bi’s is given by
B2 = 0.95B1, B3 = 0.83B1, B4 = 0.72B1, and B5 = 0.62B1.The period of this
signal is again given by the greatest common denominator ωg = 2π · 1kHz. The
resolution of the time-dependent intensity pattern is still possible, though the
fitting procedure becomes more challenging and the agreement between fit and
theory curves gets worse compared to the examples with lower modes (see figs.
2.43, 2.44). But in principle, the procedure can be applied to an arbitrary high,
countable number of modes as long as the ratio of occurring frequencies is a
rational number.

measured

fit

(a)

(b)

time[msec]
0.0              0.2            0.4             0.6             0.8             1.0

4000

3000

2000

counts

counts

2000

3000

4000

Figure 2.43: Example of a time-resolved interference pattern for B(t) =
∑5

i=1Bi cos (2πfit+ φi) with f1 = 3kHz, f2 = 5kHz, f3 = 7kHz, f4 = 11kHz,
f5 = 13kHz, φ1 = φ2 = φ3 = φ4 = 0, φ5 = 0.1, B2 = 0.95B1, B3 = 0.83B1,
B4 = 0.72B1, B5 = 0.62B1 and B1 = 4 Gauss (a) and 11 Gauss (b).

In chapter 3, we will extend our investigations of time-dependent magnetic
fields in neutron interferometry to the case of noise fields that do not fulfill the
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Figure 2.44: Transition amplitudes of various energy exchanges for the five mode
magnetic field as described in fig.2.43. For an odd frequency number, the odd
multiples of greatest common denominator of the occurring frequencies ~ωg = 2π·
1kHz vanish for unpolarized neutrons.

condition of periodicity. They consist of an infinite number of modes and their
frequency spectrum lies dense in the set of real numbers. Resolution of energy
transfer is then not possible with the methods presented here, but we are more
interested in the behaviour of the interferometer contrast when noise fields are
applied, because of the connection between noise fields and decoherence, i.e. van-
ishing contrast. In contrast to ideal noises, real signals consist of a countable
number of modes and we will also use the formulae derived in this chapter to
calculate the interferometer contrast. We will see that above a certain number of
modes (∼ 200) the difference to the ideal case with an infinite number of modes
is experimentally not seizable (see chap.4).
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2.4 Quantized field treatment

2.4 Quantized field treatment

In the preceding chapters, we have dealt with the interaction of a neutron that
passes an oscillating magnetic field that is bounded to a finite region 0 ≤ x < L.
Though we have treated the field purely classical, one could already see that the
energy transfer between neutron and field is quantized, i.e. only integer multiples
of the frequencies contained in the magnetic field signal are exchanged. In the
most simple case of a single mode field with frequency ω, the probability of
exchanging an energy amount of n~ω is given by the square of the n-th Bessel
function |Jn|2. In several papers [Sum1993, SHK+1995], this process is claimed
to be an n-photon exchange. To justify this statement, one at first has to answer
the question: what is a photon?

If we define the photon as a unit of electromagnetic radiation with energy ~ω,
the statement is just. After passing the field region, the energy of the neutron has
changed for an amount n~ω with probability |Jn|2. Thus, at least on an effective
level, n photons with frequency ω have been exchanged.

On the other hand, the most accurate theory for describing the electromag-
netic field is the quantum field theory. In its framework, every mode of the elec-
tromagnetic field is described by a quantum harmonic oscillator. The occupation
numbers of the oscillators are interpreted as photons. Creation and annihilation
operators acting on the field state change the photon number. Treating the mag-
netic field as a quantum field would thus allow us to keep track of the actual
photon number in every stage of the physical process.

An electromagnetic field can be subjected to quantization if it is a solution of
the (inhomogeneous) Maxwell-equations. Since we are interested in a very special,
rectangular form for the spatial structure of the field, the solutions obtained
from the quantization of the free electromagnetic field will not be suitable to
construct such a mode form. Quantization of the electromagnetic field in presence
of external sources is by far no trivial task, but if we restrict ourselves to classical
currents as sources we can use the following result [Kro1965, CTDRG1997]:
The quantum mechanical state generated by a time-dependent classical

current is just the coherent state corresponding to the field that would

have been produced classically.

Now consider a superconducting resonant circuit whose resonant frequency is
so low that radiation losses can be neglected during the measurement time. The
spatial characteristics of the magnetic field along the coil axis can now, as in the
classical case, be approximated by the simple rectangular form (constant within
coil region 0 ≤ x < L, zero outside). In addition, the only mode that is excited
is the one belonging to the resonance frequency ωres. That means we can write
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the field operator in the form

B̂ ∝ (âf(x) + â†f ⋆(x)) (2.111)

where f(x) describes the spatial structure of the mode and â (â†) denotes the
creation (annihilation) operator associated with ωres. The proportionality factor
will be derived later (see eq.2.143).

Due to the special spatial structure of the field, we have to distinguish between
three different situations accompanied by three different Hamiltonians. If the
neutron is inside the field region, i.e. its position variable xneutron lies between
0 and L, an interaction takes places and thus, an interaction term occurs in the
Hamilonian. This interaction term can be found for example in [PCT1965] and
stems from the quantized version of the Zeemann Hamiltonian that describes the
interaction between the neutron and a magnetic field. All constants are absorbed
in the coupling parameter λ. If the neutron is outside the field region, the neutron
and the field both evolve undisturbed and the Hamiltonian only consists of the two
free Hamilton operators for field and particle. Explicitly, the three Hamiltonians
read in the Schrödinger picture representation (vacuum energy of the field mode
is omitted for clarity’s sake)

ĤI =
p2

2m
+ ~ω a†a , xneutron < 0 (2.112)

ĤII =
p2

2m
+ ~ωa†a+ λσz

(

a† + a
)

, 0 ≤ xneutron < L (2.113)

ĤIII =
p2

2m
+ ~ω a†a , L ≤ xneutron (2.114)

In the further, we will omit the subscript in the position variable, x always refers
to the position coordinate of the neutron if not stated otherwise. We solve the
Schrödinger equation for a up polarized (σz = +1) neutron. In region I, where no
interaction between the magnetic field and the neutron takes place the general
solution is given by an arbitrary superposition of plane waves for the neutron and
Fock states of the field

|ΨI〉 =
∑

n

∫

dk cIn(k) |k〉 ⊗ |n〉 (2.115)

As ”initial” condition for the calculation we choose the neutron to be a plane
wave of fixed wave vector k0 and the magnetic field is present in a distinct Fock
state n0. This yields for the overall wave function whose time dependence is now
also included explicitly

|ΨI(t)〉 = e−iω0t |k0〉 ⊗ e−iωn0t |n0〉 (2.116)

56



2.4 Quantized field treatment

To find the general solution for region II we convert the Hamiltonian (eq.2.113)

ĤII =
p2

2m
+ ~ωa†a+ λ

(

a† + a
)

=
p2

2m
+ ~ω

(

a† +
λ

~ω

)(

a+
λ

~ω

)

− λ2

~ω

=
p2

2m
+ ~ωD†

(

λ

~ω

)

a†aD

(

λ

~ω

)

− λ2

~ω
(2.117)

with the help of the unitary displacement operator D(α) that is defined by

D(α) = eαa
†−α⋆a (2.118)

and fulfills
D†(α) a(†)D(α) = a(†) + α (2.119)

Thus, the eigenfunctions of (2.117) are given by

|k〉 ⊗D†

(

λ

~ω

)

|n〉 (2.120)

belonging to the energy eigenvalue

ĤII

(

|k〉 ⊗D†

(

λ

~ω

)

|n〉
)

= EII(k, n)

(

|k〉 ⊗D†

(

λ

~ω

)

|n〉
)

(2.121)

EII(k, n) =
~2k2

2m
+ ~ ω n− λ2

~ω
= ~ ω(k) + ~ ω n− ~λ̃ (2.122)

where we have defined

ω(k) ≡ ~2k2

2m
, λ̃ ≡ λ2

~2ω
(2.123)

for better readability. An arbitrary superposition of these eigenstates constitutes
the general solution in region II

|ΨII(t)〉 =
∞
∑

n=0

∫ +∞

−∞

dk cIIn (k) e−iEII(k,n)t/~ |k〉 ⊗D†

(

λ

~ω

)

|n〉 (2.124)

In the following the argument λ/~ω of the displacement operator will be omitted.
Before we proceed with the calculation by matching the wave functions |ΨI〉 and
|ΨII〉 at x = 0, a few remarks concerning the meaning of the position coordinate
x and the different regions:
In contrast to section 2.1, |ΨI〉 does not mean overall wave function (neutron
and field) |ΨI(x)〉 for x ≤ 0. The spatial characteristics of the field are given
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by fig.2.1 with B0 = 0. The field is always only present in region II, i.e. where
0 ≤ x ≤ L and it changes its state depending on the position of the neutron.
Thus, |ΨI〉 describes the overall wave function when the position coordinate of the
neutrons wavefunction has value below 0. In a simple picture, one can say when
the neutron is left from the field region. In this case, no interaction takes place
and both subsystems, field and neutron evolve freely in time. When the neutron
is present in the field region, the field gets displaced due to the interaction with
the neutron and the dynamics of the composite system change described by HII .
To fulfill the matching condition we express the neutron part of the wave function
in its position representation and equalize |ΨI〉 and |ΨII〉 at x = 0.

ΨI(x, t) = eik0xe−iω0te−iωn0t |n0〉 −→ ΨI(0, t) = e−iω0te−iωn0t |n0〉 (2.125)

ΨII(0, t) =
∑

n

∫

dk cIIn (k) e−iω(k)te−iωnteiλ̃tD† |n〉 (2.126)

From
ΨI(0, t) = ΨII(0, t) (2.127)

we get the coefficient cIIn (k) by multiplying both sides with (〈n0 + q|D), exploiting
unitary of the displacement operator, using the orthogonality of the Fock states
and equating coefficients of e−iωt.

e−i(ω0+ωn0)t |n0〉 =
∑

n

∫

dk cIIn (k) e−iω(k)te−iωnteiλ̃tD† |n〉

e−i(ω0+ωn0)t 〈n0 + q|D |n0〉 =
∑

n

∫

dk cIIn (k) e−iω(k)te−iωnteiλ̃tδn0+q,n

e−i(ω0+ωn0)t 〈n0 + q|D |n0〉 =

∫

dk cIIn0+q(k) e
−iω(k)te−iω(n0+q)teiλ̃t

e−i(ω0−ωq+λ̃)t 〈n0 + q|D |n0〉 =

∫

dk cIIn0+q(k) e
−iω(k)t

This equality can be fullfilled if

cIIn0+q(k) = cIIn0+q · δk,k̃−q
= 〈n0 + q|D |n0〉 · δk,k̃−q

(2.128)

where

k̃−q ≡
(

k20 +
2m

~
λ̃− 2m

~
ωq

)1/2

(2.129)

because

ω(k̃−q) =
~k̃2−q

2m
=

~

2m

(

k20 +
2m

~
λ̃− 2m

~
ωq

)

= ω0 − ωq + λ̃ (2.130)
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Inserting the coefficient cIIn (k) given by (eq.2.128) into the general form of ΨII

(eq.2.124) we obtain

|ΨII(t)〉 =
∞
∑

q=−n0

〈n0 + q|D |n0〉 e−iEII(k̃−q ,n0+q)t/~ |k̃−q〉 ⊗D† |n0 + q〉

|ΨII(t)〉 =

∞
∑

q=−n0

〈n0 + q|D |n0〉 e−i(ω(k̃−q)+(n0+q)ω−λ̃)t |k̃−q〉 ⊗D† |n0 + q〉

|ΨII(t)〉 = e−i(ω0+n0ω)t

∞
∑

q=−n0

〈n0 + q|D |n0〉 |k̃−q〉 ⊗D† |n0 + q〉 (2.131)

We can see from the overall time-dependent phase factor, that the energy of the
total system is conserved. i.e equal to the energy of the ”initial” state |ΨI〉.
Changes in the photon number of the (displaced) field are compensated by the
neutron’s momentum. The superposition of all possible exchanges yields the
solution for region II. The probability of exchanging a certain number of photons
q is given by the matrix element 〈n0 + q|D |n0〉. To meet the matching condition,
the constant shift ~λ̃ in the energy was absorbed in the neutron’s momentum.
Written in position space, (eq.2.131) reads

ΨII(x, t) = e−i(ω0+n0ω)t

∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qx D† |n0 + q〉 (2.132)

In region III, neutron and field do not interact anymore and the general solution
reads

|ΨIII(t)〉 =
∑

n

∫

dk cIIIn (k) e−iω(k)t |k〉 ⊗ e−inωt |n〉 , ω(k) =
~k2

2m
(2.133)

Again, we write the neutron part of the wave function in position representation
and equalize |ΨII〉 and |ΨIII〉 at x = L.

∑

n

∫

dk cIIIn (k) e−iω(k)t eikL e−inωt |n〉 =

e−i(ω0+n0ω)t

∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qL D† |n0 + q〉
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We multiply both sides with 〈n0 + q2| and use 〈n|m〉 = δn,m.
∫

dk cIIIn0+q2
(k) e−iω(k)t eikL e−(n0+q2)ωt =

e−i(ω0+n0ω)t
∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qL 〈n0 + q2|D† |n0 + q〉
∫

dk cIIIn0+q2(k) e
−iω(k)t eikL =

e−i(ω0−q2ω)t

∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qL 〈n0 + q2|D† |n0 + q〉

Equating coefficients of e−iωt, one can see that this equation can be fulfilled if

cIIIn0+q2(k) = cIIIn0+q2 · δk,k−q2
, k2−q2 = k20 +

2m

~
q2ω (2.134)

which gives
∫

dk cIIIn0+q2
δk,k−q2

e−iω(k)t eikL =

e−i(ω0−q2ω)t
∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qL 〈n0 + q2|D† |n0 + q〉

cIIIn0+q2
e−iω(k−q2 )t eik−q2L =

e−i(ω0−q2ω)t

∞
∑

q=−n0

〈n0 + q|D |n0〉 eik̃−qL 〈n0 + q2|D† |n0 + q〉

=⇒ cIIIn0+q2 =

∞
∑

q=−n0

〈n0 + q|D |n0〉 ei(k̃−q−k−q2)L 〈n0 + q2|D† |n0 + q〉 (2.135)

By taking into account that the incident kinetic energy of the neutron is much
larger than the transferred photon energies or the λ2/~ω-shift we use

(

k20 +∆
)

1
2 ≃ k0 +

1

2

∆

k0
, k20 >> ∆

to rewrite the exponent

(k̃−q − k−q2)L ≃ (k0 +
m

~k0
λ̃− m

~k0
ωq − k0 +

m

~k0
q2)L = λ̃T − (q − q2)ωT

with the time of flight T through the field region

m

~k0
L =

L

v0
= T (2.136)
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The final result for the total wave function after the neutron has passed the field
thus reads

|ΨIII(t)〉 = e−i(ω0+n0ω)t

+∞
∑

q2=−n0

cIIIn0+q2 |k−q2〉 ⊗ |n0 + q2〉 (2.137)

where

cIIIn0+q2 = eiλ̃T
∞
∑

q=−n0

〈n0 + q2|D† |n0 + q〉 〈n0 + q|D |n0〉 e−i(q−q2)ωT (2.138)

Equations 2.137 and 2.138 allow a very intuitive physical explanation. Like in
region II, the total energy is conserved and every change of the initial photon
number n0 in the field is compensated by a change of the neutrons momentum.
The superposition of all possible exchanges gives the total wave function in re-
gion III. The coefficient cIIIn0+q2 that belongs to the transition from initial photon
number n0 to final photon number n0 + q2 also reflects the underlying physical
processes. At the neutron’s entrance in the field with photon number n0, dis-
placement of the field occurs and transitions to other photon numbers become
possible. After the neutron has left the field region, the field gets displaced back
and transitions from n0+q to n0+q2 can happen. All possible intermediate steps,
i.e. all q’s, have to be summed up and are weighted with a phase factor that re-
flects the energy difference ~(q − q2)ω between the intermediate and the final
photon number state. Due to the constant energy shift ~λ̃ in ĤII , the total wave
function ΨIII has also consumed a phase λ̃T related to this shift and the length
of stay T in the field region. So, we are able to explain every term that occurs in
eqs.2.137 and 2.138. The simple pictures of an onefold absorbtion/emission of q2
photons does not hold. In fact, the photon number changes two times, namely
at the field gradients, and a certain final state is obtained by a summation over
the possible intermediate states. For a graphical illustration see fig.2.45.

The fully quantized treatment of neutron and field is the most exact one
and we can relate it to the results of the classical calculations in section 2.1 by
investigating the final result (eq.2.137) for special states of the magnetic field,
namely the coherent state [Gla1963]. It approximates the classical behaviour in
the best fashion [HR2006]. To compare the results, we have to show first, how
the different coupling constants (µ, λ) are connected to each other. Therefore,
we look at the expectation value of the interaction term of the Hamiltonian in
the coherent state in the Heisenberg picture and compare it with the classical
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Figure 2.45: The transition from initial state (n0) to the final state (n0+1) hap-
pens over an intermediate state. All possible intermediate states have to be summed
up to get the transition amplitude

∑

q 〈n0 + 1|D† |n0 + q〉 〈n0 + q|D |n0〉 e−iqωT .

potential µσB.

〈α| Ĥint |α〉 = λσz 〈α| (a†eiωt + ae−iωt) |α〉 = λσz(α
⋆eiωt + αe−iωt)

= λσz|α|(e−iϕαeiωt + eiϕαe−iωt) = 2λσz|α| cos(ωt− ϕα)

, µσzB1 cos(ωt+ ϕ1)

=⇒ λ =
µB1

2|α| (2.139)

With the help of the energy density of the electromagnetic field

w(x, t) =
1

2

(

ε0E
2(x, t) +

1

µ0

B2(x, t)

)

(2.140)

we get the classical expression for the (time-averaged) energy of the magnetic
field

Hclass =
1

T

∫ T

0

dt

∫

V

dxw(x, t) =
V

2µ0
B2

1

1

T

∫ T

0

cos2(ωt)dt =
V

4µ0
B2

1 (2.141)

and compare it with the quantum mechanical expression

〈α| Ĥ0 |α〉 = ~ω 〈α| a†a |α〉 = ~ω|α|2 ≡ ~ωN̄ (2.142)

from which we get

B1

|α| = 2

√

µ0~ω

V
=⇒ λ = µ

√

µ0~ω

V
(2.143)

For an estimated coil volume of several cm3 the coupling constant λ divided by
the photon energy reads λ/~ω ≃ 10−11 illustrating the weak coupling between
the neutron and the field. Therefore one expects visible effects not until very high
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photon numbers, i.e sufficient field strengths. In case of a 1kHz field and and am-
plitude of 1Gauss the mean photon number is already N̄ = |α|2 = V B2

1/4µ0~ω ≃
1021. In the coherent state |α〉, the photon number is Poissonian distributed with

mean value N̄ = |α|2 and variance
√
N̄ = |α| and therefore the main contributions

come from Fock states with a very high photon number. The matrix elements in
(eq.2.138) can be calculated for such high photon numbers [PCT1965].

〈m|D (
λ

~ω
) |n〉 = Jm−n

(

2λ
√
n

~ω

)

= Jm−n

(

µB1

~ω

)

(2.144)

〈m|D† (
λ

~ω
) |n〉 = Jn−m

(

2λ
√
n

~ω

)

= Jn−m

(

µB1

~ω

)

(2.145)

where we have used n ≃ N̄ and (eq.2.139). These are the Bessel functions that
occur already in the classical treatment, but now they got a physical explanation.
With the help of Graf’s addition theorem (eq.2.26) we can also perform the
summation over q when using

∑

q

=

∞
∑

q=−n0

≃
∞
∑

q=−∞

∑

q

〈n0 + q2|D†(
λ

~ω
) |n0 + q〉 〈n0 + q|D(

λ

~ω
) |n0〉 e−iqωT =

∑

q

Jq(
µB1

~ω
)Jq−q2(

µB1

~ω
)e−iqωT = Jq2(

µB1

~ω
sin

ωT

2
)eiq2(−ωT−π)/2 (2.146)

This summation also occurred in the classical calculation at the matching at
x = L. But there, it only seems to be a mathematical procedure. By introducing
the field quantization, the physical origin of the expression becomes visible. The
coefficient cIIIn0+q2

in case of high photon number n0 finally reads

cIIIn0+q2 = eiλ̃TJq2(
µB1

~ω
sin

ωT

2
)eiq2(ωT−π)/2 (2.147)

Apart from the neglectable λ̃-shift (λ̃T ≃ 10−23), it corresponds exactly to the
classically derived coefficient given by (eq.2.27) when l = −q2 is inserted. The
negative sign arises from the fact that cIIIn0+q2 means that the field energy, i.e. its
photon number, was increased by q2~ω whereas the kinetic energy of the neutron
has been reduced by q2~ω. Solely the phase factor e−iϕ1 coming from the phase
of the magnetic field at t = 0 cannot be reproduced. Fock states do not carry
any phase information [Lou2000], the complete reproduction of the results of
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the classical calculation can only be achieved by assuming the field to be in the
coherent state |α〉 of the mode ω with

α = |α|eiϕα, |α| = B1

2

√

V/µ0~ω, ϕα = −ϕ1 (2.148)

so that
〈α| Ĥint |α〉 = µσzB1 cos(ωt+ ϕ1) (2.149)

is fulfilled. The expansion of the coherent state in terms of Fock states is given
by

|α〉 =
∞
∑

n=0

c(α)n |n〉 = e−|α|2/2
∞
∑

n=0

αn

√
n!

|n〉 (2.150)

and represents, as already mentioned, a Poissonian distribution for the photon
number probability |c(α)n |2 with mean value |α|2 and standard deviation |α|. If
the field is initially in a coherent state |α〉, the wave function |ΨI〉 reads

|ΨI〉 = |k0〉 ⊗ |α〉 = |k0〉 ⊗
∞
∑

n0=0

c(α)n0
|n0〉 =

∑

n0

c(α)n0
|k0〉 ⊗ |n0〉 (2.151)

where we have used the calculation rules for tensor products. By exploiting the
linearity of the Hamilton operator we can immediately use the result (eq.2.59) for
a distinct Fock state |n0〉 and superpone all n0’s weighted with the coefficients
cn0 .

|ΨIII(t)〉 =
∑

n0

c(α)n0
e−i(ω0+n0ω)t

+∞
∑

q2=−n0

cIIIn0+q2 |k−q2〉 ⊗ |n0 + q2〉 (2.152)

To perform this summation it is advantageous to change the summation index in
the expression for the final state

|ΨIII(t)〉 =
∑

n0

c(α)n0
e−i(ω0+n0ω)t

+∞
∑

m=0

cIIIm |kn0−m〉 ⊗ |m〉 (2.153)

and in the coefficient cIIIm

cIIIm = eiλ̃T
∞
∑

n=0

〈m|D† |n〉 〈n|D |n0〉 e−i(n−m)ωT (2.154)

yielding

|ΨIII〉 =
∑

n0,m,n

c(α)n0
eiλ̃T 〈m|D† |n〉 〈n|D |n0〉 e−i(n−m)ωT

×e−i(ω0+n0ω)t |kn0−m〉 ⊗ |m〉 (2.155)
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We again rewrite the neutron part of the wave function in coordinate representa-
tion and expand around k0 being much larger than the transferred energies and
end up with the following expression

|ΨIII〉 =
∑

n0,m,n

c(α)n0
eiλ̃T 〈m|D† |n〉 〈n|D |n0〉 e−i(n−m)ωT

×eik0xei(n0−m) ω
v0

x
e−i(ω0+n0ω)t |m〉 (2.156)

which can be further evaluated by performing the summations in the order indi-
cated by the braces:

|ΨIII〉 = eiλ̃T eik0xe−iω0t
∑

m

〈m|D†(λ/~ω)

(

∑

n

|n〉 〈n|D(λ/~ω)

(

∑

n0

c(α)n0
|n0〉 ein0

ω
v0

x
e−in0ωt

)

e−inωT

)

e
−im ω

v0
x
eimωT |m〉

Thus, we perform the summation over n0 a first. Using the definition of the
coherent state we can write

∑

n0

c(α)n0
|n0〉ein0

ω
v0

x
e−in0ωt = e−|α|2/2

∑

n0

αn0

√
n0!

|n0〉 ein0
ω
v0

x
e−in0ωt =

= e−|αe
i ω
v0

x
e−iωt|2/2

∑

n0

(αe
i ω
v0

x
e−iωt)n0

√
n0!

|n0〉 = |αei
ω
v0

x
e−iωt〉 ≡ |β〉

Apart from its time dependence e−iωt, the phase factor ein0ωx/v0 coming from the
neutron part of the wave function can also be absorbed in the coherent state.
This works in the coordinate space representation and due to the special form
of the coherent state. Note, that the tensorial product has vanished since the
coordinate representation has been used. The expression 〈xNeut ≡ x|ΨIII〉 is a
vector in the Hilbert space of the field, i.e. the Fock space, multiplied with the
component of the neutron wave vector belonging to the basis vector |x〉. The
action of the displacement operator on a coherent state is well-known [HR2006]
and reads for a reel argument

D(
λ

~ω
) |β〉 = e

λ
~ω

β⋆− λ
~ω

β |β +
λ

~ω
〉 = e−2i

λ|β|
~ω

sin(arg β) |β +
λ

~ω
〉 = e−iφ(β) |γ〉

where

φ(β) = 2
λ|β|
~ω

sin(arg β), γ = β +
λ

~ω
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We now calculate the sum over n by using

〈n|γ〉 = 〈n|
∑

l

c
(γ)
l |l〉 = c(γ)n and

∑

n

c(γ)n |n〉 e−inωT = |γe−iωT 〉 ≡ |δ〉

yielding

∑

n

|n〉 〈n| e−iφ(β) |γ〉 e−inωT = e−iφ(β)
∑

n

|n〉 〈n|γ〉 e−inωT = e−iφ(β) |δ〉

The remaining expression for the total wave function reads (D†(x) = D(−x),
δ − λ/~ω = ǫ)

|ΨIII〉 = eiλ̃T eik0xe−iω0t
∑

m

〈m|D(−λ/~ω)e−iφ(β) |δ〉 e−im ω
v0

x
eimωT |m〉 =

= eiλ̃T eik0xe−iω0te−iφ(β)
∑

m

〈m| eiφ(δ) |δ − λ/~ω〉 e−im ω
v0

x
eimωT |m〉 =

= eiλ̃T eik0xe−iω0tei(φ(δ)−φ(β))
∑

m

〈m|ǫ〉 e−im ω
v0

x
eimωT |m〉 =

= eiλ̃T eik0xe−iω0tei(φ(δ)−φ(β)) |ζ〉 (2.157)

The coherent state can be evaluated by re-inserting the abbreviations

|ζ〉 = |ǫ ei(ωT− ω
v0

x)〉 = |(δ − λ

~ω
)e

i(ωT− ω
v0

x)〉 =

= |(γe−iωT − λ

~ω
)e

i(ωT− ω
v0

x)〉 = |(β +
λ

~ω
)e−iωT − λ

~ω
)e

i(ωT− ω
v0

x)〉 =

= |(αe−iωte
i ω
v0

x
+

λ

~ω
)e−iωT − λ

~ω
)e

i(ωT− ω
v0

x)〉 =

= |αe−iωt +
λ

~ω
e
−i ω

v0
x − λ

~ω
e
i(ωT− ω

v0
x)〉 =

= |αe−iωt +
λ

~ω
e
−i ω

v0
x (

1− eiωT
)

〉

The phase factor (φ(δ) − φ(β)) can be further simplified as well. Therefore we
need the modulus and the phases of δ and β

β = αe−iωte
i ω
v0

x
=⇒ |β| = |α|, arg β = ϕα − ωt+

ω

v0
x (2.158)

δ = (α e−iωte
i ω
v0

x
+

λ

~ω
)e−iωT − λ

~ω
= α e

−iω(t+T )+i ω
v0

x
+

λ

~ω
(e−iωT − 1)

|α| ≫ λ

~ω
=⇒ |δ| ≃ |α|, arg δ ≃ ϕα − ωt+

ω

v0
x− ωT (2.159)
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which gives for the phase factor

φ(δ)− φ(β) = 2
λ|α|
~ω

(

sin(ϕα − ωt+
ω

v0
x− ωT )− sin(ϕα − ωt+

ω

v0
x− ωT )

)

Using the addition theorem

sin x− sin y = 2 cos
x+ y

2
sin

x− y

2

and
cosx = sin(x+

π

2
), 2λ|α| = µB1, ϕα = −ϕ1

we arrive at

φ(δ)− φ(β) = 2
µB1

~ω
sin

ωT

2
sin
(

ωt+ ϕ1 −
ω

v0
x+

ωT

2
− π

2

)

We now use the abbreviations

β1 = 2
µB1

~ω
sin

ωT

2
, η1 = ϕ1 +

ωT

2
+
π

2

like in section (2.1) and rewrite the whole phase factor by using the Jacobi-Angers
expansion and performing an index transformation (n⇒ −n)

e
iβ1 sin

(

ωt+ϕ1−
ω
v0

x+ωT
2

−π
2

)

=
+∞
∑

n=−∞

Jn(β1)e
−inωte

in ω
v0

x
e−inη1

and insert it into expression (2.157) for |ΨIII〉

|ΨIII〉 = eiλ̃T
∑

n

Jn(β1)e
−iω0te−inωteik0xe

in ω
v0

x
e−inη1 |ζ〉 (2.160)

Performing the expansion of the k-vector in the reverse direction and using the
compact notation of sec.(2.1) one gets

|ΨIII〉 = eiλ̃T
∑

n

Jn(β1)e
−iωnteiknxe−inη1 |αe−iωt +

λ

~ω
e
−i ω

v0
x (

1− eiωT
)

〉 (2.161)

The correlation between the neutron and the magnetic field is now visible from
the fact that the neutron’s x-coordinate occurs in the coherent field state. Due to
the interaction, neutron and field have become entangled. For high mean photon
numbers |α| >> λ/~ω, we can neglect this correlation and perform the partial
trace over the field state. We then obtain the same result for the neutron’s density
matrix as in the classical case.
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2.5 Phaseshift picture

Another approach to calculate the phaseshift between the two beams relies on a
semiclassical approximation of the path integral formalism [FHS2010, Kle2006],
i.e. the Glauber eikonal approximation [Gla1959]. It was originally used in
nuclear physics as an asymptotic high-energy approximation to the Lippmann-
Schwinger equation in scattering theory, but it can be applied to interferometry as
well. If the dimensions of the experiment are macroscopic (S ≫ ~), the integrand
in the general expression for the transition amplitude

〈xa, ta|xb, tb〉 =
∫

DxeiS[x]/~ (2.162)

oscillates strongly, so that only paths where δS ≈ 0 contribute significantly. This
condition is fullfilled by the classical paths. In the interferometric setup depicted

V(x,t)

x  , tA A x  , tB B

path 1

path 2

Figure 2.46: Generic picture of an interferometric situation. The particle travels
along two different paths. In one of them a potential V (x, t) is present, causing a
phase difference

∫

V dt at xB.

in fig.2.46, we thus get for the transition amplitude

〈xa, ta|xb, tb〉IFM =
∑

n=I,II

e
i
~

∫ tb
ta

L(xn(t),ẋn(t),t) dt

= e
i
~

∫ tb
ta

m
ẋ2
I
(t)

2
−V (xI (t),ẋI (t),t) dt + e

i
~

∫ tb
ta

m
ẋ2
II

(t)

2
dt (2.163)

If we assume further, that the potential in path I is small compared to the initial
kinetic energy, i.e. the velocity and the path of the particle virtually don’t change
while it is traversing the potential (xI ≃ xII , ẋI ≃ ẋII), we can factor out the
kinetic energy term and get for the transition amplitude

〈xa, ta|xb, tb〉IFM = e
i
~

∫ tb
ta

m
ẋ2
I
(t)

2
dt
(

e−
i
~

∫ tb
ta

V (xI (t),ẋI (t),t) dt + 1
)
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Hence, the phase difference between the two path is given by

∆ϕ = −1

~

∫ tb

ta

V (x(t), ẋ(t), t) dt (2.164)

In the case of the spatially restricted, oscillating magnetic field, we have

∆ϕ = −µ
~

∫ t+T

t

B(t) dt = −µ
~

∫ t+T

t

N
∑

i=1

Bi cos (ωit + ϕi) dt

= −
N
∑

i=1

µBi

~ωi
(sin (ωi(t + T ) + ϕi)− sin (ωit + ϕi))

=
N
∑

i=1

µBi

~ωi

2 sin
ωiT

2
sin

(

ωit+ ϕi +
ωiT + π

2

)

=

N
∑

i=1

βi sin (ωit+ ηi) (2.165)

where T denotes the time of flight through the potential region, and where we
used the identities

sin x− sin y = 2 cos
x+ y

2
sin

x− y

2
, cosx = − sin(x+

π

2
) (2.166)

and the previously defined quantities

βi = 2αi sin
ωiT

2
, ηi = ϕi +

ωiT + π

2
(2.167)

In combination with the auxillary phase shifter that also cause a phase shift
χ = −Nbcλ∆D in path II because of the optical path difference, we get for the
intensity at the third plate, i.e. where the two paths are combined again

| 〈xa, ta|xb, tb〉 |2 ∝
1

2
|1 + ei(χ−∆ϕ)|2 = 1 + cos

(

χ−
N
∑

i=1

βi sin (ωit+ ηi)
)

(2.168)

Comparision with the result coming from the solution of the Schrödinger equation
(eq.2.80) shows that the only difference is the missing term xωi/v0 in the phase
of the cosine. This term arised from the change in the kinetic energy, i.e. the
expansion of the k-vector. When we do the Fourier analysis of eq.2.168, we already
obtain the Bessel functions in the Fourier coefficients, but the interpretation
in form of transition amplitudes for the energy transfer between neutron and
magnetic field is not apparent.
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3

Modelling Decoherence with

magnetic noise fields

In the preceding chapters, we have dealt with the exchange of energy/photons
between a neutron and an oscillating magnetic field. Theoretical calculations for
the classical field (sec.2.1) and their experimental demonstration (sec.2.2,2.3) have
been investigated in detail. Above that, an quantum field theoretical approach
(sec.2.4) and a path integral approximation (sec.2.5) have been presented.

Now, we want to analyze how the interferometer contrast behaves, when the
number of modes whose phases are randomly distributed is continuously in-
creased, i.e. when noise fields are applied. We will see that contrast vanishes
if the field is sufficiently strong. To build the bridge between the loss of contrast
and decoherence theory, we will describe the interferometer in the density ma-
trix formalism, recapitulate the main statements of the theory of open quantum
systems and show in which sense noise fields can be used to model decoherence.

3.1 Density matrix formalism in quantum me-

chanics

In quantum mechanics, the concept of the state vector is ubiquitous. It is a vector
of the underlying Hilbert space H and carries all information about the system.
To describe a mixture of different states, the density matrix formalism has to be
introduced. If N different, normed states |ψi〉 are prepared with a probability pi,
the density matrix ρ of the ensemble {pi, |ψi〉} is given by

ρ =
∑

i=1

pi |ψi〉 〈ψi| , with
∑

i=1

pi = 1 (3.1)
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The condition that the probabilities pi sum up to one can be formulated more
generally by the trace of the density matrix, i.e. tr(ρ) = 1. All axioms of
quantum mechanics can be formulated in the density matrix formalism [NC2004].
Representing the states in an arbitrary orthonormal basis, shows that the density
matrix contains in general diagonal and off-diagonal entries

|ψi〉 =
∑

n

ain |n〉 ,
∑

i

pia
(i)
n a

⋆(i)
m ≡ cnm (3.2)

=⇒ ρ =
∑

n,m

cnm |n〉 〈m| (3.3)

Note, that the incoherent mixture appearing in eq.3.1 should not be confused
with a coherent quantum mechanical superposition of different states, the prob-
abilities are real numbers and the density matrix describes a ”classical” sum of
different states. To illustrate the difference between a superposition and a mix-
ture, we want to give a simple example. Written in the eigenbasis of the Pauli
matrix σz , denoted as |↑〉 and |↓〉, the eigenstate of σx belonging to the eigenvalue
+1 reads in the density matrix formalism

ρ = |+x〉 〈+x| = 1√
2
(|↑〉+ |↓〉) 1√

2
(〈↑|+ 〈↓|) (3.4)

=
1

2
(|↑〉 〈↑|+ |↑〉 〈↓|+ |↓〉 〈↑|+ |↓〉 〈↓|) = 1

2

(

1 1
1 1

)

(3.5)

On the other hand, if states |↑〉 are manipulated by an apparatus in a way that
50% are flipped to |↓〉, the density matrix describing the outgoing mixture would
be

ρ =
1

2
|↑〉 〈↑|+ 1

2
|↓〉 〈↓| =⇒ 1

2

(

1 0
0 1

)

(3.6)

The main advantage of the density matrix formalism is that both mixtures and
pure states can be described using it. Consequently, it also constitutes the ade-
quate tool for describing the transition between superpositions and classical mix-
tures of states, a feature that is of main interest in decoherence theory. To see
how the density matrix formalism enables us to describe the process of decoher-
ence, we at first take a look at composite systems. The insights gained there will
then be used as a starting point for the description of an open quantum system
and we will see that the impossibility of isolating a system is the main source for
its loss of coherence.

3.2 Physics of composite systems

The Hilbert space H of a quantum mechanical system consisting of two subsys-
tems A and B is the tensor product of their separate Hilbert spaces HA and HB
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H = HA ⊗HB (3.7)

Due to the quantum mechanical superposition principle a general state in this
Hilbert space can be an arbitrary linear combination of product states

|φ〉AB =

dimHA
∑

n=1

dimHB
∑

k=1

cnk |n〉A |k〉B (3.8)

The density matrix needed to describe mixtures in the composite system is of
course an element of the set D of density matrices defined on HA ⊗HB

ρAB =
∑

i

pi |φi〉AB 〈φi|AB (3.9)

ρAB ∈ D(H) = D(HA ⊗HB) (3.10)

If one knows the state ρAB of the composite system, one may ask the question how
to extract the behaviour (i.e. the state) of one of the subsystems. A determining
condition for the state ρA is the relation

trAB(ρAB ·MA ⊗ 1lB) = trA(ρA ·MA) (3.11)

demanding that an operator MA that acts locally only on one subsystem should
yield the same expectation value for the composite system and the subsystem
alone. This condition can be fulfilled if one chooses ρA to be the partial trace
over ρAB

ρA := trB(ρAB) =
∑

n

〈n|B ρAB |n〉B (3.12)

One can show that the resulting ρA has indeed all properties of a density matrix
(ρA ∈ D(HA)) and that taking the partial trace is the only linear operation on ρAB

that fulfills equ.(3.11), i.e. preserves the measurement statistics. Therefore, ρA is
uniquely determined. Nevertheless one has to bear in mind that the procedure of
tracing out the other system can be interpreted as an averaging over all possible
states of the not observed system and is thus connected with a loss of information.
One cannot reproduce the total state with the reduced states

ρAB 6= trB(ρAB)⊗ trA(ρAB) = ρA ⊗ ρB !!! (3.13)

To illustrate the general statements abouts composite quantum systems, we
take a look at a composite system consisting of two qubits. Since each qubit
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lives in a two-dimensional complex vector space, the Hilbert space H of the total
system is C 2 ⊗ C 2. As the canonical basis in each subsystem, we introduce

|0〉 =
(

1
0

)

, |1〉 =
(

0
1

)

(3.14)

so that an arbitrary state vector in the subsystem A can be written as

|ψ〉A =

1
∑

i=0

ci |i〉A =

(

c1
c2

)

(3.15)

An arbitrary state of the composite system can then consequently be written as

|ψ〉AB =

1
∑

i,j=0

cij |i〉A ⊗ |j〉B , |ψ〉AB ∈ H, |i〉A ∈ HA, |j〉B ∈ HB (3.16)

Usually, one would now define a basis for the overall Hilbert space H in the
following way

|0〉 = |0〉A ⊗ |0〉B =









1
0
0
0









|1〉 = |0〉A ⊗ |1〉B =









0
1
0
0









(3.17)

|2〉 = |1〉A ⊗ |0〉B =









0
0
1
0









|3〉 = |1〉A ⊗ |1〉B =









0
0
0
1









(3.18)

to simplify the notation of the arbitrary state in H

|ψ〉AB =

3
∑

i=0

ci |i〉 , |ψ〉AB , |i〉 ∈ H, (3.19)

and the arbitrary density matrix in D(H)

ρAB =
3
∑

i,j=0

cij |i〉 〈j| , ρAB ∈ D(H), |i〉 ∈ H, (3.20)

But if we want to perform the partial trace over one subsystem the old notation
is more adequate. With

|i〉A ⊗ |j〉B ≡ |ij〉 , 〈l|B ⊗ 〈k|B ≡ 〈lk| (3.21)
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we write the general expression for a density matrix as

ρAB =

1
∑

i,j,k,l=0

cijkl |ij〉 〈lk| (3.22)

The partial traces are then given by

trA(ρAB) =
1
∑

n=0

〈n|A ·
1
∑

i,j,k,l=0

cijkl |ij〉 〈lk| · |n〉A

=
1
∑

i,j,k,l=0

1
∑

n=0

cijkl 〈n|i〉 |j〉B 〈l|B 〈k|n〉

=
1
∑

i,j,k,l,n=0

cijkl δni |j〉B 〈l|B δkn =
1
∑

j,l,n=0

cnjnl |j〉B 〈l|B (3.23)

and

trB(ρAB) =
1
∑

i,k,n=0

cinkn |i〉A 〈k|A (3.24)

respectively. We now take a look at a specific state of the composite system,
namely the maximally entangled Bell-state |ψ++〉

|ψ++〉 = 1√
2
(|00〉+ |11〉) (3.25)

The density matrix formalism enables us to determine the state of each qubit.
The density matrix of the total system reads

ρ++ = |ψ++〉 〈ψ++| = 1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|) (3.26)

or in the general notation

ρ++ =

1
∑

i,j,k,l=0

cijkl |ij〉 〈lk| ,
c0000, c0011, c1100, c1111 =

1
2

cijkl = 0 else
(3.27)

The trace over the subsystems is then given by

ρA = trB(ρ
++) =

1
∑

i,k,n=0

cinkn |i〉A 〈k|A = c0000 |0〉A 〈0|A + c1111 |0〉A 〈0|A

=
1

2
(|0〉A 〈0|A + |0〉A 〈0|A) =

1

2

(

1 0
0 1

)

(3.28)
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and

ρB = trA(ρ
++) =

1
∑

j,l,n=0

cnjnk |i〉B 〈k|B = c0000 |0〉B 〈0|B + c1111 |0〉B 〈0|B

=
1

2
(|0〉B 〈0|B + |0〉B 〈0|B) =

1

2

(

1 0
0 1

)

(3.29)

respectively, showing explicitly that the Kronecker product of the two density
matrices of the subsystems does not yield the original density matrix of the com-
posite system

ρA ⊗ ρB =
1

2

(

1 0
0 1

)

⊗ 1

2

(

1 0
0 1

)

=
1

4









1 ·
(

1 0
0 1

)

0 ·
(

1 0
0 1

)

0 ·
(

1 0
0 1

)

1 ·
(

1 0
0 1

)









ρA ⊗ ρB =
1

4









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









6= 1

2









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









= ρ++ (3.30)

3.3 Open quantum systems

The results of section 3.2 can be used to describe the dynamics of an open quan-
tum system that is not isolated but interacts with its environment. In this case
the total system consists of the observed system and the environment. Hilbert
space H and Hamiltonian HSE are thus given by

H = HS ⊗HE (3.31)

HSE = HS ⊗ 1l + 1l⊗HE +Hint (3.32)

HS ∈ HS; HE ∈ HE; HSE , Hint ∈ H

where Hint denotes the interaction Hamiltonian. The unitary evolution of the
total system is governed by the Liouville-van Neumann equation

∂tρSE =
1

i~
[HSE, ρSE] (3.33)
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To get the dynamics of the system alone one has to take the trace over the
environmental degrees of freedom

∂tρS =
1

i~
trE([HSE, ρSE]) (3.34)

Unfortunately one usually does not know the environment exactly and thus one
cannot perform the partial trace. Therefore, one has to develop different strategies
to obtain a differential equation for the dynamics of the system alone. Using the
Markovian assumption and the theory of quantum mechanical semigroups one can
find such a differential equation. The result is a Liouville-van Neumann master
equation and in the so called Lindblad form it reads (ρS ≡ ρ)

∂tρ(t) = −i[H(t), ρ(t)]−D[ρ(t)] (3.35)

The usual Liouville-van Neumann equation has been expanded by a dissipator
term D[ρ(t)] that is given in its most general form via

D[ρ(t)] =
1

2

∑

k

λk[A
†
kAkρ(t) + ρ(t)A†

kAk − 2Akρ(t)A
†
k] (3.36)

The Ak’s are the so called Lindblad operators and there can be maximally n2−1
of them where n is the dimension of the system. A detailed derivation of the
master equation can be found for example in [BP2002, Hor2009]. The interaction
with the environment is now effectively described by additional operators and it
can lead to decoherence effects, that means quantum mechanical superpositions
in the system are destroyed and a only classical mixtures remain. In the density
matrix formalism this means vanishing of the of diagonal elements.

3.4 Density matrix formalism for the IFM

To achieve a consistent formalism for the description of quantum states and clas-
sical mixtures, the states have to be described with the help of density matrices.
We will now try to formulate the physics of the neutron interferometer in terms
of the density matrix.

At first, we simplify the treatment of the interferometer by the following
consideration: Though the exact behaviour of the neutron beam in the silicon-
crystal interferometer requires the use of dynamical diffraction theory [Sea1989,
RP1978], it is possible to describe the neutron’s path degree of freedom by a
qubit [YMK1986, BBKH2001]. The possible states are |0〉 (denoting the direction
of the incoming O-beam) and |1〉 (denoting the direction of the reflected H-
beam). The validity of this simplified approach has been confirmed in tests
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of quantum mechanics versus realistic-models (violation of a Bell-like inequality
[HLB+2003], quantum contextuality and Kochen-Specker theorem [BKS+2009]).
The spin state of the neutron being a spin-1

2
particle is described by a qubit as

well. Hence, following the approach of [SPE+2000], we write the incoming state
in front of the first plate as

ρin = |0〉 〈0| ⊗ ρspin =

(

1 0
0 0

)

⊗ ρspin (3.37)

denoting an incoming neutron beam in O-direction with in the spin state ρspin.
The action of the whole interferometer setup (see fig.3.1) combines the beam

PS
BS              M               BS          

U1 O-Beam

H-Beam

Figure 3.1: Schematic setup for the interferometer (IFM) with a unitary operation
in one beam path

splitters (BS), the unitary transformation (U) acting only on the spin part of the
wavefunction, the phase shifter (PS) and the mirror (M) yielding, for the output
state,

ρout = UBSUPSUMUUBS ρin U
†
BSU

†U †
MU

†
PSU

†
BS (3.38)

with

UBS =
1√
2

(

1 i
i 1

)

⊗ 1l, UM =

(

0 1
1 0

)

⊗ 1l,

UPS =

(

eiχ 0
0 1

)

⊗ 1l,

U =

(

1 0
0 0

)

⊗ U1 +

(

0 0
0 1

)

⊗ 1l (3.39)

Apart from U , all unitary transformations act on the path qubit and leave the

78

figures/ifm_u1_mod2.eps


3.4 Density matrix formalism for the IFM

spin state unchanged. Explicitly, ρout then reads

ρout =
1

4

{

(

1 i
−i 1

)

⊗ U1ρspinU
†
1 +

(

e−iχ −ie−iχ

−ie−iχ −e−iχ

)

⊗ U1ρspin

+

(

eiχ ieiχ

ieiχ −eiχ
)

⊗ ρspinU
†
1 +

(

1 −i
i 1

)

⊗ ρspin

}

(3.40)

By tracing over the spin degree of freedom, we get for the path density matrix
ρpath with

tr(U1ρspinU
†
1) = tr(U †

1U1ρspin) = tr(ρspin) = 1 (3.41)

tr(U1ρspin) = |tr (U1ρspin) |ei arg tr(U1ρspin) ≡ aeiξ (3.42)

tr(ρspinU
†
1) = tr(U1ρspin)

⋆ = ae−iξ (3.43)

ρpath =
1

4

{

(

1 i
−i 1

)

· tr(U1ρspinU
†
1) +

(

e−iχ −ie−iχ

−ie−iχ −e−iχ

)

· tr(U1ρspin)

+

(

eiχ ieiχ

ieiχ −eiχ
)

· tr(ρspinU †
1) +

(

1 −i
i 1

)

· tr(ρspin)
}

=
1

4

{

(

1 i
−i 1

)

+

(

e−iχ −ie−iχ

−ie−iχ −e−iχ

)

aeiξ

+

(

eiχ ieiχ

ieiχ −eiχ
)

ae−iξ +

(

1 −i
i 1

)

}

=
1

4

{

(

2 0
0 2

)

+ a

(

e−i(χ−ξ) −ie−i(χ−ξ)

−ie−i(χ−ξ) −e−i(χ−ξ)

)

+a

(

ei(χ−ξ) iei(χ−ξ)

iei(χ−ξ) −ei(χ−ξ)

)

}

=
1

4

(

2 0
0 2

)

+ a

(

2 cos(χ− ξ) −2 sin(χ− ξ)
−2 sin(χ− ξ) −2 cos(χ− ξ)

)

ρpath =
1

2

(

1 + a cos(χ− ξ) −a sin(χ− ξ)
−a sin(χ− ξ) 1− a cos(χ− ξ)

)

(3.44)

The spin-independent intensity in the O-direction is given by

IO = tr (Pmeas · ρout) = tr

((

1 0
0 0

)

⊗ 1l · ρout
)

=
1

2
(1 + a cos(χ− ξ)) (3.45)
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where tr denotes the trace over spin and path degree of freedom. The amplitude
a of the oscillation is related to the interferometer contrast. By comparison with
eq.3.44 we explicitly recognize that a vanishing contrast (a → 0) indicates a
totally mixed path density matrix.

If we apply a magnetic field B pointing in a fixed direction ~nB with a strength
of up to approximately 100 Gauss on the thermal neutron beam (v ≈ 2000m/s),
the change in kinetic energy can be neglected and the transformation U1 is given
by eq.2.164 reading explicitly

U1(ti) = exp

{

−iµ
~
~σ~nB

∫ ti+T

ti

B(t)dt

}

(3.46)

where T = l/v denotes the time of flight of the neutron through the field region,
l is the length of the field region and v the group velocity of the neutron. The
neutron enters the field region at ti. If the time-of-flight through the magnetic
field is considerable shorter than the typical time variation of the field, one can
use the quasistatic approximation and replace eq.3.46 by

U1(ti) = exp
{

−iµ
~
~σ~nB T · B(ti)

}

(3.47)

For unpolarized neutrons one obtains

tr(U1(ti)ρspin) = cos

(

µ

~

l

v
B(ti)

)

(3.48)

Before inserting this expression into eq.3.44, we take into account that tr(U1(ti)ρspin)
is a real number and therefore its argument is either 0 or π what we will use in
the following form

|x| cos(χ− arg x) = x cosχ, forx ∈ R

|x| sin(χ− arg x) = x sinχ, forx ∈ R

yielding a path density matrix

ρpath =
1

2

(

1 + C cosχ −C sinχ
−C sinχ 1− C cosχ

)

(3.49)

The new variable C denotes the experimentally measured contrast that results
from summation over all N entrance times

C =
1

N

∑

i

cos

(

µ

~

l

v
B(ti)

)

≃ 1

Tm

∫ Tm

0

cos

(

µ

~

l

v
B(t)

)

dt (3.50)
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where Tm denotes the measurement time. Providing a sufficiently long measure-
ment time, the time-integral can be replaced by an integral over the distribution
of the field amplitudes, i.e. we switch from time average to ensemble average

C =

∫ +∞

−∞

P (B) cos

(

µ

~

l

v
B

)

dB (3.51)

A single neutron travels through a region with a constant magnetic field but the
whole neutron ensemble sees the amplitude distribution P (B) of the field. If the
amplitude distribution is Gaussian with width ∆B and centered around B0 = 0
(and if we are in the quasistatic regime) the contrast is given by

C =

∫ +∞

−∞

1√
2π∆B

e
−

(B−B0)
2

2(∆B)2 cos

(

µ

~

l

v
B

)

dB

= exp

{

−1

2

(

µl

~v
∆B

)2
}

≡ exp

{

−1

2
(∆φ)2

}

(3.52)

where ∆φ denotes the standard deviation of the phase fluctuations related to the
standard deviation ∆B of the Gaussian noise field. From the expression for the
contrast C, it can be concluded that a sufficiently strong noise field leads to a
dephased behavior for the whole neutron ensemble. After the third interferometer
plate the averaged path-density-matrix then looks like a classical mixture since
the intensity no longer oscillates between O- and H-detector.

ρpath =
1

2

(

1 + e−
1
2
(∆φ)2 cosχ −e− 1

2
(∆φ)2 sinχ

−e− 1
2
(∆φ)2 sinχ 1− e−

1
2
(∆φ)2 cosχ

)

→ 1

2

(

1 0
0 1

)

(3.53)

Note, that this (non-unitary) evolution of the neutron path-state is an effective
realizaton of a Lindblad master equation 3.35 with a single dissipator term Γ

ρ̇ = − i

~
[H, ρ] + Γ†ρΓ− 1

2

(

Γ†Γρ+ ρΓ†Γ
)

(3.54)

To reproduce the behaviour of the path density matrix in the IFM, we have to
choose the Hamiltonian to be H = (α/2)σy and the Lindblad operator to be Γ =
√

λ/2σy. Both act on the system for a time τ . We then have (σ†
y = σy, σ

2
y = 1l)

ρ̇ = − i

~

α

2
[σy, ρ] +

λ

2
σyρ σy −

λ

2
ρ (3.55)
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This differential matrix equation can be solved most easily in the eigenbasis of
σy, because then the components of ρ stay uncoupled. With the help of the
transformation matrix

V =
1√
2

(

i 1
−i 1

)

(3.56)

we get for σy and the initial state ρ(0)

σy =

(

0 −i
i 0

)

z

=⇒ V σy V
† =

(

1 0
0 −1

)

y

(3.57)

ρ(0) = |0〉 〈0| =
(

1 0
0 0

)

z

=⇒ V ρ(0) V † =
1

2

(

1 −1
−1 1

)

y

(3.58)

In this basis, the Lindblad eq.3.55 reads

(

ρ̇11 ρ̇12
ρ̇21 ρ̇22

)

y

=

(

0 (− i
~
α− λ)ρ12

(+ i
~
α− λ)ρ21 0

)

y

(3.59)

and is solved for the initial state ρ(0) by

ρ =

(

ρ11 ρ12
ρ21 ρ22

)

y

=
1

2

(

1 −e−λte−
i
~
αt

−e−λte+
i
~
αt 1

)

y

(3.60)

The back transformation into the (|0〉 , |1〉)-basis (= eigenstates of σz) is given in
general by

V † (ρij)y V =
1

2

(

ρ11 + ρ22 − (ρ12 + ρ21) −i(ρ11 − ρ22 + (ρ12 − ρ21))
i(ρ11 − ρ22 − (ρ12 − ρ21)) ρ11 + ρ22 + (ρ12 + ρ21)

)

z
(3.61)

and yields for ρ at time τ

ρ(τ) =
1

2

(

1 + e−λτ cosατ −e−λτ sinατ
−e−λτ sinατ 1− e−λτ cosατ

)

(3.62)

where we have omitted the index z now. Identifying the rotation angle ατ with
the angle χ and the damping factor λτ with (∆φ)2/2, the correspondence of
eq.3.53 and eq.3.35 is clearly visible. In the Bloch vector picture, the empty
interferometer thus causes a rotation of Bloch vector, and applying the noise
shrinks the Bloch vector. For a sufficiently strong noise signal, the Bloch vector
collapses into the origin.
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PSBS BS

U1

U2

Figure 3.2: Schematic setup for the interferometer (IFM) with unitary operations
in both beam paths.

If transformations are applied in both beam parts (see fig.3.2), an analogue
calculation where

U =

(

1 0
0 0

)

⊗ U1 +

(

0 0
0 1

)

⊗ U2 (3.63)

yields for the intensity in the O-beam

IO = Tr (Pmeas · ρout) =
1

2
(1 + b cos(χ− ξ)) (3.64)

with beiξ = tr
(

U †
2U1ρspin

)

. For two time-dependent magnetic fields the expres-

sion U †
2U1 has the form

U †
2U1 = exp

{

i
µ

~
~σ

∫ ti+T

ti

(

~B2(t−
∆x

v
)− ~B1(t)

)

dt

}

(3.65)

where ∆x = x1 − x2 denotes the difference between the length of the two beam
paths from the first interferometer plate to the position where the transformation
Ui takes places (e.g. position of the coils). The resulting contrast for unpolarized
neutrons and quasistatic fields is given by

C =
1

Tm

∫ Tm

0

cos

(

µ

~

l

v

[

B2(t−
∆x

v
)−B1(t)

])

dt (3.66)
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noise coil

phase shifter

O-Detector

H-Detector

Figure 3.3: Setup for experiments in position space (phase shifts are smaller than
the coherence length, intensity oscillates between the two detectors)

3.4.1 Experimental verification

For the experimental realization of the theoretical results in case of one unitary
operation, we apply Gaussian white magnetic noise in one interferometer arm with
the field pointing in beam direction (for preliminary results of such measurements
see [BRS2003, Bar2005]). The field is generated by a fluctuating current in a coil
connected to a Tektronix random signal generator AFG 3022b. The length l of
the effective field region is 42.65mm. For neutrons with a mean wave length of
λ = 1.92Å (δλ/λ ≃ 0.01) this leads to a time-of-flight of about 20.7µs. The beam
cross section of 6×8 mm is much smaller than the cross section of the coil (22×30
mm), so that we can neglect field changes perpendicular to the flight direction.
To stay in the quasistatic regime, the frequency bandwidth of the noise has to be
restricted. In our case, the time of flight T = 20.7µs corresponds to a frequency
of about 50kHz, so that the upper limit of the noise frequency bandwidth should
not exceed 5kHz. The detailed characteristics of the input signal are shown in
fig.3.4.

In order to compensate loss of contrast that is not due to the magnetic noise
field (mainly induced by temperature fluctuations and mechanical vibrations)
on/off contrast measurements have been performed. For each position of the
phase shifter, the intensity is measured with and without noise (see fig.3.5). The
contrasts of the resulting oscillations are determined (C = (Imax − Imin)/(Imax +
Imin)) and their quotient gives the relative contrast. The strength of a Gaussian
noise is indicated by the width ∆B of the amplitude distribution. The contrast is
measured for increasing field strengths and then compared with the theoretically
expected curve in the quasistatic regime verifying the exp(−(∆φ)2/2)-dependence
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Figure 3.4: The applied noise signal on a 100ms time scale. Its corresponding his-
togram shows the Gaussian amplitude distribution. The frequencies are uniformly
distributed from 0-5 kHz, ensuring the condition of quasistatics

of the contrast with high accuracy (see fig.3.6). If the bandwidth is enlarged the
contrast reduction happens slower, i.e. a stronger field is needed to achieve a full
incoherent behaviour. The paseshift depends on the integral over the magnetic
field B over a time interval T (see eq.3.46). Higher frequencies oscillate stronger
and the value of the integral decreases. The exponential decay of the contrast
is weakened C = exp(−γ(∆φ)2/2), described by a fit parameter γ < 1. A more
detailed analysis, relying on the formulas found for the fields with a low mode
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Figure 3.5: Characteristic interference pattern for noise on/off measurement.
Oscillations are damped by the fluctuating field. Error bars are of comparable size
as the markers and have been omitted.
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Figure 3.6: Loss of contrast as a function of the standard deviation of the Gaus-
sian distributed field amplitudes caused by magnetic noise with different frequency
bandwidths ∆f . The dashed lines are exponential fits whereas the solid line rep-
resents the theory curve in the quasistatic regime. Error bars of comparable size
as the markers have been omitted.

number (sec. 2.1 and 2.5) will be given in chapter 4. If the lower frequencies
are excluded totally, contrast reduction is even more suppressed as illustrated for
frequency bandwidths from 20-40 kHz and 40-60 kHz in fig.3.6.

By applying a second noise source, i.e. adding a coil in the second beam
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path (see fig.3.7) the loss of contrast can be enforced or weakened. The loss

noise coil 1

noise coil 2

phase shifter

O-Detector

H-Detector

Figure 3.7: Experimental setup with 2 coils

of contrast can be completely reversed if an identical coil driven by the same
signal is inserted. If the positions of the two coils in the interferometer are not
symmetric an additional time delay ∆t has to be implemented to compensate for
the position difference ∆x. eq.3.66 then becomes (φi =

µ
~

l
v
Bi)

C =
1

Tm

∫ Tm

0

cos

(

φ2(t+∆t− ∆x

v
)− φ1(t)

)

dt (3.67)

For identical, synchronized noise signals (φ1 = φ2 = φ and ∆t = ∆x/v) recovery
of full contrast can be achieved (C = 1) and has been experimentally verified (see
fig.3.8). For identical, unsynchronized noise, or two completely different noise
signals, the dephasing process is enforced. For different signals with the same
frequency bandwidth ∆f , the e−

1
2
γ(∆φi)

2
-factors of the two Gaussian noise fields

contribute multiplicatively to the contrast (see fig.3.9)

C = exp

{

−1

2
γ
(

(∆φ1)
2 + (∆φ2)

2
)

}

(3.68)

In the quasistatic case (γ = 1), this formula results from averaging over an
uncorrelated two-dimensional Gaussian distribution for B1 and B2 with mean
values B0

1 = B0
2 = 0, correlation coefficient σ12 = 0, and standard deviations

∆B1 and ∆B2.

C =

∫ ∫

P (B1, B2)cos

(

µ

~

l

v
(B2 −B1)

)

dB1dB2 (3.69)
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Figure 3.8: Interferogramm for identical sychronized noise in both arms. Contrast
remains when noise is turned on.
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Figure 3.9: Contrast for independent noise sources in the coils plotted against
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where

P (B1, B2) = N × exp

{

−β
(

(

B1

∆B1

)2

−2σ12

(

B1

∆B1

)(

B2

∆B2

)

+

(

B2

∆B2

)2
)}

(3.70)
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with

N =
1

2π∆B1∆B2

√

1− σ2
12

, β =
1

2
√

1− σ2
12

For fully correlated noise signals (σ12 → 1) follows
∫

P (B1, B2)dB2 → δ(B1−B2)
and eq.3.69 reproduces the result of eq.3.67 for the sychnronized case.

The fully uncorrelated case can also be understood in a simpler picture: the
phaseshifts φ1 and φ2 caused by the two magnetic noise fields are Gaussian dis-
tributed random variables with mean 0 and variances ∆φ2

1 and ∆φ2
2. The resulting

relative phaseshift φ = φ1 − φ2 between the two beams is thus also Gaussian dis-
tributed with mean 0 − 0 = 0 and variance ∆φ2 = ∆φ2

1 + ∆φ2
2. It is a general

property of Gaussian distributed random variables that there sum is also Gaus-
sian distributed and that their means and variances add up. That’s also true for
their differences. In our case with mean value 0, −φ2 is even described by exactly
the same probability distribution as φ2.

If identical noise signals are applied, one can determine the relative position
of the coils in the interferometer by scanning through different time delays and
measuring the contrast. Maximum recovery of contrast is achieved when the
time delay equals the ratio of position difference and neutron velocity ∆x/v. If
the coils are shifted relative to each other, the maximum is shifted as well (see
fig.3.10).

0.8

0.6

0.4

0.2R
el

at
iv

e 
co

n
tr

as
t

40200-20
 time delay [ µs]

 position 1

 position 2

x1∆
vN

x∆
vN

2

x1∆ =22 mm

x∆ =30 mm
2

Figure 3.10: Contrast for the same noise in the two coils but different relative
positions ∆xi plotted as function of the time delay in one coil.

The contrast is determined by the cosine of the difference of the two phase
shifts in each beam path (see eq.3.67). Expanding the cosine near ∆t = ∆x/v
reveals the autocorrelation function of the noise signal. If the signal is shifted
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further, higher terms in the cosine expansion have to be considered and higher
order autocorrelation terms occur as well. Using a broader frequency bandwidth
for the incoming noise signal narrows the autocorrelation function (see fig.3.11).
For ideal white noise it would become a Dirac delta function δ(t−∆x/v).
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Figure 3.11: The two coils in the interferometer are driven with the same noise
signal. The contrast is plotted for different frequency bandwidths against the time
delay in one coil.

All these experiments show, that the classical noise field can be used to effec-
tively model decoherence, though an irreversible loss of coherence as it appears
in the interaction between two quantum systems can not be achieved. Still, the
randomly distributed phase shifts constitute an alternative approach to explain
the effects of an environment on a quantum system. In the interferometric setup,
the procedure of tracing out the environmental degrees of freedom and the sta-
tistical accumulation of randomly distributed phase shifts are completely equal
[SAI1990].

3.4.2 Momentum modulation measurements

3.4.2.1 Theory

After the observations off the coherence properties of the neutron beam in the
standard interferometric setup, the magnetic noise-field is used now to investigate
the dephasing of macroscopically distinguishable states, in particular whether
their increasing spatial separation increases their sensitivity to external distur-
bances [WM1985, Zur1991, BP2002]. Schrödinger cat-like states can be produced
in the interferometer with thick aluminum phase-shifters that shift the wave pack-
ets further than their coherence lengths that is in the order of 10Å[JWR1994,
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Rau1995, BRS2003]. The two wavepackets travelling through the IFM are sep-
arated by a distance ∆x = Nbcλ

2D/2π where N denotes the atom density, bc
the coherent scattering length of aluminum, D the phase shifter thickness and
λ the neutron wave length. For Al-phase shifters of centimeter thickness, the
separation width amounts to several 100Å so that there is practically no overlap
in position space at the third IFM plate anymore. Nevertheless, they are still in
a quantum state described by

ψsup(x, t) = ψI(x, t) + ψII(x, t) = ψ0(x, t) + ψ0(x+∆x, t) (3.71)

where ψI , ψII denote the wavepackets arriving from beam path I and II respec-
tively. In good approximation they keep the same form ψ0, the aluminum slab
only shifts the whole wavepacket. Thus, both have the same Fourier spectrum
α0(k). The interference properties are then exhibited in momentum space

ψsup(x, t) = ψ0(x, t) + ψ0(x+∆x, t)
∫

αsup(k)e
ikx dk =

∫

α0(k)e
ikx + α0(k)e

ik(x+∆x) dk

=⇒ αsup(k) = α0(k) + eik∆xα0(k)

|αsup(k)|2 = |α0(k)|2(1 + cos(k∆x)) (3.72)

In the Wigner-function representation [Wig1932, Sud2005]

Wsup(x, k) =
1

2π~

∫ +∞

−∞

ψ†(x+
y

2
)ψ(x− y

2
)eikydy (3.73)

both spatial separation and intensity modulation in momentum space are clearly
visible (see fig.3.12).

We now expose this Schrödinger cat-like state to a magnetic noise in one arm
of the interferometer causing a field-dependent phase shift.

ψsup(B, x, t) = eiφ(B)ψ0(x, t) + ψ0(x+∆x, t) (3.74)

In the quasistatic regime we can evaluate the resulting Wigner-function by aver-
aging over the Gaussian distribution of the noise field,

W̄ (B, x, k, t) =

∫ +∞

−∞

P (B)Wsup(B, x, k, t)dB (3.75)

which effects a smearing of the central wiggle structure of the Wigner function,
leaving the separated wave packets nearly unchanged. Integrating over x yields
the probability distribution in momentum space

|αsup(k)|2 = |α0(k)|2
(

1 + e−
1
2

µl
~v

2
(∆B)2 cos(∆x k)

)

(3.76)
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x∆

Figure 3.12: Wigner-function for the macroscopically separated cat-like state (x
in arbitrary units)

The spatial separation ∆x does not enter the expression for the contrast but only
the standard deviation ∆B of the magnetic noise field. The loss of contrast is
not affected by the separation width of the two Gaussian wave packets.

Note, that we again neglected the energy transfer between the magnetic field
and the neutron because it lies several orders of magnitude below the length of the
modulation period λperiod. It can be calculated by expanding the cosine around
the mean wavelength λ0 and then determining for which ∆λ the argument was
augmented by 2π

cos(k∆x) = cos(
2π

λ
∆x) = cos(

2π

λ0 +∆λ
∆x) = cos(

2π

λ0
(1 +

∆λ

λ0
)∆x)

λperiod
λ20

∆x
.
= 1 =⇒ λperiod =

λ20
∆x

(3.77)

The modulation period λperiod is given by the ratio of the mean wavelength λ0 and
the interference order n = ∆x/λ0. For our experimental parameters (λ0 ≈ 2Å ,
∆x several 100Å), it amounts to λ0/n ≃ 10−2Å whereas a shift of the wavelength
corresponding to the exchange of a photon with 100kHz amounts to

λshift ≃
1

2

∆E

E
λ0 =

1

2

~ω

Ekin
λ0 ≃ 10−8Å (3.78)
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Thus, the modulation pattern is practically not influenced by the altered neutron
velocities. Under these conditions, the separation width has no influence on the
contrast reduction.

3.4.2.2 Experiment

In the experimental setup we prepared three different Schrödinger cat-like states
by using three different aluminum phase shifters with thicknesses of 18, 27 and
36mm, which caused a packet separation of 212, 318 and 424Å. To access k-
space a silicon analyzer crystal that selects wavelengths from 1.88Å to 1.96Å via
Bragg-reflection and a third detector were used (see fig.3.13 for schematic setup
and fig.3.14 for the crystal).

thick Al phase shifter

H-Detector

O-Detector3rd-Detector

noise coil analyzer crystal

Figure 3.13: Schematic setup for interference measurements in momentum space
with aluminum phase shifter, intensity oscillates in the wavelength spectrum
recorded with the 3rd detector.

First we determined the wavelength distribution |α0(λ)|2 for the empty inter-
ferometer (the dashed black line in fig.3.15 a). The measured intensity is normal-
ized by the total number of counts in the O-beam (O-detector +3rd detector).
Then the Al-phase-shifter was inserted causing a modulation of that spectrum
(the curves for ∆B = 0 in fig.3.15 a). Turning on the magnetic noise leads to
damped modulations. After dividing the modulated spectra by |α0(λ)|2, one gets
standard interferograms in cosine-form whose contrast can be determined easily
(see fig.3.15 b).
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Figure 3.14: Silicon analyzer crystal used for selection of different wavelengths.

In this way, the relative contrast was measured for different field strengths
∆B ≃ 0 − 15G. In fig.3.16, one can see how the momentum modulation gets
smeared out with increasing noise strength and converges towards the wavelength
distribution of the empty interferometer.

Then, an Al-phaseshifter with an other thickness causing a different separation
width was inserted and the effect of the increased noise is investigated again (see
as examples for the 27mm phase shifter fig.3.17 and fig.3.18 for the 36mm phase
shifter).

The results for the three different separation widths are illustrated together in
fig.3.19 showing that the loss of contrast is independent of the separation width.

Differences to the results of, for example [Zur1991], also arise from the dif-
ferent interaction Hamiltonians. In [Zur1991], a dipole interaction of the form

Ĥint = ǫx̂dφ(t)
dt

is assumed that contains the position operator x̂ explicitly. This
leads to stronger decoherence for increasing spatial separation ∆x of the Gaussian
wave packets. In our case the interaction between neutron and field is given by
Ĥint = −µ~σ ~B and ”happens” in spin space. Under quasistatic approximation and
neglectable energy transfer only the strength of the field fluctuation ∆B occurs
in the expression for the contrast.

In agreement with [RSP1999], one can show that the coherent preparation of
the macroscopically distinct Schrödinger cat-like states becomes more and more
difficult with increasing separation width. The values of the off-contrast decrease
(see Table 3.1) due to the inhomogeneities of the phaseshifters. But this concerns
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Figure 3.15: Interferogram in momentum space, wavelength distribution |α0(λ)|2
of the empty interferometer and original on/off wavelength spectra for ∆x = 212Å
(a) and on/off-curves divided by |α0(λ)|2 (b).

only the preparation of the state, it is not a statement about its principal stability.
As shown in 3.19, the loss of contrast due to magnetic noise is the same for each
separation width.

Moreover, if we compare the loss of contrast in the standard interferometric
setup with the averaged decoherence curve in momentum space, we see that they
are practically identical within the measurement accuracy (see fig.3.20).
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Figure 3.16: Interferogram in momentum space for the 18mm phase shifter (wave
packet separation ∆x = 212Å) for increasing noise strength ∆B plotted against the
angle of analyzer crystal.

phaseshift ∆x = 212 Å ∆x = 318 Å ∆x = 424 Å
Off-Contrast 60.0 ± 1.1 % 55.4 ± 1.1 % 44.4 ± 1.3 %

Table 3.1: Decrease of (mean) Off-Contrast values for thick phase-shifters
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Figure 3.17: Interferogram in momentum space, wavelength distribution |α0(λ)|2
of the empty interferometer and original on/off wavelength spectra for ∆B = 7.86G
for the 27mm Al-phase shifter causing a wave packet separation of ∆x = 318Å
(upper diagram) and on/off-curves divided by |α0(λ)|2 exhibiting a standard inter-
ferogram in cosine-shape (lower diagram).
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Figure 3.18: Interferogram in momentum space, wavelength distribution |α0(λ)|2
of the empty interferometer and original on/off wavelength spectra for ∆B = 7.86G
for the 36mm Al Phase shifter causing a packet separation of ∆x = 424Å (upper
diagram) and on/off-curves divided by |α0(λ)|2 exhibiting a standard interferogram
in cosine-shape (lower diagram).
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Figure 3.19: Decoherence behaviour for Schrödinger cat-like states with different
separation width as function of the strength of the magnetic noise field (exponen-
tially fitted)
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Figure 3.20: Decoherence behaviour for the standard interferometric setup and
averaged behaviour of the damped modulations in momentum space plotted against
noise strength ∆B (exponentially fitted).
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4

Finite mode number noise

4.1 Noise generation with random phases

Now, we want to approach the loss of contrast analytically by exploiting the
results of chapter 2.1. There, we had an arbitrary oscillating magnetic field B(t)

B(t) =

N
∑

i=1

Bi cos (ωit+ ϕi) (4.1)

restricted to a spatially finite region 0 ≤ x < L. After passing the field, the
incoming plane wave is modified and the wave function ψIII reads

ψIII(x, t) =
∑

~n

Jn1(β1) · . . . · JnN
(βN ) e

−i~n~η eik̃~nxe−iω~nt (4.2)

with

~n = (n1, n2, . . . nN ), ~η = (η1, . . .), ~ω = (ω1, . . .) (4.3)

ω~n = ω0 + ~n~ω, k̃2~n = k20 −
2m

~2
µB0 +

2m

~
~n~ω (4.4)

ηi = ϕi +
ωiT + π

2
, βi = 2

µBi

~ωi
sin

ωiT

2
(4.5)

The expression for the time dependent intensity IO(t) in the interferometric setup
(see section 2.2) for unpolarized neutrons is given by

IunpolO (t) =
1

2

(

1 + cosχ cos

(

N
∑

i=1

βi sin(ωit+ ξi)

))

(4.6)

with

ξi = ϕi +
ωiT + π

2
− ωi

v0
x (4.7)

101



4. FINITE MODE NUMBER NOISE

These formulas can be used for an arbitrary high, but still countable number of
modes of the applied magnetic field, i.e. an arbitrary periodic field. An ideal
noise signal consists of an infinite number of modes and is not periodic, but we
will see that magnetic fields with about 200 or more modes whose phases are
randomly distributed represent a good approximation for the ideal noise case as
far as loss of contrast is concerned.

In chapter 2.2, we were interested in the time dependency of the intensity
pattern from which we could deduce the transition probabilities for various en-
ergy transfers between the neutron and the magnetic field. Now, we do a time-
independent intensity measurement, yielding an average intensity

< IO >=
1

N

N
∑

i=1

IO(ti) (4.8)

over N neutrons detected at times ti. Provided a sufficiently high neutron flux
during the measurement time Tm we can rewrite the sum into an integral

< IO >=
1

Tm

∫ Tm

0

IO(t) dt (4.9)

The period of the intensity is the same as the period of the magnetic field, given
by the greatest common denominator ωg = 2π/tg of all occurring frequencies ωi.
If the measurement time is an integer multiple of tg we can immediately rewrite

< IO >=
1

tg

∫ tg

0

IO(t) dt (4.10)

If the measurement time is no integer multiple of tg, but much larger then tg
(Tm = n · tg +∆, n >> 1,∆ < tg, ∆/n ≈ 0), we can still estimate

< IO > =
1

n · tg +∆

(

∫ n·tg

0

IO dt+

∫ n·tg+∆

n·tg

IO dt

)

≃ 1

n · tg

(
∫ n·tg

0

IO dt+∆ ·Max(IO)

)

≃ 1

n · tg

∫ n·tg

0

IO dt =
1

tg

∫ tg

0

IO(t) dt (4.11)

leading to the same result. In the most simple case where the number of modes
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N = 1 and tg = 2π/ω1, we can then write

< IO > =
1

tg

∫ tg

0

1

2
(1 + cosχ cos (β1 sin(ω1t+ ξi))) dt

=
1

2

(

1 + cosχ
1

tg

∫ tg

0

cos (β1 sin(ω1t + ξi)) dt

)

=
1

2

(

1 + cosχ
1

2π

∫ 2π

0

cos (β1 sin t) dt

)

=
1

2
(1 + J0(β1) cosχ) (4.12)

showing that the measured contrast is given by the Bessel function J0 if a sinu-
soidal field is applied. In fig.4.1, experimental results for various frequencies are
shown. In case of more than one mode, the integral (eq.4.10) is not solvable at
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Figure 4.1: Measured contrast plotted against the amplitude B1 of the applied
single mode field B(t) = B1 cos(ω1t + ϕ1) for various frequencies ω1 = 2π · 2kHz,
2π · 10kHz, 2π · 20kHz and 2π · 30kHz. The measured values agree well with the
theory curve given by the Bessel function J0(β1).

first sight, but we can use a former result to simplify things. As already men-
tioned, the intensity IO(t) has the same period as the magnetic field and can
therefore be composed into a discrete Fourier series.

IO(t) =
+∞
∑

m=−∞

cm e
imωgt (4.13)
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Over a full period, the oscillating parts vanish

1

tg

∫ tg

0

eimωgt dt = δm,0

and we get for the measured time-averaged intensity

< IO >=
1

tg

∫ tg

0

IO(t) dt =
1

tg

∫ tg

0

+∞
∑

m=−∞

cm e
imωgt dt = c0 (4.14)

The explicit form of all Fourier coefficients has been already determined in sec.2.2
(see eqs.2.82 and 2.83 for polarized neutrons and eqs.2.101 and 2.102 for unpo-
larized neutrons). We now need the coefficient c0 for unpolarized neutrons that
reads

cunpol0 =
1

2
+

1

2
cosχ

∑

~n;~n~ω=0∑
i ni even

Jn1(β1) · . . . · JnN
(βN) e

i~n~ξ (4.15)

revealing that the contrast is given by the modulus of the restricted sum. In
case of N = 1, only J0(β1) remains. For two modes N = 2, we have already
investigated the Fourier coefficient c0 for the frequencies ω1 = 2π· 2kHz and
ω2 = 2π · 3kHz (eq.2.107). In general, the expression for the contrast C can be
written for two frequencies ω1 and ω2 with ω1/ω2 = p/q, where p, q are coprime
and p+ q is even

C =
+∞
∑

n1=0

(2− δn1,0)Jqn1(β1)Jpn1(β2) cos(n1(qξ1 − pξ2)) (4.16)

(4.17)

or if p+ q is odd

C =
+∞
∑

n1=0

(2− δn1,0)J2qn1(β1)J2pn1(β2) cos(2n1(qξ1 − pξ2)) (4.18)

(4.19)

In fig.4.2, we show a comparison between the results of the numeric integration
(eq.4.10) and the explicit formula for the Fourier coefficient (eq.4.18) for a two
mode field with frequencies ω1 = 2π· 10kHz and ω2 = 2π·20kHz, equal amplitudes
B1 = B2 and phases ϕ1 = 0.42 and ϕ2 = 2.26. In the typical experimental field
strength range of B1 ≈ 0 − 50Gauss, it is sufficient to take only the first three
terms of the sum into account to achieve a good agreement.

104



4.1 Noise generation with random phases

10 20 30 40

0.2

0.4

0.6

0.8

1.0

0
0.0

field Amplitude B1[Gauss]

C
o

n
tr

as
t c   - sum   (3 terms)0

numeric integration

c   - sum   (2 terms)0

c   - sum   (1 term)0

Figure 4.2: Interferometer contrast plotted against the amplitude B1 when a
two-mode field B(t) = B1 cos(ω1t + 0.42) + B1 cos(ω2t + 2.26) with equally high
amplitudes and frequencies ω1 = 2π· 10kHz and ω2 = 2π · 20kHz is applied. The
results of the numeric integration (blue points) of the time-dependent intensity are
compared to the sum obtained from the Fourier coefficient. After regarding the
first three summands the results already coincide.

If the number of modes is further increased the evaluation of the conditions
on the summation becomes more and more difficult. A closed representation
becomes impossible and symbolic programming languages have to be used to
get all combinations that fullfill

∑

i niωi = 0. For N = 5, these calculations
are still possible in a reasonable amount of time (see result for c0 in fig.2.44 of
chapter 2.3.4), but the computational effort for solving the numeric integration
has already become lower. Therefore, we will from now on use the numeric
integration, where the contrast is determined with 6-digits precision.

To compare the results for an increased number of field modes N , the am-
plitudes of all modes are chosen to be equal and normalized with

√
N ensuring

constant signal power. The frequencies of the N modes are equidistantly dis-
tributed from 20/N kHz - 20kHz with step width 20/N kHz, e.g. for 5 modes,
frequencies are 4, 8, 12, 16, and 20kHz. When the number of modes is increased,
one can see that the oscillating behaviour of the contrast is washed out, i.e. re-
covery of contrast is suppressed due to the randomly distributed phases of the
modes. In fig.4.3, this behaviour is illustrated for 2-20 modes.

If the number of modes exceeds 50, the effect is even more drastic (see fig.4.4).
In addition to the vanishing contrast oscillations, the exponential decay of the
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Figure 4.3: Interferometer contrast plotted against the amplitude B1 when mag-
netic fields with increasing mode numbers are applied. The phases of the modes
are randomly distributed in [0, 2π). Contrast recovery vanishes for higher mode
numbers.

contrast with increasing field strength becomes apparent.

If the number of modes is further increased, results for the same mode num-
ber obtained from magnetic field signals with varied relative phases differ in the
same amount from each other as results obtained from different mode numbers.
Therefore, one has to perform the simulation for a certain mode number repeat-
edly with different relative phases in order to get a mean contrast curve. The
mean contrasts for different mode numbers can then be compared. As shown
in fig.4.5, the mean contrast curves become practically indistinguishable. The
damping factor obtained from an exponential fit is the same for the different
mode numbers. That means that, as far as loss of contrast is concerned, the
behaviour of the ideal noise with an infinite number of modes is practically the
same as in the case of a magnetic field consisting of several hundred modes with
randomly distributed relative phases. Increasing the number of frequencies only
causes a stronger suppression of the contrast recovery for high field strengths.

Equipped with this knowledge, we can now investigate the influence of the
frequency bandwidth of the noise on the damping factor by just determining it
from the 200 modes signal. We are especially interested in damping factors for
noise fields with frequency bandwidths ∆f = 0−fupper for upper frequencies fupper
ranging from 1 to 100 kHz. In this range, the numerically obtained curves can
be compared with the measured contrast (see fig.3.6 in sec.3). In the experiment,
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Figure 4.4: Interferometer contrast plotted against the amplitude B1 when mag-
netic fields with 50, 100 and 200 modes are applied whose phases are randomly
distributed in [0, 2π). Contrast recovery vanishes totally and the exponantial de-
cay of contrast becomes visible.

the accessible parameter is the width of the Gaussian noise and we therefore have
to find the width ∆B corresponding to a certain field amplitude B1 of the 200
mode signal. For this instance, we plot the histogram of the magnetic field signal
for B1 = 1Gauss and determine its width (see fig.4.6).

The damping factor k is then determined from the numerically calculated
contrast curves plotted against increasing field width by using an exponential fit
function given by

fit(k) = e−
1
2
k (µN

~

L
v
∆B)

2

(4.20)

The proportionality factors are chosen such that a damping factor of k = 1 in-
dicates the region where the quasistatic approximation is valid (see eq.3.52). To
obtain the damping factor, we generate the 200 mode signal 100 times with dif-
ferent relative phases, determine the width for each signal and fit the numerically
computed contrasts curves with the exponential fit function fit(k). From the 100
k-values, mean value and standard deviation are calculated. In fig.4.7, the results
of the simulation are compared to the measured quantities showing a satisfying
agreement.

In the numerical simulation, the upper frequency can be further increased. As
expected, the damping factor tends towards 0, because modes belonging to higher
frequencies do not contribute to the loss of contrast. Their effect is averaged out,
the phase shift they provoke is zero. In the semi-classical phaseshift picture, this
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Figure 4.5: Interferometer contrast plotted against the amplitude B1 when mag-
netic fields with 200, 500 and 1000 modes are applied whose phases are randomly
distributed and whose frequencies lie in the range ∆f . The contrast curve repre-
sents the mean value obtained from 25 simulations for each mode number. The
error bars indicate the standard deviation of the mean value. The plot shows that
using more than 200 modes in the simulation has no effect on the loss of contrast.

2

1

1

2

time

m
ag

n
e

ti
c 

fi
e

ld
 [G

au
ss

]

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

n
u

m
b

e
r o

f o
ccu

re
n

ce

∆
B

Figure 4.6: By sampling equidistant points from the magnetic field signal B(t),
we can construct its corresponding histogram from which the width ∆B can be
determined.

can be seen from the integral over the time-off-flight (eq.2.164). In fig.4.8, the
results of the simulation are shown.
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Figure 4.7: Damping factors k for magnetic noise fields with a frequency band-
width from 0 to an upper frequency fup. The experimentally determined values
(red points) are compared to the results of a hundredfold repeated simulation rely-
ing on a magnetic signal consisting of 200 modes with randomly distributed phases.
Error bars indicate the standard deviation of the 100 k-values.
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Figure 4.8: Damping factors k for magnetic noise fields with a frequency band-
width from 0 to fup. For increasing upper frequency, the damping factor vanishes,
i.e contrast reduction also vanishes.
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Unfortunately, no simple analytic relation between the damping factor k and
the upper frequency fup becomes apparent.

4.2 Alternative noise generation

Till now, we have modelled the noise by considering equidistantly distributed
frequencies in the region of interest whose phases are randomly distributed. In
this way, we could immediately find the periodicity of the field from the lowest
occurring frequency and use the integration formula (eq.4.9) instead of the sum
(eq.4.8) to calculate the intensity.

One could argue that not only the phases, but also the frequencies should be
randomly distributed, in order to simulate the ideal Gaussian white noise. The
statistics of the amplitude distribution are really improved with this method, but
we will show in this chapter that the influence on the loss of contrast is marginal.

If the frequencies are randomly distributed, the integration method fails, be-
cause the period of the signal becomes too long. Therefore, we have to rely on
the summation method. Again, we generate the signal repeatedly and determine
the mean value and standard deviation for the damping factor k for increasing
frequency bandwidth ∆f . In fig.4.9, the former result with random distributed
phases only is compared to the new signal. It can be seen, that the mean val-
ues of one method lie within the standard deviations of the other method and
vice versa. The experimentally measured values can also be reproduced by both
approaches.
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Figure 4.9: Comparison of the contrast reduction for differently generated noise
signals with frequency bandwidth ∆f = 0 − fup. Both methods reproduce the
experimentally measured values and lie within each others errors bars.
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5

Conclusion and Outlook

The main focus of this work was the theoretical and experimental investigation
of the action of spatially bounded, time-dependent magnetic fields in the neutron
interferometer. Since the direction of the magnetic field is fixed, all observations
concern the dynamical phase, the geometric phase remains unchanged.

We started with the simple case of a sinusoidally varying field. For thermal
neutrons and field strengths of maximally 100 Gauss, reflections at the magnetic
potential can be neglected and the corresponding Schrödinger equation containing
the field as a classical quantity was solved analytically. An incoming plane wave
is split up in a superposition of plane waves whose energies are given by the
initial energy plus integer multiples of the field’s frequency ω. The transition
amplitude for an energy exchange of n~ω is given by the Bessel function Jn. The
calculation was then generalized to an arbitrary periodic field. Energy exchange
from all modes of the field occurs and leads to products of Bessel functions for
the transition probabilities. If such a periodic field is applied in one arm of
the neutron interferometer the transition amplitudes can be extracted from the
Fourier analysis of the time dependent interference pattern. Results for magnetic
signals with up to five modes have been depicted and show good agreement with
the calculation.

We also presented an alternative, semiclassical approach relying on the eikonal
approximation for path integrals. The modulus of the transition amplitudes is
equal to the solution obtained from the Schrödinger equation, only their phase
factors are different. Thus, it would be a task for future experiments to focus on
the phase which was till now only treated as fit parameter.

By performing field quantization, a fully quantum mechanical treatment of
neutron and magnetic field could also be achieved. In this model, the energy
transfer is explained as a two-fold multi-photon exchange process and the entan-
glement between neutron and field caused by their interaction becomes visible.
For high photon number coherent states, the results of the classical calculations
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can be reproduced. To obtain quantum effects that can not be explained with the
classical field, the model could be adapted to systems with a stronger particle-
field coupling where low mean photon numbers already have a considerable influ-
ence, e.g. atoms with higher magnetic moments, or charged particles in spatially
bounded electric fields. Obviously, the experimental realization of the field is
then a challenging task as well.

If the number of modes is increased the resolution of the energy exchanges
becomes more and more difficult. Provided that the phases of the modes are
randomly distributed, we approach the noise regime where the coherence of the
neutron beam is totally destroyed. The contrast of the interferometer vanishes
and can be interpreted as realization of a dephasing channel for the path qubit
in the framework of decoherence theory. In order to see the connection, the
main statements of decoherence theory with focus on their application to neutron
interferometry were revisited. The loss of coherence was investigated for varying
parameters:

At first, the exponential loss of contrast was verified for quasi-static magnetic
noise fields. Then, the frequency bandwidth of the noise signal was extended
leading to a weaker decay of contrast.

If noise fields are applied in both interferometer arms the correlation of these
two noise signals determines the contrast. For uncorrelated noise sources, the
dephasing process is enforced. For two Gaussian white noise signals with the
same frequency bandwidth, the decrease of contrast depends on the sum of their
variances. On the other hand, applying synchronized identical noise signals leads
to full recovery of the contrast. By inserting an additional time delay between
the two sources the autocorrelation function of the signal is revealed.

Not only the noise signal, but also the neutron wave function was modi-
fied and exposed to noise. By inserting thick aluminum blocks, the wave pack-
ets are shifted beyond their spatial coherence length. The interference of these
Schrödinger cat-like states is exhibited in k-space through a modulated momen-
tum distribution. The preparation of the Schrödinger cat-like states becomes
more difficult with increasing spatial separation but, within measurement accu-
racy, the noise induced loss of contrast is independent of the spatial separation
and comparable to the decoherence behaviour in the standard interferometric
setup.
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Appendix A

Error propagation for Discrete

Fourier Transformations

In sec.2.2, the discrete Fourier transformation (DFT) method is used to determine
the modulus of the Fourier components of the time dependent intensity pattern
that are related to the transition probabilities of energy exchanges between a
neutron and an oscillating magnetic field. Since we can not directly measure the
Fourier components the question arises, how their errors can be calculated from
the errors of the measured intensity. Therefore, we have to investigate the DFT
in more detail.

Consider a real-valued function that is periodic in time with period T . If it
fullfills the Dirichlet conditions [Chu2008], it can be expanded in its Fourier series

x(t) = x(t + T ) =

n=+∞
∑

n=−∞

Xn e
i2π n

T
t (A.1)

containing the fundamental frequency f = 1/T and its harmonics n · 1/T . If
only frequencies up to (N − 1)/2 · 1/T are contained in the signal, a sample of
N equidistant points {x1, x2, .., xN} over the full period suffices to determine the
Fourier components exactly (Shannon-Nyquist sampling theorem, see [Chu2008]).
The k-th component belonging to the frequency k · 1/T is given by the discrete
Fourier transformation (DFT)

Xk =
1√
N

N−1
∑

n=0

xn e
−i 2π

N
k·n (A.2)

Note that the index k runs from 0 to N − 1 but due to the real xi’s the relation
Xk = X⋆

N−k holds and we only get independent coefficients from k = 0 to (N −
1)/2.
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A. ERROR PROPAGATION FOR DISCRETE FOURIER

TRANSFORMATIONS

If the distribution of the sample points is known, the most accurate way to
determine the uncertainty in the Fourier components relies on simulated repeti-
tion of the experiment. Therefore, one generates a large number M of sequences
{x1, ..., xN} according to their underlying distribution. The Fourier components
of each of these sequences can be determined by eq.A.2, resulting in M values for
each component whose distribution can then be investigated.

In our case, the originally measured values xn are the number of detected
neutrons. These counts are Poissonian distributed, i.e. the standard deviation is
given by the square of the counts. Note that, for high count rates, the Poissonian
distribution of a number of counts N nearly equals a normal distribution with
mean value N and standard deviation

√
N . We take the fit values obtained from

the measurement as starting values and generate 10000 samples numerically. In
order to get intensities instead of count rates, we also subtract the underground
u and divide all samples by the contrast c that we have obtained from the fit. We
assume the values of u and c to have neglectable errors. The intensity samples
x̃n obtained from the count rate samples xn are thus given by

x̃n =
xn − u

c
, ∆x̃2n =

∆x2n
c2

=
xn
c2
, x̃n ∼ N(µ, σ) = N(x̃n,

√
xn
c

) (A.3)

where ∼ N(µ, σ) denotes a normal distribution with mean value µ and standard
deviation σ.

In fig.A.1, we show the starting sample and its standard deviation, the fit
curve and two generated sequences, indicated by the red and the green points
respectively.

From the generated samples, we get the distribution of each Fourier compo-
nent. As far as the transition probabilities are concerned, we are interested in
the modulus of the Fourier components. For the even components we obtain ap-
proximately normal distributions whereas the vanishing odd components become
Rayleigh-distributed. That steams from the fact that both real and imaginary
part of the odd components are identically and independently normal distributed
around zero with comparable standard deviations. In fig.A.2 and fig.A.3 the
histograms of the modulus of the Fourier coefficients X2 and X3 are shown to
illustrate both the odd and the even case.

Simulating the experiment numerically allows the determination of the exact
form of the distribution of the Fourier components. The method is very elabo-
rate and contains the maximal information. But on the other hand, it becomes
apparent that distribution of the non-vanishing Fourier components is in good
approximation Gaussian. To characterize a Gaussian distribution, only its mean
value and standard deviation are necessary. We will now try to calculate the stan-
dard deviations of the Fourier components by using the error propagation law.
The error propagation law is valid if the originally measured quantities are Gaus-
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Figure A.1: Exemplary time dependent intensity pattern. The blue curve repre-
sents the fit obtained from the actual measurement. Its values (blue points) and
their standard deviations (blue error bars) serve as starting point for the numeri-
cally simulated sequences (e.g. red and green points).
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Figure A.2: Histogram of the modulus of the Fourier component X2. The red
curve represents a Rayleigh distribution with parameter σ = 〈|X2|〉 /

√

π/2 where
〈|X2|〉 indicates the mean value of the modulus of all X2.

sian distributed and if their standard deviations are so small, that the relation
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Figure A.3: Histogram of the modulus of the Fourier component X3. The red
curve indicates that the modulus is normal distributed. Its mean value is the mean
value 〈|X3|〉 of the modulus of all X3 and the standard deviation is their usual

standard deviation
√

〈|X3| − 〈|X3|〉〉2.

between originally measured quantities and derived quantities can be considered
to be linear in the observed range. The derived quantity y is then also Gaussian
distributed with a standard deviation given by ∆y

y = f(x1, x2, ..., xN ) =⇒ ∆y =

√

√

√

√

N
∑

i=1

(

∂f

∂xi

)2

∆x2i (A.4)

Since eq.A.4 is only valid for real numbers we at first have to investigate reel and
imaginary part of the Fourier components Xk separately

Xk = Yk + iZk (A.5)

Yk =
1√
N

N−1
∑

n=0

x̃n cos(
2π

N
k · n) (A.6)

Zk = − 1√
N

N−1
∑

n=0

x̃n sin(
2π

N
k · n) (A.7)

The relation between the Gaussian-distributed x̃n and the Yk’s and Zk’s is linear,
whence follows that the Yk’s and Zk’s are also Gaussian-distributed with standard
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deviations ∆Yk and ∆Zk given by

∆Y 2
k =

1

N

N−1
∑

n=0

∆x̃2n cos2(
2π

N
k · n) = 1

N

N−1
∑

n=0

xn
c2

cos2(
2π

N
k · n) (A.8)

∆Z2
k =

1

N

N−1
∑

n=0

∆x̃2n sin2(
2π

N
k · n) = 1

N

N−1
∑

n=0

xn
c2

sin2(
2π

N
k · n) (A.9)

To determine the error of the modulus of the Fourier components we have to apply
the error propagation law once again, but we will now include the covariance term
as well since correlations between real and imaginary part can not be excluded a
priori.

|Xk| =
√

Y 2
k + Z2

k (A.10)

∆|Xk|2 =

(

∂|Xk|
∂Yk

)2

∆Y 2
k +

(

∂|Xk|
∂Zk

)2

∆Z2
k +

2
∂|Xk|
∂Yk

∂|Xk|
∂Zk

cov(Yk, Zk) (A.11)

Here, the relation between |Xk| and Yk and Zk is nonlinear and thus distortions
from the normal-distributed shape are to be expected. For the calculation of
the covariance term, the independence of the individual count rates is used, i.e.
cov(xn, xm) = xnδnm.

In the latter, we will compare the standard deviations obtained from the error
propagation law with the results from the repeatedly simulated experiment, but
before we want to introduce a simplified expression for the standard deviation.
We assume, that all x̃n have the same error given by the square root of the mean
value x̄ of the xn divided by contrast c. Starting from eq.A.8 we get for the
simplified error

∆Y 2
k, simp =

1

N

N−1
∑

n=0

x̄

c2
cos2(

2π

N
k · n) (A.12)

∆Y 2
k, simp =

x̄

Nc2

N−1
∑

n=0

1

2
(1 + cos(2

2π

N
k · n)) (A.13)

∆Y 2
k, simp =

{

x̄
c2

if k = 0 or N/2
1
2

x̄
c2

else
(A.14)

For the imaginary part, we get

∆Z2
k, simp =

{

0 if k = 0 or N/2
1
2

x̄
c2

else
(A.15)
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and finally for the modulus when neglecting the covariance term

∆|Xk|2, simp =

{

x̄
c2

if k = 0 or N/2
1
2

x̄
c2

else
(A.16)

Now, we can compare the differently obtained errors in our example where we
restrict ourselves to the non-vanishing first 32 even Fourier coefficients. As one
can see from fig.A.4, the standard deviations calculated from the numerically gen-
erated ”measured” points agree well with the results from the error propagation
law. The covariance term does not lead to an improvement. For a reasonable
estimation for the error bars of the Fourier components it even suffices to only
use the simplified error propagation formula.
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Figure A.4: The errors for the (even) Fourier components obtained from the
numerical simulation of the experiment and from various formulations of the error
propagation law.

For various intensity patterns (1-, 2- and 5-mode magnetic field, different am-
plitudes), similar results have been found. Thus, we used the simplified error
propagation law to estimate the error of the Fourier components in the experi-
ments of sec.2.2.
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