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Abstract 

Glass-like carbons represent a wide family of non-graphitizing carbons, which cannot 

be converted into graphite, even under a high temperature treatment up to 3000 
o
C. They are 

hard carbon materials synthesized by pyrolysis of some polymeric precursors. Due to their 

relative ease of production and a diverse range of properties, such as high thermal resistance, 

extreme chemical stability, low density and great hardness compared with other carbons, 

gases impermeability and high electrical conductivity, these materials have been applied in 

industry since decades. Moreover, glassy carbons exhibit excellent biological compatibility 

with blood and living tissues, and therefore they have a high potential for the use in medicine. 

Nowadays, there is an increasing interest in interfacing glassy carbon microelectrodes with 

tissues for applications ranging from neural signal sensing and stimulation of brain. 

Furthermore, recent advances in additive manufacturing have led to the creation of ultrastrong 

glassy carbon microlattices which can be used as medical implants. Although glassy carbons 

are highly desirable for many applications and are extensively investigated, their properties 

such as mechanical or electronic performance as a function of the internal structure and 

processing are still not fully understood and cannot be predicted. The atomic structure of 

glass-like carbons is complex and strongly depends on the pyrolysis conditions. The most 

recent studies have suggested that the structure of glassy carbons consists of fullerene-related 

building blocks, but up to now there are no commonly adopted model of their nucleation and 

transformation during the carbonization process. 

The main aim of this work is to establish preparation-structure-properties correlations 

of a series of glass-like carbons produced by pyrolysis of polyfurfuryl alcohol at different 

temperatures and go beyond the previous state of the art. Given the complexity of their 

structure, that can be regarded as intermediate between crystalline and amorphous, and its 

sensitivity to the synthesis temperature the detailed characterization of the prepared glass-like 

carbons requires applications of many experimental techniques and interpretation methods. 

They are: wide-angle X-ray and neutron scattering, Raman spectroscopy, high-resolution 

transmission electron microscopy, electron energy loss spectroscopy, nanoindentaion as well 

as computer simulations of the atomic structure. The fundamental part of these studies was the 

analysis of the diffraction results in both, real and reciprocal spaces, in form of the structure 

factors and the pair distribution functions. Theoretical models of the atomic structure were 

first described in the frame of the paracrystalline structure, and then classical molecular 

dynamics simulations were performed for energy optimization of the atomic systems 
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containing topological point defects. The model compatibility with the experimental data was 

verified by a direct comparison of the model-based calculations and the experimental 

diffraction data. The use of additional techniques, such as high resolution electron 

microscopy, Raman spectroscopy, electron energy loss spectroscopy and nanoindentation 

allowed obtaining detailed information about the local structure, chemical bonding between 

carbon atoms, and mechanical properties of the investigated materials. It has been 

demonstrated that the structure of the glass-like carbons at different stages of the 

carbonization process resembles the curvature observed in fragments of nanotubes, fullerenes 

or nanoonions. This curvature is responsible for hardness and mechanical strength of the 

glass-like carbons as well for the formation of porosity. It has been established that the 

constituent carbon atoms are connected mainly by the sp
2
 type bonds. 
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Streszczenie 

Węgle szklistopodobne reprezentują rodzinę niegrafityzujących materiałów 

węglowych, które nie mogę być przekształcone w grafit, nawet po wysokotemperaturowej 

obróbce do 3000
 o

C. Są one twardymi materiałami węglowymi otrzymywanymi w procesie 

pirolizy niektórych polimerów. Materiały te są znane i stosowane w przemyśle od 

dziesięcioleci, z uwagi na łatwość produkcji oraz szeroki zakres właściwości, takich jak 

wysoka wytrzymałość termiczna, duża stabilność chemiczna, niska gęstość i duża twardość  

w porównaniu do innych materiałów węglowych, nieprzepuszczalność gazów, dobra 

przewodność elektryczna. Ponadto, węgle szkliste wykazują biozgodność w kontakcie z krwią 

i tkankami, dlatego mają duży potencjał do zastosowań w medycynie. Obecnie zwiększone 

jest zainteresowanie wykorzystaniem mikroelektrod z węgla szklistego do badania sygnałów 

nerwowych i stymulacji mózgu. Co więcej, ostatnie postępy w rozwoju techniki tzw. additive 

manufacturing pozwajają na wytwarzanie utrawytrzymałych mikrosieci z węgla szklistego, 

które mogą być zastosowane jako implanty medyczne. Pomimo dużego zainteresowania 

aplikacyjnego węglem szklistym oraz wielu badań, pochodzenie właściwości węgla 

szklistego, oraz ich związki z warunkami syntezy oraz strukturą nadal nie są w pełni 

zrozumiałe i właściwości te nie mogą być przewidywane. Struktura atomowa węgli szklistych 

jest złożona i silnie zależy od warunków pirolizy. Ostatnie badania pokazują, że w pewnym 

stopniu przypomina ona strukturę fulerenów. Jednakże aż do dzisiaj brakuje modelu 

wyjaśniającego formowanie się fulereno-podobnych elementów struktury oraz ich 

transformację w procesie pirolizy węgli niegrafityzujących. 

Głównym celem niniejszej pracy było ustalenie związków pomiędzy warunkami 

syntezy, strukturą, a właściwościami dla serii węgli szklistych wytworzonych metodą pirolizy 

polimeru alkoholu furfurylowego w różnych temperaturach. Biorąc pod uwagę złożoność 

struktury atomowej badanych węgli, która może być traktowana jako pośrednia między 

krystaliczną a amorficzną, oraz jej zależność od warunków syntezy, do szczegółowej 

charakterystyki przygotowanych węgli szklistych niezędne jest zastosowanie wielu technik 

eksperymentalnych i metod interpretacji. W pracy wykorzystano: szerokokątowe rozpraszanie 

promieniowania X i neutronów, spektroskopię Ramana, wysokorozdzielczą transmisyjną 

mikroskopię elektronową, spektroskopię strat energii elektronów, nanoindentację, a także 

komputerowe symulacje struktury. Główna część pracy dotyczy analizy danych 

dyfrakcyjnych w przestrzeni odwrotnej i rzeczywistej, w postaci czynników struktury oraz 

funkcji rozkładu par atomów. Teoretyczne modele struktury zostały w pierwszej kolejności 
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opisane za pomocą formalizmu struktury parakrystalicznej, a następnie wykorzystano 

symulacje metodą klasycznej dynamiki molekularnej do optymalizacji energii układów 

atomów zawierających topologiczne defekt punktowe. Poprawność modeli była 

weryfikowana poprzez porównanie obliczonych na ich podstawie danych dyfrakcyjnych  

z wynikami doświadczalnymi. Wykorzystanie dodatkowych technik, takich jak spektroskopia 

Ramana, wysokorozdzielcza transmisyjna mikroskopia elektronowa, spektroskopia strat 

energii elektronów oraz nanoindentacja, pozwoliło na uzyskanie dodatkowych informacji  

o lokalnej strukturze, wiązaniach chemicznych pomiędzy atomami węgla oraz 

właściwościach mechanicznych badanych węgli. Pokazano, że struktura węgli szklistych na 

różnych etapach procesu karbonizacji wykazuje krzywiznę jak we fragmentach nanorurek, 

fulerenów czy nanocebulek. Krzywizna struktury jest odpowiedzialna za twardość  

i wytrzymałość mecaniczną tego typu węgli, a także za tworzenie sią porowatości. Ustalono 

także, że atomy węgla w badanych materiałach są połączone głównie wiązaniami typu sp
2
. 
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1. Introduction – motivation and scope 

The disordered, non-graphitizing glass-like carbons, also called glassy carbons, are of 

significant interest within many industrial applications, particularly as electrode materials in 

electrochemistry, high-temperature crucibles, in vacuum technology, and for a mechanical 

reinforcement of constructional products [1-3]. This is due to their specific properties such as 

isotropy, high thermal resistance, extreme chemical stability, low density and great hardness 

compared with other carbons, gases impermeability, and high electrical conductivity [3-5]. In 

addition, glassy carbons exhibit excellent biological compatibility with blood and tissues, and 

therefore they have a high potential for use in medicine [6]. The glass-like carbons are 

typically synthesized by pyrolysis of polymeric precursors like phenolic resins or polyfurfuryl 

alcohol, which crosslink at elevated temperatures [4,5,7,8]. Due to their relative ease of 

production and a diverse range of physical properties these carbons have been extensively 

manufactured and investigated since decades. 

 The most recent studies have suggested that glass-like carbons have a fullerene-related 

structure. Such model of glassy carbon structure proposed by Harris [5,9-11] consists of 

broken and imperfect fullerene fragments - curved sp
2
-bonded graphene-like planes, which 

can be multilayered and which often surround closed pores. The presence of curvature has 

been attributed to the topological defects in form of non-hexagonal carbon rings such as 

pentagons and heptagons that were directly observed by the high-resolution transmission 

electron microscopy [12]. The fullerene-related model of the glassy carbons atomic structure 

is more compatible with their properties than competing models assuming that the glassy 

carbons consist of narrow and twisted fibrils of graphitic carbon [7,13,14]. When glassy 

carbons are exposed to the temperature up to 3000 °C the building structural blocks start 

ordering in directions parallel and perpendicular to graphene-like layers [5,9-11,15,16]. This 

process is called 'graphitization' [15]. The stacks of graphene-like sheets form nano-sized 

domains extended to about 50-100 Å for glassy carbons heat treated above 2500 °C, 

depending on the time of annealing or starting precursor [5,17]. However, even after heat 

treatment at temperatures of 3000 °C and above the glass-like carbons cannot be transformed 

into crystalline graphite [10,15] and they preserve the general type of atomic disorder. The 

complex fullerene-like structure that is thermally stable even at very high annealing 

temperatures is believed to be the reason of the extreme resistance of glassy carbons against 

three-dimensional ordering [5]. 
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 Since the structure is a key parameter determining glass-like carbon porosity, 

mechanical and electronic properties, the possibility to control the temperature-induced 

structural transformation is critically important for the fabrication of the glassy carbon 

products with desired functional features. It is essential to note that novel glassy carbon 

applications, such as micro-electro-mechanical systems [18,19], that can be used for medical 

prostheses [20,21], require comprehensive characterization of the properties-structure 

relationships at the both, bulk and nanoscale level. Although many systematic investigations 

by different experimental techniques and model calculations [5,7,9-17,22-25] have been 

carried out on particular types of the glassy carbons, the formation of their atomic structure 

and its transformation during heat treatment is not fully elucidated. Particularly, there are no 

commonly adopted model of the nucleation and growth of curved structures in pyrolyzed 

carbons. Some works show that curved carbon surfaces can be formed due to the abundance 

of five-membered and other non-hexagonal carbon rings [26-28]. However, the mechanism of 

creation and healing of these defects is not known in details. In addition, until these days the 

nature of glassy carbon crystallites (in terms of the parallel-layer groups) growth and their 

barrier to graphitization is still not well understood. 

 The fundamental aim of this work was the characterization of the atomic structure of  

a series of glass-like carbons prepared by pyrolysis of polyfurfuryl alcohol at different 

temperatures from the range 600-2700 °C. The main approach selected for this task is based 

on the wide-angle X-ray and neutron scattering (WAXS and WANS, respectively) techniques 

combined with computer simulations. In order to describe the glass-like carbons using the 

diffraction method one has to go beyond the Bragg formalism and crystallographic analysis. 

The studied materials have disordered structure and in such a case it is advantageous to 

perform the analysis of diffraction results in both, reciprocal and real spaces. Therefore, the 

collected WAXS and WANS data normalized to the structure factors were converted to a real 

space representation of diffraction in the form of the pair distribution (or pair correlation) 

functions. In order to interpret the structure factors and the pair distribution functions 

computer simulations using paracrystalline theory of structural disorder were performed. In 

the next step, realistic models of the atomic structure were prepared by implementation of the 

theoretical paracrystalline disorder in the form of topological point defects. The models 

containing structural defects were relaxed using classical molecular dynamic simulations. 

The principal difficulty to solving problem of structure of disorder material is that, in 

general, any one technique does not contain sufficient information to constrain a unique 

structural solution. A coherent strategy is required for combining input from multiple 
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experimental methods and theory in a self-consistent global optimization scheme. Only such 

an approach based on the different methods can make the proposed structural model reliable. 

Therefore, high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy 

(RS), electron energy loss spectroscopy (EELS) and nanoindentation measurements were 

performed to shed more light on the evolution of the glassy carbon structure and properties 

during the heat treatment. HRTEM is undoubtedly one of the most powerful methods for 

probing the atomic arrangement and enables direct images of the structure to be recorded. In 

the present work, HRTEM was used to examine glass-like carbons for a better understanding 

of the changes in their multiscale organization, depending on the thermal history of the 

synthesis process. RS, on the other hand, is an indirect probe of structure but it is known to be 

extremely sensitive to local structural details. It seems reasonable, that RS can be used as a 

verification of the fullerene-related structure of glassy carbon, since the curved, defective 

carbon fragments should contribute in a significant way to the Raman scattering. Fullerenes 

and nanotubes give a fingerprint for their curved carbon network in the low-frequency region 

50-1000 cm
-1

 of Raman spectra [29-31]. The occurrence of Raman peaks in this region 

provides evidence for the presence of fullerene- and nanotube-like elements in the 

investigated glassy carbons. Moreover, comparative studies of the first- and second-order 

Raman spectra [32-34] for the series of prepared samples were performed to reveal 

differences in their structural ordering and correlate them with snapshots of structure taken by 

HRTEM. The purpose of applying the EELS technique was to identify the bonding character 

of carbon atoms in these materials at different stages of carbonization process and verify the 

fullerene-like model of the glassy carbon atomic structure. The aim of nanoindentation 

experiment was to continuously follow the development of the mechanical response of the 

material during the carbonization process. Finally, based on the obtained results relationships 

between the structure affected by the carbonization conditions and mechanical properties of 

these glassy carbons were established. 

 

1.1. State of the art on the structure of glass-like carbons 
 

The first concept of the structure of graphitizing and non-graphitizing carbons, 

including glass-like carbons, was put forward by Franklin in 1951 [15]. She proposed that the 

structure of non-graphitizing carbons is composed of nanometer-sized randomly orientated 

stacks of graphite-like layers. The stacks are held apart by strong cross-linking which results 

in a hard bulk structure with fine pores, and which may resist long-range reorganization into 
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crystalline graphite even when heated as high as 3000 °C. In the case of graphitizing carbons 

the structural units consisting of small graphitic crystals are approximately parallel to each 

other and they convert to graphite during high temperature treatment. The Franklin‟s 

representation of graphitizing and non-graphitizing is shown in Fig. 1. 

 

 

Fig. 1 Models of the structure of graphitizing (a) and non-graphitizing carbons (b) proposed 

by Franklin [15]. 

 

These structural units are connected by cross-links and rearrange as a whole during the heat 

treatment. The idea of the cross-links proposed by Franklin was deeply investigated and 

discussed. However, up to now the nature of these cross-links between graphitic fragments is 

not specified, so the difference in behavior of soft graphitizing and hard non-graphitizing 

carbons is not fully explained. The presence in the structure of diamond-like sp
3
-bonded 

atoms would explain the high hardness and resistance to graphitization of glassy carbons and 

in the past an idea appeared that the sp
3
-bonded carbons may act as the potential cross-linking 

[35]. However, sp
3
 bonds are unstable at high temperatures. Diamond is converted into the 

more thermodynamically favored sp
2
-hybrydized graphite at about 1700 °C, whereas the sp

3
-

bonded carbon atoms in amorphous films are unstable even just above 600 °C. At nanometer 

scale the structure of nanodiamonds at 1700 °C transforms completely into concentrically 

stacked spherical fullerene structures called nanoonions, in which carbon atoms are linked by 

the sp
2
 bonds [36-37]. Therefore, it is unlikely that diamond-type structures could be 

responsible for the glassy carbon properties at higher temperatures. However, the presence of 

small amounts of sp
3 

bonded carbon atoms cannot be completely ruled out. 

Two of the most frequently used models of the glass-like carbon structure are the 

models proposed by Jenkins and Kawamura [8] and Oberlin [38]. According to the first one, 

glassy carbons are composed of randomly twisted ribbons of graphitic carbon. This model, 

however, is inconsistent with the glassy carbon impermeability to gases and low chemical 

reactivity. In contrast, the second model consists of crumpled graphite-like sheets. However, 

this model also does not explain glassy carbon properties and experimental data obtained up 

to now. More recently, Pesin and Baitinger have proposed a model for glassy carbon which 

  a)                                          b) 
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incorporates carbyne-like chains [14]. This model was based on a consideration of the 

electronic properties of glassy carbon, but there is no direct experimental support for the 

carbyne-like structure. The discoveries of nanoscale, non-planar carbon structures, such as 

fullerenes, nanotubes or nanohorns, proved that carbons containing non-six-membered rings, 

among the hexagonal sp
2
 carbon network, can be highly stable. This prompted an idea that 

structure of non-graphitizing carbons can resemble the structure of fullerenes. The precursor 

of this idea is Harris who found evidence for this fullerene-related model in high-resolution 

transmission electron images [5,9-11]. He proposed that glassy carbon structure consists of 

fullerene fragments in the form of curved sp
2
-bonded graphene-like planes. They are much 

larger for high-temperature glassy carbons and can be multilayered and surround closed pores. 

The presence of curvature has been attributed to the topological defects in form of non-

hexagonal carbon rings, such as pentagons and heptagons, which were directly observed by 

the HRTEM [12]. Models for the structure of low temperature (a) and high temperature glassy 

carbon (b) proposed by Harris are shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

Fig. 2 Models for the structure of low temperature (a) and high temperature glass-like carbon 

proposed by Harris [5]. 

 

Despite the progress which is being made in understanding the structure of glassy 

carbons, there remain many unanswered questions. Many approaches were used to elucidate 

the pyrolysis process, the structure and the related properties of different carbon materials. 

However, many issues remain still not fully described, namely: 

 influence of the structure and chemical composition of starting polymer on the 

structure and properties of resulting synthesized material; 

 role of topological defects in the graphitization process and their influence on 

properties; 

 effect of the presence in the structure of curved graphene-like layers on properties; 

 differences in behavior of various types of carbons against heat treatment; 

 mechanism of pore formation in porous carbons; 

a)                                                 b) 
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 origin of high hardness and closed porosity of glassy carbons. 

In particular, it would be of great interest to know more about the mechanism whereby glassy 

carbon carbonized at lower temperature is transferred into the high-temperature structure upon 

heat treatment.  

 

1.2. Medical applications of glass-like carbons 

Glass-like carbons have a long history of use for medical applications due to their 

compatibility with blood and tissues, good strength and hardness, high erosion resistance and 

chemical inertness. Isotropic glassy carbons in pyrolytic form meet these criteria and are used 

in biomedical devices such as heart valves and dental implants [39-41]. However, glassy 

carbons produced conventionally by the carbonization of polyfurfuryl alcohol or phenolic 

resins are usually very brittle. Despite the fact that various biomedical applications for these 

glassy carbons were studied many years ago [42], potential medical applications were not 

successful due to their high fragility. Fracture characteristics of the glassy carbons are 

compared with those of float glass and graphite [43]. This was a strong limitation to the 

widening of glassy carbon applications. However, modern techniques in carbon materials 

manufacturing offer an opportunity of preparation of glassy carbon-based products which are 

mechanically demanding. 

 Recently, glassy carbon foams have been tested in vitro and in vivo for compatibility 

with primary cell adhesion and tissue repair [44]. It was demonstrated that this type of carbon 

materials is an attractive candidate for tissue engineering and regenerative medical 

applications. Moreover, recent advances in additive manufacturing have led to the creation of 

ultrastrong and lightweight glassy carbon microlattices [19]. They represent a significant step 

forward in the field of lightweight mechanical metamaterials and can exert a great impact for 

medical applications. Due to glassy carbon‟s good mechanical properties, electrical 

conductivity and biocompatibility, this material is interesting for microimplants in the line of 

microstents, microscaffolds for bone regeneration, and microelectrodes. It was showed that 

lithography patterned glassy carbon electrodes offer a new and compelling material for neural 

recording and stimulation [21]. The pyrolysis conditions (i.e., maximum temperature, 

duration, and ramp rate) during fabrications of the glassy carbon products enable  

a tailorability of their functionalities. Namely, the pyrolysis parameters can be varied to 

enable useful properties such as mechanical stiffness and hardness for stiffness-matching with 
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soft tissues, electrical impedance for impedance-matching with tissues, and electrochemical 

properties useful for optimized stimulation and recording. 

The determination of the preparation-structure-properties relationships is essential for 

the design and the analysis of performance and reliability of the glass-like carbon products. 

The incomplete knowledge about the mechanism of structural changes in glass-like carbons 

prevents the improvement of their production and processing. The developed here quantitative 

relationships between the structure and mechanical properties may benefit the further design 

of novel glassy carbon systems. Therefore, it is mandatory to well characterize the material 

and understand the preparation-structure-properties correlations. 

 

2. Results and discussion 

The glass-like carbons being the subject of this research were prepared by pyrolysis of 

polyfurfuryl alcohol at different temperatures from the range 600 °C - 2700 °C. All details 

concerning their preparation were described in papers P1, P2, and P3. The materials are 

labeled in the text of this thesis according to the maximum heat treatment temperature. For 

instance, the glass-like carbon pyrolyzed at 600 °C is called GC600, and the glass-like carbon 

pyrolyzed at 2500 °C is GC2500, respectively. 

 

2.1. Interpretation of diffraction data in reciprocal and real 

spaces 

 

2.1.1. Paracrystalline structure modeling 

The experimental wide-angle X-ray scattering data in form of the structure factors 

     and the pair distribution functions        presented in paper P1 confirmed that the 

glass-like carbons investigated here have disordered structure, intermediate between 

crystalline and amorphous. The      functions resemble those of typical turbostratic carbons 

[45] and contain only the (00 2𝑙) and (hk0) graphite-type reflections. With increasing the 

synthesis temperature sharpening and rise of the      and        peaks can be observed, 

that can be explained by ordering of the atomic structure. As the carbonization process 

proceeds, the graphene-like planes continued to grow and rearranged to more ordered 

graphite-like domains. However, it was demonstrated that the models based on the graphite 
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structure, disordered only by the thermal vibrations of atoms and the turbostratic displacement 

of graphitic layers cannot reproduce all features of the experimental diffraction data and 

explain the real structure of these carbons.  

 

Fig. 3 Comparison of the experimental (dotted line) structure factors (a) and the pair 

distribution functions (b) for the glass-like carbons carbonized at different temperatures with 

the simulated functions (solid line) for paracrystalline models [P1]. 

 

Afterwards, an attempt has been made to analyze the WAXS data by introducing 

paracrystalline distortion of the atomic network into the models. The paracrystalline disorder 

assumes that the nearest-neighbour atom-atom distances fluctuate randomly without spatial 

correlations, leading to a network distortion which propagates proportionally to the square 

root of the interatomic distance [46,47]. The numbers of graphitic layers for each model, the 

lattice constants and the values of interlayer spacing were adjusted previously by simulations 

       a)                                                     b) 
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of the turbostratic structures. Moreover, the translation of neighboring layers in the stack was 

kept for describing the features of experimental data related to the turbostratic structure. The 

paracrystalline disorder was introduced by means of the generalized Debye-Waller factor with 

adjustable parameters in form of standard deviations of interatomic distances. Paracrystalline 

stacking of layers was generated assuming Gaussian distribution of the interlayer spacing with 

adjustable standard deviation. The fitted model parameters are listed in Table II of paper P1.  

The comparison of the model-based and experimental diffraction data is presented in 

Fig. 3. As can be seen from this comparison, the peak positions, widths, and amplitudes for 

the experimental and model functions in the reciprocal and real spaces are in good agreement. 

The paracrystalline models explain also the broadening of the pair distribution peaks with 

increasing the interatomic distance that can be observed for experimental functions. There is  

a closed correspondence between the expected changes in the structure of investigated 

carbons as a function of pyrolysis temperature and the parameters of paracrystalline models. 

In general, the values of parameters that characterize disorder decrease with increasing 

synthesis temperature. 

 

2.1.2. Optimization of the atomic structure models using 

molecular dynamic 

The most challenging task of the research intended in this thesis was the creation of 

realistic models of the atomic structure for the glass-like carbons pyrolyzed at different 

temperatures which would comply with all the diffraction data and other experimental results 

simultaneously. Neutron diffraction provides data for which scattering cross-section does not 

depend on the scattering vector  . While in the case of X-ray diffraction the measured 

intensity is strongly diminishing with   and for carbon samples the intensity in a higher   

range is dominated by the Compton scattering that may cause normalization problems. In  

Fig. 4, published in paper P2, the comparison of the neutron wide-angle scattering data 

measured on the D4 instrument (Disordered Materials Diffractometer) at the Institute Laue-

Langevin, Grenoble and X-ray wide-angle scattering results recorded with laboratory 

diffractometer is shown. It is demonstrated that the carefully performed correction and 

normalization procedures for the X-ray measurements allowed getting reliable data that can 

be Fourier converted to the form of the pair distribution function with comparable quality as 

for the neutron measurements. 
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Fig. 4 Comparison of the structure factors (a) and the pair distribution functions (b) from the 

neutron and X-ray diffraction experiments for the glass-like carbons [P2]. 

 

 

Fig. 5 Comparison of the interatomic distances of the experimental pair distribution functions 

for the glass-like carbons with the function calculated for a single unstrained graphite layer in 

the short range order (a) and in the intermediate range order (b) [P2].  

a)                                                                      b) 
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Fig. 5 shows comparison of the experimental neutron and X-ray         for the 

glassy carbon samples carbonized at different temperatures from the range of 800-2500°C 

with the function calculated for an unstrained single graphitic layer. As can be noticed the 

peak positions of the        appearing in the range of 1-6 Å are practically the same as 

those for the perfect hexagonal layer, but the peaks for higher r-values shift towards longer 

interatomic distances characteristic for the intra-layer structure with increasing heat treatment 

temperature. This finding can be directly related with the curvature of the atomic structure and 

its gradual flattening under the influence of the heat treatment. 

In order to specify the degree of the curvature manifesting itself in the diffraction data 

and optimize structural models matching to the experimental results the classical molecular 

dynamic was used. The diffraction data provide averaged structural information about the 

coherently scattering domains. Therefore, in the first step, the models with sizes of these 

domains (called here „small models‟) have been computer generated. It was assumed that the 

coherently scattering domains are arranged without spatial correlations. Then, in order to 

account for possible cross-correlations between such domains, larger models (called here „big 

models‟) were constructed. Starting positions of carbon atoms were obtained from the ideal 

graphite structure. The successive graphene layers were randomly translated in direction 

perpendicular to their stacking, bringing turbostratic kind of disorder into the models. The 

physical implementation of paracrystalline perturbation in the structure, postulated in paper 

P1 and described in the previous section, was realized by taking into account the presence of 

different types of topological defects in form of vacancies and Stone-Thrower-Wales defects 

(STW) [48]. In order to obtain stable atomic configurations and minimize the energy of the 

models, they were relaxed using suitable C-C potential interaction. The reactive empirical 

bond order potential [49] was used for atoms lying within a single layer and the Lennard-

Jones potential [50] for interlayer interactions. The modeling studies were described in details 

in paper P2. 

The theoretical      and        calculated based on the big-model simulations that 

give the best agreement with experimental neutron and X-ray diffraction results are presented 

in Fig. 6 and 7. In paper P2 the diffraction data calculated based on the big models are 

compared with the data for the optimized small models of averaged coherent scattering 

domains. The big models created by coalescence of small building blocks account for spatial 

correlations between atoms within single coherent scattering domain, as well as between 

atoms lying in different domains, and they match significantly better to both neutron and X-

ray experimental diffraction data than the small models. 
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Fig. 6 Comparison of the structure factors (a) and the pair distribution functions (b) computed 

for big models of structure with the neutron diffraction experimental data [P2]. 

 

 
 

Fig. 7 Comparison of the structure factors (a) and the pair distribution functions (b) computed 

for big models structure with the X-ray diffraction experimental data [P2]. 

 

A visualization of the stored geometry for the optimized small and big models of the 

glassy carbon structure is displayed in Fig. 8 and 9, respectively. The models in Fig. 8 show  

a clear evolution of the averaged coherent scattering domains under heat treatment. One can 

observe the effect how the point defects (shown in panels (b-c) of Fig. 8) deform the 

a)                                                                       b) 

a)                                                                       b) 
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originally flat graphene layers. As for fullerene elements, the occurrence of non-hexagonal-

membered carbon rings induces strains and is responsible for deviations from planarity. 

Consequently, in some regions the rippling brings closer of the graphene sheets and they can 

even merge together, as it is shown in panel (a) of Fig. 8. This behavior can explain the 

mechanism of closed porosity creation in the glassy carbons.   

 

 

Fig. 8 Visualization of the proposed models of averaged coherent scattering domains (small 

models) for the glassy carbons, single layers randomly separated from the models (on right), 

fragment of GC1500 model with nonplanar sp
2
 bonding (a), fragment of GC980 model with 

Stone-Thrower-Wales defect (b), fragment of GC800 model with monovacancy defect (c) 

[P2]. 

 

For the big models the boundaries of the linked domains are also a rich source of 

various types of defects that can be recognized in the fragments of the models in Fig. 9(a-d). 
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Among them non-six-memebered rings, multi-vacancies, isolated tetrahedral bonds and 

carbon chains can be distinguished. The presence of such agglomerated defective regions 

induces formation of curvature and interlayer bridges which may effectively inhibit the 

movement of the carbon layers and prevent graphitization. It is apparent that the heat 

treatment process reduces disorder and transforms the glassy carbon atomic structure toward 

more graphite-like structure. It should be pointed out that the disappearance of curvature as  

a function of the increase in pyrolysis temperature observed for the proposed models follows 

the changes in peak positions of the theoretical         in a similar manner as for the 

experimental data in Fig 5. 

 

 

Fig. 9 Visualization of the proposed structural models for the glass-like carbons, and 

magnified selected fragments of the models for GC1500 (a), GC980 (b,c), and GC800 (d,m) 

[P2]. 
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2.2. Complementary information on the structure from other 

experimental techniques 

 

2.2.1. High-resolution transmission electron microscopy 

In order to verify the correctness of the proposed models of the glass-like carbon 

atomic structure at different stages of the pyrolysis process the HRTEM images were 

recorded. HRTEM technique is only a local probe of structure, however, the obtained 

„snapshots‟ of the glass-like carbons using HRTEM, are in good agreement with averaged 

models of the atomic structure reproducing all features of the diffraction data. The 

representative HRTEM images at different magnifications of the glassy carbon pyrolyzed at 

temperatures from the range 600 °C - 2500 °C are presented in Fig. 10. All information 

concerning the measurements was described in details in paper P3. 

The pictures in Fig. 10 show the evolution from a network of randomly oriented, 

disordered carbon domains for low temperature GC600 to a more organized system for high 

temperature GC2500, resembling onion-like elements in which carbon layers are less rippled. 

With increasing the carbonization temperature above 600°C the curvature related with 

elements resembling fragments of nanotubes, fullerenes, onions or even completely closed 

fullerene-like particles is more prevalent. The different types of curved structural elements for 

the GC980 are marked with arrows in Fig. 10(h,i). During the heat treatment process the 

glassy carbon crystallites grow at the expense of the more disordered part of the 

microstructure. The less-organized regions are consumed by the domains with parallel layers 

resulting in their growth, both in width and height, and simultaneously in creation of empty 

voids. In the low-temperature glassy carbons the microporosity is a direct consequence of 

misalignment of the curved sheets or their packages. As the annealing temperature increases 

the bigger pores are formed due to joining of disordered fragments to more ordered domains. 

This leads to creation of isolated, non-connected voids such as these marked with circle 

frames in Fig. 10(n,r).  
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Fig. 10 Representative HRTEM images at various magnifications of different regions of 

glassy carbon samples pyrolyzed at temperatures from the range 600-2500°C. Rectangular 

frames expose domains with stacked graphene-like layers; round frames show onion-like 

structures enclosing pores; arrows indicate curved structural units [P3]. 
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2.2.2. Raman spectroscopy 

For further examination of the structural changes in the glass-like carbon subjected to 

the thermal treatment the Raman scattering was measured. The analysis of the Raman spectra 

is widely described in paper P3. The first order Raman spectra display two main peaks, G and 

D marked in Fig. 11(a), which are characteristic features of graphitic carbons [51]. The 

spectra of the first-order Raman region normalized to the G band intensity are presented in 

Fig. 11(b). The intensity of the D band increases with respect to the G band intensity with 

increasing pyrolysis temperature up to 2500°C. Such dependence is in agreement with the rule 

proposed by Ferrari and Robertson [52] claimed that for amorphous and disordered carbons 

containing small clusters below about 25 nm the development of the D peak indicates their 

ordering and grow. 

 

 

Fig. 11 Overview of the Raman spectra for glassy carbons pyrolyzed at different temperatures 

from the range of 600-2500°C (GC600-GC2500) (a); comparison of the normalized spectra 

for the first-order region (b) and the second-order region (c). The insets show the best fit of 

the experimental data for glassy carbon pyrolyzed at 1500°C (GC1500) [P3]. 

 

The D4 and D5 features around 1210 cm
-1 

and 1110 cm
-1

, respectively, were taken into 

account for the total Raman spectra as showed in Fig. 11(b). They may come from the 
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vibrations of carbon atoms in non-hexagonal rings such as STW defects which are considered 

as the possible reason of the fullerene-like structure of glassy carbons. The signal from Stone-

Thrower-Wales defects on single-walled carbon nanotubes were experimentally and 

theoretically identified just in the range of 1100-1200 cm
-1 

[53,54]. 

 

 

Fig. 12 Low-frequency Raman modes for glassy carbons pyrolyzed up to different 

temperatures from the range of 600-2500°C (GC600-GC2500). The insets show selected 

HRTEM images with curved structural units of around 1 nm in diameter [P3]. 

 

The measured Raman spectra were also carefully examined in the low frequency 

region below 900 cm
-1

. A number of Raman-active modes were observed is this region. They 

probably are an evidence of the curved structural units in the studied carbons. All studied here 

glassy carbons show peaks near 260 cm
-1

 (P1), 440 cm
-1

 (P2), 620 cm
-1

 (P3) and 860 cm
-1

 

(P4), as can be seen in Fig. 12, while it is known that this Raman region is completely silent 

for graphite and diamond crystals according to the group theory [55]. Analogous bands in the 

low-frequency region of Raman spectra were found for carbon nanotubes, fullerenes or 

nanoonions [30-31,55-57], as well for more exotic non-planar carbon structures such as 

tubular cones, whiskers and polyhedral crystals [58]. The P1 peak around 260 cm
-1

 can be 

related to breathing modes of carbon atoms in curved structural units, analogous to the radial 

breathing modes in carbon nanotubes [59]. In paper P3 it was qualified that the diameter of 

the nanotube-like fragments responsible for the breathing vibrations may be of approximately 
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1 nm. Interestingly, such nanotube-like elements of approximately 1 nm in diameter can be 

found in HRTEM images and their examples were shown as insets to the Fig. 12. The 

diameter of order of 1 nm fits the geometrical size of pores enclosed by the curled layers 

presented here in the proposed structural models, and in the HRTEM images, especially for 

the low-temperature glassy carbons. 

Beside the P1 peak, the Raman spectra contain also broad features with maxima at 

around  440 cm
-1

 (P2), 620 cm
-1

 (P3) and 860 cm
-1

 (P4). They are analogues to the Raman 

features identified for carbon nanoonions [57] and nanotubes [30]. Two possible explanations 

for the origin of these peaks are that they are combination of the acoustic and optical phonon 

modes activated due to radial geometry, or they are defect-induced modes [60]. 

 

2.2.3. Electron energy loss spectroscopy 

The X-ray diffraction studies combined with computer simulations, HRTEM images, 

and Raman scattering results clearly evidenced that the structure of glass-like carbons have 

features of non-planar structure of nanocarbons such as fullerenes, nanotubes or nanoonions. 

The question that subsequently arises is what type of bonds between carbon atoms the curved 

layers contain. Particularly, it would be of great interest to estimate the amount of sp
3
 

diamond-like bonds, since they are very strong and could explain the glassy carbon high 

hardness. To verify the possible content of sp
3
 bonds in the studied glassy carbons electron 

energy loss spectroscopy was employed. The experimental details on the EELS 

measurements, data treatment, and analysis can be found in paper P3.  

 

 

Fig. 13 Variation in the glassy carbon electron-energy loss in the C-K edge region (a), and in 

the determined sp
2
 -hybridized bond content (b) as a function of pyrolysis temperature from 

the range of 600-2500°C (GC600-GC2500) [P3]. 
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The representative EELS spectra in the C K-edge region are shown in Fig 13(a). With 

increase in pyrolysis temperature the EELS spectra show an increase in the intensity of the π* 

peak in respect to the σ* peak intensity. Such a behavior is typical for conversion of disorder 

carbon structure towards graphitic sp
2
 bond configuration [61]. The procedure developed by 

Berger, McKenzie and Martin [62] was used for determining the fraction of sp
2
-bonded 

carbon atoms in respect to the total content of sp
2
 and sp

3
 bonds, results are presented in Fig. 

13(b). The fraction of sp
2
 bonds rises from about 95% for low temperature glassy carbon, 

GC600, up to almost 100% for high temperature GC2000.  

The obtained EELS spectra gave also an opportunity to measure the amount of non-

planar sp
2
 bonds related with fullerene-like structure. The method described by [63] was used 

to determine the fraction of the sp
2 

non-planar bonds to the total sp
2
 bond content (fullerene-

like non-planar and graphitic-like planar). The results presented in Fig. 14 show that the ratio 

of non-planar sp
2
-bonded to all sp

2
-bonded carbon atoms increases from approximately 25% 

for GC600 up to about 38% for GC980, and then a subsequent drop of this ratio is watched up 

to about 30% for GC2500.  

 

 

Fig. 14 The variation in the sp
2
-hybridized non-planar bond content as a function of pyrolysis 

temperature from the range of 600-2500°C [P3]. 

 

2.3. Correlations preparation-structure-mechanical properties 

At the last stage of this research a special emphasis has been placed on the correlations 

between glass-like carbon preparation, structure and mechanical properties. Particularly, I was 

focused on the explaining whether structural disorder makes these materials harder and 
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stronger, or softer and weaker, and also what is the optimal heat treatment temperature for 

applications of glassy carbon in mechanically demanding products. 

Fig. 15 shows the effect of pyrolysis temperature on the mechanical properties, 

hardness ( ) and reduced Young's modulus (  ), of the glassy carbons measured using 

nanoindentation technique. The results of these studies were published in paper P3. The 

values of the determined hardness and reduced Young's modulus rise from around 3 GPa and 

16 GPa, respectively, for glassy carbon carbonized at 600°C up to around 6 GPa and 38 GPa, 

respectively, for 980°C. With further increase in heat treatment temperature, a continues 

decrease in   and    is observed up to around 4 GPa and 27 GPa, respectively, for 2500°C. 

The changes in hardness and reduced Young's modulus follow the same trend as the changes 

in the content of non-planar to the total amount of sp
2 

carbon bonds with increase in pyrolysis 

temperature, as described in previous section. Comparison of the data from EELS in Fig. 14 

with nanoindentation results in Fig. 15 shows that the measured mechanical properties are  

a direct response of the structural transformation that undergoes with increase in heat 

treatment temperature. The fraction of sp
2 

non-planar, fullerene-like or nanotube-like bonds 

with respect to the total content of sp
2
 bonds between carbon atoms may be successfully used 

for glassy carbon hardness and Young's modulus rating. 

 

 

Fig. 15 Variation in the glass-like carbon nanoindentation hardness (a), and reduced Young's 

modulus (b) as a function of pyrolysis temperature from the range of 600-2500°C [P3]. 

 

Carbon nanotubes are one of the strongest materials nowadays known [64]. The 

presence of nanotube-like elements in the structure of non-graphitizing glass-like carbons can 

be responsible for their high hardness and strength comparing to graphitizing carbons. The 

nanotube-like bridges between neighboring carbon layers evident in HRTEM images of Fig. 

10 bind the entire structure into a tight network. It is worth to mention that the proposed here 
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structural models of glass-like carbons display the possible configurations of such fullerene-

like or nanotube-like interfaces. Based on the models it was established that the creation of 

such interlayer connections, or so-called crosslinks, is facilitated by the presence of defects in 

form of non-hexagonal rings, vacancies, isolated sp
3
 bonds or chains which introduce 

curvature. The curved units may also effectively inhibit the movement of carbon layers and 

prevent the graphitization. 

The optimal temperature of pyrolysis for the best mechanical performance of glass-

like carbon prepared here as described in papers P1, P2 and P3 is around 1000 °C. When this 

carbon is processed at temperatures higher than 1000 °C, it becomes more ordered but less 

hard and elastic. It should be pointed out that the prepared glass-like carbons carbonized at 

different temperatures were also tested for use in heart valves. The results of tribological 

characteristics, as well as micromechanical properties were published in articles [65,66].  

A correlation was observed between hardness, Young‟s modulus, and the stabilized friction 

coefficient. It was shown that the increase in the heat treatment temperature from 1000 °C to 

2500 °C results in reduction of the stabilized friction coefficient with decrease in the 

microhardness and Young‟s modulus. 

 

3. Concluding remarks 

This thesis represents fundamental research connecting all three facets of synthesis, 

structure, and properties of glass-like carbons. These non-graphitizing, hard glass-like carbons 

produced by pyrolysis of polyfurfuryl alcohol at different temperatures from 600 °C up to 

2700 °C have been thoroughly characterized using different experimental techniques such as 

wide-angle X-ray and neutron scattering, high-resolution transmission electron microscopy, 

Raman spectroscopy, electron energy loss spectroscopy, nanoindentation, and computer 

simulations of the atomic structure based on paracrystalline model and classical molecular 

dynamic method. The applied comprehensive approach allowed collecting broad range of 

information about their structure and its relations to properties and pyrolysis conditions.  

The most significant achievements of this doctoral project, I would like to point out, 

are as follows: 

 Proving by many different techniques that the atomic structure of glass-like carbons 

has much in common with the structure of non-planar nanocarbons such as fullerenes, 

nanotubes, and nanoonions. 
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 Proposing of structural models of the glassy carbons at different stages of pyrolysis 

process which are compatible with various experimental results and explain the 

observed properties. 

 Exposing the possible type and amount of topological defects in these carbons, their 

changes during thermal treatment up to 2500 °C, and their effect on the topology of 

the atomic structure. 

 Indicating that the Raman spectroscopy method can be used as a tool for verification 

of the presence and quantifying of curved-spaced structures in carbon materials. 

 Demonstrating the insignificant amount of diamond-like sp
3
-bonds in glassy carbons 

and excluding their presence as a main factor governing their mechanical properties. 

 Exhibiting the scaling of the glassy carbon hardness and Young‟s modulus with the 

structure and pyrolysis conditions. 

 Explaining the origin of the glass-like carbon microporosity, high hardness and 

strength comparing to graphitizing carbons, and resistance to graphitization in regards 

to their structure. 

The fundamental knowledge about glass-like carbons flowing from this research could 

be impactful for design and fabrication of new carbon systems with tailored or even 

transformative properties for applications in many areas of life, such as medicine, aerospace 

and automotive industry or electrochemistry. 
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4. Publications with statements of co-authors on 

contribution 

4.1. P1: Paracrystalline structure of glass-like carbons 

Jurkiewicz, K., Duber, S., & Burian, A. (2016). Paracrystalline structure of glass‐like carbons. 

International Journal of Applied Glass Science, 7(3), 355-363, 

DOI: 10.1111/ijag.12186. 

 

Contribution of the first author to this publication was preparation of glass-like carbons, 

performing X-ray diffraction measurements, performing the data treatment, analysis and 

interpretation, performing computer simulations, writing and editing the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



Paracrystalline Structure of Glass-Like Carbons
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This study reports on structural characterization of a series of glass-like carbons obtained by pyrolysis of polyfurfuryl
alcohol at 600, 800, 980, and 2700°C. The atomic scale structure of the prepared materials has been studied using wide-
angle X-ray scattering technique. The acquired diffraction data were analyzed in reciprocal space as the structure factor and in

real space in the form of the pair distribution function to reveal the structural attributes such as number of hexagonal network
layers, size of the layers, interlayer correlations, interlayer and interatomic distances. The parameters have different effects on
the diffraction intensity and the pair distribution function and are verified in reciprocal and real diffraction space simultane-

ously. The obtained results show that the structure of the glass-like carbons consists of defective graphite-like domains which
size increase with the pyrolysis temperature. The heat treatment leads to a noticeable ordering of coherently scattering
domains of glass-like carbon in directions perpendicular to graphene-like layers. However, paracrystalline type of disorder
within individual layers manifesting itself in decrease in intensity and broadening of the diffraction lines is preserved in the

atomic structure even at heat-treatment temperature of 2700°C.

Introduction

Glass-like carbons appeared as commercially avail-
able products in the early sixties.1 Thereafter, most sci-
entific investigations were concerned with the
interesting properties of this material combining the
features of graphite with those of glass: high tempera-
ture and chemical resistance, good electrical conductivity,
closed porosity, high hardness, and excellent biocom-
patibility.2–4 The unique combination of the properties

has drawn attention of many scientists to the atomic
structure of this form of carbon. Over the years, many
structural models have been put forward1,5,6 but none
has been entirely satisfactory in explaining the origin of
the glass-like carbon properties. In principle, the struc-
ture of glass-like carbons at the atomic level remains
still poorly understood. More research is needed to
determine the arrangement of atoms in detail and to
understand the relationship between the atomic scale
structure and physical properties. However, due to the
lack of long range atomic ordering, the structure of
investigated materials cannot be probed by conventional
methods used for crystalline materials. One of the most
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powerful techniques to study noncrystalline structures is
wide-angle X-ray scattering (WAXS). In the WAXS
experiment, the distribution of coherently scattered
radiation using incident X-rays with an appropriate
wavelength is measured and used for obtaining struc-
tural information. The observed diffraction pattern may
be converted by the Fourier transform to the pair dis-
tribution function which yields quantitative data for a
direct modeling of the real space structures. The WAXS
technique used together with the modeling studies has
proved to be efficient tools for probing the structure of
various noncrystalline carbon materials as reported in
our previous studies.7–11

Among the proposed structural models of glass-like
carbon, one of the most frequently mentioned is the
model of turbostratic carbon12–14 featured by alignment
of flat graphite layers stacked without spatial correla-
tions in the direction perpendicular to layers. The adja-
cent planes are shifted or rotated with respect to one
another that results in lack of graphitic -ABAB- stack-
ing sequence and increase in the interlayer spacing. The
model was developed by Warren as a first approach to
the structure of carbon black.15 Warren showed that
the orientations of stacked graphite domains in the
investigated carbons are uncorrelated and described this
arrangement as turbostratic. Early structural models of
other type of carbon materials—activated carbons—
have also assumed turbostratic disorder.1,16 It has been
previously reported that the theoretical pair distribution
function calculated based on the turbostratic theory for
activated carbons, prepared from a polymer of phenol
formaldehyde resin, could not reproduce all the features
of the experimental data.17 Therefore, it has been real-
ized that additional disorder should be imposed on the
structural models to account for the experimental data.
It has been assumed that network distortion propagates
proportionally to the square root of the interatomic dis-
tances, according to the paracrystalline theory. This
approach has been proposed and then developed by
Hossemann and his group.18,19 The model with the
graphite-like arrangement within a single layer and
paracrystalline-type disorder of the two-dimensional
hexagonal structure has proved to be more appropriate
description of the atomic scale structure of the activated
carbons.7,17

The main purpose of this study was to verify
whether the idea of turbostratic or paracrystalline disor-
der can be supported for the interpretation of the
diffraction data for the prepared glass-like carbons. A

comparison between theoretical and experimental
diffraction data is used as a first examination of consid-
ered structural models.

Experimental Procedure

Sample Preparation

The investigated glass-like carbon samples were
prepared from furfuryl alcohol as a precursor. The
polymerization of furfuryl alcohol (from SAFC, ≥ 98%
pure) was carried out by addition of 2% (v/v) of
0.1 M p-toluenesulfonic acid (from Acros Organics,
99% pure) solution in ethanol. The homogenization of
the catalyst in the furfuryl alcohol was accomplished by
magnetic stirring for 24 h. The catalyzed precursor was
then cast in the molds and held at 120°C for 2 h for
curing. After polymerization, the resin was divided into
different batches and carbonized under Ar gas flow at
different temperatures: 600, 800, 980, and 2700°C
(samples 1–4, respectively; this enumeration of samples
will be used when describing results). The heating rate
was 10°C/h to 200°C and 5°C/h to the desired tem-
perature. Upon reaching the final heat-treatment level,
the temperature was held constant for 2 h. The samples
were allowed to cool in Ar flow.

Wide-Angle X-Ray Scattering Measurements and
Data Processing

The wide-angle X-ray scattering (WAXS) measure-
ments were performed using a laboratory diffractometer
(Rigaku-Denki D/MAX RAPID II-R) equipped with a
rotating Ag anode (kKa = 0.5608 �A), an incident beam
(002) graphite monochromator and an image plate in
the Debye–Scherer geometry as a detector. The powder
samples were measured at room temperature in glass
capillaries with a diameter of 1.5 mm and wall thick-
ness of 0.01 mm. The scattered X-ray radiation was
recorded as two-dimensional diffraction patterns and
then converted into a one-dimensional function of
intensity versus the scattering vector I(Q), where
Q = 4psinh/k, 2h is the scattering angle and k is the
wavelength of the incident beam. The intensity func-
tions were corrected for background, polarization,
absorption, and incoherent Compton scattering and
normalized using the data processing procedure devel-
oped for high energy X-rays.20–22 In the next step, the
diffraction data were expressed as the structure factor
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which is related to the corrected and normalized (to
the electron units) intensity I(Q) divided by square of
the carbon atomic scattering factor f 2 according to the
following formula:

SðQ Þ ¼ I ðQ Þ
f 2ðQ Þ ð1Þ

The S(Q) depends only on distribution of atoms,
so on the structure of investigated object and not on
the atomic scattering power. For an advanced analysis
of the structural features of investigated carbons, the
structure factor determined for each sample was con-
verted to the real space representation of the diffraction
data in the form of the pair distribution function PDF
(r) as follows:

PDF ðrÞ ¼ 2

p

Z Qmax

0

Q ½SðQ Þ

� 1�sinðQrÞ sinðpQ=QmaxÞ
pQ
Qmax

dQ ð2Þ

where Qmax = 22 �A is the maximum value of scattering
vector reached in the measurement, r is the interatomic
distance in the real space and the last term refers to the
Lorch function. The termination of Fourier integral at
a finite value of Qmax introduces high-frequency ripples
in the real space distribution function. The used Lorch
modification function minimizes the unwanted effect of
the finite Qmax value.

The pair distribution function is proportional to
the probability of finding two atoms separated by a dis-
tance of r and is not centered in any specific atom, thus
giving a structural description of local ordering around
any atom in the structure. Successive PDF peaks corre-
spond to nearest-, second-, and next-neighbor atomic
distribution. The PDF approach is widely used to study
the local structure of liquids, glasses, and disordered
materials. The classical diffraction analysis methods are
limited for such kinds of materials because, due to the
lack of the crystalline order, only few atomic planes will
be participating coherently in the diffraction. The
advantage of the PDF method is that all the diffuse
scattering is integrated and so the structural informa-
tion inherent to it is recovered.

Modeling of Atomic Structure

The glass-like carbons investigated in this work
have the structure intermediate between crystalline and

amorphous. For predicting the scattered intensity in
diffraction process from such kind of disorder materi-
als, the Debye’s formula within the kinematic theory of
X-ray scattering can be used.23 In the case of scattering
by a system consisting of N atoms, the distribution of
scattered intensities averaged over all orientation can be
calculated as follows:

IN ðQ Þ ¼ f 2
XN
i;j¼1

sinðQrijÞ
Qrij

ð3Þ

The I(Q) is related to the structure factor SN(Q) in
accordance with Eq. (1). For modeling of the atomic
structure, the Debye’s equation normalized to one atom
was used. The final structure factor per one atom can
be calculated as follows:

SðQ Þ ¼ 1þ 1

N

�XN
i;j¼1

sinðQrijÞ
Qrij

exp

�
� r2ijQ 2

2

��
i 6¼j

ð4Þ
where the last exponential term describes the general-
ized Debye–Waller-type factor that characterizes attenu-
ation of the intensity due to thermal vibrations of
atoms and static disorder and rij is the standard devia-
tion of the interatomic distance rij. The small-angle X-
ray scattering contribution to the diffraction pattern
appearing in theoretical S(Q) at small Q does not con-
tain information about the atomic distribution and was
eliminated as described by Mitchell.24 In the next step,
the scattering data were converted to the real space rep-
resentation by the sine Fourier transform of S(Q)
according to the Eq. (2) yielding the theoretical pair
distribution function PDF(r). Such an approach allows
direct comparison of the simulation results with the
experimental data in both reciprocal and real spaces.

In the modeling studies presented in this study,
the intensity of the X-rays scattered by atoms arranged
like in the graphite structure was calculated using the
Debye’s equation, and then, a disorder was imposed on
the system. Two approaches to the disorder investiga-
tion were considered. In the first one, the turbostratic
contribution was taken into account. The model was
defined by as follows: the lattice constant a of the gra-
phitic structure; the dimensions x and y of a rectangular
graphitic layer; the number of layers n; the interlayer
spacing d; and the standard deviations of interatomic
distances due to thermal vibrations of atoms for atoms
laying in the same layer rintra and for atoms lying in
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different layers rintra. To fulfill the requirements of the
turbostratic theory, neighboring graphitic planes were
translated relative to each other by a distance t
expressed as a fraction of the lattice constant.

In the second approach, the paracrystalline struc-
ture was generated. The paracrystalline theory is based
on the assumption that the distances from any atom to
adjacent atoms fluctuate without statistical correlations
and these fluctuations propagate proportionally to the
square root of the interatomic distance.18,19,25 The sets
of the Cartesian coordinates have been generated on
the base of the input model parameters for the tur-
bostratic structure. Then, the structure was disordered
by means of the generalized Debye–Waller factor with
rintra ¼ r0

ffiffiffi
r

p
and rinter ¼ r1

ffiffiffiffiffiffi
Dn

p
, where r0 and r1

are adjustable parameters, Dn = ni � nj (ni and nj label
the layer position in the stack). Paracrystalline stacking

of layers was generated assuming Gaussian distribution
of the interlayer spacing with the standard deviation
denoted by rz. The final structure factor was computed
by averaging over all structure factors determined for
200 statistically independent atomic arrangements in
the form of the Cartesian coordinates with Gaussian
distribution of the interplanar distance.

Results and Discussion

The experimental structure factors and pair distri-
bution functions of the prepared glass-like carbons are
compared with the simulated functions for turbostratic
models in Fig. 1. The presented experimental data for
all samples are typical for disordered carbons having
the structure intermediate between crystalline and

Fig. 1. Comparison of the experimental structure factors and pair distribution functions (dotted line) for the glass-like carbons car-
bonized at different temperatures with the simulated functions (solid line) for turbostratic models. The first few diffraction reflections were
marked by the vertical dashed lines.
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amorphous. The carbon heated at 600°C shows only
broad diffraction peaks, and the corresponding pair dis-
tribution function exhibits features in a limited range
of interatomic distances up to 10 �A. It should be
pointed out that the region of the first three PDF peaks
up to about 3 �A involves in the carbon–carbon bond
distances in the aromatic-type hexagon of graphite. The
next peaks correspond to the subsequent in-plane car-
bon–carbon bond distances of graphite-like structure.
The presented structure factor for sample 1 resembles
that of typical turbostratic carbon and contains only
the (00 2l) and (hk0) graphite-type reflections. The first
few diffraction reflections were identified and marked
in Fig. 1. The lack of -ABAB- spatial correlations
between individual graphitic layers in direction perpen-
dicular to them is related to the absence of (hkl)
diffraction lines. Furthermore, the (hk0)-type peaks are
strongly asymmetric due to the Warren effect.15,26 The
observed Warren effect is related to 2D diffraction pat-
terns typical for layered structures. For glass-like car-
bons prepared at higher temperatures, the features of
turbostratic structure can also be noticed from analysis
of the structure factors. A common attribute of the
diffraction data for samples 1–3 is the intensity of the
first diffraction peak (the (002) peak in graphite) occur-
ring at about 1.7 �A�1. The amplitude of this line
depends on the number of stacked layers.7 More than
twice increase in intensity of this peak is observed for
sample 4 and indicates a great extension of coherent
scattering domain size in direction perpendicular to the
carbon planes. With increasing the synthesis tempera-
ture, sharpening and rise of these peaks occur that can
be explained by ordering of the atomic structure. As
the carbonization process proceeds, the graphene-like
planes continued to grow and rearranged to more
ordered structural domains. However, by analyzing the
diffraction patterns, it can be concluded that the inves-
tigated carbons are clearly nongraphitizing. The differ-
ences between structural orders of studied glass-like
carbons are also clearly seen from the comparison of
the pair distribution functions determined from Eq. 2.
The range of PDF peaks and thereby the range of
interatomic correlations expand as a function of heat-
treatment temperature. For the material prepared at
2700°C, the structural coherence extends to approxi-
mately 45 �A. The amplitude of the subsequent PDF
peaks depends on the coordination numbers and a
degree of ordering. Different types of structural imper-
fections can easily suppress intensity of the PDF. On

the other hand, the heat-treatment process organizes
the positions of atoms and can promote increase of the
PDF peak amplitudes and such a behavior can be
observed for the glass-like carbons.

The listed features indicate that the measured
materials can be formally described as turbostratic gra-
phite clusters with very weak correlations in the orien-
tation of adjacent graphene layers and with nanosize of
the coherently ordered domains. Therefore, an attempt
was made to fit the experimental PDFs assuming their
turbostratic structure. The numbers of layers in the cre-
ated turbostratic models were adjusted to reproduce the
amplitudes of the (002) first diffraction peak. The
model size in direction perpendicular to the layers for
the sample 4 is more than twice of that for samples 1–
3. The values of the interplanar spacing have been
picked out so that to estimate the positions of the
(002) reflection. The adjusted interplanar distances
(3.475, 3.42, 3.41, and 3.4 �A for sample 1–4, respec-
tively) are clearly greater than that of graphite (3.35 �A)
and also suggest the turbostratic nature of these car-
bons. The lattice constant for each model have been
chosen so as to best reproduce the peak positions of
the PDFs over the whole range of the interatomic dis-
tances. As an example, the model of the glass-like car-
bon structure consists of three layers is shown in
Fig. 2. Playing with the values of standard deviations
of interatomic distances rintra, the amplitudes of the
first three PDFs lines were fitted. The values of rintra
were taken the same as in case of rintra. To lose the
graphitic -ABAB- correlations, the individual layers
forming model have been shifted relative to each other
by a distance from a range 0–t expressed as a fraction
of the lattice constant. Fifty turbostratic configurations
were generated and the computed structure factors were
averaged. The created models have a limited size that
was established in paracrystalline modeling and will be
described afterward. All parameter of the simulated tur-
bostratic models are summarized in Table I. The com-
parison of the experimental and computed structure
factors and pair distribution functions clearly demon-
strates that the turbostratic models are not able to
describe correctly the atomic arrangements in the inves-
tigated samples. Peak positions are generally precisely
reproduced by the constructed models but some fea-
tures of experimental data are not satisfactorily recon-
structed by calculated theoretical functions. The PDF
peaks in the range of above 5 �A have much higher
amplitudes than those of the experimental functions,
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and no simple scaling of the Debye–Waller factors
could improve the agreement with the experimental
data both in reciprocal and real space. A general con-
clusion can be drawn from this analysis. The models
based on the graphite structure, disordered only by the
thermal vibrations of atoms and the turbostratic dis-
placement of graphitic layers, cannot explain the real
structure of glass-like carbons. Even the sample 4 pre-
pared at 2700°C, expected as the most ordered and
showing the higher degree of similarity to the structure
of polycrystalline graphite, is characterized by a greater
deviation from the atomic arrangement of perfect gra-
phite. It should be noted that in such high temperature
of synthesis, other noncarbon elements, which can be
present in starting polymer, are removed and should
not influence the disorder discussed.

In the second attempt of the analysis of the experi-
mental WAXS data, disorder in the form of paracrys-
talline distortion of the atomic network was introduced
into the models. The model parameters for investigated

samples 1–4 are listed in Table II. The numbers of gra-
phitic layers for each model, the lattice constants and
the values of interlayer spacing were adjusted previously
by simulations of turbostratic structures. Moreover, the
translation of neighboring layers in the stack was kept
for describing the features of experimental data related
to the turbostratic structure. The range of PDF peaks
and their shape depend on the size of constructed
model used for calculations. The chosen dimensions x
and y of individual carbon layers as well as the adjusta-
ble parameters, r0 and r1, of standard deviations of
interatomic distances result in the best agreement with
experimental data. The paracrystalline distortion of gra-
phene planes leads to a significant attenuation of the
PDF peaks and hence to loss of longer-range ordering
that cannot be achieved using only turbostratic-type
disorder. The values of the standard deviation of inter-
layer spacing rc were estimated according to require-
ments of paracrystalline model. The so-called a*
relation in paracrystalline concept18,25 determines the
empirical relation between the paracrystalline domain
size and degree of disorder as follows:

a� ¼ ffiffiffi
n

p rz
d

ð5Þ

where 0.1 ≤ a* ≤ 0.2. The formula given above means
that real paracrystal has a limited size controlled by
degree of disorder. The greater the size of system in
direction perpendicular to stacked graphene layers, the
more the regular distance between them. In the present
calculations, the values of standard deviation of inter-
planar spacing rz vary from 0.25 to 0.15 �A for glass-
like carbon samples 1–4, respectively. There is a closed
correspondence between the expected changes in the
structure of investigated carbons as a function of pyrol-

Fig. 2. Example of geometry of the simulated glass-like carbon structures based on model for glassy carbon pyrolyzed at 600°C.

Table I. Parameters of Simulated Models of Struc-
ture Based on Turbostratic Theory

a [�A]
l [�A]

n
rintra [�A]

d [�A] tk [�A] rintra [�A]

Sample 1 2.45 16 3 0.09 3.475 0.3
9 0.09

Sample 2 2.445 35 3 0.09 3.42 0.8
18 0.09

Sample 3 2.44 50 3 0.08 3.41 1.0
18 0.08

Sample 4 2.436 69 7 0.07 3.4 1.2
51 0.07
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ysis temperature and the parameters of paracrystalline
models. In general, the parameters that characterize
disorder such as r0, r1, rz, and t decrease with increas-
ing synthesis temperature. As can be seen in Fig. 3, the
peak positions, their widths and amplitudes of the
experimental and model functions in the reciprocal and

real space are in good agreement. The paracrystalline
models explain also the broadening of the pair distribu-
tion peaks with increasing the interatomic distance that
can be observed for experimental functions.

The coordination numbers N for the first coordina-
tion spheres of the studied glass-like carbon structures

Table II. Parameters of Simulated Models of Structure Based on Paracrystalline Theory

a [�A]
l [�A]

n
r0 [�A]

d [�A] rz [�A] t Nk [�A] r1 [�A]

Sample 1 2.45 16 3 0.075 3.475 0.25 0.3 2.46
9 0.075

Sample 2 2.445 35 3 0.06 3.42 0.2 0.8 2.64
18 0.06

Sample 3 2.44 50 3 0.055 3.41 0.2 1.0 2.62
18 0.055

Sample 4 2.436 69 7 0.04 3.4 0.15 1.2 2.86
51 0.075

Fig. 3. Comparison of the experimental structure factors and pair distribution functions (dotted line) for the glass-like carbons car-
bonized at different temperatures with the simulated functions (solid line) for paracrystalline models.
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were determined from the experimental radial distribu-
tion functions by the curve-fitting method, as described
in Ref. (17) and are listed in Table II. The obtained
values of the coordination numbers are lower than the
coordination number of a single layer graphene struc-
ture that equals three. Such a behavior is due to the
“size effect” of limited coherent scattering domains in
the studied materials and a significant contribution of
atoms at plane edges that may be under-coordinated. At
higher pyrolysis temperatures, leading to the growth of
glassy carbon plane size, the determined near-neighbor
coordination numbers increase and tend to the coordi-
nation number of infinite graphene network. Beside the
not-compensated edge effects in the finite-sized models,
different kind of structural defects may influence the
atomic coordination increasing the atomic disorder.

The simulations of the structural models provided
many details about the size of coherent scattering
domains and the atomic arrangement within the single
carbon layer and between layers. However, some dis-
crepancies between experimental and theoretical data
remain for the structure factors, as well as for the pair
distribution functions. An exact analysis of these differ-
ences may require a physical implementation of disorder
in the atomic structure. The recent ideas on the struc-
ture of glass-like carbons and other nongraphitizing car-
bons concern the presence of atomic dislocations, atom
vacancies, the Stone–Thrower–Wales defects and/or gra-
phene sheet curvature.27–29 Such defects can lead to
changes in the distribution of interatomic distances and
attenuation of perfect graphitic order.

The model of the paracrystalline structure can be
turned into another noncrystalline materials consisting
of randomly oriented domains and containing disor-
dered, defective atomic layers. In practice, experimental
results for diffraction by glass systems should be always
compared with theory/simulation in both r space and
Q space, as well as with results from other experimental
techniques, so as to create a complementary atomistic
three-dimensional structural model.

Conclusions

In our work, we studied thermal evolution of
atomic structure of glass-like carbon prepared by pyroly-
sis of polyfurfuryl alcohol using the wide-angle X-ray
scattering and computer simulations with pair distribu-
tion function formalism. It is important to point out

that neutron scattering provides data for which scatter-
ing cross section is Q independent.30–32 While in the
case of X-ray scattering, the measured intensity is
strongly diminishing with Q and for carbon samples,
the intensity in a higher Q range is dominated by the
Compton scattering.33 It may cause normalization prob-
lems but the carefully performed correction and normal-
ization procedures allow getting reliable data that can be
Fourier converted to the form of the pair distribution
function as it was shown in our previous study.33

The simulations of structural models based on tur-
bostratic and paracrystalline theory allowed calculation
of the theoretical structure factors and the atomic pair
distribution functions. The obtained X-ray diffraction
data show that an increase in the pyrolysis temperature
leads to a noticeable ordering of coherently scattering
domains of glass-like carbon in directions parallel and
normal to the graphene layers. However, the general
type of disorder is preserved even at heat-treatment
temperature of almost 3000°C. The experimental
WAXS data remain some features of the turbostratic
structure with very weak interlayer spatial correlations.
Nevertheless, the considered models based on
turbostratic theory could not be treated as a compre-
hensive specification of glass-like carbon nanoclusters.
The results obtained from the modeling indicate the
presence of more complex lattice distortion in studied
materials that can be accurately described in terms of
the paracrystalline theory. Now our challenge is there-
fore to create a realistic model of glass-like carbon
atomic structure that would comply with all the diffrac-
tion data and other experimental results simultaneously.
The physical implementation of paracrystalline pertur-
bation in the structure can be related to the presence of
different types of topological imperfections such as
vacancies and Stone–Wales defects or atomic domain
edges and boundaries. Moreover, glass-like carbons are
regarded as porous materials for which special attention
should be paid to the data analysis.34,35

The effect of the structural defects listed above on
the diffraction data of glass-like carbons will be a sub-
ject of our future work.
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Glass-like carbon is a well known carbon form that still poses many challenges

for structural characterization owing to a very complex internal atomic

organization. Recent research suggests that glassy carbon has a fullerene-

related structure that evolves with the synthesis temperature. This article reports

on direct evidence of curved planes in glassy carbons using neutron and X-ray

diffraction measurements and their analysis in real space using the atomic pair

distribution function formalism. Changes in the structure including the degree of

curvature of the non-graphitizing glassy carbons as a function of the pyrolysis

temperature in the range 800–2500�C (1073–2773 K) are studied using

optimized models of the atomic structure. Averaged models of single coherent

scattering domains as well as larger structural fragments consisting of thousands

of atoms were relaxed using classical molecular dynamics. For such models the

diffraction intensities and the pair distribution functions were computed. The

compatibility of the computer-generated models was verified by comparison of

the simulations with the experimental diffraction data in both reciprocal and

real spaces. On the basis of features of the developed structural models for glass-

like carbons, the origin of the properties such as high strength and hardness and

low gas permeability can be better understood.

1. Introduction

Glass-like carbon can be classified as non-graphitizing carbon

according to criteria proposed by Rosalind Franklin in her

earliest research involving studies of coal, carbon and graphite

(Franklin, 1951). It is very hard, chemically inert and

impermeable to gases, factors that make this material impor-

tant from the point of view of applications such as electrodes

and high-temperature crucibles. Although glass-like carbon

has been produced since the early 1960s, and despite its

commercial importance, the atomic structure of this carbon

material is not well understood. Detailed reviews of glass-like

carbon studies including earlier structural models have been

reported by Harris (1997, 2005). The crucial point of new ideas

concerning the atomic structure of non-graphitizing carbons is

the presence of curved fragments that can be related to the

formation of topological defects.

sp2-Hybridized carbon layers can yield curved nano-

structures such as fullerenes (Kroto et al., 1985), nanotubes

(Iijima, 1991), nanohorns (Iijima et al., 1999) or nano-onions

(Ugarte, 1992). The discovery of these special carbon forms

prompted the realization that non-planar structures or their

fragments may be thermodynamically stable. The presence of

these curved elements in carbon nanomaterials can be related
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to the formation of topological point-type defects in which

non-hexagonal rings (pentagons, heptagons and higher-

membered rings) occur (Terrones & Terrones, 2003). These

are the Stone–Thrower–Wales (STW) and vacancy defects. In

the simplest example of the STW defect, four hexagons are

transformed into two pentagon–heptagon pairs by rotating

one of the C—C bonds by 90� (Stone & Wales, 1986). When

such a transformation occurs by simultaneous movement of

the two involved atoms the defected structure retains the same

number of atoms and no dangling bonds are created. The

mono-vacancy defect is created when one atom is missing

from the carbon network. From the geometrical point of view,

this leads to the formation of one pentagon and one nine-

membered ring with one dangling bond remaining. Therefore,

the formation energy of this defect is higher owing to the

presence of an under-coordinated C atom. The multi-vacancy

defects can also appear in sp2 carbon lattices when more C

atoms are lost. Energetically favoured vacancy structures have

an even number of missing atoms since if an odd number of C

atoms are removed dangling bonds occur.

The presence of non-hexagonal rings as integral elements of

atomic structure was also suggested by Harris and co-workers

(Harris et al., 2000, 2008; Harris, 2004, 2013) for glassy and

other non-graphitizing carbons on the basis of high-resolution

transmission electron microscopy (HRTEM) investigations.

Imaging the atomic structure of glassy carbon by HRTEM,

Harris et al. showed that it consists of curved discrete carbon

sheets and to some extent resembles the structure of full-

erenes. The curvature is believed to be a natural consequence

of the presence of the topological defects which produce

saddle points and change the local topography. The studies of

Harris provided evidence of completely closed particle-like

carbon structures as well as their broken and imperfect parts,

and in particular a high proportion of closed particles in the

‘low-temperature’ glassy carbons (those prepared at tem-

peratures up to 1000�C; [�C] = [K] – 273). Single non-hexa-

gonal carbon rings were also directly observed using HRTEM

(Harris et al., 2008). As a result of these observations, a model

of glassy carbon structure was proposed which is built from

fragments of curved carbon sheets, in which pentagons and

heptagons are randomly dispersed throughout the network of

hexagons (Harris, 2004).

Obtaining high-quality atomic resolution images of glassy

carbons is extremely challenging, owing to their highly disor-

dered structure. As the number of point defects in the mate-

rials is low, there is little chance of observing them using a

local probe such as HRTEM or scanning tunnelling micro-

scopy (STM). Moreover, it is known that the irradiation of

carbons by the electron beam in electron microscopy can

create some defect sites and it is difficult to distinguish

between the native and irradiation-induced defects (Suenaga

et al., 2007). Apart from these difficulties, direct imaging

techniques such as HRTEM or STM provide valuable infor-

mation about the atomic scale structure of carbon materials.

However, this knowledge concerns only a limited volume of

the sample probed. In order to obtain information about the

atomic arrangement of a larger sample volume it is desirable

to use another approach. Modelling studies of different types

of porous carbons allow for the formation of non-six-

membered rings in order to produce the curved fragments

observed in HRTEM images (O’Malley et al., 1998; Jain et al.,

2006). Diffraction methods do not provide unequivocal

evidence that pentagons or other non-hexagonal rings are

present. However, in our previous studies we successfully

developed models of atomic structure for various types of

carbons, including the presence of STW and vacancy defects,

which described well all features of experimental diffraction

data (Jurkiewicz et al., 2015; Woznica et al., 2015; Hawelek et

al., 2008, 2011, 2012). It should be emphasized that such a kind

of disorder imposed on the models produced a specific

damping of the amplitude of diffraction data that could not be

reproduced using entirely perfect sp2-hybridized hexagonal

carbon networks.

In this work, we present the results of combined wide-angle

neutron and X-ray scattering (WANS and WAXS) studies of a

series of glass-like carbons supported by computer modelling

of atomic structure by the molecular dynamics method. The

use of crystallographic methods suitable for materials exhi-

biting three-dimensional periodicity, such as Rietveld (Riet-

veld, 1969) or PDFgui (Farrow et al., 2007) refinement

procedures, cannot be applied to non-graphitizing glass-like

carbons. In this paper, modelling and comparison of the

model-based simulations with the experimental data are

proposed as a way of describing the atomic arrangement in the

materials in question, taking into account the complexity of

their structure at various temperatures. The diffraction data

provide averaged structural information about the coherently

scattering domain. Therefore, in the first step, models of the

sizes of these domains have been computer generated. At this

stage, it is assumed that the coherently scattering domains are

arranged without spatial correlations. Then, in order to

account for possible cross-correlations between such domains,

larger models are constructed. The presence of such correla-

tions may lead to the formation of the porous structure that

has been established for glass-like carbons. Moreover, such an

approach will allow description of these crosslinks, which may

prevent graphitization even at high temperatures.

Therefore, analysis of experimental and simulated data is

performed in both reciprocal and real space simultaneously,

involving the pair distribution function (PDF) formalism. We

noticed that the presence in glassy carbons of the postulated

topological defects and curvature has a distinct manifestation

in the diffraction data. A gradual reduction of curvature in

fullerene-like fragments of structure and elimination of

related defects that accompany the increase in heat-treatment

temperature result in slight changes of atom-to-atom

distances. On the basis of the developed structural models,

which take into account the obtained information on the

interatomic distance distribution, evolution of the glassy

carbons as a function of synthesis temperature can be

observed. The new structural models are of great value in

understanding the properties of glassy carbon, such as resis-

tance to graphitization, low chemical reactivity, great strength

and hardness, and impermeability to gases.
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2. Experimental details

2.1. Sample preparation

The glass-like carbon samples were prepared from furfuryl

alcohol as a precursor. In the first step the furfuryl alcohol

(from Sigma–Aldrich, �98% pure) was polymerized by the

addition of 5%(v/v) of 0.1 M p-toluenesulfonic acid (from

Acros Organics, 99% pure) solution in ethanol. The catalysts

and furfuryl alcohol were mixed together for 24 h using

magnetic stirring, resulting in a homogeneous composition.

The catalysed precursor was then cast in moulds and held at

120�C for 2 h for curing. The structure of the furfuryl alcohol

molecule and the assumed structure of the furfuryl alcohol

polymer (Guigo et al., 2007) are presented in Scheme 1(a) and

1(b), respectively.

After the polymerization, the resin was divided into

different batches and carbonized under protective Ar gas flow

at 800 or 980�C in a quartz tube furnace (the samples will be

denoted here as GC800 and GC980). The heating rate was

10�C h�1 to 200�C and 5�C h�1 to the desired temperature.

Upon reaching the final heat-treatment level, the temperature

was held constant for 2 h. The samples were allowed to cool in

an Ar flow. Next, some of the samples carbonized at 980�C

were further heat treated to 2500�C in an Ar atmosphere. For

this purpose, a graphite electric furnace was used. The glassy

carbon discs placed in the furnace were covered with carbon

soot to prevent cracking due to thermal shock. The high-

temperature processing was performed with a heating rate of

4�C min�1 between room temperature and the desired

temperature of pyrolysis (1500, 2000 and 2500�C, respectively,

corresponding to samples GC1500, GC2000 and GC2500), and

the samples were allowed to soak for 2 h at the final

temperature. Then the samples were cooled to room

temperature under a flow of Ar gas and purified from the

remaining soot particles. The performed diffraction measure-

ments required samples in the form of a fine powder and thus

the requisite number of prepared discs were ground in a steel

mill.

2.2. Wide-angle neutron scattering

The neutron diffraction results reported here were collected

on the disordered materials diffractometer D4 at the Institut

Laue–Langevin in Grenoble, France (Fischer et al., 2002).

Total scattered intensities were recorded as a function of the

scattering angle 2�. The instrument was operated using an

incident wavelength � of 0.4989 Å from a Cu(220) mono-

chromator that allowed a maximum momentum transfer Qmax

of 23.5 Å�1, where the scattering vector magnitude Q is

related to � according to the following formula: Q = 4� sin �=�.

The samples were packed within a cylindrical vanadium

container of 6.8 mm internal diameter, placed in the middle of

an aluminium bell jar and measured at room temperature.

Vertical slits placed only a few centimetres upstream of the

sample position ensured that all samples had the same height

of 50 mm, which is important for scattered intensity normal-

ization. For detection of the scattering signal, an array of nine

microstrip detectors was used. Additional measurements were

carried out for the empty bell jar and the sample container. In

order to normalize the diffraction intensity from the sample to

an absolute scale accounting for its geometry, a vanadium rod

was also measured. The final scattered intensities for each

sample were obtained from the raw data, taking into account

corrections for multiple scattering, attenuation and inelasticity

using the CORRECT program (Howe et al., 1996). The initi-

ally processed functions of intensity versus the scattering

vector magnitude, IðQÞ; were used to calculate structure

factors, SðQÞ; according to the equation

SðQÞ ¼
IðQÞ

b2
; ð1Þ

where b is the coherent scattering length of carbon and the

isotopic effect is neglected (Fischer et al., 2006).

The structure factor is related to the coherent scattering

intensity IðQÞ in counts per second as measured by a detector

of solid angle d� normalized by the incident flux per atom in

the sample:

IðQÞ ¼
d�

d�
ðQÞ d�; ð2Þ

where d�=d� is the differential scattering cross section for

diffraction (Fischer et al., 2006).

The structure factor will be used in this work as a repre-

sentation of diffraction data in reciprocal space. The measured

wide-angle scattering was also analysed in a real-space

representation of diffraction data in the form of the atomic

pair distribution function PDF(r), which is related to SðQÞ

through the sine Fourier transform according to

PDFðrÞ ¼
2

�

ZQmax

0

Q½SðQÞ � 1� sinðQrÞ
sinð�Q=QmaxÞ

�Q=Qmax

dQ: ð3Þ

Here r indicates the interatomic distance and the last fraction

denotes the Lorch modification function, reducing effects

arising from the finite value of the upper Q limit.

2.3. Wide-angle X-ray scattering

The X-ray diffraction measurements were performed using

a laboratory Rigaku Denki D/max RAPID II-R diffract-

ometer equipped with a rotating Ag anode producing X-rays

with wavelength �K� of 0.5608 Å. The maximum value of
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momentum transfer available with this setup is Qmax = 22 Å�1.

The incident beam was monochromated by a graphite (002)

crystal and formed with a 0.3 mm collimator. An image plate

in Debye–Scherrer geometry was used as a detector. The

samples were measured at room temperature in glass capil-

laries with a diameter of 1.5 mm and wall thickness of

0.01 mm. The empty capillary was also measured and then the

background was subtracted. The scattered X-ray radiation was

recorded as two-dimensional diffraction patterns and then

converted to IðQÞ after integration over azimuthal angles. The

intensity functions were then corrected for polarization,

absorption and incoherent Compton scattering [computed as

described by Balyuzi (1975)] and subsequently normalized

using a processing procedure developed for high-energy

X-rays (Schlenz et al., 2003; Poulsen et al., 1995; Hawelek et al.,

2005). The structure factors were computed as follows:

SðQÞ ¼
IðQÞ

�ff
2
; ð4Þ

where f in this case is the atomic form factor for carbon and

IðQÞ indicates the scattered intensity corrected and normal-

ized to electron units. The PDFs were calculated for each

carbon sample, converting the X-ray scattering data according

to equation (3).

3. Modelling procedure

When combined with computer-based modelling analysis of

the structure factors, the PDF allows quantitative information

about the structure to be extracted from the neutron and

X-ray diffraction data. Here, the classical molecular dynamics

(MD) technique was used to match structural models

containing many atoms to experimental diffraction data. In

the case of a partially ordered system consisting of N atoms of

the same type, the scattered intensity averaged over all

orientations can be calculated using the Debye equation

(Debye, 1915):

INðQÞ ¼ b2
ðor f 2
Þ
XN

i;j¼1

sinðQrijÞ

Qrij

; ð5Þ

where rij denotes the distance between the ith and jth atoms.

The Debye equation is related to the structure factor as

follows:

SNðQÞ ¼
INðQÞ

b2 ðor f 2Þ
: ð6Þ

In order to compare the model-based simulations with

experimental data, the structure factor normalized to one

atom is used:

SðQÞ ¼ 1þ
1

N

XN

i;j¼1

sinðQrijÞ

Qrij

" #
i6¼j

: ð7Þ

Starting positions of C atoms were obtained from the ideal

graphite structure with a nearest C—C distance of 1.42 Å and

an interlayer spacing of 3.4 Å. The models consist of the

Cartesian coordinates of the constituent C atoms from which

the interatomic distances are then calculated according to

equation (7). The successive graphene layers were randomly

translated in the direction perpendicular to their stacking,

bringing a turbostratic kind of disorder into the models.

Additional distortion of the graphitic lattice was generated by

introducing STW and vacancy defects. In order to obtain

stable atomic configurations and minimize the energy of the

models, they were relaxed using a suitable C—C potential

interaction. The reactive empirical bond order potential

(Brenner et al., 2002) was used for atoms lying within a single

layer and the Lennard–Jones potential (Girifalco et al., 2000)

for interlayer interactions. Taking into account the interac-

tions described by the above potentials, the forces acting on

the C atoms were calculated and used to solve the Newtonian

equations of motion, applying the predictor–corrector method

with a time step of 0.2 ps. The temperature of 27�C was kept

constant during the simulations by a Berendsen thermostat,

which allows for thermal vibrations of C atoms. The procedure

of structure optimization using MD leads to a realistic

representation of the bond lengths and energy. Such prepared

sets of Cartesian coordinates of atoms were used for calcula-

tion of theoretical structure factors according to equation (7)

and PDFs according to the Fourier transformation presented

in equation (3). The agreement between the experiment and

the simulation was evaluated in both reciprocal and real

diffraction spaces, from the values of the discrepancy factor

computed as follows:

R ¼

P
ðFexp � F theÞ

2P
F2

exp

" #
� 100%; ð8Þ

where Fexp and Fthe are the experimental and theoretical

structure factors in reciprocal-space representation or PDFs in

real-space representation, respectively (Wright, 1993).

4. Results and discussion

The aim of the neutron and X-ray wide-angle scattering

experiments was to compare the diffraction results deter-

mined by different techniques using a large-scale facility and a

laboratory diffractometer, for different amounts of sample

used in the measurement, and by performing different

procedures of data correction. The phenomena of the elastic

scattering of neutrons by nuclei and the scattering of X-rays by

electron clouds are described essentially by the same theore-

tical equations. The difference in Q dependency of the scat-

tering length and the atomic scattering factor for neutrons and

X-rays, respectively, favours neutron diffraction. In this

particular case of disordered carbon materials, neutron

diffraction is preferred since the neutron form factor does not

decrease with diffraction angle and, consequently, the struc-

tural oscillations in the high-Q range are more noticeable. The

greatest limitation of X-ray scattering is the rapidly decaying

X-ray form factor signal compared with the growing Compton

background contribution at high Q values, making the accu-

rate extraction of SðQÞ more difficult (Fischer et al., 2006).
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Accurate determination of the structure factor and PDF

requires neutron or X-ray diffraction data measured with a

large momentum transfer which are then subjected to data

processing as described above. In order to estimate reliably

the goodness of agreement between the modelling results and

the experimental data, it is important to quantify possible

inaccuracies resulting from both statistical and systematic

errors as discussed by Thijsse (1984) and Toby & Egami

(1992). The error levels were estimated as discrepancies

between the structure factors and the PDFs determined

experimentally and computed for polycrystalline nickel and

silicon powder standards for the neutron and X-ray

measurements, respectively. Both functions are shown toge-

ther with the errors in Figs. S1 and S2 in the supporting

information.

The comparison of the structure factors and the PDFs

determined from neutron and X-ray scattering measurements

for the series of glassy carbons is shown in Figs. 1 and 2. Both

diffraction experiments provided data with similar high

quality, making their further analysis reasonable. The

comparison shows that carefully performed normalization and

correction procedures for X-ray data allow one to obtain

reliable results, despite the strongly diminishing intensities of

the X-ray scattering with Q. Neutron diffraction patterns were

collected in a slightly wider range of Q than the X-ray data,

but the difference between the maximum value of Q accessible

in the two experiments is too small to significantly affect the

resolution of the PDFðrÞ peaks, as can be seen from Fig. 2.

Only small changes in the peak amplitudes appear, as a result

of the differences in the data recording and processing.

The general features of the experimental diffraction data in

both reciprocal and real spaces for the glassy carbons

produced by the pyrolysis of polyfurfuryl alcohol were

described in our previous paper (Jurkiewicz et al., 2016). In

that work, the considered X-ray diffraction studies showed

that the non-graphitizing glass-like carbons have a structure

intermediate between amorphous and crystalline, completely

lacking crystalline periodicity. The broad and damped

diffraction peaks at higher Q values suggest the presence of

disorder in the investigated materials. An increase in the heat-

treatment temperature leads to an ordering of the glassy

carbon structure in the directions parallel and normal to the

graphene planes. However, a kind of structural disorder is

partly preserved even after heat treatment of the material at

2700�C, and it can be accurately described in terms of the

paracrystalline theory. The paracrystalline disorder assumes

that the nearest-neighbour atom–atom distances fluctuate

randomly without spatial correlations, leading to a network

distortion which propagates proportionally to r1=2 (Hosemann

& Hindeleh, 1995). Here, in order to specify the source of such

fluctuations, the presence of the postulated topological defects

in the structure will be considered.

From a comparison of the experimental PDFs for the glassy

carbon samples carbonized at different temperatures in the

range 800–2500�C with the function calculated for an

unstrained single graphitic layer, shown in Fig. 3, systematic

shifts of peaks can be seen. As can be perceived from Fig. 3(a),

the peak positions of the PDFðrÞ appearing in the range of 1–

6 Å are practically the same as those of the perfect hexagonal

layer, but the peaks for higher r values seen in Fig. 3(b) shift

towards longer interatomic distances characteristic of the

intralayer graphitic structure. At 2500�C the peak positions

approach the r values for unstrained graphite. At lower

temperatures the interatomic distances in the investigated

glass-like carbons are shorter when compared with graphite.

This finding can be directly related to the curvature of the

atomic structure and its gradual flattening under the influence
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Figure 1
Comparison of the structure factors from the neutron and X-ray
diffraction experiments for the glassy carbons.

Figure 2
Comparison of the pair distribution functions from the neutron and X-ray
diffraction experiments for the glassy carbons.



of the heat treatment. When two atoms occupy positions on

the opposite sides of a circle, then the shortest distance

between the pair of atoms is greater for the less curved

surface. Depending on the degree of curvature relative to the

size of the coherently scattering objects, its effect may have a

significant manifestation in the diffraction data or may be

negligible. The simulations performed by Koloczek & Burian

(2004) for carbon nanotubes with different chirality demon-

strated that calculated diffraction profiles are sensitive to the

tube diameter. When the diameter is large (around 70 Å), and

the curvature is small, the diffraction data lose the three-

dimensional spatial correlations and resemble those of flat

graphene sheets for each type of nanotube chirality. In the

case of nanotubes with a small diameter (around 7 Å) the

diffraction patterns differ for the armchair, zigzag and helical

nanotubes and it is possible to distinguish between them.

The behaviour of the PDFs for the glass-like carbons

suggests that, on a very local scale extending to the first few

coordination spheres, the curvature effect can be observed

since the maxima of the PDFðrÞ are in almost the same posi-

tions for all C atoms. The only contrast between the first few

PDFðrÞ peaks is their amplitude and full width at half-

maximum. Considering the greater interatomic correlations of

the PDFðrÞ, exhibited in Fig. 3(b), one can notice the apparent

shifts towards greater atom-to-atom distances becoming more

distinct with increasing carbon synthesis temperature. This,

therefore, suggests that the structure evolves. It is important to

point out that in the layered structure of glass-like carbon

there are two types of distances: intralayer and interlayer. It

has been established that for this type of structure the

graphitic layers are stacked without spatial correlations, and

this structure is called turbostratic (Warren, 1941; Mildner &

Carpenter, 1974), in contrast to the graphitic –ABAB–

stacking sequence. The density of

atomic pairs in distinct layers is

governed by the pair density of single

layers, leading to a step-like contribu-

tion to the total radial distribution

function (Mildner & Carpenter, 1974;

Burian et al., 1998). Therefore, the PDF

peaks at larger distances can be related

to intralayer correlations.

In order to specify the degree of the

curvature manifesting itself in the

diffraction data, the energy of

computer-simulated models of the

atomic structure was optimized using

the MD method. In the first step of the

simulations, models representing aver-

aged coherent scattering domains were

sought. The important parameters of

the models, which were adjusted to fit

the experimental data, are the number

of graphitic layers, their size and shape,

and the degree of disorder imposed on

the models by the generated defects. At

this stage it is assumed that these

domains are arranged in space without correlations and

therefore scatter independently with respect to one another.

Within domains of the glass-like carbons the graphitic layers

are stacked without correlations in the direction perpendicular

to their planes. Moreover, the atomic arrangement within the

layers is defective (Ergun, 1970; Ergun & Schehl, 1973;

Mildner & Carpenter, 1974). For such materials the diffraction

pattern contains two types of peaks: the (0 0 2l) graphitic

peaks appearing at about 1.8 and 3.6 Å�1 due to the interlayer

correlations and the remaining (hk0) ones originating from

the intralayer correlations in the form of two-dimensional

diffraction peaks exhibiting right-side asymmetry (Warren,

1941; Warren & Bodenstein, 1965). The amplitude and the
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Figure 4
Comparison of the structure factors computed for models of coherent
scattering domains with the neutron experimental data.

Figure 3
Comparison of the interatomic distances of the experimental pair distribution functions for the
glassy carbons with the function calculated for a single unstrained graphite layer in the short-range
order (a) and in the intermediate-range order (b).



position of the (0 0 2l)-type peaks depend on the number of

layers and their mean interlayer spacing. Their broadening

provides information about the size of the domains in the

direction normal to the layers and disorder in their stacking.

Broadening of the (hk0)-type peaks and the r range in which

oscillations of the PDFs disappear can be used for estimation

of the in-layer model size and in-layer disorder. Therefore, the

starting models of the investigated glass-like carbons at

different temperatures were constructed taking into account

the above-mentioned parameters.

The number of layers and the interlayer spacing were

chosen to reconstruct the amplitude and the position of the

(002)-type peak at each temperature. The layer sizes were

estimated as the value of the in-layer interatomic distance

where the PDF oscillations disappear. Then, topological

defects were introduced to the perfect hexagonal carbon

network assuming their random distribution. The energy of

such constructed models was optimized to find a minimum

energy configuration. The intention, at the end of this proce-

dure, is that the model-based simulation fits the diffraction

data in both reciprocal and real spaces. The choice of the

number of model defects is a trial-and-error procedure. The

theoretical SðQÞ and PDFðrÞ calculated from the relaxed

atomic configurations that were found to give the best

agreement with experimental results are shown in Figs. 4–7.

The agreement between the experimental data and the

simulation results is quantified using the discrepancy factor

defined by equation (8). The calculated discrepancy factors

are presented in Table 1. Both peak positions and amplitudes

are well reproduced by the models. Insets to Figs. 5 and 7

display the range of the interatomic distances 20–45 Å. Even

for such great distances the theoretical curves reconstruct the

experimental data in a satisfactory way. The discrepancy

factors have slightly lower values for the neutron scattering

data, which can be explained by small differences between the

neutron and X-ray results. This indicates that neutron

diffraction is favourable for the atomic structure determina-

tion, possibly because of the better statistics collected for a

greater amount of material.
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Figure 6
Comparison of the structure factors computed for models of coherent
scattering domains with the X-ray experimental data.

Figure 7
Comparison of the pair distribution functions computed for models of
coherent scattering domains with the X-ray experimental data.

Figure 5
Comparison of the pair distribution functions computed for models of
coherent scattering domains with the neutron experimental data.



It should be pointed out that the generation of the struc-

tural model for each glassy carbon required testing of many

configurations of defects and their numbers, types and distri-

bution among the simulated arrangements of carbon hexa-

gons. It was found that for GC800 the defects that introduce

the proper attenuation of the diffraction data are mono-

vacancies. The model used for GC800 consists of 777 atoms

arranged in three graphene-like layers with 30 randomly

distributed mono-vacancy defects. For GC980 the best-suited

model is built from 1122 atoms divided into three layers with

six introduced mono-vacancies and 15 STW defects. The

results obtained for GC1500, GC2000 and GC2500 favour the

models with STW defects; however, the presence of mono- or

multi-vacancies cannot be completely ruled out. The number

of atoms forming the models are 3123, 4587 and 8398,

respectively, for GC1500, GC2000 and GC2500, while the

numbers of randomly distributed STW defects are 70, 75 and

127 for these respective systems. The final sets of Cartesian

coordinates of C atoms in the optimized models are available

in the supporting information (as .xyz-type files). In principle,

the experimental diffraction results do not provide an

unequivocal answer to the question of what type of topolo-

gical defect dominates. However, the simulations are strong

evidence that the low-temperature glassy carbons may consist

of graphene sheets deficient in C atoms. As the heat-treatment

temperature increases the missing atoms can be healed or

replaced by STW defects, which are energetically favourable

(Guo et al., 2012). The question arises as to the origin of the

vacancies and STW defects. Possibly they are created during

the coalescence of small graphene-like fragments and the

growth process of glassy carbon struc-

tural units. The atomic rearrangement

at grain boundaries in graphene has

already been typified by the formation

of topological defects (Banhart et al.,

2011; Jacobson et al., 2012). Moreover,

the vacancies can migrate and initiate

the STW transformation and thus local

structural changes (Kotakoski et al.,

2011).

A visualization of the geometry for

the optimized models of the glassy

carbon structure, as well as the atomic

configurations in single layers separated

randomly from each model, is presented

in Fig. 8. The comparison of the models

shows a clear evolution of the averaged

coherent scattering domains with the

rise in the heat-treatment temperature.

The domains increase in size in the

directions parallel and perpendicular to

the defective graphene planes. One can

observe how the point defects (shown in

Figs. 8b and 8c) deform the originally

flat graphene layers and produce posi-

tive and negative curvature which is

seen in HRTEM images (Harris et al.,

2000, 2008; Harris, 2004, 2013). As for

fullerene elements, the occurrence of

non-hexagonal-membered carbon rings

within the hexagonal carbon network

induces strains and is responsible for

deviations from planarity and irregular

interlayer spaces. Consequently, in some

regions the rippling brings the graphene

sheets closer and they can even merge
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Figure 8
Visualization of the proposed models of averaged coherent scattering domains (small models) for
the glassy carbons and the atomic configuration of single layers randomly separated from the
models (on the right). Fragment of GC1500 model with non-planar sp2 bonding (a), fragment of
GC980 model with an STW defect (b), and fragment of GC800 model with a mono-vacancy
defect (c).

Table 1
Discrepancy factors R (%) between simulated and experimental neutron
and X-ray diffraction data.

Small models Big models

SðQÞ PDFðrÞ SðQÞ PDFðrÞ

Neutron X-ray Neutron X-ray Neutron X-ray Neutron X-ray

GC800 8.5 8.9 26.8 25.7 7.0 8.4 22.0 25.0
GC980 6.8 8.2 18.2 21.9 6.5 6.9 15.5 21.2
GC1500 8.3 9.6 21.1 24.4 7.5 9.4 16.5 21.8
GC2000 9.4 9.5 19.1 21.7 8.7 9.6 18.1 21.4
GC2500 9.8 10.9 22.1 23.9 9.0 9.7 18.0 21.5



together, as shown in Fig. 8(a). The above-described beha-

viour can explain the mechanism of pore creation in the

microporous carbons.

For the models with sizes representing the extent of the

coherently scattered domains, it is assumed that they diffract

independently. Such an assumption was suggested by Franklin

(1951) in her model of non-graphitizing carbons in which

graphitic microcrystallites are joined together by crosslinks, of

an unspecified nature. In order to see if these crosslinks can

influence the diffraction data, larger models consisting of

several smaller models were constructed. These models will be

called ‘big models’ in the next part of this paper. The main aim

of this procedure is to collect more quantitative information

about the structure of the studied glass-like carbons. The

larger fragments of structure should account for spatial

correlations between atoms within a single coherent scattering

domain, as well as between atoms lying in different domains.

A particularly important issue that should be discussed for the

big models is the nature of the linkage between smaller

structural units. Moreover, a model of closed porous structure

can emerge from the optimized three-dimensional big struc-

tural blocks. In order to prepare the big models of glassy

carbon structure, the previous models of coherent scattering

domains were employed. As a starting configuration for the

MD geometry optimization three coherent scattering domains

were moved closer to each other and set at different angles

relative to their basal planes. In some cases, additional frag-

ments of the domains or single graphene layers were added to

the big models and randomly distributed. The theoretical SðQÞ

and PDFðrÞ calculated from the big-model simulations that

give the best agreement with experimental results are

presented in Figs. 9–12. The computed discrepancy factors for

the diffraction data calculated from the big models are

compared with the R values for the small models of single

domains in Table 1. The big models match both neutron and

X-ray experimental diffraction data in reciprocal and real

spaces significantly better than the small models. Moreover, it

is important to note that the differences between the experi-

mental data and the simulations are lower than the estimated

uncertainties, as shown in the supporting information. In the

case of the big models the amplitude of the first PDFðrÞ peak

around 1.41 Å slightly decreases, while in the range of 5–15 Å

medium interatomic distances the amplitude of the PDFðrÞ

correlations is higher and better fits the experimental results.

These variations can be justified on the basis of the relaxed

atomic configurations in these models. A visualization of the

big models of glassy carbon structure is given in Fig. 13.

Figs. 13(a)–13(d) present magnified selected fragments of the
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Figure 9
Comparison of the structure factors computed for models of large
structural blocks with the neutron experimental data.

Figure 10
Comparison of the pair distribution functions computed for models of
large structural blocks with the neutron experimental data.

Figure 11
Comparison of the structure factors computed for models of large
structural blocks with the X-ray experimental data.



models. The large structural units are created through a

coalescence of small building blocks. The boundaries of the

linked domains are a rich source of various types of defects

that can be recognized in the fragments of the models in

Fig. 13. Among the deviations from the hexagonal structure

with planar sp2 C atoms, non-planar sp2 sites, non-six-

membered rings, multi-vacancies, isolated tetrahedral bonds

and carbon chains can be distinguished. These kinds of

imperfections introduce disorder in the distribution of the

interatomic distances within the first coordination shell and

cause damping of the first PDFðrÞ peak. Considering the

models consisting of several coherent scattering domains, the

contribution resulting from a possible correlation between

them is taken into account. Thus, the simulated diffraction

data can better describe the real structure of the material.

The presence of agglomerated defective regions induces the

formation of curvature. More precisely, buckling of the

simulated models can occur owing to elastic strains created by

the defects. During the process of atomic structure rearran-

gement induced by high-temperature heat treatment, some of

the defective agglomerates are ordered. It can be expected

that this process causes changes in the degree of curvature,

which are reflected in the measured diffraction data, as

observed in Fig. 2. It should be pointed out that the disap-

pearance of curvature as a function of the increase in pyrolysis

temperature observed for the proposed models follows the

changes in peak positions of the theoretical PDFðrÞ in a similar

manner as for the experimental data. The effect of the heat

treatment on the glassy carbons apparently is to reduce

disorder and transform the atomic structure towards the

graphite structure. However, it seems that many topological

defects are left intact and they prevent the graphitization

process. Summarizing the performed computer simulations,

the prepared big models show the evolution of the curvature

of glassy carbon structure. The ‘low-temperature’ glassy

carbons are built from fine structural units which are rich in

defects and characterized by a high degree of curvature. The

tightly curled carbon layers can enclose

micropores. The ‘high-temperature’

glassy carbons contain more layers of

greater size. There are fewer defects in

the structure and a lower proportion of

closed surfaces. However, fullerene-like

features occur enclosing pores, which

can be larger than those in the ‘low-

temperature’ glassy carbons.

These findings may be reinforced by

consideration of the bond length and

valence angle distributions shown in

Fig. 14. At lower temperatures the

nearest-neighbour C—C distances

exhibit a broad distribution around the

value of 1.42 Å, covering the bond

lengths of 1.39 and 1.46 Å which were

found for C60 fullerene as double and

single C—C bonds (David et al., 1991; Li

et al., 1991), respectively. For the big

model at 800�C this range is even

extended to longer distances. As the

temperature increases the distributions

tend to be narrower which is particu-

larly evident for the big models. The
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Figure 13
Visualization of the proposed models of large structural blocks (big models) for the glassy carbons
and magnified selected fragments of the models for GC1500 (a), GC980 (b), (c), and GC800 (d).

Figure 12
Comparison of the pair distribution functions computed for models of
large structural blocks with the X-ray experimental data.



distribution of the C—C bond lengths originates from both

defect-induced distortion and layer curvature. Moreover, for

smaller models undercoordinated edge atoms can also lead to

a greater degree of disorder. From the modelling results

presented above, it is concluded that larger models contain

fewer defects and their layers are flatter. Taking into account

these findings and considering that for big models the relative

number of edge atoms is less, the behaviour of the presented

distributions can be explained. A similar tendency can be

observed for the valence angle distributions. The histograms

shown in Fig. 14 show that the valence angle is concentrated

around the value 120�, typical for sp2 bonding, and exhibits

broader distributions for smaller models and lower tempera-

tures, and significantly narrower distributions at higher

temperatures and for bigger models. The results concerning

the bond lengths and the valence angles are consistent.

It is crucial to establish reliable structure–property rela-

tionships in glassy carbon to fully make use of its remarkable

research papers

46 K. Jurkiewicz et al. � Modelling of glass-like carbon structure J. Appl. Cryst. (2017). 50, 36–48

Figure 14
Bond length and valence angle distributions in per cent for small and big models of glassy carbons heat treated at 800–2500�C.



properties. The properties of the simulated models appeared

to be generally consistent with the experimentally verified

attributes of glassy carbons. The origin of the microporosity,

hardness and resistance to graphitization may be well justified

on the basis of the characteristic features of the proposed

structural models. The three-dimensional pore structure is

conditioned by the shape and layout of the carbon layers

containing topological defects. The pores, which can be seen in

Fig. 13, have elongated shapes closed by graphene-like planes

and fullerene-like curved fragments. The numerous bridges

between curved layers form a kind of cavity, explaining the

tendency of glassy carbon to contain closed nanopores. By

analysis of the evolution of the structural models, it can be

imagined that the voids agglomerate and grow when the

building domains are merged. Interestingly, the presence of

the larger voids suggested by these simulations for the ‘high-

temperature’ glassy carbons would explain to some extent the

reduction of their hardness and strength in comparison with

the ‘low-temperature’ glassy carbons. According to the

literature (Jenkins & Kawamura, 1976), the hardness of glassy

carbon rises rapidly above the heat-treatment temperature of

500�C to reach a maximum at 1500�C, and then the hardness

decreases considerably during further heating. It is obvious

that the variations of the mechanical properties are dependent

not only on the final temperature of carbonization, but also on

the heat-treatment duration. Therefore, the changes in hard-

ness as a function of heat-treatment temperature can be

slightly different, depending on the whole pyrolysis profile. In

this particular case of the studied glassy carbons, it can be

suspected that the ‘low-temperature’ samples (GC800 and

GC980) may have the highest tensile strength and hardness.

The modelling of atomic configurations performed for GC800

and GC980 shows that they can consist of crosslinked bunches

of layers that are highly folded. The closed interconnected

units make the structure very mechanically resistant. Since the

structure is thermally stable and impermeable to gases and

liquids, the ability of glassy carbon to react with chemical

compounds is limited. The development of atomic structure–

property relationships for glassy carbon can lead to a better

understanding of this complex material. The description of the

accurate representation of the atomic structure will help in

predicting the behaviour of the material under certain

conditions, its properties and possible applications.

5. Conclusions

The presented experimental wide-angle neutron and X-ray

scattering and theoretical molecular dynamics studies of the

series of glass-like carbons complemented information on

their defective atomic structure already predicted on the basis

of high-resolution transmission electron microscopy. The

investigation of the glassy carbons formed at different

temperatures was motivated by the differences in their

structure and related properties, such as high hardness and

strength, low reactivity, and closed porosity. Close examina-

tion of the experimental diffraction results provided direct

proof for changes in the topology of the atomic structure

during heat treatment. The constructed structural models

represent atomic arrangements averaged over the whole

sample volume measured in the diffraction experiment and

they support the idea of a fullerene-like structure of glassy

carbons. As the carbonization temperature is increased from

800 to 2500�C, the carbon–carbon bond distribution in glassy

carbon becomes more uniform, the domain size rises, the

curvature disappears and the atomic structure tends towards

the graphite structure. However, it can never reach the crys-

talline three-dimensional order of graphite. The proposed

models give a reliable picture of why this happens. If the C

atoms form fullerene-like or nanotube-like fragments, the

graphene planes are linked to each other and have a limited

mobility. Numerous interlayer bridges may effectively inhibit

the movement of the carbon layers. Under the influence of

energy supplied to the material with temperature, some of the

defects can be healed, reducing the curvature and non-

planarity. This kind of significant structural transformation

must therefore be accompanied by changes in porosity and

mechanical properties.

The complexity of the glassy carbon structure makes its

characterization an extremely difficult task. The problem is,

therefore, best tackled by obtaining a coherent set of results

from complementary techniques which include experimental

work and theoretical simulations. The experimental neutron

and X-ray diffraction studies combined with molecular

dynamics modelling carried out in this study provided highly

detailed information on the structural building blocks and

their degree of curvature for glassy carbons under differing

synthesis conditions. Future advances in neutron and X-ray

techniques and the development of computational methods

could lead to a more accurate description of the disordered

structure of various carbon materials. This certainly will help

to complete the knowledge of the mechanism of structural

changes in glass-like carbons and the origin of their properties.

It is expected that it should be possible to tailor the properties

of glassy carbon structure if its structure can be controlled by

the synthesis conditions. The use of the proposed neutron or

X-ray diffraction techniques is crucial for large-scale (indus-

trial) characterization of carbon materials as they are the only

methods capable of providing accurate information on the

structure on the bulk scale.
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ABSTRACT

In order to accommodate an increasing demand for glassy carbon products with

tailored characteristics, one has to understand the origin of their structure-re-

lated properties. In this work, through the use of high-resolution transmission

electron microscopy, Raman spectroscopy, and electron energy loss spec-

troscopy it has been demonstrated that the structure of glassy carbon at different

stages of the carbonization process resembles the curvature observed in frag-

ments of nanotubes, fullerenes, or nanoonions. The measured nanoindentation

hardness and reduced Young’s modulus change as a function of the pyrolysis

temperature from the range of 600–2500 �C and reach maximum values for

carbon pyrolyzed at around 1000 �C. Essentially, the highest values of the

mechanical parameters for glassy carbon manufactured at that temperature can

be related to the greatest amount of non-planar sp2-hybridized carbon atoms

involved in the formation of curved graphene-like layers. Such complex labyr-

inth-like structure with sp2-type bonding would be rigid and hard to break that

explains the glassy carbon high strength and hardness.

Introduction

The disordered, non-graphitizing glassy carbons, also

called glass-like carbons, are typically synthesized by

pyrolysis of polymeric precursor such as phenolic

resins or polyfurfuryl alcohol [1–4]. Due to their rel-

ative ease of production and a diverse range of

physical properties, such as high thermal resistance,

extreme chemical stability, low density and great

hardness compared with other carbons, gases

impermeability, and high electrical conductivity,

these carbons have been extensively industrially

applied since decades. In addition, glassy carbons

exhibit excellent biologic compatibility with blood

and tissues, meaning that they have a high potential

for use in medicine [5]. The most recent studies have
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suggested that glassy carbons have a fullerene-re-

lated structure. Such model of the structure, pro-

posed by Harris [2, 6–8], consists of broken and

imperfect fullerene fragments in the form of curved

sp2-bonded graphene-like planes, which can be mul-

tilayered and which often surround closed pores. The

presence of curvature has been attributed to the

topological defects in the form of non-hexagonal

carbon rings such as pentagons and heptagons that

were directly observed by the high-resolution trans-

mission electron microscope (HRTEM) [9]. When

glassy carbons are exposed to the temperature, the

building structural blocks start ordering within

individual graphene-like layers and the number of

layers increases [2, 6–8, 10, 11]. Ordering within the

layers is accompanied by increase in their sizes.

However, even after heat treatment at temperatures

of 3000 �C and above the glassy carbons cannot be

transformed into crystalline graphite [7, 10] and

preserve the general type of atomic disorder

remaining features of the paracrystalline structure

[12].

The structure is a key factor determining glassy

carbon porosity, mechanical, and electronic proper-

ties. Therefore, the possibility to control the temper-

ature-induced structural transformation is critically

important for the fabrication of the glassy carbon

products with desired functional features. It is

essential to note that novel glassy carbon applica-

tions, such as micro-electro-mechanical systems

[13, 14], that can be used for medical prostheses

[15, 16] require comprehensive characterization of the

properties–structure relationships at both, bulk- and

nanoscale level. But up to now, the knowledge on

how the manufacturing temperature, that is, how the

internal structure affects the properties of glassy

carbons is insufficient. Herein, high-resolution

transmission electron microscopy, Raman spec-

troscopy, electron energy loss spectroscopy (EELS),

and nanoindentation measurements were performed

on a series of glassy carbons prepared by pyrolysis of

polyfurfuryl alcohol at different temperatures from

the range 600–2500 �C to shed more light on the

evolution of their structure and properties during the

heat treatment. The main aim of this work is inves-

tigation of correlations between the structure of the

glassy carbons changing under the thermal treatment

and their mechanical characteristics.

Experimental details

Preparation of glassy carbons

The glassy carbons studied here were prepared from

furfuryl alcohol as a precursor. Polymeric furfuryl

alcohol-based samples were pyrolyzed under pro-

tective Ar gas flow. The heating rate was 10 �C/h to

200 �C and 5 �C/h to the different desired tempera-

tures: 600, 800, and 980 �C. Upon reaching the final

heat treatment level, the temperature was held con-

stant for 2 h. Then, the carbonized samples were

allowed to cool in Ar flow. Next, some of the samples

carbonized at 980 �C were further heat treated at

1500, 2000, and 2500 �C in Ar atmosphere. The high-

temperature processing was performed with the

heating rate of 4 �C/min from the room temperature

up to the maximum pyrolysis temperature with the

samples residence time 2 h at the final temperature.

The glassy carbons heat treated as described above at

different temperatures ranging from 600 to 2500 �C
are labeled here according to the maximum anneal-

ing temperature as GC600, GC800, GC980, GC1500,

GC2000, and GC2500, respectively. The chemical

composition of the prepared carbons was examined

using the X-ray fluorescence spectroscopy. The C

content, included in Table 1, increases monotonically

and tends toward 100% for high-temperature car-

bonization. The presence of elements other than C

and O was below 0.1 at.%. The densities of the sam-

ples were monitored using helium pycnometer and

are presented in Table 1. The density is observed to

be the highest at temperature of 800 �C. Above

800 �C, the density decreases significantly due to

rearrangement of the structure, formation, and

growth of closed pores and for GC2500 is around

1.51 g/cm3. The observations of density changes with

pyrolysis temperature are generally in agreement

with behavior reported by Zhang et al. [17] for glassy

carbons from phenolic resins.

High-resolution transmission electron
microscopy and electron energy loss
spectroscopy

TEM investigations were done on a probe Cs-cor-

rected S/TEM Titan 80-300 FEI microscope, equipped

with a Gatan Tridiem 863 spectrometer. The prepa-

ration of samples was performed as follows: The

pyrolyzed glassy carbon disks were ground in a steel
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mill, the obtained powders were dispersed in ethanol

using an ultrasonic bath, and then droplets of such

prepared dispersions were put onto a carbon—coated

lacey substrate supported by a copper grid and dried

at room temperature. HRTEM imaging was obtained

at 300 kV. The images were recorded with 1 s expo-

sure time to avoid radiation damage of samples.

EELS spectra were acquired at 80 kV in STEM

mode. Lower acceleration voltage of the electron was

applied to exclude the influence of the electron beam

on the structure of the material under test [18, 19].

The measurements were performed in STEM mode,

allowing for the proper selection of fragments for

analysis—sufficiently thin and homogeneous. The

fitting procedure of EELS bands was performed with

the Fityk software [20].

Raman spectroscopy

The Raman spectra of the series of glassy carbons

were obtained using WITec Alfa 300R Raman spec-

trometer equipped with a confocal microscope, a

532-nm Nd:YAG diode laser and a highly sensitive

back-illuminated Newton-CCD camera. The data

were collected at room temperature with a 50 9 ob-

jective (NA = 0.5), accumulated with 10 s exposure

time and 100 repetitions in the spectral range

between 200 and 3500 cm-1. For each glassy carbon

sample, the Raman scattering was measured at dif-

ferent places to make sure that the probed materials

are homogeneous and the collected spectra provide

representative structural information of bulk mate-

rial. The fitting procedure of Raman bands was per-

formed with the Fityk software [20].

Nanoindentation

Nanoindentation tests were performed with the

Hysitron TriboIndenter TI-950 system. We have used

Berkovich diamond tip to conduct the mechanical

tests. The maximum load applied to the indenter was

0.8 mN, while the load function was composed of

three parts: 5 s loading, 2 s dwell time, and 5 s

unloading. The thermal drift rate was less than

0.1 nm/s. All experiments were performed in a con-

stant ambient temperature and humidity, shielding

the equipment from external vibrations. The Berko-

vich tip was calibrated using the fused quartz as a

standard. The key parameters obtained during the

nanoindentation experiment were hardness (H) and

reduced Young’s modulus (Er). They were estimated

using the well-known Oliver–Pharr method [21] as

follows:

H ¼ Pmax

Ar

; ð1Þ

where Pmax is the maximum load and Ar is the

residual indentation area;

1

Er

¼ 1 � m2

E
þ 1 � m2

ind

Eind

; ð2Þ

where E and m are the elastic modulus and Poisson’s

ratio of the sample, respectively, Eind and mind are the

same parameters of the diamond indenter tip.

Results

Comparative characterization of glassy
carbon structural organization by HRTEM

The representative HRTEM images at different

magnifications of the glassy carbons pyrolyzed at

various temperatures, 600, 980, 1500, 2000, and

2500 �C are presented in Fig. 1. Black lines in these

pictures represent parts of the carbon sheets which lie

approximately parallel to the incident electron beam.

The pictures show the evolution from a network of

randomly oriented, disordered carbon domains to a

more organized system resembling onion-like ele-

ments in which carbon layers are less rippled. The

glassy carbon microstructure passes through a few

Table 1 C content and helium

density of the glass-like

carbons pyrolyzed at different

temperatures from the range

600–2500 �C

Glass-like carbon C content ± 1 [%] He density ± 0.01 [g/cm3]

GC600 94 1.60

GC800 96 1.88

GC980 97 1.77

GC1500 98 1.55

GC2000 100 1.52

GC2500 100 1.51
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Figure 1 Representative HRTEM images at various magnifica-

tions of different regions of glassy carbon samples pyrolyzed at

temperatures from the range 600–2500 �C. Rectangular frames

expose domains with stacked graphene-like layers; round frames

show onion-like structures enclosing pores; arrows indicate curved

structural units.
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phases during the conversion to its high-temperature

form. The low-temperature glassy carbon (this pyr-

olyzed at 600 �C) is comprised of curled layers, as can

be seen in Fig. 1a–c. Such curvature can arise from

both, defects in the graphene-like domains and con-

nections between them. The presence of bridges

between the neighboring carbon domains is a natural

consequence of the starting polymer network which

undergoes extensive cross-linking [22] that was pos-

tulated by Franklin in early models of graphitizing

and non-graphitizing carbons [10]. The microstruc-

ture of the GC600 sample is homogeneous. However,

clusters of two, three, or even four layers of about

1–2 nm long that are arranged in stacks can be dis-

tinguished (marked in Fig. 1b by rectangular frames)

in the overall tangle of randomly distributed carbon

layers. Most of these carbon segments up to 1–2 nm

long are bent. Completely flat layers are very rare.

The distance between neighboring layers is irregular

not only due to their curvature, but also cross-links

and branches they create and which are marked in

Fig. 1b with arrows. The gaps created between the

curved layers may result in slit-shaped nanometer

pores.

In the case of the GC800 and GC980 samples, in the

HRTEM images (Fig. 1d–i) one can notice that some

changes in the structure have been undergone due to

the higher annealing temperature. Like the GC600,

some of the layers are stacked in groups. In the case

of the GC800 and GC980, however, the stacks are

longer and there are definitely more packages of

three, four, or even more layers which are aligned

roughly parallel to each other (Fig. 1e, h). As regards

the structural curvature, a few types of the curvature-

related behavior can be distinguished. The first type

refers to the corrugation of surface observed for

almost every carbon layer in the structure. The

expected source of such curvature is the presence of

structural defects in the form of vacancies and non-

hexagonal carbon rings causing the graphene-like

sheet to transform from a planar to curved geometry

[6, 23, 24]. The different types of defects may be

created during the coalescence of structural units

[25]. During pyrolysis, atoms are not in the thermo-

dynamic equilibrium and many dangling bonds

occur. The structure is allowed to eliminate them in

the non-equilibrium conditions by the formation of

polygons such as pentagons or heptagons or higher-

membered rings resulting in the folding of carbon

layers. It should be noted that the pentagon rings are

also originally present in the initial structure of the

furfuryl alcohol polymer [22, 26] and they can partly

survive at the later stages of heat treatment, as con-

firmed by Tondi et al. [27], causing out-of-plane rip-

ples. In parallel, the curvature is created by the

carbon layers which branch out or link together by

forming the specific tubular caps, marked in Fig. 1h, i

with filled arrows. Such type of bridges between

adjacent carbon layers creates compact 3D network

which may prevent graphitization and make the

material strong.

With increasing the carbonization temperature

above 800 �C, the curvature related with elements

resembling fragments of fullerenes, onions or even

completely closed fullerene-like particles is more

prevalent. The different types of curved structural

elements for the GC980 are marked with arrows in

Fig. 1h, i.

On the further heat treatment up to 1500 �C, one

can notice in Fig. 1j–l that within the microstructure

of glassy carbon two parts mixing with each other can

be clearly distinguished. The first part, more orga-

nized, consists of groups of stacked and more or less

parallel planes, while the second part, globally dis-

ordered, is characterized by randomly oriented and

twisted layers of various sizes. We observe that the

glassy carbon crystallites grow at the expense of the

more disordered part of the microstructure. The less-

organized regions are consumed by the domains with

parallel layers resulting in their growth, both in

width and height, and simultaneously in creation of

empty voids. In the low-temperature glassy carbons,

the microporosity is a direct consequence of

misalignment of the curved sheets or their packages.

As the annealing temperature increases, the bigger

pores are formed due to joining of disordered frag-

ments to more ordered domains. This leads to the

creation of isolated, non-connected voids such as

these marked with circle frames in Fig. 1n, r. The

HRTEM images pretty clearly exhibit that dimen-

sions of the micropores are tunable by the heat

treatment in the range of few angstroms to several

nanometers. Up to the maximum annealing temper-

ature 2500 �C, the gradual elongation of graphene-

like layers, increase in their number in the stacks and

growth of pores are observable. As the pyrolysis

temperature increases, the onion-like carbon struc-

tures become more prevalent. The high-temperature

GC2500 is mostly composed of well-organized great

fragments of onions or even entire onions (Fig. 1p–r).
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They are made up of the curved and faceted graphite-

like crystallites up to around 10 nm long and 10

layers thick. The onion-like elements are interwoven

together and limit pores which are much larger than

in the low-temperature glass-like carbons.

Correlation of first- and second-order Raman
peaks behavior with the structural
transformation

The first-order Raman spectra display two main

peaks between 1200 and 1700 cm-1, as shown in

Fig. 2a, which are characteristic features of graphitic

carbons [28]. The peak at around 1600 cm-1 is called

graphitic or simply G band and is due to optical

phonon mode with E2g symmetry associated with an

in-plane stretching of sp2-bonded carbon atoms. The

peak at around 1350 cm-1 is called disorder-induced

or D band and is not observed for single-crystal

perfect graphite [29]. The origin of the D mode had

long been debated, and more recently it was attrib-

uted to the double-resonant Raman scattering [30].

The spectra of the first-order Raman region normal-

ized to the D band intensity and overlapped to better

distinguish differences between them are presented

in Fig. 2b. The main characteristic feature of these

spectra is the increase in the D intensity (ID) with

respect to the G peak intensity (IG) and sharpening of

the D peak width with increasing pyrolysis temper-

ature up to 2500 �C. The ratio of intensities ID/IG or

corresponding integrated areas upon D and G peaks

is sometimes used to calculate the averaged in-plane

size of graphitic domains (La). According to the for-

mula proposed by Tuinstra and Koenig: ID/IG * 1/

La (the so-called T-K rule) [28]. In the case of the

studied here glassy carbons by HRTEM images, we

observe continuous growth of carbon layers with the

heat treatment temperature. Therefore, the T-K rule

does not appear to be fulfilled in this case. Ferrari and

Robertson [31] showed that for amorphous and dis-

ordered carbons the development of the D peak

indicates ordering, exactly opposite to the case of

graphite. They argued that the T-K formula should

not be valid at very small values of La, because for

small La the D band strength is proportional to the

probability of finding a sixfold aromatic ring in the

carbon cluster that is proportional to the cluster area

La
2. Therefore, they submitted a new dependence of

the ID to IG ratio on the La size, namely ID/IG * La
2 for

carbons containing small clusters with La below

about 25 nm and suggested that such a behavior of

Raman spectra would be possible for non-crystalline

graphite progressively defected resulting in its

amorphization. Experimental example of this behav-

ior has been found, i.e., for glassy carbon implanted

with ions, which exhibited decreasing ID/IG ratio

Figure 2 Overview of the

Raman spectra for glassy

carbons pyrolyzed at different

temperatures from the range of

600–2500 �C (GC600–

GC2500) (a); comparison of

the normalized spectra for the

first-order region (b) and the

second-order region (c). The

insets show the best fit of the

experimental data for glassy

carbon pyrolyzed at 1500 �C
(GC1500).
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with higher ion doses due to loss in order and

decrease in crystallite size [32]. Here, we observe a

reverse process—the more disordered and fine car-

bon nucleuses are transformed during pyrolysis to

less defected, better organized and greater packages

of graphene layers and the ID/IG ratio increases with

higher temperature. Similar tendency has been

already observed for carbonized polyfurfuryl alcohol

[33], cellulose [34], or wood [35].

In order to accurately recognize other bands con-

tributing to Raman scattering for the glassy carbons,

the spectra were fitted with the Voigt line shapes. A

representative example of the fitting of the first- and

second-order Raman spectra is showed for the glassy

carbon heat treated at 1500 �C as insets in Fig. 2b, c.

As a result of the fitting, we can distinguish six

components contributing to the first-order Raman

spectrum: (1) graphitic G peak at 1595 cm-1, (2) dis-

ordered D1 peak at 1355 cm-1, (3) D2 peak at

1630 cm-1 described in [29, 36], (4) D3 peak at

1549 cm-1 described in [28], (5) D4 peak at

1212 cm-1, and (6) D5 peak at 1110 cm-1. The D4 and

D5 features must account for the total spectra during

fitting of Raman data for all glassy carbon heat trea-

ted between 600 and 2500 �C; however, they weaken

in intensity during the progressive heat treatment.

Recently, Couzi et al. [37] showed that in the spectral

range 1000–1300 cm-1 of various defective carbon

materials three different components participate to

the scattered signal and assigned them to the differ-

ent defect-induced double resonance inter-valley

processes. The idea of the defect-related history of the

reported here D4 and D5 peaks seems to be reason-

able. Interestingly, Fujimori et al. [38] experimentally

identified a Raman signal from Stone–Thrower–

Wales (STW) defects on single-walled carbon nan-

otubes in the range of 1100–1200 cm-1. Moreover,

according to theoretic calculations of the STW defect

in a flat graphene two characteristic Raman modes at

1122 and 1173 cm-1 are predicted [39]. We assume

that the D4 and D5 peaks observable here for the

glassy carbons can also come from the vibrations of

carbon atoms in non-hexagonal rings such as STW

defects which are considered as the reason of the

fullerene-like structure of glassy carbons [6–8].

The second-order Raman spectra compared in

Fig. 2c reveal four peaks: (1) 2�D1 peak at 2695 cm-1,

(2) G ? D1 peak at 2940 cm-1, (3) 2�D2 at 3250 cm-1,

and (4) D1 ? D4 at 2450 cm-1. They are the over-

tones or the combined tones of the first-order bands.

For the low-temperature glassy carbons up to

1000 �C, the 2�D1 band merges with the other sur-

rounding bands to form a small modulated bump.

The intensity of the 2�D1 peak increases roughly six

times for GC1500 in comparison with the GC980 and

then decreases gradually for GC2000 and GC2500. It

should be mentioned that the 2�D1 peak, named

historically the G’ peak, for graphene is more intense

than the G band compared to bulk graphite [39–42].

Increasing the number of graphene layers in the stack

leads to a significant decrease in the 2�D1 to G

intensity ratio [43, 44]. Indeed, for the glassy carbons

we observe a systematic drop of the 2�D1 intensity

with increase in the heat treatment temperature

above the 1500 �C. That is probably the effect of

increase in number of layers in the graphite-like

domains, as can be seen in the electron microscopic

images in Fig. 1. The lack of clearly pronounced

peaks in the second-order region for the glassy car-

bons at 600, 800, and 980 �C may be due to a much

lower intensity of the first-order Raman modes.

Moreover, the low intensity of the 2�D1 bands for the

low-temperature glassy carbons GC600–GC980 may

be explained by the small lateral size of the graphene-

like layers and/or very high defect densities causing

strong distortion of graphene-like clusters. Further

formation of greater and more uniform carbon

hexagonal network for the GC1500 causes significant

rise in the 2�D1 intensity.

Evidence of curved structural units in low-
frequency Raman spectra

In the low-frequency region below 900 cm-1 of the

measured spectra, a number of Raman-active modes

were observed. All glassy carbons show peaks near

260 cm-1 (P1), 440 cm-1 (P2), 620 cm-1 (P3), and

860 cm-1 (P4), as can be seen in Fig. 3, while this

Raman region is completely silent for graphite and

diamond crystals according to the group theory [45].

Analogous bands in the low-frequency region of

Raman spectra were found for carbon nanotubes,

fullerenes, or nanoonions [46–50] as well for more

exotic non-planar carbon structures such as tubular

cones, whiskers, and polyhedral crystals [51]. There-

fore, we assume that the observed modes are markers

of curvature-related geometry in the investigated

glassy carbons, which has been already confirmed by

the HRTEM images.
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It is known that a band in the range 100–350 cm-1

is a signature of single-walled carbon nanotubes

(SWCNTs) and is related to their radial breathing

modes (RBMs) unique to cylindrical symmetry [52].

The RBMs correspond to the coherent vibration of the

carbon atoms where all the tube atoms vibrate radi-

ally in phase. Zhao et al. [53] established that the

RBMs can also give active Raman peaks in the 100–

600 cm-1 region for multi-walled carbon nanotubes

(MWCNTs). These RBM frequencies (xRBM) are

therefore very useful for identifying whether a given

carbon material contains curved, nanotube-like ele-

ments. The xRBM depends on the nanotube diameter

d as:

xRBM ¼ A

d
þ B; ð3Þ

where A and B are experimentally determined con-

stants dependent on environment in which nanotube

is present. The reported glassy carbon building

blocks are multilayer nanostructures which can be

classified as fragments of MWCNTs. It was

determined that for SWNTs of 1.5 nm in diameter

measured in bundles A ¼ 234 cm-1 and B = 10 cm-1

[53]. If we take the values of A and B parameters as

mentioned above and we assume that recorded P1

peaks are 10% up-shifted due to interlayer interac-

tions in multilayered domains [29], we are able to

estimate the diameter of the nanotube fragments

possibly responsible for the breathing vibrations to be

of approximately 1 nm. Such nanotube-like elements

of approximately 1 nm in diameter can be easily

found in HRTEM images and their examples were

attached as insets to Fig. 3.

Beside the P1 peak around 260 cm-1, the Raman

spectra contain also broad features with maxima at

around 440 cm-1 (P2), 620 cm-1 (P3), and 860 cm-1

(P4). Herein reported low-frequency Raman modes

for glassy carbons are analogs to the Raman features

identified by Roy et al. [50] for carbon nanoonions

produced by the arc discharge of graphite electrodes.

Tan et al. [51] also observed Raman peaks at * 470,

620, and 860 cm-1 in ion-implanted highly oriented

pyrolytic carbon and in turbostratically stacked par-

ticles. Moreover, it was showed first time by Rao et al.

[47] that SWCNTs exhibit numerous Raman modes in

the region 300–1400 cm-1. Two possible explanations

for the origin of these peaks were proposed. One

claims that these modes are combination of the

acoustic and optical phonon modes activated due to

nanotube geometry, and the other that they arise

from structural defects [54]. Hence, it is clear that

disorder and defects strongly influence the Raman

spectra of carbon materials and the features reported

here for glassy carbons in the range 350–900 cm-1 can

be defect-induced Raman modes.

Bonding character of carbon atoms
at different stages of thermal treatment

HRTEM and Raman spectroscopy results showed

that glassy carbons at different stages of pyrolysis

contain curved structural units. The question that

arises is what type of bonds between carbon atoms

the buckled layers contain. The presence of diamond-

like sp3-bonded atoms would explain the high hard-

ness and resistance to graphitization of glassy car-

bons, and in the past an idea appeared that the sp3-

bonded carbons may act as potential cross-linking

[55]. We used electron energy loss spectroscopy to

estimate the amount of the possible sp3 bonds as well

Figure 3 Low-frequency Raman modes for glassy carbons

pyrolyzed up to different temperatures from the range of

600–2500 �C (GC600–GC2500). The insets show selected

HRTEM images with curved structural units of around 1 nm in

diameter.

J Mater Sci



as to evaluate the sp2-type bond character at different

stages of the pyrolysis process.

The representative EELS spectra in the C-K edge

region after background subtraction by fitting a

power-low curve shown in Fig. 4a have two main

features: the p* peak around 285 eV, caused by

transitions from the carbon 1s core level to the anti-

bonding state of p bonding, and the r* peak around

291 eV, caused by transitions from the carbon 1s core

level to the anti-bonding state of r bonding. For

GC600, the p* feature is broad and the r* peak is

poorly defined. With increase in pyrolysis tempera-

ture, the EELS spectra show an increase in the

intensity of the p* peak in respect to the r* peak

intensity. Simultaneously, the r* signal becomes

more noticeable with rising temperature and the

appearance of another weak features on the high

energy side of the r* peak, indicating an increase in

longer range order [56]. Such a behavior of these

spectra is typical for conversion of disorder carbon

structure toward graphitic sp2 bond configuration.

However, the near-edge fine structure above 295 eV

is less pronounced than in case for graphitic samples

with three-dimensional crystalline order [56]. We

used a procedure developed by Berger et al. [57] for

determining the fraction of sp2-bonded carbon atoms

in the glassy carbons. This method is based on esti-

mation of the ratio of integrated window centered

upon the p* peak (Ip�) to the integrated area con-

taining both, p* and r* peaks (Ip�þ r�), according to

the following equation:

sp2

sp2 þ sp3
¼ Ip�

Ip�þr�
ð4Þ

Here, for calculations we used 6 eV window cen-

tered at 292 eV over the both p* andr* peaks. The ratio

obtained according to the (4) is usually normalized to

the factor determined from spectra of a 100% sp2-

hybridized material. The most often highly oriented

pyrolytic graphite (HOPG) is used [56, 58]. However,

an open discussion is correctness of such technique

[59, 60]. Therefore, in order to avoid the uncertainty

related with the choice of reference material we used

the GC2500 sample as a reference in this series of glassy

carbons. Based on recent studies by X-ray and neutron

diffraction combined with molecular dynamic simu-

lations [61] and the resulting optimized models of the

glassy carbon atomic structures (available as .xyz files

in the supporting information of the Ref. [61]), we

determined the percentage amount of sp3 carbon

bonds in the proposed model of the GC2500 atomic

structure to be about 0.5%. Therefore, we treat the

glassy carbon heated at 2500 �C as a material contain-

ing near 100% sp2 carbon hybridization. The computed

changes in the sp2-bonded C atoms content as a func-

tion of pyrolysis temperature with respect to the

GC2500 reference are presented in Fig. 4b. The dis-

persion of the determined sp2 fractions does not exceed

6% of the mean values. The fraction of sp2 bonds is

definitely over the fraction of sp3 bonds, starting from

about 95% for low-temperature glassy carbon GC600

and monotonically rising to almost 100% for GC2000.

For low-temperature samples containing hydrogen, it

is possible that we include intensity from electronic

transition to the C–H(r*) orbital giving signal about

287–289 eV, and the resulting content of sp2 bonds

determined by the procedure described above may be

erroneously higher, as noticed by Daniels et al. [62].

Figure 5a shows example of a Gaussian fit to the C-

K edge of glassy carbon pyrolyzed at 980 �C. Similar

fits were employed for spectra of other glassy car-

bons. It is generally not possible to fit just one

Gaussian peak to the 1s to p* transition range. An

additional peak about 287 eV must be included even

for high-temperature glassy carbons. It is unlikely

that a significant amount of hydrogen can survive at

Figure 4 Variation in the

glassy carbon electron energy

loss in the C-K edge region

(a), and in the determined sp2-

hybridized bond content (b) as

a function of pyrolysis

temperature from the range of

600–2500 �C (GC600–

GC2500).
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such high temperature as 2500 �C. Thus, the origin of

the feature around 287 eV due to hydrogen content

can be questionable. Other idea explaining the addi-

tional residual feature is that it can be due to the

presence of curved fullerene-like bond configuration.

Nyberg et al. [63] found that C-K absorption spectra

of C60 and C70 fullerenes consist of double-peaked p*

component. The shoulder on the high energy side of

the 1s to p* peak centered at 287 eV was also con-

firmed in spectra of fullerenes by other researches

[57, 60]. Bearing in mind the results from HRTEM

and Raman spectroscopy which indicate that the

structure of glassy carbon at different stages of

pyrolysis has features of fullerene-like units, we

suggest that the EELS spectra of glassy carbons can

resemble the spectra of fullerenes. Therefore, we used

the ratio of the integrated intensity upon the 287 eV

peak (Ip�np) to the area under both 285 and 287 eV

peaks (Ip�total) related with the 1s to p* signal, as a

measure of the sp2 non-planar bond content (sp2
np) to

the total (fullerene-like non-planar and graphitic-like

planar) sp2 carbon bonds content (sp2
total), according to

the following formula:

sp2
np

sp2
total

¼ Ip � np
Ip � total

ð5Þ

This intensity ratio should reflect the degree of

curvature of glassy carbon structure due to non-pla-

nar, strained sp2 bonds. The results are presented in

Fig. 5b. The dispersion of such determined non-pla-

nar sp2 bond fractions does not exceed 13% of the

mean values.

According to the obtained results, the ratio of non-

planar sp2-bonded to all sp2-bonded carbon atoms

increases from approximately 25% for GC600 up to

about 38% for GC980 and then a subsequent drop of

this ratio is observed to about 30% for GC2500. The

initial increase in the fraction of fullerene-like non-

planar sp2 bonds seems to be a consequence of coa-

lescence of carbon domains. Under the increasing

temperature, disordered layers within the glassy

carbon merge and connect in various ways, as can be

seen in the HRTEM images displayed in Fig. 1. The

creation of the postulated non-hexagonal rings dur-

ing the structure reorganization with heat treatment

would explain the revealed rise to the non-planar,

strained sp2 bond content associated with the buckled

units. With further increase in the heat treatment

temperature, however, more and more defects could

be healed progressively providing layers with higher

fraction of planar graphitic-like sp2 bonds.

Mechanical properties and their correlations
with the structure

A schematic comparison of the force–displacement

response of the studied glassy carbons upon inden-

tation with 800 lN terminal force is shown in Fig. 6.

For the sample carbonized at the lowest temperature,

Figure 5 Example of a

Gaussian fit to the C-K edge of

glassy carbon pyrolyzed at

980 �C (GC980) (a), and

variation in the sp2-hybridized

non-planar bond content as a

function of pyrolysis

temperature from the range of

600–2500 �C (b).

Figure 6 Indentation hysteresis curves of the glassy carbons

pyrolyzed at different temperatures from the range of

600–2500 �C (GC600–GC2500).
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GC600, the penetration by the indentation is the

deepest. A progressive increase in the slope of the

load–displacement curve and decrease in the pene-

tration depth are observed up to carbonization at

980 �C. Interestingly, with further increase in car-

bonization temperature from 980 up to 2500 �C, the

material response is reverse and the penetration

depth increases gradually. Similar behavior in the

temperature range from 1000 to 3000 �C was previ-

ously reported by Iwashita et al. [64, 69]. This can be

simply explained taking into account the previously

described structural changes with increasing pyroly-

sis temperature. Easier penetration of glassy carbon

by indenter can be due to softening of the material

during development of more graphitic structure and

growth of pores with elevation of heat treatment

temperature above around 1000 �C. The unloading

paths do not completely retrace the loading paths but

return to the origin forming hysteresis loops. The

area of the hysteresis loop corresponds to the energy

loss during the deformation of the sample surface by

the indentation. For the low-temperature glassy car-

bon, GC600, there is only very small difference

between loading and unloading curves, what

demonstrates nearly perfect elastic deformation.

Moreover, any residual indentation impression after

complete loading was observed. This means that the

position of indentation tip of the impression at the

maximum load goes back to the original sample

surface level. The energy dissipation is mostly related

with the elastic reversible deformation.

Figure 7 shows the effect of pyrolysis temperature

on the hardness and the reduced Young’s modulus of

the glassy carbons. These mechanical properties for

each sample were calculated as averaged values over

around 24 measurements of material ability to resist

deformation after applying local force. Uncertainties

estimated as standard deviations were not greater

than 4% for H and 3% for Er. The values of the

determined hardness and reduced Young’s modulus

rise from around 3.1 and 15.6 GPa, respectively, for

glassy carbon carbonized at 600 �C up to around 5.9

and 37.6 GPa, respectively, for 980 �C. With further

increase in heat treatment temperature, a continuous

decrease in H and Er is observed up to around 4 and

26.6 GPa, respectively, for 2500 �C. Thus, the effect of

pyrolysis temperature on mechanical properties of

these polyfurfuryl alcohol-derived glassy carbons in

the range of 600–2500 �C can be separated into two

ranges: until reaching the temperature of 1000 �C and

upon reaching the 1000 �C.

Franklin [10] proposed that the great hardness of

the non-graphitizing carbons must be attributed to

the strong cross-links between neighboring domains,

which may be partially destroyed at high tempera-

tures resulting in hardness decrease. The work of

Jenkins and Kawamura [65] shed more light on the

changes of glassy carbon mechanical properties

during carbonization process. They demonstrated

that the hardness increases approximately linearly

with the decrease in H/C ratio during material

decomposition up to 1500 �C, what is followed by, as

they suggested, creation of cross-links and inter-

molecular forces. Further decrease in mechanical

performance for higher heat treatment temperatures

is related with breaking some of the cross-link bonds

during development of more graphitic structures.

Similar conclusions were generally given also by

other authors in more recent reports [64, 66, 67].

In the present work, we revealed that the changes

in hardness and reduced Young’s modulus follow the

same trend as the changes in the content of non-

planar to the total amount of sp2 carbon bonds with

increase in pyrolysis temperature. Comparison of the

data from EELS in Fig. 5b with nanoindentation

results in Fig. 7a, b shows that the measured

Figure 7 Variation in the

glassy carbon nanoindentation

hardness (a), and reduced

Young’s modulus b as a

function of pyrolysis

temperature from the range of

600–2500 �C.
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mechanical properties are a direct response of the

structural transformation that undergoes with

increase in heat treatment temperature. The fraction

of sp2 non-planar, fullerene-like or nanotube-like

bonds with respect to the total content of sp2-hy-

bridized bonds between carbon atoms in structural

units can be used for hardness and Young’s modulus

rating. It is known that carbon nanotubes are one of

the strongest materials known [68]. They are also

very elastic. It is due to the interlocking carbon-to-

carbon covalent bonds. The presence of nanotube-like

elements in the structure of glassy carbons can be

responsible for their high hardness and strength. The

nanotube-like bridges between neighboring carbon

layers evident in HRTEM images bind the entire

structure into a tight network. It is worth to mention

that recently proposed structural models of glassy

carbons [60] display the possible configurations of

such fullerene-like or nanotube-like interfaces. Based

on the models, it was established that the creation of

such interlayer connections, or so-called cross-links,

is facilitated by the presence of defects in the form of

non-hexagonal rings, vacancies, isolated sp3 bonds or

chains which introduce curvature. The curved units

may also effectively inhibit the movement of carbon

layers and prevent the graphitization.

Conclusions

In this work, the detailed structure studies of the non-

graphitizing glassy carbons prepared by pyrolysis of

polyfurfuryl alcohol at different temperatures from

600 to 2500 �C and its effect on the mechanical

properties of these materials were reported. It was

proven that the mechanical properties (hardness and

reduced Young’s modulus) of the glassy carbons

measured via nanoindentation as a function of the

pyrolysis temperature are a direct reflection of their

internal structure. The presence of fullerene-like or

nanotube-like elements in the structure of glassy

carbons is considered to be responsible for their high

hardness and strength. The hardness and the reduced

Young’s modulus scale non-monotonically as a

function of the pyrolysis temperature reaching max-

imum values of 5.9 and 37.6 GPa, respectively, for

glassy carbon pyrolyzed at 980 �C. The peculiar

mechanical behavior of the glassy carbon around

1000 �C is attributed to the greatest amount of non-

planar sp2-hybridized carbon atoms involved in the

building of curved and often interconnected full-

erene-like elements at this temperature. The struc-

tural curvature seems to be gradually formed at the

early stages of the pyrolysis process (at temperatures

up to * 1000 �C) due to merging of the initial small

carbon domains. The cross-links between neighbor-

ing graphene-like layers may have nature of non-

planar sp2-type bonds whose content was quantified

by EELS measurements. It was demonstrated that at

the initial stages of pyrolysis up to 1000 �C the

amount of fullerene-like non-planar to total sp2 car-

bon bonds increases. Then, with higher heat treat-

ment temperatures the structure is transformed into

units composed of greater and less-defected graphite-

like domains resulting in decrease in non-planar sp2

bond content and drop in mechanical performance.

In other words, when the material is heated at tem-

peratures higher than 1000 �C, it becomes more

ordered but weaker. Therefore, the fraction of sp2

non-planar fullerene-like or nanotube-like bonds

with respect to the total content of sp2-bonds in the

glass-like carbons can be used for evaluation of their

mechanical properties.

The knowledge of the structure–property correla-

tions is essential to manufacture glassy carbon

products with tailored features. Undoubtedly, one of

the most promising glassy carbon’s uses is the fab-

rication of glassy carbon-based super lightweight and

strong microlattices. They represent a significant step

forward in the field of lightweight mechanical meta-

materials and can exert a great impact for medical

applications. Due to glassy carbon’s good mechanical

properties, electrical conductivity, and biocompati-

bility, this material is interesting for microimplants in

the line of microstents, microscaffolds for bone

regeneration, and microelectrodes. We hope that the

developed here quantitative relationships between

the structure and mechanical properties will benefit

the further design of the glassy carbon systems.
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