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1.1 Motivation

Betrachtet man das Innere einer Zelle auf der Nanometerskala, so offenbart sich
eine immense Vielfalt aus Molekülen unterschiedlicher Form und Größe, die sich
auf engsten Raum in einer wässrigen Lösung drängeln. Unter ihnen spielen Proteine
eine herausragende Rolle, da sie für die Zelle und den damit verbundenen Organis-
mus lebenswichtige biologische Funktionen erfüllen. Proteine sind bemerkenswerte
kleine molekulare Maschinen, die sich aus einem Repertoire von 20 Aminosäuren
zusammensetzen [114, 26].

In einer wässrigen Umgebung faltet sich ein Protein in eine charakteristische
dreidimensionale Struktur, die durch die Sequenz der Aminosäuren bestimmt wird.
Diese sogenannte native Struktur zeichnet sich dadurch aus, dass sich hydrophobe
Aminosäuren im inneren des Proteins befinden. Umgekehrt sind die hydrophilen
Aminosäuren auf der dem Wasser zugewandten Oberfläche lokalisiert [31, 26, 66].

Proteine werden als weiche Materie betrachtet und weisen eine interne Dyna-
mik auf unterschiedlichen Längen- und Zeitskalen auf. Dazu zählen unter anderem
die Fluktuation der Atome, die Reorientierung von Seitenketten und die Bewegung
kompletter Proteindomänen [20]. Diese Art von interner Bewegung kann man mittels
einer totalen mittleren Bewegungsamplitude quantifizieren. Erhöht man die Tempe-
ratur hinreichend, dann entfaltet sich das Protein in eine “Random Coil” einherge-
hend mit dem Verlust der biologischen Funktion [123, 47].
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Die Funktion als Kriterium nehmend, kann man zwei Klassen von Proteinen
unterscheiden: Proteine, die in der Zellmembran eingebaut sind und solche, die in der
intra- und extrazellulären Umgebung frei vorkommen. In dieser Arbeit konzentrieren
wie uns auf die zuletzt genannte Kategorie. Diese sind häufig globuläre Proteine, die
zahlreiche für den Organismus essentielle Aufgaben ausführen. Dazu zählt etwa: der
Transport kleiner Moleküle, die Transmission von Signalen, um biologische Prozesse
zu regulieren, und die Katalyse organischer Reaktionen. Als Beispiel führen wir
Serum Albumin auf. Dieses kann mitunter kleine Moleküle wie Fettsäuren oder
Arzneimittel im Blutstrom transportieren [29].

Die Wichtigkeit der Transportprozesse motiviert die Frage: Wie bewegen sich
Moleküle innerhalb und außerhalb der Zelle und wie wird diese Bewegung insbeson-
dere durch das Vorhandensein von Molekülen und Ionen in der Zelle beeinflusst?

Proteine existieren in einer “Welt der kleinen Reynolds - Zahlen”, mit anderen
Worten in einer Umgebung, in welcher das Verhältnis zwischen Trägheit und
Viskosität sehr klein ist. Proteine bewegen und reorientieren sich daher thermisch
durch eine enorme Anzahl an Kollisionen mit den sie umgebenen Wassermolekü-
len [133, 118]. Diese sogenannte Translations- beziehungsweise Rotationsdiffusion
führt zu einer mittleren quadratischen Verschiebung der Anfangsposition und
Winkelabweichung der Orientierung des Proteins abhängig von der verstrichenen
Zeit, der Viskosität des Lösungsmittels und der Größe und Form des Proteins [164].

In einem vereinfachten Bild dargestellt, operiert die Zelle durch die Bewegung von
Proteinen in einer hochkonzentrierten wässrigen Lösung [49]. Wir können daher
annehmen, dass sich die Funktion von Proteinen nur verstehen lässt, wenn man
deren Dynamik – sowohl interne Moden als auch Rotations – und Translationsdiffu-
sion – und Interaktion mit Ionen, Wassermolekülen und Proteinen einbezieht [11].
Es ist daher das Ziel dieser Arbeit, die Dynamik und Struktur einer Lösung von
Proteinen unter biologisch relevanten Bedingungen zu untersuchen. Um dieses Ziel
zu erreichen, modellieren wir die intrazelluläre Umgebung durch ein vereinfachtes in
vitro System, welches durch Umgebungsparameter wie den Protein-Volumenanteil,
die ionische Stärke der Lösung und die Temperatur kontrolliert wird. Dabei soll der
zu untersuchende Temperaturbereich auch den Denaturierungsübergang umfassen.

Konkret wollen wir in dieser Arbeit die folgenden Punkte behandeln:
Erstens wollen wir die Mobilität eines globulären Proteins in Abhängigkeit von der
Proteinkonzentration untersuchen. Ergänzend, wollen wir die Gleichgewichtstruktur
der Lösung studieren. Das Ziel ist es, die folgenden zwei Fragen zu beantworten:
Wie konzentriert muss eine Proteinlösung sein, damit die “räumliche Beengtheit”
der Moleküle das Diffusionsverhalten signifikant beeinflusst? Ist es unter Zuhilfe-
nahme etablierter Kolloidmodelle möglich, die zu messende Diffusionskonstante
vorherzusagen?
Zweitens wollen wir die Dynamik eines Proteins in der Umgebung des temperatu-
rinduzierten Denaturierungsüberganges studieren und gegebenfalls neue analytische
Verfahren zur Bestimmung der internen diffusiven Moden entwickeln.
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Drittens ist ein wichtiges Charakteristikum der natürlichen Umgebung das Vorhan-
densein von Ionen. Wir wollen daher untersuchen, wie die ionischen Stärke und die
Valenz der Ionen die Dynamik eines Proteins in Lösung beeinflusst.

1.2 Experimentelle Ergebnisse

In diesem Abschnitt fassen wir die wichtigsten Ergebnisse der Publikationen A bis
D zusammen. Diese sind im Stile von wissenschaftlichen Veröffentlichungen in den
Kapiteln 7, 8, 9 und 10 dieser Dissertation eingearbeitet. Infolge dieser Form der
Darstellung ist es unvermeidlich, dass sich bestimmte Teile der Veröffentlichungen
mit Teilen anderer Abschnitte inhaltlich überschneiden. Wir fassen die wesentli-
chen Resultate jeder Veröffentlichung zusammen und stellen diese kohärent in den
Kontext dieser Arbeit.

1.2.1 Publikation A. Protein Diffusion in hochkonzentrierten elek-
trolytischen Lösungen

In Publikation A (siehe Kap. 7) untersuchen wir den messbaren Diffusionskoeffizi-
enten des globulären Proteins Bovine Serum Albumin (BSA) in hochkonzentrierter
wässriger Lösung als Funktion der Protein- und Natriumchloridkonzentration mit
Hilfe von Neutronenrückstreuung und Spin-Echo-Spektroskopie. Ferner analysie-
ren wir die Gleichgewichtsstruktur der Lösung mittels Röntgen-Kleinwinkelstreuung
(RKWS).

Das Ziel dieser Studie ist, Auskunft darüber zu geben, wie konzentriert eine
Proteinlösung sein muss, damit die “räumliche Beengtheit” der Moleküle das Diffu-
sionsverhalten signifikant beeinflusst.

Mittels RKWS finden wir eine qualitative Änderung von einem unkorrelierten
zu einen stark korrelierten System mit zunehmender Raumfüllung. Durch eine ge-
nauere Analyse finden wir heraus, dass unterhalb von einem Raumfüllungsgrad von
ungefähr 10% die “räumliche Beengtheit” der Moleküle vorrangig durch nicht ab-
geschirmte Ladungen hervorgerufen wird. Im Gegensatz dazu dominieren oberhalb
von ungefähr 10% Verdrängungseffekte.

Konträr zu den statischen Daten zeigen die dynamischen Daten keinen ausge-
zeichneten Raumfüllungsgrad, oberhalb dessen Verdrängungseffekte signifikant her-
vorträten.

Stattdessen beobachten wir ein stetiges Abfallen des gemessenen Diffusionskoef-
fizienten mit steigender Proteinkonzentration. Desweitern führt die Zugabe von Salz
zu keiner signifikanten Änderung des Diffusionskoeffizienten, obzwar die durch das
Salz hervorgerufene Ladungsabschirmung eine deutliche Änderung der intermoleku-
laren Interaktion bewirkt. Vorwegnehmend weisen wir darauf hin, dass Publikation
B (siehe Kap. 8) eine Erklärung für die zuletzt genannte Beobachtung gibt. In dieser
Studie zeigen wir, dass sich die Diffusion von globulären Proteinen mittels Kolloid-
modellen beschreiben lässt. Die theoretischen Selbstdiffusionskoeffizienten von kol-
loidalen ungeladenen und geladenen harten Kugeln sind im Kurzzeitgrenzwert sehr
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ähnlich. Die gemessene Genauigkeit erlaubt keine Unterscheidung. Zusätzlich ist
der Einfluss der Ladung im Kolloidmodell sehr gering. Infolgedessen haben Abschir-
mungseffekte keinen signifikanten Einfluss. Auch wenn die Bildung einer Gegenio-
nenschicht auf der Oberfläche des Moleküls den hydrodynamischen Radius ändert,
so ist dieser Effekt innerhalb der Messgenauigkeit nicht nachweisbar. Schlussendlich
ist die durch das Salz induzierte Viskositätsänderung für die untersuchten Salzkon-
zentrationen von 0 bis 300mM vernachlässigbar.

1.2.2 Publikation B. Protein Selbstdiffusion in hochkonzentrierten
Lösungen

Perez et al. [125] haben gezeigt, dass die mit Neutronenspektroskopie bestimm-
te Diffusionskonstante grösser ist als die Translationsdiffusion aufgrund eines nicht
unerheblichen Anteils der Rotationsdiffusion des Moleküls. An Veröffentlichung A
anknüpfend konzipieren wir deshalb einen analytischen Rahmen, um aus der gemes-
senen Diffusionskonstanten den Translationsanteil zu bestimmen. Dies ermöglicht
einen Vergleich mit theoretischen Modellen. Folglich ist die der Veröffentlichung B
(siehe Kap. 8) zugrundeliegende Motivation, die Verwendbarkeit von Diffusionsmo-
dellen der Kolloidphysik für globuläre Proteine zu untersuchen. Unter Verwendung
von Neutronenrückstreuung messen wir die Selbstdiffusion im Kurzzeitgrenzwert
für Raumfüllungsgrade von 7 % ≤ ϕ ≤ 30 % und vergleichen die berechnete Trans-
lationsdiffusion mit Kurzzeit-Diffusionsmodellen der Kolloidphysik. Mittels RKWS
bestimmen wir die Form des Proteins mit einem Ellipsoid Modell. In der Studie
zeigen wir, dass sich im gesamten Raumfüllungsbereich die experimentelle Transla-
tionsdiffusion mit folgender Gleichung beschreiben lässt:

Dt(ϕ) ≈ Dt(0) f

[
ϕ

(
Rh
R

)3
]
. (1.1)

Darin ist die normalisierte Diffusionskonstante f ununterscheidbar von einem Mo-
dell für geladene oder ungeladene harte Kugeln innerhalb des Messfehlers. R ist der
Radius einer Kugel mit gleichem Volumen wie das Protein, Rh ist der hydrodyna-
mische Radius, errechnet aus dem mit RKWS bestimmten Ellipsoiden und Dt(0)

ist der Diffusionskoeffizient bei unendlicher Verdünnung. Zusammenfassend haben
wir damit demonstriert, dass sich die Translationsdiffusion von Proteinen mittels ef-
fektiver harter Kugeln unabhängig von der Ladung sehr akkurat beschreiben lässt.
Die Studie zeigt, dass abgesehen von Volumenverdrängungseffekten hydrodynami-
sche Wechselwirkungen maßgeblich die “räumliche Beengtheit” beeinflussen. Diese
Erkenntnis bestätigt auf fundamentale Weise Simulationsresultate von Ando and
Skolnick [7] im Kurzzeitgrenzwert.
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1.2.3 Publikation C. Dynamik hochkonzentrierter Protein Lösun-
gen nahe des Denaturierungsübergangs

Vermittels Computersimulationen haben Kudlay et al. [91] gezeigt, dass eine hohe
Polymerkonzentrationen einen Einfluss auf den temperaturinduzierten Random Coil
zu Helix Übergang des Polymeres hat. Die Erkenntnis, dass sich die Proteinstabilität
und Faltungsrate mit steigender Packungsrate vergrößert, hat Mittal [111] mit Hilfe
von Simulationen der Langevin-Dynamik demonstrieren können.

Zur Validierung dieser Aussagen ist es deshalb auf der experimentellen Seite von
Bedeutung, Faltung und insbesondere den inversen Prozess der Denaturierung im
Falle hochkonzentrierter Proteinlösung zu quantifizieren.

Publikation C (siehe Kap. 9) ist eine aus quasi-elastischer und elastischer Neutro-
nenrückstreuung kombinierte Studie, welche sowohl die globale als auch die interne
Dynamik von Bovine Serum Albumin in hochkonzentrierten Lösungen in der Nähe
des Denaturierungsüberganges analysiert. Unter Verwendung von elastischer Neu-
tronenrückstreuung, bestimmen wir die totale mittlere quadratische Bewegungsam-
plitude

〈
u2
〉
für das Temperaturintervall 280K < T < 370K . Im quasi-elastischen

Bereich messen wir die entsprechenden Diffusionskoeffizienten. Einher mit den Da-
ten entwickeln wir eine neuartige Analysestrategie, die es erlaubt, quantitativ den
Denaturierungsprozess zu beschreiben.

Wir untersuchen die Temperaturabhängigkeit von
〈
u2
〉
und quantifizieren dabei

den zugrundeliegenden Denaturierungs- und Cross-Linking Prozess.
Inspiriert durch das Zimm-Bragg Modell [187] und die Tatsache, dass die Se-

kundärstruktur von Bovine Serum Albumin von α-Helices dominiert wird (siehe
Abschn. 5.1.1), beschreiben wir die Temperaturabhängigkeit der totalen mittleren
quadratischen Bewegungsamplitude folgendermaßen:

〈
u2
〉

= a T + b−∆u2 Θ

(
T − T0

∆T

)
. (1.2)

Darin sind a, b, ∆u2, T0 und ∆T Fitparameter, die den Denaturierungs- und Cross-
Linking Prozess beschreiben. Θ ist eine verwischte Stufenfunktion der Form:

Θ(x) =
1

1 + e−x
, (1.3)

welche die Besetzungsanteile der denaturierten und cross-verlinkten Proteine wider-
spiegelt. Unter Zuhilfenahme des quasi-elastisch messbaren Diffusionskoeffizienten
D kann man die mittlere quadratische Amplitude der internen Bewegungsmoden〈
u2
int

〉
durch Separieren der Schwerpunktsdiffusion folgendermaßen bestimmen:

〈
u2
int

〉
=
〈
u2
〉
− (2π)−3/2 6D τ. (1.4)

Darin ist τ die zeitliche Auflösung des Spektrometers. In der Studie zeigen wir, dass
die Temperaturabhängigkeit von

〈
u2
int

〉
ein nichtstetige Änderung aufweist. Wir spe-

kulieren, dass die Ursache dafür eine Änderung der Flexibilität der diffusiven Moden
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der molekularen Untereinheiten des Proteins ist. Es wichtig festzustellen, dass sich
die von uns entwickelte analytische Methode auch auf andere Systeme mit sowohl
interner als auch Schwerpunktsdynamik anwenden lässt. Das gilt insbesondere für
konventionelle Polymere in Lösungen.

1.2.4 Publikation D. Ladungsinduzierte dynamische Dichteinho-
mogenitäten in Proteinlösungen

In Publikation A (siehe Kap. 7) haben wir unter anderem gezeigt, dass die Verän-
derung der ionischen Stärke einer BSA-Lösung mittels eines monovalenten Salzes
keinen oder nur einen marginalen Effekt auf die Diffusion der BSA-Moleküle hat.
Multivalente Salze wie YCl3 unterscheiden sich zum Beispiel von NaCl dadurch, dass
sie nicht nur die ionische Stärke der Lösung modifizieren sondern auch die Ladung
der Proteine ändern können. In diesem Zusammenhang haben Zhang et al. [185] ge-
zeigt, dass Yttrium-Ionen eine Ladungsumkehr eines anfänglich negativ geladenen
Proteins durch Ionenbindung auf der Oberfläche des Proteins hervorrufen können.
Mittels Kleinwinkel-Röntgenstreuung haben sie gezeigt, dass wenn die Salzkonzen-
tration sich einem durch die Proteinkonzentration bestimmten Wert c∗ nähert, die
Anziehungskräfte zunehmend das Verhalten der Lösung dominieren und in der un-
mittelbaren Umgebung von c∗ zur Bildung von sichtbaren Aggregaten führen. Des-
weitern konnten sie zeigen, dass bei c∗ die Ladung vernachlässigbar klein ist.

Demzufolge ermöglicht die spezifische Bindung von Y3+ auf der Proteinoberflä-
che ein Durchstimmen der Oberflächenladung und damit eine Einflussnahme auf das
Zusammenspiel anziehender und abstoßender intermolekularer Wechselwirkungen.

In Publikation D kombinieren wir Neutronen Spin-Echo-Spektroskopie mit
Kleinwinkel-Röntgenstreuung, um zum einen die Kurzzeit-Selbstdiffusion von BSA
und zum anderen die isotherme Kompressibilität der BSA-Lösung bei verschiedenen
YCl3-Konzentrationen zu studieren. Dabei erhöhen wir die YCl3 Konzentration bis
nahe unter die kritische Konzentration c∗.

Mittels der gemessenen isothermen Kompressibilität beobachten wir, dass die
Erhöhung der YCl3 Konzentration das Gleichgewicht zwischen Abstoßung und An-
ziehung zu Gunsten des letzteren verschiebt. Gleichzeitig beobachten wir eine si-
gnifikante Reduktion des Kurzeit-Selbstdiffusionskoeffizienten. Wir deuten dies wie
folgt: Durch die zunehmende Dominanz der Attraktion nimmt die Anzahl der Prote-
ine in der unmittelbaren Umgebung eines Proteins zu und hindert dessen Diffusion
durch hydrodynamische Wechselwirkung.

Wir nehmen an, dass der attraktive Teil des Wechselwirkungspotenzials die Bil-
dung von Proteinclustern in der Lösung begünstigt, während der repulsive Teil die
Lebensdauer der Cluster reguliert [27, 99]. Nähern wir uns der kritischen Salzkonzen-
tration, so schwächen wir zunehmend die Repulsion, und die Lebenszeit der Cluster
wächst. Aufgrund der hohen Ladung von BSA spekulieren wir, dass die Lebenszeit
unterhalb von c∗ kleiner als die instrumentelle Zeitauflösung ( 1ns) ist. Kommen
wir der kritischen Salzkonzentration c∗ sehr nahe (die Netto-Oberflächenladung der
Proteine ist ungefähr Null), dann divergiert die Lebenszeit, und es bilden sich stati-
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sche Cluster. Dies ist in Übereinstimmung mit der Beobachtung, dass knapp über c∗

die Proteinlösung sehr trübe wird und makroskopische Aggregate sichtbar werden.
Aufgrund der kurzen Lebenszeit relativ zur instrumentellen Zeitauflösung kann

man die Proteine als unabhängige Monomere betrachten, die sich nur für sehr kurze
Zeiten zu sogenannten “transient clusters” zusammenschließen. Liu et al. [99] weisen
darauf hin, dass man “transient clusters” eher als dynamische lokale Dichteinhomo-
genitäten deuteten sollte, anstatt den Begriff Cluster zu verwenden.

Um diese Inhomogenitäten zu quantifizieren, verallgemeinern wir das Model ef-
fektiver harter Kugeln, welches wir in Publikation B (siehe Kap. 8) eingeführt haben,
folgendermaßen:

ds (cs, ϕ) = d0 fHS

[(
Rh
R

)3

ϕlocal (cs)

]
, (1.5)

Darin ist fHS der theoretische reduzierte Kurzeit-Selbstdiffusionscoeffizient für harte
Sphären [115, 162], d0 ist der Diffusionskoeffizient im Grenzwert stark verdünnter
Lösungen, R ist der Radius einer Kugel mit gleichen Volumen wie das Protein,
Rh ist der hydrodynamische Radius von BSA. Ist kein YCl3 in der Lösung, dann
begünstigt die hohe Ladung der Proteine durch Repulsion eine homogene Verteilung
der Proteine. In diesem Fall ist der Volumenanteil der Proteine ϕ, folglich ϕlocal(0) =

ϕ. Mit steigender Salzkonzentration wird die Dichteverteilung inhomogener und im
Mittel sehen die Teilchen eine effektive lokale Dichte

ϕlocal (cs) = ξ (cs) ϕ. (1.6)

Darin haben wir den lokalen Anhäufungsfaktor ξ (cs) eingeführt. Wir stellen fest,
dass bei der höchsten Salzkonzentration der nächste Nachbarabstand, der dem loka-
len ϕ entspricht, um 20% relativ zum Fall ohne Salz abgenommen hat. Dies unter-
stützt unsere Hypothese, dass wir lokale dynamische Inhomogenitäten beobachten,
statt dicht gepackte Cluster.

1.3 Schlussfolgerung

In den folgenden drei Paragraphen werden wir aus den Ergebnissen der Publika-
tionen A bis D unter den Gesichtspunkten, wie sich die räumliche Beengtheit, die
Temperatur und das Vorhandensein von mono- wie auch multivalenten Salzen auf die
Dynamik von Proteinen und die Struktur der Lösung auswirkt, Schlussfolgerungen
ziehen. Ergänzend werden wir, sowohl auf Grundlage unserer Ergebnisse als auch auf
Erkenntnissen aus Neuveröffentlichungen anderer Autoren, Forschungsperspektiven
vorschlagen.

Räumliche Beengtheit Wir haben nachgewiesen, dass man die Volumenanteil-
abhängigkeit der Kurzzeitselbstdiffusion eines globulären Proteins mit Hilfe von
Vorhersagen für kolloidale harte Kugeln mit sehr hoher Genauigkeit modellieren
kann. Dies ist ein Indiz für den wesentlichen Einfluss der hydrodynamischen Wech-
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selwirkungen im Falle hochkonzentrierter Proteinlösungen. Bei der Modellierung
der Proteinform haben wir eine experimentell verifizierter Ellipsoid verwendet. Wir
schlussfolgern daher, dass man allgemeine Eigenschaften der Proteindiffusion mit-
tels existierender kolloidaler harter Kugelmodelle verstehen kann, sofern man die
Anisotropie der Proteine durch geeignete Modellierung beachtet. Der Erfolg dieser
einfachen Abbildung komplexer Proteine auf effektive harte Kugeln ist vielverspre-
chend für weitere Untersuchungen. Davon ausgehend, dass globuläre Proteine ge-
meinsame physikalische Mobilitätseigenschaften teilen, ist es zunächst wichtig, die
Anwendbarkeit des Modells effektiver harter Kugeln auf andere globuläre Proteine
neben BSA zu testen. Ein nächster wichtiger Schritt ist, die intra- und extrazel-
luläre Umgebung realistischer zu simulieren. In diesem Kontext haben Ando and
Skolnick [7] mittels Computersimulation in einer neulich veröffentlichten Publika-
tion gezeigt, dass die Größe und Form der “crowding agents” eine wichtige Rolle
bei der Diffusion spielt. Dies inspiriert, den Einfluss der Form und Größe, sowie des
Volumenanteils von “crowding agents” auf das Diffusionsverhalten eines globulären
Proteins systematisch zu untersuchen.

Denaturierungsübergang Wir haben die totale mittlere quadratische Bewe-
gungsamplitude

〈
u2
〉
und die Kurzzeitselbstdiffusion eines globulären Proteins in

einer hochkonzentrierten Lösung in der Nähe des Denaturierungsüberganges stu-
diert. Unterhalb und oberhalb beobachten wir eine monotone Zunahme von

〈
u2
〉

mit steigender Temperatur. Im Denaturierungsbereich jedoch fällt
〈
u2
〉
sehr deutlich

ab. Wir haben diese Beobachtung als einen Übergang von einer flüssigen Protein-
lösung zu einem gel-ähnlichen Zustand, in welchem die Proteine ein quervernetztes
Netzwerk bilden, interpretiert. Um diese Zustandsänderung zu quantifizieren und
zu verstehen, haben wir ein neuartiges analytisches Model entwickelt. Die Kurz-
zeitselbstdiffusion des Proteins wird signifikant durch die Strukturänderung des Pro-
teins und die Ausbildung von Querverbindung zwischen den Proteinen verlangsamt.
Diese Verlangsamung erklärt den Abfall von

〈
u2
〉
im Denaturierungsintervall.

In einer neueren Publikation haben Stagg et al. [155] gezeigt, dass in einer Um-
gebung mit “räumlicher Beengtheit” eine kompakte Proteinform begünstigt wird.
Experimentell haben sie gezeigt, dass dies die Denaturierungstemperatur eines glo-
bulären Proteins signifikant verändern kann. Dieser experimenteller Befund wirft
die Frage auf, inwieweit die räumliche Beengtheit die mit der Proteinentfaltung ver-
bundene Entropieänderung modifiziert. Um dies systematisch zu studieren, können
wir unsere Analysis dahingehend erweitern, dass man ein Model ähnlich wie das
α-Helix-zu-“random-coil”-Übergangsmodel von Zimm and Bragg: [187] einbezieht.

Salzeffekte Wir haben beobachtet, dass die Zugabe von monovalenten Salzen wie
NaCl keine oder nur eine marginale Änderung der Kurzzeitselbstdiffusion eines Pro-
teins in Lösung hervorruft. NaCl schirmt die Ladung ab und schwächt damit die
Reichweite der Coulomb-Abstoßung zwischen den Proteinen. Wir schlussfolgern,
dass die Kurzzeitselbstdiffusion nur sehr schwach durch Ladungsabschirmungen be-
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einflusst wird. Im Gegensatz dazu haben höher geladene Ionen wie Y3+ einen dra-
matischen Effekt auf die Kurzzeitselbstdiffusion eines Proteins. Y3+-Ionen können
auf der Oberfläche eines negativen geladenen Proteins spezifische Bindungsstellen
besetzen und damit die Ladung modifizieren. Gleichzeitig führt dies zu einer Ände-
rung des Zusammenspieles von repulsiven und attraktiven Kräften. Erhöht man die
Y3+-Ionen Konzentration bis knapp unterhalb einer kritischen Konzentration c∗, do-
minieren zunehmend attraktive Wechselwirkung zwischen den Proteinen in Lösung.
Unterhalb von c∗ bilden sich kurzlebige lokale Dichteinhomogenitäten in der Pro-
teinlösung und führen zu einer Reduktion der Kurzzeitselbstdiffusion aufgrund der
Verdichtung unmittelbarer nächster Nachbarproteine. In der unmittelbaren Umge-
bung von c∗ ist die Netto-Oberflächenladung vernachlässigbar und man beobachtet
eine abrupte Bildung langlebiger sichtbarer Aggregate. Wir schlussfolgern, dass Io-
nen, die eine Ladungsumkehr des Proteins induzieren können, das Zusammenspiel
von Attraktion und Repulsion zu Gunsten der Attraktion verschieben und damit
die Bildung von lokalen Dichteinhomogenitäten in der Proteinlösung begünstigen.
Diese Inhomogenitäten verlangsamen die Kurzzeitselbstdiffusion der Proteine. Dies
ist ein bemerkenswerter Mechanismus von hochgeladenen Ionen um intra- und inter-
zelluläre Transportprozesse zu kontrollieren aber auch zu stören. Es stellt sich damit
die Frage, ob es andere insbesondere biologisch relevante organische Ionen gibt, die
einen ähnlichen Effekt bewirken.





Chapter 2

Abstract

P roteins are molecular machines crucial for the function of living cells. Some
proteins occur in the cell membrane, whilst others, in particular globular

proteins, occur freely in the extra- and intracellular environment. These globular
proteins carry out their biological function in an environment filled with both other
molecules of a multitude of shapes and sizes and ions. Such a highly concentrated
solution is termed “crowded”. Macromolecular crowding plays an important role for
processes involving volume-change such as thermal unfolding and those including
particularly protein diffusion as a limiting or driving factor.

In the present thesis we investigate the dynamics and structural properties of a
crowded aqueous solution of a model globular protein, namely bovine serum albumin,
depending on several environmental parameters such as the protein volume fraction,
the ionic strength of the solution, and the temperature including in particular the
denaturing transition. The motivation is to understand proteins under biologically
relevant conditions by, inter alia utilizing knowledge and methods established in soft
matter macromolecular research.

To this end, we employ cold neutron high-resolution backscattering spectroscopy
to record quasi-elastic and elastic signals. Using this technique we retrieve the short-
time self-diffusion coefficient and the total mean-squared displacement of the protein
in solution. Moreover, we determine the short-time self-diffusion from relaxation
rates using cold neutron spin-echo spectroscopy. Complementary, we investigate
the suspension structure and the shape of the proteins in solution using small-angle
X-ray scattering.

We find that the short-time self-diffusion strongly decreases with increasing pro-
tein volume fraction. Furthermore, we show that the short-time self-diffusion can be
accurately modeled with effective colloid hard-spheres, underlining the importance
of hydrodynamic interactions under the condition of crowding. For the presence of
salt ions in solution we observe two effects: The addition of a monovalent salt has
little or no effect on the short-time self-diffusion. By contrast, the addition of a mul-
tivalent salt can induce a charge inversion of the protein. We observe that if the salt
concentration is in the vicinity to the critical point, where the net surface charge of
the protein is zero, the suspension structure contains local inhomogeneities, causing
a reduction of the short-time self-diffusion. Studying the temperature behaviour
below and above the denaturing, we observe that the total mean-squared displace-
ment increases monotonically with temperature, but at the denaturing transition it
decreases strongly. This observation can be rationalized and quantitatively modeled
as a transition from a liquid protein solution to a gel-like state.





Chapter 3

Introduction

T he interior of a cell of an organism is filled with molecules of a multitude of
shapes and sizes. In this heterogeneous mixture of molecules, proteins play a

prominent role by carrying out functions crucial for the living of the cell. Proteins
are remarkable molecular machines engineered in a unique way from a sequence of
small building blocks selected from a repertoire of 20 amino acids [114, 26]. All
these amino acids have different chemical and physical properties. Some of these
amino acids are hydrophilic and interact strongly with water and ions, while others
are hydrophobic.

Placed in an aqueous environment a proteins will fold into a shape – the so-
called native structure – that will bury the hydrophobic amino acids in the interior
and expose the hydrophilic amino acids on the surface to the water [31, 26, 66].
Conversely, when the temperature is sufficiently elevated, the protein will unfold
into a random coil, combined with a loss of its biological function [123, 47]. The
structure of a protein is soft and, therefore, proteins show a rich spectrum of
internal dynamics, ranging from stochastic fluctuations of atoms, diffusive motions
of side chains to the movements of complete subdomains [20]. Considering the
biological function of proteins, one can distinguish two main categories: Proteins
that can be found in the cell membrane and proteins that occur freely in the extra-
and intracellular environment. In this thesis we will focus on the latter category,
which are frequently globular proteins performing biological functions such as
the transport of small biomolecules, the transmission of messages to regulate
biological processes, and the catalyzation of organic reactions. Transporting smaller
molecules such as drugs or fatty acids in the blood stream, Serum albumin is an
example of a globular protein [29]. In this context, two important questions arise:
How do proteins move inside and outside of the cell and how does the presence
of other molecules and ions affect this motion? Proteins exist in a world of low
Reynolds numbers, in other words in an environment where the ratio of inertia
to viscosity is small [133]. Therefore, both the motion and the reorientation of a
protein are realized by thermal motion caused by an enormous number of collisions
with the surrounding solvent molecules [133, 118]. In spite of its random nature,
this so-called translational and rotational diffusion lead to net displacement of
the protein’s position and the orientation, depending on the elapsed time, the
viscosity of the solvent, the size and shape of the molecule, the temperature and
the interaction with surrounding molecules [164].

In a simplified picture, living cells operate through the motion of proteins
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embedded in a crowded aqueous solution of various macromolecules and salts [49].
It can be assumed that protein function cannot be understood without taking into
account the mobility of the proteins – comprising both internal dynamics as well
as translational and rotational diffusion – in their charged watery matrix [11].
Therefore, in this work we aim to study both the structure and the dynamics
of a solution of proteins mimicking the crowded intracellular environment by a
simplified in vitro system controlled by several environmental parameters such as
the protein volume fraction, the ionic strength of the solution, and the temperature
including in particular the denaturing transition. The motivation for this work
arises from the pursuit to understand proteins under biologically relevant conditions.

A unique tool to investigate the dynamics of proteins in aqueous solution is
neutron spectroscopy [15]. Whilst most other spectroscopic techniques, such as
dynamic light scattering, are restricted to mesoscopic length scales, neutrons probe
motion as a function of length scale from interatomic to mesoscopic distances in the
sample, on time scales from sub-picoseconds to approximately 200 nanoseconds. An
important aspect for the study of proteins in aqueous solution is the pronounced
sensitivity for hydrogen atoms. Coincidentally, hydrogen is a frequent element in
proteins and nearly equally distributed in the protein volume. Complementarily,
we will employ X-ray scattering to investigate the shape of the proteins in solution
and study the equilibrium structure of the solution of proteins under different
environmental parameters. This will allow us to characterize the nature of the
interaction between the proteins.

Guided by the central motive to understand the dynamics of proteins under
biologically relevant conditions we formulate three main goals for this project.
Firstly, we will study the dependence of the protein mobility on the protein
volume fraction under the condition of crowding. To mimic the volume-occupied
environment in the cytoplasm, we investigate volume fractions of up to 30%. We
try to answer two questions: How concentrated does a protein solution have to
be for crowding to impact the protein diffusion behavior? Furthermore, we will
investigate if established colloid models can be used to describe the diffusion of
proteins.
Secondly, proteins operate in the cell in a narrow temperature range defining
the limits of the existence of live. We will therefore study temperature-induced
denaturations.
Thirdly, characteristic to the native environment of proteins is the aqueous solvent
containing salt ions. We assume that ions are important for the proteins to carry
out the biological function. We therefore will investigate the effect of the ionic
strength and particular the valence of the salt on the dynamic and the structure of
a solutions of proteins.

The present thesis is organized into the following chapters: Chapter 4 intro-
duces the essential principles and concepts of dynamic and static scattering to
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understand the experimental data. Furthermore, the theoretical aspects relevant to
understand the random motion of a protein in a crowded environment are reviewed
and the corresponding measurable scattering functions are developed. Chapter 5
provides the reader with the experimental methods involved in this project. The
sample description and preparation is presented, followed by a review of the
employed instruments. The chapter finalizes with explaining the data analysis and
introducing novel conceptual frameworks developed along the project. Chapter 6
briefly discusses the key results of four papers, which are incorporated in the sub-
sequent four publication-style chapters. Chapter 7 addresses the central question
at which concentration crowding starts to influence the static and in particular
also the dynamic behaviour. To this end, we investigate the diffusion of the model
globular protein Bovine Serum Albumin (BSA) in aqueous solution as a function
of the protein concentration as well as NaCl salt concentration by employing cold
neutron backscattering and spin-echo. Complementary small-angle X-ray scattering
data were used to study spatial correlation between the proteins. Chapter 8 studies
the self-diffusion of BSA in crowded aqueous solutions on nanosecond time and
nanometer length scales employing cold neutron backscattering. In this study we
provide experimental evidence that the obtained diffusion can be described by
effective colloid spheres. Chapter 9 investigates the dynamics of highly concentrated
aqueous protein solutions of bovine serum albumin around the denaturing transition
employing both quasi-elastic and fixed-window neutron spectroscopy. We model the
transition from a liquid protein solution to gel-like state and thereby quantify the
underlying physics. Chapter 10 discusses the dynamics and structure of solutions
of BSA near the transition from a homogeneous to a cluster-dominated phase using
small-angle X-ray scattering and neutron spin-echo spectroscopy. By analyzing the
short-time self-diffusion of the protein, we introduce an observable quantifying the
charge-induced inhomogeneities due to the cluster formation. The thesis closes
with a summary and a conclusion in Chapter 11. Moreover we present an outlook
for future work.
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For the understanding of both dynamic and static scattering of a system consist-
ing of proteins suspended in a solvent, we will introduce and develop the essen-

tial theoretical concepts in this chapter. Due to the major role of time-correlation
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functions as the investigated quantities in this thesis, we will commence this chap-
ter by elucidating their mathematical concept (Sec. 4.1). Since most experimental
work was carried out using neutron scattering, we will subsequently describe in-
depth how a neutron beam is scattered at a sample system in Sec. 4.2. Thereby,
we derive measurable correlation functions that shed light on the underlying micro-
scopic dynamical properties of the sample. In Sec. 4.3 we will briefly explain the
special case of static scattering, which provides information about the equilibrium
structure of the investigated matter.

The remaining sections will focus on physical concepts that are relevant to under-
stand both the equilibrium structure of a solution of proteins and the translational
as well as rotational diffusion of a protein in a crowded environment. Sec. 4.4 cov-
ers direct and hydrodynamic intermolecular interactions. While direct interactions
determine the equilibrium structure, hydrodynamic interactions will play an impor-
tant role for molecular crowding effects on the nanosecond time scale as we will
show in paper B (see Chap. 8). In Sec. 4.5 we turn our intention to the translational
diffusion of proteins. In particular, we introduce the Smoluchowski equation that
describes the diffusion of proteins in a concentrated solution, thereby taking both
direct and hydrodynamic interactions into account. Furthermore, we will briefly
review short-time diffusion coefficients since the short-time scale is accessible by
the main experimental techniques used for this thesis, neutron backscattering and
spin-echo spectroscopy. Finally, in Sec. 4.6 we discuss random reorientations of a
protein in solution which are essential for an analytical framework, we will intro-
duce in Sec. 5.5.1 to separate translational and rotational diffusion to the measured
apparent diffusion.

4.1 Time-Correlation Functions

In this section we will in a nutshell explain the mathematical idea of time-correlation
functions, which is indispensable to comprehend the dynamic correlation functions
introduced in the subsequent sections. For a more expounded description of time-
correlation functions we refer to the textbook by Dhont [40]. Serving as a template
for the time-correlation functions encountered throughout this thesis, we will intro-
duce a general form of a time-correlation function. This class of functions can be
conceived as measure of the dependence of two stochastic processes. We consider
two N -dimensional continuous stochastic processes X(t) and Y(s) with time param-
eters t and s, respectively. Assuming that the stochastic processes X(t) and Y(s)

have the joint probability density distribution P (X, t,Y, s) and given two functions
f and g, we define a general time-correlation function:

Cf,g (t, s) := 〈f [X(t)] g [Y (s)]〉 =

∫ ∫
P (X, t,Y, s) f(X) g(Y) dNX dNY (4.1)
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If X(t) and Y(s) are uncorrelated, tantamount to

P (X, t,Y, s) = P (X, t)P (Y, s), (4.2)

the time-correlation function Eq. 4.1 then decomposes into the product

Cf,g (t, s) = 〈f [X(t)]〉 〈g [Y (s)]〉 . (4.3)

Exemplary, as we will see in Sec. 4.5 the trajectory of two molecules in solutions
can be described by two continuous stochastic processes, X(t) and Y(s), due to the
numerous irregular collisions with the surrounding solvent molecules. When the two
molecules have a non-negligible surface charge, they interact and at each time step
their succeeding positions depend on the position history of the other molecule. This
can be considered as a memory effect. Therefore, their trajectories are correlated.
Only if t � s, X(t) and Y(s) are nearly uncorrelated, because due to the random
kicks the memory of past events is gradually erased.

4.1.1 Classical System

We consider an N -dimensional stochastic process X(t), representative for the con-
figuration vector of a classical system, the corresponding probability density of P is
governed by the equation

∂tP (X, t) = Ô P (X, t), (4.4)

therein, Ô is an arbitrary operator acting on P . In order to facilitate the readability,
we colorize the operator and the operand on which the operation is performed in
blue. To calculate the Green’s function of Eq. 4.4, P has to fulfill the initial condition

P (X, s) = δ(X−Y). (4.5)

Using the operator exponential the Green’s function of Eq. 4.4 is

P (X, t | Y, s) = exp
[
(t− s) Ô

]
δ(X−Y). (4.6)

Given that the distribution of initial states is given by P (Y), the joint distribution
can be expressed as

P (X, t,Y, s) = P (X, t | Y, s)P (Y). (4.7)

With this the time-correlation function Eq. 4.1 reads:

Cf,g(t, s) =

∫ ∫
P (X, t | Y, s)P (Y) f(X) g(Y) dNX dNY. (4.8)

By integrating over Y the time-correlation function simplifies to

Cf,g(t, s) =

∫
f(X) exp

[
(t− s) Ô

]
{g(X)P (X)} dNX. (4.9)
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In general it is a cumbersome task to calculate time-correlation functions since each
term of the operator exponential must be evaluated. However, if t ≈ s short-time
expansions can be calculated considering only the first two terms of the operator
exponential.

4.1.2 Quantum Mechanical System

The mathematical formulation of the time-correlation function in the framework of
quantum mechanics is less intuitive. We will formulate a general time-correlation
function, which differs from Eq. 4.4 due to the use of time-dependent operators in
the Heisenberg picture [34]. To characterize the canonical ensemble of a general
N -particle quantum mechanical system, firstly, we have to solve the eigenproblem

Ĥ |n〉 = En |n〉 , (4.10)

thereby obtaining the eigenvectors |n〉 and the associated energy eigenvalues En to
the system Hamiltonian Ĥ. Secondly, we have to calculate the statistical weight in
the canonical ensemble with temperature

Pn =
1

Z
exp (−β En) , (4.11)

Z =
∑

n

exp (−β En)

therein, β = kB T with kB being the Boltzmann constant and T the temperature.
With this a general quantum mechanical time-correlation function is

Cf,g (t, s) :=
〈
f
[
X̂(t)

]
g
[
X̂(s)

]〉
=
∑

n

Pn

〈
n
∣∣∣ f
[
X̂(t)

]
g
[
X̂(s)

] ∣∣∣n
〉

(4.12)

therein, X(t) is the 3N -dimensional time-dependent operator corresponding to
the configurational vector of the system. The following product gives the time-
dependence of the operator

X̂(t) = T̂ (t) · X̂ · T̂ (t)†, (4.13)

in which, T̂ (t) = exp(i t Ĥ/~) and T̂ (t)† = exp(−i t Ĥ/~) are the time-evolution
operator and its adjoint operator, respectively.

4.2 Dynamic Neutron Scattering

4.2.1 Neutron Radiation

When the neutron was discovered in 1932 by the physicist Sir James Chadwick [30],
who was awarded the Nobel Prize only three years later, nobody could anticipate the
technologic advance this discovery would bring to the investigation of the dynamics
and structure of condensed matter only a few decades later. Even though first
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experiments using radium-beryllium sources could demonstrate the scattering ability
of neutrons the intensity was too weak as to allow any practical experiments. With
the development of reactor sources delivering sufficiently high fluxes the field of
neutron scattering commenced to flourish [177]. Today, a modern research reactor
such as the high-flux reactor of the Institut Laue-Langevin can provide a continuous
neutron flux of 1.5·1015 neutrons per second per cm2 with a thermal power of 53MW.
Using moderators neutrons with kinetic energies ranging from 10−7 to 10−1eV can
be generated. Depending on the temperature T of the moderator, the flux velocity
density distribution φ(v) of those moderated neutrons is sufficiently well described
by a Maxwellian function

φ(v) ∝ v3 exp

(
− mv2

2 kB T

)
(4.14)

with kB being the Boltzmann constant and m the mass of the neutron. Among
those, the so-called thermal neutrons are the most suitable to investigate condensed
matter because their kinetic energy E = mv2/2 is comparable to the energy of the
quantum states of condensed matter (several milli-electron volts).

Therefore, the energy exchange between thermal neutrons and matter by exci-
tation and annihilation of quantum states is detectable. Neutrons, consisting of one
up- and two down-quarks, hence, carrying a neutral charge, are insensitive to the
presence of charges in matter. Consequently, when penetrating into matter their
trajectory is not perturbed until they are scattered in the vicinity of the nucleus
caused by a short-range interaction. Due to their magnetic dipole moment neutrons
interact with unpaired electrons in the atom. Moreover, a free neutron has an aver-
age lifetime of 885.6 s before it decays into a proton, an electron and an antineutrino
(compare Table 4.1).

The above properties render them the perfect scattering probe particle for a
non-invasive and non-destructive investigation of structural, dynamical and mag-
netic properties. In the next section we will show how in a neutron scattering
experiment, dynamical and structural information can be extracted from the spa-
tial and energetic distribution of the scattered neutron beam. To this end, we will
shortly summarize how neutrons are treated within the framework of quantum me-
chanics. Neutrons are imagined to be contained in a large box with volume V whose
wavefunction is described by the free particle Hamiltonian

Ĥ0 =
P̂

2m
, (4.15)

therein P̂ is the momentum operator. Note, in the following we will use the Bra-ket
notation introduced by Dirac [41]. Solving the corresponding eigenproblem of the
Hamiltonian Eq. 4.15 using periodic boundary conditions yields the wavefunction
|k〉. Moreover, we have to consider that neutrons are spin-1/2 particles. Conse-
quently, we obtain the full quantum mechanical state of the neutron by a direct
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Properties of the Neutron

mass (m) 1.674927 · 10−27 kg
spin-parity (Jπ) 1/2+

electric charge (q) 0
spin (s) 1/2
magnetic dipole moment −1.9130427µN
n→ p+ + e− + ν̄e ≈ 100%
mean lifetime 885.6 s
half-life 613.9 s

Table 4.1: Basic properties of the neutron [180, 84]. Note, the unit of the magnetic
dipole moment is the nuclear magneton defined by µN = e ~/(2mp), in which e is
the elementary charge, ~ the reduced Planck constant and mp the proton mass.

product of two kets:
|k, s, sz〉 = |k〉 |s, sz〉 (4.16)

therein, the first ket has the spatial wavefunction

ψk(x) := 〈x | k〉 =
1√
V

exp (i k x) , (4.17)

and is characterized by the discrete wavevector

k ∈ 2π

L
Z3. (4.18)

The second ket |s, sz〉 characterizes the spin orientation, in which s = 1/2 is the
angular momentum quantum and sz is the magnetic quantum number, which only
have the values ±1/2. The eigenvalues corresponding to |k, s, sz〉 are given by the
energy dispersion relation

Ek =
~2 k2

2m
. (4.19)

4.2.2 Dynamic Scattering

Emanating from a simple classical and intuitive picture of dynamic scattering, we
will derive a measurable quantity, namely the partial differential cross-section, which
is related to the probe-specific intermediate scattering function – a correlation func-
tion reflecting the average dynamics of the atoms of the probe. A more comprehen-
sive analysis can be found e.g. in the textbooks by Squires [151] and Lovesey [101].
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4.2.2.1 Partial Differential Cross-Section

Fig. 4.1 illustrates the principle of dynamic neutron scattering. A neutron charac-
terized by its wavevector k (left red arrow) impinges on a sample of matter (yellow
cuboid in the middle). When interacting with the nuclei it excites or annihilates
energy states. As a result the neutron is scattered at an angle 2 θ. Thereby, it
changes its wavevector from k to k′ and therefore experiences both a momentum
and an energy transfer, q = k− k′ (purple vector) and ~ω = ~2

(
k2 − k′2

)
/(2m),

respectively. The semitransparent yellow spherical shell denotes the position of all
neutron wavevectors with the same energy E′ = ~2 k′2/(2m). In an experiment
one measures the partial differential cross-section ∂2σ/(∂Ω ∂E′), which counts the
number of neutrons per second that scatter into the solid angle dΩ with final energy
between E′ and E′ + dE′ (corresponding to the small green cuboidal element the
green arrow is pointing to) divided by the flux Φ of incident neutrons.

In the following we will in detail explain the scattering process. The basic idea is
to describe the scattering event with time-dependent perturbation theory and to use
Fermi’s golden rule to derive the partial differential cross-section. When a neutron
interacts with matter the interaction Hamiltonian is

Ĥ ′ = Ĥ + Ĥ0 + V̂ . (4.20)

Therein, Ĥ0 is the free particle Hamiltonian of the neutron Eq. 4.15 and Ĥ is the
matter Hamiltonian. The interaction between the bound nuclei of the matter and
the neutron, denoted by V̂ , causes a perturbation. V̂ is approximated by a sum of
Fermi pseudo-potentials, reading

V̂ =
N∑

j=1

2π ~2

m
b̂j δ (x−Rj) , (4.21)

in which Rj is the position of the jth bound nucleus, and x the position of the
neutron. The scattering length operator b̂j [148], depending on both the neutron
and the nucleus spin, denoted by their corresponding quantum mechanical operators
ŝ and Îj , respectively, reads:

b̂j = b
(j)
coh +

2 b
(j)
inc√

Ij (Ij + 1)
ŝ · Îj , (4.22)

therein, b(j)coh is the bound coherent and b(j)inc the bound incoherent scattering length
of the jth nucleus with spin Ij . Denoting the spin states of the neutron and the
nuclei by a single quantum number σ, the complete state of the neutron and the
matter is described by the ket

|k, λ, σ〉 = |k〉 |λ〉 |σ〉 . (4.23)

Therein, k is the wavevector of the neutron and λ labels the quantum states of
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Figure 4.1: Principle of dynamic neutron scattering. A neutron characterized by its
wavevector k (left red arrow) impinges on a sample (yellow cuboid in the middle)
and, hence, excites or annihilates energy states of the sample. As a result the neutron
is scattered at an angle 2 θ and alters its wavevector to k′ (green arrow). Thereby, it
experiences both a momentum and an energy transfer, which is q = k− k′ (purple
vector) and ~ω = ~2

(
k2 − k′2

)
/(2m), respectively. The semitransparent yellow

spherical shell denotes the position of all neutron wavevectors with the same energy
E′ = ~2 k′2/(2m). In a scattering experiment the measured quantity is the partial
differential cross-section ∂2σ/(∂Ω ∂E′)(q, ω), which is the number of neutrons per
second that scatter into the small solid angle dΩ with final energy between E′ and
E′+ dE′ (corresponding to the small green cuboidal element where the green arrow
points to) divided by the flux Φ of incident neutrons.



4.2. Dynamic Neutron Scattering 25

the matter corresponding to the energy eigenvalue Eλ. When interacting with the
nuclei of the matter, the wavefunction of the neutron changes its initial propagation
direction from k to k′. Thereby, the neutron experiences the momentum transfer,

q = k− k′ (4.24)

and the energy change

~ω = E − E′ = ~2

2m

(
k2 − k′2

)
. (4.25)

Responding to this energy change, the matter alters its quantum state from |λ〉 to
|λ′〉. Energy conservation requires that Eλ′ − Eλ = ~ω. We will briefly outline
how to obtain the partial differential cross-section. Using Fermi’s golden rule one
can show [101] that the partial differential cross-section of those neutrons causing a
transition from the quantum state labeled by (λ, σ) to (λ′, σ′) is

(
∂2σ

∂Ω∂E′

)(λ′,σ′)

(λ,σ)

=
k′

k

( m

2π ~2

) ∣∣∣
〈
k′, λ′, σ′

∣∣∣V̂
∣∣∣k, λ, σ

〉∣∣∣
2
δ
(
~ω + Eλ − E′λ

)
, (4.26)

in which the Dirac-delta function δ (~ω + Eλ − E′λ) enforces energy conservation. In
a real experiment, however, we have neither information about the initial quantum
state (λ, σ) of the matter nor are we able to determine its final quantum state
(λ′, σ′), which renders Eq. 4.26 not measurable. The knowledge about macroscopic
quantities such as the temperature gives us knowledge about the statistical weight
P(λ,σ) = Pλ Pσ of the state (λ, σ). When matter contained in a sample holder is
illuminated by a neutron beam we can assume to observe a canonical ensemble since
the illuminated volume is comparable to the dimensions of the holder. By averaging
over all initial and summation over all final states we obtain

∂2σ

∂Ω ∂E′
=
∑

λ,λ′

∑

σ,σ′

Pλ Pσ

(
∂2σ

∂Ω∂E′

)

λ→λ′
, (4.27)

and with Eq.4.21 we finally arrive at

∂2σ

∂Ω ∂E′
=
k′

k

N

2π ~

∫ ∞

−∞
Ĩ(q, t) exp(−iω t) dt (4.28)

in which
Ĩ(q, t) =

1

N

∑

i,j

〈
b̂†i b̂j exp

[
−i q R̂j(0)

]
exp

[
i q R̂i(t)

]〉
(4.29)

is the intermediate scattering function. It is important to note that R̂j(t) is the
time-dependent quantum mechanical position operator calculated as follows:

R̂j(t) = T̂ (t) R̂j T̂ (t)†, (4.30)
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Neutron scattering cross-sections

Element σcoh σinc σscatt σabs

C 5.551 0.001 5.551 0.0035
H 1.7583 80.27 82.03 0.3326
D 5.592 2.05 7.64 0.000519
O 4.232 0.0008 4.232 0.00019
N 11.01 0.5 11.51 1.9
S 1.0186 0.007 1.026 0.53
Al 1.495 0.0082 1.503 0.231
V 0.0184 5.08 5.1 5.08

Table 4.2: Neutron scattering cross-sections of elements [1] frequently encountered
in organic matter in units of barn= 10−24 cm2. Aluminum is presented due to
its important role as material for sample holders. Note, that the absorption cross-
section σabs holds only for thermal neutrons with velocity 2200m/s.

with T̂ (t) = exp(i t Ĥ/~) being the time-evolution operator of the matter hamilto-
nian Ĥ. In the subsequent section we will describe how to decompose Eq. 4.29 into
a coherent and incoherent scattering contribution.

4.2.2.2 Coherent and Incoherent Scattering

The angular brackets in Eq. 4.29 denote the statistical average over all energy eigen-
values of the matter as well as the neutron and nuclear spins. In most types of ma-
terial we can expect that the nuclear spins are randomly distributed and therefore
are uncorrelated. However, when a neutron is scattered at a nucleus the coupling
between the neutron and the nuclear spin becomes crucial, as revealed by the spin-
dependent scattering length operator Eq. 4.22. As a result, we can decompose the
intermediate scattering Eq. 4.29, in a similar manner as the operator 4.22, into an
incoherent and coherent contribution:

Ĩ(q, t) = Ĩinc(q, t) + Ĩcoh(q, t) (4.31)
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Figure 4.2: Distribution of hydrogen atoms (green semi-transparent spheres) in
the homology model of bovine serum albumin [175] (cartoon plot of its secondary
structure). Like most proteins bovine serum albumin has a high fraction of hydrogen
atoms, which can be assumed to be equally distributed within the molecular volume.
The illustration was rendered with VMD [77].

http://www.ks.uiuc.edu/Research/vmd/
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with the incoherent and coherent intermediate scattering function

Ĩinc(q, t) =
1

N

N∑

j=1

σj,inc

4π

〈
exp

[
−i q R̂j(0)

]
exp

[
i q R̂j(t)

]〉
(4.32)

Ĩcoh(q, t) =
1

N

N∑

i,j=1

√
σi,coh σj,coh

4π

〈
exp

[
−i q R̂i(0)

]
exp

[
i q R̂j(t)

]〉
.(4.33)

Evidently, the incoherent part depends only on the correlation of the positions of
the same nucleus at different times. By contrast the coherent counterpart depends
on the spatial correlation of different nuclei at different times. Consequently, aside
from dynamical effects, the coherent scattering additionally sheds light on structural
information. In comparison, the incoherent part predominantly reveals the average
dynamics of the nuclei. The strength of the contribution to the coherent and inco-
herent intermediate scattering function of a single nucleus is given by its incoherent
and coherent cross-section, respectively:

σinc

4π
=

〈
b̂† b̂
〉
−
〈
b̂
〉† 〈

b̂
〉

= b2inc (4.34)

σcoh

4π
=

〈
b̂
〉† 〈

b̂
〉

= b2coh.

Note that for better readability we skipped the index j. Moreover, if there are
several isotopes denoted by the index ξ with relative abundance cξ in the scattering
system, we have to replace

〈
b̂
〉
and

〈
b̂† b̂
〉
in the above expressions by

〈
b̂
〉

=
∑

ξ

cξ

〈
b̂ξ

〉
(4.35)

〈
b̂† b̂
〉

=
∑

ξ

cξ

〈
b̂†ξ b̂ξ

〉
. (4.36)

One can conceive coherent scattering as the scattering of the same system if all
scattering lengths were identical. Incoherent scattering occurs due to both isotopes
and the fluctuation of scattering lengths caused by the degeneracy of neutron and
nuclear spin eigenstates. Table 4.2 shows the coherent and incoherent scattering
cross-section for elements frequently encountered in organic molecules. The most
prominent member is hydrogen with a large incoherent cross-section exceeding all
other elements. Consequently, it is reasonable to partition the sum in Eq. 4.32 into
contributions from the same element

Ĩinc(q, t) =
n∑

α=1

fα
σα,inc

4π

1

Nα

Nα∑

jα=1

〈
exp

[
−i q R̂jα(0)

]
exp

[
i q R̂jα(t)

]〉
(4.37)

therein fα = Nα/N is the fraction of the element of kind α. Proteins have a high
fraction of hydrogen atoms and it can be assumed that they are equally distributed
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r

Rj(0)

Rj(t)

r

Ri(0)

Rj(t)

Figure 4.3: Physical interpretation of the classical van-Hove correlation functions.
The purple and blue colors correspond to time t = 0 and t > 0, respectively. The left-
hand image shows the same particle (the jth particle) at time t = 0 and time t > 0, at
position Rj(0) and Rj(t), respectively. Snap shoots of its trajectory are indicated by
transparent circles. The summand of the time-dependent self-correlation function in
Eq. 4.42 corresponds to the probability that the jth particle has traveled a distance r
within the time t. The right-hand image shows the trajectories of different particles.
Particle i is at position Ri(0) at time t = 0. At time t > 0 particle j is at Rj(t). The
summand of the time-dependent pair-correlation function in Eq. 4.41 corresponds
to the probability that the ith particle (purple circle) is at any position, which is
separated by the vector r from the position at which at time t > 0 the jth particle
(blue circle) can be found.

within the molecular volume as it is illustrated for the homology model of bovine
serum albumin [175] in Fig. 4.2. Therefore, we can approximate the incoherent in-
termediate scattering function of a protein by the part stemming from the hydrogen
atoms:

Ĩinc(q, t) ≈ fH
σH,inc

4π

1

N

N∑

j=1

〈
exp

[
−i q R̂j(0)

]
exp

[
i q R̂j(t)

]〉
(4.38)

in which the Heisenberg operators R̂j(0) and R̂j(t) correspond to the position of
the jth hydrogen atom at time 0 and t, respectively.

4.2.3 Dynamic Correlation Functions

In his seminal paper van Hove [166] introduced an elegant formalism that relates
the measured cross-section of a neutron scattering experiment with two time-space
correlation functions of the scattering system, which are the time-dependent pair-
correlation function,

G(r, t) =
1

N

N∑

i,j=1

∫ 〈
δ
(
r′ − R̂i(0)

)
δ
(
r′ + r− R̂j(t)

)〉
d3r′ (4.39)
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and the time-dependent self-correlation function

Gs(r, t) =
1

N

N∑

j=1

∫ 〈
δ
(
r′ − R̂j(0)

)
δ
(
r′ + r− R̂j(t)

)〉
d3r′, (4.40)

therein, the angular brackets denote the ensemble average and R̂j(t) is the time-
dependent Heisenberg operator of the position of the j particle at time t (see
Sec. 4.1). The calculations are quite general and refer to any system, gas, solid
or fluid. For most systems, the quantum mechanical calculations are not feasible,
and therefore G and Gs are frequently approximated from their classical forms,

Gcl(r, t) =
1

N

N∑

i,j=1

〈δ (r−Rj(t) + Ri(0))〉 , (4.41)

Gcl
s (r, t) =

1

N

N∑

j=1

〈δ (r−Rj(t) + Rj(0))〉 . (4.42)

Fig. 4.3 illustrates the physical interpretation of the classical van-Hove correlation
functions Eqs. 4.41 and 4.42 exemplified by a system of particles in solution. For
clarity only two particles are shown. The left-hand image displays the same particle
(the jth particle) at time t = 0 and at time t > 0. Both positions are separated by a
vector r due to the motion of the particles. The summand of the time-dependent self-
correlation function in Eq. 4.42 corresponds to the probability that the jth particle
has traveled a distance r within the time t. Conversely, the right-hand image shows
an almost identical situation as the left-hand figure but for different particles (the ith

and the jth particle). The summand of the time-dependent pair-correlation function
in Eq. 4.41 corresponds to the probability that the ith particle is at any position at
time t = 0, which is separated by the vector r from the position at which at time
t > 0 the jth particle is found. Linked to the van Hove correlation function by a
spatial Fourier transform are the coherent and incoherent intermediate scattering
functions

Icoh(q, t) =

∫
G(r, t) exp (i q r) d3r (4.43)

Iinc(q, t) =

∫
Gs(r, t) exp (i q r) d3r. (4.44)

Note, for reasons of readability the index α will refers to both ‘inc’ or ‘coh’ in
the following part of this section. Applying another Fourier transform in the time
domain, the coherent and incoherent scattering function

Sα(q, ω) =
1

2π

∫
Iα(q, t) e−iω t dt (4.45)
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Properties of correlation functions

∫
Gs(r, t) d3r = 1

∫
G(r, t) d3r = N

Gs(r, 0) = δ(r) G(r, 0) = δ(r) + g(r)

∫
Sinc(q, ω) dω = 1

∫
Scoh(q, ω) dω = S(q)

Sα(q, ω) = 1
2π

∫
Iα(q, t) e−iω t dt

Sα(q, ω) = exp (~ω β) Sα(−q,−ω)

Table 4.3: Important properties of correlation functions. Note, that g(r) is the pair
correlation function. Note, that S(q) is the structure factor Eq. 4.60, which we will
describe in the next section of static scattering. For reasons of readability the index
α will refers to both ‘inc’ or ‘coh’.

is obtained. Finally, for a system consisting of identical nuclei, the functions Scoh

and Sinc are closely related to the coherent and incoherent cross-section by

∂2σ

∂Ω ∂E′
=

(
∂2σ

∂Ω ∂E′

)

inc
+

(
∂2σ

∂Ω ∂E′

)

coh
(4.46)

with (
∂2σ

∂Ω ∂E′

)

α

=
k′

k

N σα
4π ~

Sα(q, ω). (4.47)

Table 4.3 summarizes the key properties of the correlation function mentioned
in this section. Among these the most astonishing relation is S(q, ω)α =

exp (~ω β) Sα(−q,−ω), also known as the principle of detailed balance. It is a
purely quantum mechanical effect that is crucial for very low temperature. In essence
it states an asymmetry of energy gain and loss of the neutrons caused by the Boltz-
mann factor of the energy states of the scattering system [151].

4.2.4 Incoherent Scattering Function of a Molecule

In this section we will elucidate how the incoherent scattering function Iinc(q, t)

Eq. 4.44 of a macromolecule such as a protein can be separated into a product
of contributions from different molecular dynamical modes, encompassing atomic
vibrations, internal diffusive modes and global translational as well as rotational
diffusion. Such a decomposition of Iinc(q, t) is achievable for samples with hier-
archically ordered dynamics, or in other words for samples with dynamical modes
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separable on the time scale.

Within a molecule the time-dependence of the position vector of a nucleus R(t)

stems from a multitude of different molecular dynamical modes. The position vector
of the scattering nucleus can be decomposed into its equilibrium position and a
displacement due to atomic vibrations:

R(t) = r(t) + u(t). (4.48)

The equilibrium position is time-dependent caused by the motion of the entire
molecule. In a solution the molecule has additionally a translational and rotational
component, that we will describe later in more detail. This allows to separate R

further into
R(t) = rT (t) + rR(t) + u(t) (4.49)

in which rT (t) and rR(t) are the rotational and translational component, respec-
tively. Geometrically, one can conceptualize the motion of the position of a single
nucleus as a point moving in a sphere shell – whose thickness is determined by
the vibrational mean-squared displacement – with a center translating in all space.
Calculating the intermediate scattering function (Eqs. 4.40 and 4.44)

Iinc(q, t) =
1

N

N∑

j=1

〈
exp

[
−i q R̂j(0)

]
exp

[
i q R̂j(t)

]〉
(4.50)

is in most cases not feasible, when all motions are taken into account. Similar to
the separation of the nucleus position vector into different contributions, we can
decompose the intermediate scattering function into factors accounting for different
kinds of motion (for a detailed analysis see e.g. [13]):

Iinc(q, t) = ITinc(q, t) · IRinc(q, t) · IVinc(q, t), (4.51)

thereby, we assume that intramolecular vibrations are independent of rotational and
translational modes. Furthermore, the decomposition is only valid if the coupling
between translation, the rotation and the reorientations are negligible. Using the
convolution theorem the corresponding scattering function is

Sinc(q, ω) = STinc(q, ω)⊗ SRinc(q, ω)⊗ SVinc(q, ω). (4.52)

The scattering function related to the vibrational modes of the molecule can be
decomposed into an elastic and a inelastic part [13]

SVinc(q, ω) = exp

[
−1

3

〈
u2
〉
q2

] {
δ(ω) + SVinel(q, ω)

}
, (4.53)

therein,
〈
u2
〉
is the average mean-squared displacement of the scattering nuclei. In

Sec. 4.5 we will study STinc(q, ω) and SRinc(q, ω) in more detail.
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4.3 Static X-Ray Scattering

4.3.1 X-Rays

Structural information of matter on molecular length scales became for the first
time visible with the discovery of highly energetic electromagnetic radiation by the
physicist Röntgen [136] in 1895. Since he was not exactly sure what kind of radiation
he had discovered, Röntgen called this new radiation X-rays, thereby making use
of the connotation that X is the symbol for an unknown quantity. The famous
radiographic image of Röntgen’s wife’s hand exemplifies the power of X-rays to
penetrate biological matter and to serve as a tool to investigate structural properties.
Their wavelength and energy render them a perfect probe to investigate atomic and
molecular structure. In 1901 Röntgen was the first recipient of the Nobel Prize in
Physics.

4.3.2 Static Scattering

In this subsection we summarize the essential concept of static scattering using X-
ray photons. A comprehensive introduction to this topic is e.g. given in the textbook
by Als-Nielsen and McMorrow [6]. We note that for static neutron scattering the
framework is very similar and the only parameter to be changed is the scattering
length density.

In contrast to neutrons, the X-ray photons are scattered at the electron “cloud”
of the atoms. As X-rays are electromagnetic waves they induce an oscillation of the
electrons, which causes the emission of an electromagnetic wave at identical wave-
length. In a simplistic picture the interaction with the electron “cloud” is described
by a single scattering length f = Ne r0, therein Ne is the number of electrons in
the “cloud” and the Thomson radius r0 = 1.82 · 10−13 cm. When a monochromatic
X-ray beam with wavevector k is scattered at a sample the amplitude of the scatted
wave with wavevector k′ is

A(q) =

∫
ρ(r) exp (i q r) d3r, (4.54)

therein, ρ is the scattering length density of the illuminated sample and q = k− k′

the momentum transfer vector. In case of a monodisperse system of N particles,
whose center of mass positions are denoted by Ri, the total scattering length density
can be decomposed into a sum of non-overlapping densities

ρ(r) =
N∑

j=1

ρV (r−Rj) , (4.55)

therein, ρV is the scattering length density of a single particle with volume V . Using
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this summation the scattering amplitude turns into a the following sum:

A(q) =
N∑

j=1

exp (i q Rj)

∫
exp(i q r) ρ (r) d3r. (4.56)

Instead of measuring A(q) in an experiment, we gauge the ensemble averaged in-
tensity, which coincides with the differential cross-section,

dσ(q)

dΩ
= 〈A(q)A(q)∗〉 . (4.57)

Fig.4.4 illustrates the scattering length density ρV, which can be conceived to be
the smeared out form of the particle shape. Outside of the particle volume V the
density rapidly decays to zero, whilst within V the density fluctuates about the
average scattering length density ρ̄V. With this in mind and assuming that the
density fluctuation in V is negligible, we can approximate

ρV(r) ≈ ρ̄V χV(r), (4.58)

where χV is the shape function of the particle with volume V . With this approxi-
mation, we finally obtain the scattering intensity

dσ(q)

dΩ
= N V 2 ρ̄V

2 S(q)P (q). (4.59)

with the structure factor described by the equilibrium structure of the system

S(q) =

〈
1

N

N∑

j,k=1

exp [iq (Rj −Rk)]

〉
, (4.60)

and the form factor

P (q) =

∣∣∣∣
1

V

∫

V
exp (i q r) d3r

∣∣∣∣
2

, (4.61)

which is the Fourier transform of the particle shape. In highly diluted systems, the
structure factor is nearly unity and we only observe the form factor when measuring
the scattering intensity. Conversely, in non-diluted systems, where interactions are
present, the scattering intensity is strongly modulated by the structure factor S.
For an isotropic system we observe that the form and structure factor only depend
on the magnitude of q

P (q) = 〈P (q)〉Ω (4.62)

S(q) = 〈S(q)〉Ω ,

where the angular brackets denote the averaging over all orientations of q assuming
that they are equally distributed, which happens to be the case in dilute suspension
where interactions of the suspended particles can be neglected.
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Ri R j

!V r "Ri( )
!V r "R j( )

Figure 4.4: Two particles with center of mass positions Ri and Rj . Each particle
has a scattering length density ρV, which can be conceived to be a smeared out form
of the particle shape. Outside the particle volume V the density rapidly decays to
zero and within V it fluctuates about the average scattering length density ρ̄V. If
this fluctuation is negligible we can approximate ρV(r) ≈ ρ̄V χV(r) as displayed in
the figure by the two gray solid shapes.
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Figure 4.5: Pair correlation function g(r) for a system of charged spheres (Z = 11)
with diameter σ = 70Å in a liquid with relative dielectric constant εr = 78 at
temperature T = 298K. The blue solid line shows g(r) of spheres at high volume
fraction (ϕ = 0.4) and low ionic strength (I = 10mM). In contrast the light blue
dashed line shows the same spheres at low volume fraction (ϕ = 0.004) and very high
ionic strength (I = 103 mM). The pair correlation function g(r) was calculated from
the analytical structure factor of macro-ions obtained by Hayter and Penfold [71].

4.3.3 Static Correlation Function

Similar to the dynamic structure factor the static structure factor S can be expressed
in terms of the static pair-correlation function:

S(q) = 1 + 4π np

∫ ∞

0
[g(r)− 1]

sin(q r)

q r
r2 dr (4.63)

therein, the pair-correlation g(r) function describes the spatial arrangement set by
the interparticle interactions. For particles of diameter σ with a hardcore, the
pair-correlation function can be approximated from the Ornstein-Zernicke relation
equation with the mean-spherical closure relation [95]. This method allows to relate
the interaction of two particles u(r) with the pair-correlation function g(r) using a
linear integral equation. The Ornstein-Zernicke equation reads

h(r) = c(r) + ρ

∫
c
(∥∥r− r′

∥∥) h(r′) d3r′, (4.64)
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where, h(r) = g(r)− 1. With the mean-spherical approximation

h(r) = −1, r < σ (4.65)

c(r) ≈ −β u(r), r > σ

the pair correlation function can be calculated for r > σ.

4.4 Intermolecular Interactions

In this section we want to describe the main types of molecular interactions relevant
for this study. These are intermolecular interactions. Intramolecular interactions,
which are much stronger, could not be resolved with the spectroscopic techniques
we used for this study. For a more comprehensive review of intermolecular interac-
tions we refer to the textbooks by Dhont [40], Kleman and Lavrentovich [89] and
Nägele [116]. In solution macromolecules feel two types of intermolecular interac-
tions, namely, long-range hydrodynamic and medium-range direct interactions. In
the first part, we will elaborate on hydrodynamic interactions, which only occur in
macromolecular solutions and originate from the solvent flow field. In the second
part, we want to focus on the direct interactions, which crucially determine the
equilibrium structure of the molecules in solution.

4.4.1 Hydrodynamic Interactions

Molecules moving in a solvent generate both a flow and a pressure field, u and p,
respectively. The motion of other particles feeling this field is influenced by a force

F =

∮

∂Ω
{p(r)− η τ [v(r)]} n dS(r), (4.66)

where η is the dynamical viscosity coefficient and n is the normal vector of the
macromolecular surface ∂Ω pointing towards the fluid. The flow field velocity acts
via the shear stress tensor τ on the particle, reading

τ = ∇v> +
(
∇v>

)>
. (4.67)

with> denoting the transposition. In the following we will derive how hydrodynamic
forces are described in terms of the velocity and position of all particles. To this end,
we will consider a system of spherical particles emerged in a fluid. In the world of
macromolecules viscous forces dominate [133] the motion, which allow us to describe
the hydrodynamic interaction using the so-called creeping flow equations

∇ p(r)− η∇2 v(r) = f(r) (4.68)

∇ · v(r) = 0
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in which η is the sheer viscosity, v the flow field velocity, f and external force field,
and p the pressure of the fluid. Using Green’s method the general solution is

v(r) =

∫
T
(
r− r′

)
f
(
r′
)

d3r′ (4.69)

p(r) =

∫
g
(
r− r′

)
f
(
r′
)

d3r′

therein

T(r) =
1

8π η r

(
13 +

r r>

r2

)
(4.70)

g(r) =
1

4π r3
r

Suppose we have N spheres of radius a with surface ∂Ω emerged in the suspension.
When the external force Fj is applied to the sphere labeled by j, it induces a flow
field that can be calculated from Eq. 4.69.

v(r) =
1

4π a2

N∑

j=1

∮

∂Ωj

T(r− ξ) Fj dS(ξ). (4.71)

If we assume sticky boundary conditions, the fluid at the surface has the same
velocity as the corresponding surface element. This allows to relate the velocities of
the spheres to the external forces that the spheres exerted on the fluid. The average
velocity on the surface on sphere i is

vi =
1

4π a2

∮

∂Ωi

v(ξ′) dS(ξ′) (4.72)

=
1

6π η a
Fi +

1

(4π a2)2

N∑

j 6=i

∮

∂Ωi

∮

∂Ωj

T(ξ′ − ξ) dS(ξ′) dS(ξ) Fj .

According to Newton’s law, the hydrodynamic force that the fluid exerts on the jth

particle is F
(j)
h = −Fj . Hence, the hydrodynamics force is an N -body force FN

h ,
which depends on the position and velocities of all particles, denoted by rN and vN ,
respectively.

FN
h = −Υ

(
rN
)

vN , (4.73)

in which Υ−1 is the mobility tensor describing the dynamic response of the spheres
due to the hydrodynamic forces applied.

Fig. 4.6 illustrates the hydrodynamic forces experienced by three spheres moving
in a solvent. Due to their motion they induce a pressure (not shown) and flow field
(gray stream lines) that causes hydrodynamic forces acting on the spheres. As
Eq. 4.73 implies the hydrodynamic force is related to the velocity and positions of
all spheres, but not necessarily points in the same direction as the velocity.
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Figure 4.6: Spheres moving in a solvent induce a pressure and flow field that lead to
hydrodynamic forces acting on the spheres. The flow field v calculated with Eq. 4.71
is visualized by its stream lines (gray arrow lines). At the surface ∂Ωj of the sphere
j the average velocity of the flow field is equal to the sphere’s velocity due to the
sticky boundary conditions. The hydrodynamic force is related to the velocity and
positions of all spheres by FN

h = −Υ
(
rN
)

vN .
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4.4.2 Direct Interactions

Aside from the solvent mediated interactions described in the previous section,
macromolecules directly interact due to their surface charge distribution and their
excluded volume. Fig. 4.7 displays the typical direction interaction potential u(r)

of spherical charged macromolecules of diameter σ. A long-range repulsive and
short-range attractive force characterize the potential. For clarity the hard-core in-
teraction is not displayed but reflected by the choice of the axis limits. For r < σ

the potential is infinity due to the fact that two molecules cannot be closer than the
sum of their radii.

Hard-Sphere Interaction In a simplistic picture macromolecules can be con-
sidered as hard spheres of diameter σ. To account for the fact that they do not
interpenetrate, their hard-core interactions are approximated by the hard sphere
potential

uhs(r) =

{
+∞ r ≤ σ
0 r > σ

, (4.74)

therein r is the center to center distance of the macromolecules. Hard sphere inter-
action allows to define the excluded volume fraction ϕ, which for proteins can be
determined from their concentration via ϕ = v cp, where the specific volume is for
most proteins v = 0.74 cm3/g (more details in Sec.5.1.1).

Screened Coulomb Interaction Due to the dissociation of solvent exposed hy-
drogen atoms of surface groups or the adsorption of micro-ions [159, 144], macro-
molecules assume in general a very complex charging pattern. Only considering the
monopole interaction described solely by an effective charge Z, we can describe the
repulsive interaction of macromolecules by colloidal charged hard spheres: Charged
hard spheres of diameter σ = 2 a immersed at volume fraction ϕ in a continuous elec-
trolyte solvent with dielectric constant ε and ionic strength I interact by a Yukawa
repulsion [17]

β uel(r) = Z2 λB Y
2 exp (−κ r)

r
(4.75)

where β = (kB T )−1, λB = β e2/ (4π ε) is the Bjerrum length and κ is the screening
constant given in terms of the ionic strength

κ =
(
8π e2 I β

)1/2
. (4.76)

The effect of screening and the size of the particles on the interaction strength is
characterized by

Y = cosh (κ a) + U [κ a cosh (κ a)− sinh (κ a)] (4.77)
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Figure 4.7: Interaction potential u between two charged hard spheres with diameter
σ at a center-center distance r (purple solid line). V consists of an hard-sphere
potential uhs, an attractive van-der-Waals potential uvdW (light blue dashed line)
and a repulsive Yukawa potential uel (dark blue dashed line).
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with

U =
x

(κ a)3
− γ

κ a
(4.78)

z =
3ϕ

1− ϕ
γ =

Γ a+ z

1 + Γ a+ z
.

The general screening parameter Γ satisfies the nonlinear relation

Γ2 = κ2 +
q2

(1 + Γ a+ z)2 , (4.79)

therein the screening due to the presence of the macromolecule is

q2 = 4π λB ρZ
2, (4.80)

ρ =
ϕ

4/3π a3
.

Note that for a dilute suspension the Derjaguin-Landau-Verwey-Overbeek [169] re-
pulsive potential is obtained:

Y0 := lim
ϕ→0

Y =
1

1 + κ a
exp (κ a) . (4.81)

In the non-dilute case the presence of surrounding macromolecules decreases the
screening ability of the solvent-ions around two interacting macromolecules and
thereby produces a stronger effective repulsion between them; it can be shown that
Yϕ > Y0.

van-der-Waals Interaction A comprehensive introduction to van-der-Waals in-
teractions is given in the review by Nir [119] and in the textbook by Kleman and
Lavrentovich [89]. Van-der-Waals interaction is a generic term summarizing the
interaction of two neutral molecules from three contributions: These are Keesom
interaction (dipole-dipole), Debye interaction (induced-dipole dipole) and London
interactions (induced-dipole induced-dipole). All these interactions have in common
to be attractive and vary with the 6th power of the molecular distance. For two neu-
tral molecules of arbitrary shape described by the volumes V1 and V2 the energy of
the van-der-Waals attraction is given by

uvdW = −AH

π

∫

V1

∫

V2

d3r1 d3r2

‖r1 − r2‖6
, (4.82)

in which AH is the Hamaker constant [68, 119]. In publication B (see Chap. 8)
we will give experimental evidence that a globular protein can be described as an
effective sphere. This simple picture of a protein motivates to simplify the shape
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dependent interaction described by Eq. 4.82 by using identical spheres. For the
case of two identical spherical molecules of diameter σ separated by a center-center
distance r Hamaker [68] calculated:

uvdW(r) = −AH

12

[
σ2

r2 − σ2
+
σ2

r2
+ 2 log

(
1− σ2

r2

)]
. (4.83)

For proteins in water at temperature T , the so-called Hamaker constant AH was
estimated by Nir [119] to be in the range 3 − 5 kB T . When the molecule is highly
charged the van-der-Waals attraction might be masked by the static repulsion.

Total Potential The equilibrium structure of a macromolecular solution is deter-
mined by the pair-wise additive total potential

U
(
rN
)

=
N∑

i<j

u (|ri − rj |) (4.84)

where rN denotes the N -particle configuration vector. The pair potential u is com-
posed of the hard-core, repulsive and attractive interaction

u(r) = uhs(r) + uvdW(r) + uel(r) (4.85)

In case of highly charged macromolecules in solution the interaction is dominated
by the hard-core and the repulsive Coulomb part, leading to a charge-stabilized
solution. Adding salt can screen and alter the surface charge. This can cause a
change of the balance of repulsive and attractive forces and eventually give rise to
a complex equilibrium behavior such as the formation of clusters [157, 98].

Potential of Mean Force In an N -particle system the total force is not directly
measurable, however we can calculate the average force F between two particles over
all configurations of the remaining N − 2 particles. The mean force on particle 1 if
we hold particle 2 fixed is

F(r12) =

∫
(−∇1 U) exp (−β U) d3r3 . . . d

3rN∫
exp (−β U) d3r3 . . . d3rN

=
〈
−∇1 U

(
rN
)〉

1,2
. (4.86)

Therein, ∇1 is the derivative with respect to the position vector r1 and the angu-
lar brackets denote the canonical average over all particles expect particle 1 and
2. There exists a remarkable link to the pair-correlation g(r) function which we
introduced in Eq. 4.63. One can show that [116]

−∇1w (r12) = F(r12), (4.87)

with
w(r) = −kB T log[g(r)] (4.88)
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being the so-called potential of mean force.

4.5 Translational Diffusion

If compared to the microscopic world of molecules, inertia plays a rather negligible
role than in the macroscopic world. By contrast, frictional forces govern the motion
of molecules through the solvent. Collision with the much smaller surrounding sol-
vent molecules, which are in random thermal motion, causes an irregular trajectory.
By examining the random motion of pollen grains Brown [24] sparked the interest in
developing mathematical models able to describe such kind of random movements.

Many years later Fick [55] introduced his law of diffusion

∂ρ

∂t
= D

∂2 ρ

∂x2
, (4.89)

thereby, introducing the diffusion coefficient D, which measures how rapidly a parti-
cle explores isotropically its surrounding. Later, Einstein found the link between the
diffusion coefficient of non-interacting particles performing the so-called “Brownian
molecular motion” with the viscosity and the size of the suspended particles [48],

D =
kB T

6π η R
, (4.90)

therein, R is the radius of the suspended particles, T the temperature and η the vis-
cosity of the solvent. Moreover, Einstein showed that the diffusion of non-interacting
particles could be well described by Fick’s law, which was originally developed by
Fick to describe relaxation of concentration gradients.

4.5.1 Diffusion Coefficient of Proteins

The first mathematical concepts to describe random motions were developed for
spherical particles suspended in a fluid. However, when studying the “Brownian
Motion” of proteins it is crucial to take their non-sphericity into account. To model
the shape of a protein, one uses in general ellipsoidal spheroids or more frequently an
ellipsoid of revolution in order to take the anisotropy into account. Perrin [128, 90]
generalized the Stokes-Einstein relation Eq. 4.90 for the case of ellipsoids with semi-
principal axes (a, 0, 0), (0, b, 0) and (0, 0, c). Due to the anisotropy the diffusion
coefficient is not a scalar anymore, but a diagonal 2nd-order tensor

D = kB T diag
(

1

fa
,

1

fb
,

1

fc

)
, (4.91)

therein, the friction coefficients about the semi-principal axes are

fγ =
16π η

S + γ2 Pγ
(4.92)
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where S and Pγ are the following elliptic integrals

Pγ =

∫ ∞

0

ds

(γ2 + s)
√

(a2 + s) (b2 + s) (c2 + s)
(4.93)

S =

∫ ∞

0

ds√
(a2 + s) (b2 + s) (c2 + s)

. (4.94)

Using ellipsoidal spheroids to describe the form of proteins is clearly a strong sim-
plification. If the solution structure of the protein is known, one can use more
complicated models. Hubbard and Douglas [76] introduced a simple method to
estimate the translational diffusion coefficient of an arbitrarily shaped Brownian
particle. The translational diffusion coefficient takes the form

D =
kB T

6π η CV
, (4.95)

therein, CV is mathematically similar to the electrostatic capacitance of the particle
with shape V , for a sphere of radius R the relation is simply CV = R. For the
atomic-level structure of proteins, de la Torre et al. [38] elaborated a bead model
that can estimate the diffusion coefficient. For this end they developed the public-
domain HYDROPRO computer program [38].

4.5.2 Free Diffusion

Einstein showed that the diffusion of non-interacting particles in a viscose medium
can be well described by Fick’s law. The time evolution of the configurational
probability density function is

∂

∂t
P (r, t | r0, t0) = D∇2 P (r, t | r0, t0) , (4.96)

with the initial condition that at time t = t0 the diffusing particle is at position r0:

P (r, t0 | r0, t0) = δ (r− r0) . (4.97)

One refers to the solution as Green’s function ψ, reading

P (r, t | r0, t0) = ψ (r− r0, t− t0) (4.98)

ψ (r, t) =
1

(4πD t)3/2
exp

(
− r2

4D t

)
, (4.99)

describing the probability to find a particle at position r at time t when it was at
position r0 at time t0. The mean-squared displacement, measuring how the particle
explores its surroundings over time t is

W (t) =
〈

(r− r0)2
〉

= 6D t. (4.100)

http://leonardo.inf.um.es/macromol/programs/hydropro/hydropro.htm
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Figure 4.8: Time evolution of the probability density P (r, t | 0, 0) to find a particle
at position r = (x, y) at a certain time t when it was initially at the origin at
time 0. For small times P (r, t | 0, 0) resembles a delta function. With progressing
time P (r, t | 0, 0) is spreading isotropically out in space while being centered at the
origin.
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Fig. 4.8 displays the time evolution of the two-dimensional version of Green’s func-
tion for the case that the particle was initially at the origin. As the linear depen-
dence of the mean-squared displacement Eq. 4.100 on time t implies, the probability
density function is spreading out with progressing time. The speed of this isotropic
explorations of space is measured by the diffusion coefficientD. By plugging Eq. 4.99
into Eq. 4.42 and employing the general relation for classical correlations Eq. 4.8,
we obtain:

Gcl
s (r, t) =

∫ ∫
δ (r− x + x0) P (x, t | x0, 0) P (x0, 0) d3x0 d3x (4.101)

=

∫ ∫
δ (r− x + x0) ψ (x− x0, t) P (x0, 0) d3x0 d3x (4.102)

= ψ (r, t)

∫
P (x− r, 0) d3x

= ψ (r, t) .

Note, without loss of generality, we set t0 = 0. It turns out that the time dependent
self -correlation function of the free diffusing particle is equal to the Green’s functions
of the free-diffusion equation

Gs(r, t) =
1

(4πD t)3/2
exp

(
− r2

4D t

)
. (4.103)

Consequently, according to Eq. 4.44 the incoherent intermediate scattering function
is

IT
inc(q, t) =

∫
Gs(r, t) exp (i q r) d3r (4.104)

= exp
(
−D q2 |t|

)
.

Using Eq. 4.45 the corresponding incoherent scattering function becomes a
Lorentzian function

ST
inc(q, t) =

1

π

D q2

ω2 + (D q2)2 . (4.105)

4.5.3 Diffusion of Interacting Particles

Smoluchowski Equation Smoluchowski [150] generalized Fick’s law for diffusion
to a system of N interacting particles. In contrast to free diffusion, the suspended
particles feel the presence of the surrounding molecules mediated by both hydro-
dynamic interactions and direct interactions (for details see Secs. 4.4.1 and 4.4.2).
The diffusive motion is then described in terms of an N -particle density distribution
function P , whose time evolution is governed by the Smoluchowski equation:

∂

∂t
P
(
rN , t | rN0 , t0

)
= Ŝ P

(
rN , t | rN0 , t0

)
, (4.106)
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in which the operator in the right-hand equation is the so-called Smoluchowski
operator which operates on a function ψ

(
rN
)
as follows:

Ŝ ψ
(
rN
)

= ∇>
[
D
(
rN
) {

β ψ
(
rN
) [
∇U

(
rN
)]

+∇ψ
(
rN
)}]

, (4.107)

therein, β = (kB T )−1 with T being the temperature and ∇ = ∂/∂rN the Nabla
operator in column vector representation. The solvent mediated hydrodynamic in-
teractions between the particles are determined by the microscopic diffusion tensor
D, which is related to the mobility tensor Eq. 4.73 by

D
(
rN
)

=
{
βΥ

(
rN
)}−1

. (4.108)

Particle-particle direct interactions are described by U
(
rN
)
, which can be calculated

from Eq. 4.84. Finally, the configuration vector rN = (r1, ..., rN ) bundles all N
particle position vectors. Given that at time t0 the configurational probability of
the diffusing particles is

P
(
rN , t0 | rN0 , t0

)
= f

(
rN
)
. (4.109)

where f is an arbitrary density distribution, the time evolution of the Smoluchowski
equation will restore the equilibrium distribution of the particles’ configuration in
space for infinite times,

P∞
(
rN
)

:= lim
t→∞

P
(
rN , t | rN0 , t0

)
=

1

Z
exp

[
−β U

(
rN
)]

(4.110)

in which the normalization factor Z is the corresponding partition function Z. Using
the steps in Sec. 4.1 it is possible to find an ensemble average using the Boltzmann
distribution and the Smoluchowski operator for both the incoherent and the coherent
intermediate scattering function,

IT
inc(q, t) = (4.111)

1

N

N∑

j=1

∫
exp (−i q rj)

{
exp

(
t Ŝ†

)
exp (i q rj)

}
P∞

(
rN
)

drN ,

and

IT
coh(q, t) = (4.112)

1

N

N∑

i,j=1

∫
exp (−i q ri)

{
exp

(
t Ŝ†

)
exp (i q rj)

}
P∞

(
rN
)

drN ,

respectively. Therein, Ŝ† is the adjoint operator to Ŝ, which operates on an arbitrary
function ψ

(
rN
)
as follows

Ŝ† ψ
(
rN
)

=
{
∇+ β∇U

(
rN
)}> [

D
(
rN
)
∇ψ

(
rN
)]

(4.113)



4.5. Translational Diffusion 49

Figure 4.9: Left-hand image: The physical picture of short-time self-diffusion is
that the tracer-particle (dark blue circle) diffuses inside the cage of its surround-
ing particles (light-blue circles). The diffusion trajectory of the tracer-particle is
indicated by the transparent dark blue circles. The free-diffusion coefficient of the
tracer given by the Stokes-Einstein relation 4.90 is slowed down mainly due to the
hydrodynamic interactions with other particles. Right-hand image: long-time self-
diffusion refers to the case when the tracer-particle (dark blue circle) breaks through
the cage of surrounding particles (light-blue circles) and during its travel path (indi-
cated by the transparent dark circles ) it collides with others. Hence, apart from the
hydrodynamic interactions, the direct interactions further slow down the particles
free-diffusion coefficient.

However, canceling the operator would result in an infinite series and for most
systems it is not feasible to obtain an explicit analytical expression.

Short-Time Self-Diffusion Inspired by the simple exponential form of the inco-
herent intermediate scattering function Eq. 4.105 of a free diffusing particle, one can
define in a similar fashion the self-diffusion coefficient Ds linked to the incoherent
intermediate scattering function by

IT
inc(q, t) = exp

{
−q>Ds(q, t) q |t|

}
, (4.114)

Consequently, Ds in general depends on both time t and scattering vector q and can
be conceived as a measure of the average single particle mobility under the influence
of intermolecular interactions. For very short times t the incoherent intermediate
scattering function Eq. 4.112 can be expanded as

IT
inc(q, t) = 1− tq>Ds

s q +O
(
t2
)

(4.115)

with

Ds
s =

1

N

N∑

j=1

∫
Dj,j(r

N )P∞(rN ) drN . (4.116)
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denoting the short-time self-diffusion tensor. For a system of N identical particles
Ds
s reduces to

Ds
s =

∫
D1,1(rN )P∞(rN ) drN . (4.117)

If we measure the scattering cross-section of molecules in solution, we cannot deter-
mine the diffusion tensor since we measure the average over all possible orientations
of the molecules. To account for this we average the intermediate scattering function
over all directions of q, which for small times results in

IT
inc(q, t) = 1− t q2 1

3
tr(Ds

s) +O
(
t2
)
, (4.118)

thereby, we obtain the scalar short-time self-diffusion coefficient

Ds
s =

1

3
tr (Ds

s) , (4.119)

where tr denotes the trace of a tensor. Consequently, for a system of interacting
particles the scattering function in the short-time limit reads

ST
inc(q, ω) =

1

π

Ds
s q

2

ω2 + (Ds
s q

2)2 . (4.120)

Fig. 4.9 illustrates the self-diffusion coefficient, thereby focusing on the limiting cases
for short-time self-diffusion and long-time self-diffusion (for detailed description see
e.g. Ref.[40]). For very short times t the molecules diffuse a short distance of the
order of their own size influenced only by the quasi-instantaneous hydrodynamic
interactions. Direct interactions play a less important role, since the potential does
not change on the corresponding length scale. Thus, short-time self-diffusion can
be understood intuitively as relatively free diffusion on a length scale limited by
the direct interactions, while the hydrodynamic interactions act via a change of the
effective solvent viscosity. In contrast, in the long-time limit the particle breaks
through the cage of surrounding particles and collides with others. Hence, apart
from the hydrodynamic interactions, the direct interactions further slow down the
particle free-diffusion coefficient.

Short-Time Collective-Diffusion Unlike self-diffusion, collective diffusion re-
lates to the motion of many Brownian particles simultaneously and describes in the
small q limit the relaxation of the macroscopic density according to Fick’s law [55].
Therefore, it is measured in a coherent experiment like dynamic light scattering
or neutron spin echo spectroscopy. The time and q dependent collective diffusion
coefficient Dc can be expressed by means of the coherent intermediate scattering
function as follows

IT
coh(q, t) =: S(q) exp

{
−q>Dc(q, t) q |t|

}
(4.121)
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The importance of direct interactions are reflected in the appearance of the static
structure factor S(q). For very small times t the operator exponential in Eq. 4.113
can be approximated by a Taylor expansion up to second order in time and the
coherent intermediate scattering simplifies to

IT
coh(q, t) = S(q)− tq>Ds

c(q) q +O
(
t2
)
, (4.122)

thereby defining the short-time collective-diffusion tensor,

Ds
c(q) =

1

N

N∑

i,j=1

∫
exp [i q (ri − rj)] Di,j

(
rN
)
P∞

(
rN
)

drN . (4.123)

For large wavevectors q the collective diffusion coefficient converges to the self-
diffusion coefficient since all contributions in the above sum with i 6= j cancel out
due to the rapid oscillation of the exponential [100, 44, 170].

4.6 Rotational Diffusion

Even though the structure of a solution-suspended protein is flexible due to atomic
vibrations and spatially constrained motions of its sub-units and side chains, a
protein has a very well defined average structure that is determined by the minimum
of its free energy landscape. This motivates the physical picture to regard a protein
in solution as a rigid body that besides translational diffusion of its center-of-mass
performs random re-orientation due to kicks by the surrounding solvent molecules.
In this section we will introduce the rotational version of Fick’s law that governs
the time evolution of the probability density distribution of the protein’s orientation
vector u.

4.6.1 Free Rotational Diffusion

Similar to the Fick’s law Eq. 4.96, the time evolution of the probability P to find
the orientation vector

u =




cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)


 , (4.124)

pointing into the direction Ω = (θ, ϕ) can be described by a diffusion equation:

∂

∂t
P (Ω, t | Ω0, t0) = Dr∇2

u P (Ω, t | Ω0, t0) (4.125)

∇2
u =

1

sin(θ)2

[
sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

∂2

∂ϕ2

]
= −L̂2,

with the initial condition

P (Ω, t0 | Ω0, t0) =
1

4π sin(θ)
δ (Ω−Ω0) (4.126)
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where Dr is the rotational diffusion coefficient and L̂2 the angular momentum op-
erator. Similar to the Stokes-Einstein relation Eq. 4.90 the free rotational diffusion
coefficient for a suspended sphere with radius R in a liquid of viscosity η at temper-
ature T is given by the Stokes-Einstein Debye law:

Dr =
kB T

8π η R
. (4.127)

Using the spherical harmonics Yl,m, which are the eigenfunctions of L̂2, the Green’s
function to this initial value problem is

P (Ω, t0 | Ω0, t0) =
∞∑

l=0

exp [−l (l + 1)Dr (t− t0)]
l∑

m=−l
Yl,m (Ω0)† Yl,m (Ω) .

(4.128)
Further, employing the addition theorem

Pl(u u0) =
4π

2 l + 1

l∑

m=−l
Yl,m (Ω0)† Yl,m (Ω) (4.129)

where Pl is the lth Legendre polynomial and the two unit vectors u and u0 vectors
having orientations Ω and Ω0, receptively, we finally obtain

P (Ω, t | Ω0, t0) =
1

4π

∞∑

l=0

exp [−l (l + 1)Dr (t− t0)] (2 l + 1)Pl

(
u> u0

)
. (4.130)

Fig. 4.10 illustrates the time-dependent probability Eq. 4.130. The time direction
of the time progression is indicated by the black horizontal arrow. Initially, the
orientation points upwards in z- direction (red arrows). With progressing time the
probability to find the protein pointing in the direction Ω = (θ, ϕ) is smearing out
about the initial orientation and, finally, for infinite times the probability density
converges into a uniform density distribution,

lim
t→∞

P (Ω, t | Ω0, t0) =
1

4π
, (4.131)

indicating that all orientations have equal probability (4th spherical plot from the
left in Fig. 4.10).

4.6.2 Diffusion of a Rigid Protein

In this section we will develop the intermediate scattering function of a single rigid
protein performing both translational and rotational diffusion. In order to achieve
that, we assume that both kinds of diffusive motion are uncoupled. Pointing into
the solid angle Ω = (θ, ϕ) the orientation vector u(Ω) represents the protein orien-
tation. A physical representation for u might be the orientation of a static electric or
magnetic dipole. We remind, that only hydrogen atoms of the protein significantly



4.6. Rotational Diffusion 53

time

Figure 4.10: Time evolution of the probability density P (Ω, t | Ω0, t0) Eq. 4.130
(transparent yellow hull) of the orientation Ω = (θ, ϕ) of a rigid protein. For better
illustration, the probability density is superimposed on a unit sphere (wireframe
in the interior of the hull). In other words: a spherical plot with radius r(Ω) =
1 + P (Ω, t | Ω0, t0) is displayed. The initial orientation and the time progression
are indicated by the red and the black arrows, respectively.
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contribute to the incoherent scattering signal. Consequently, we calculate the in-
coherent intermediate scattering function only taking the position of the hydrogen
atoms Rj into account. Using the orientation vector u the time-dependent position
of the jth hydrogen atom can be decomposed into

Rj(t) = R(t) + rj [Ω(t)] (4.132)

therein, R is the position of the center-of-mass. The relative position rj of the jth

hydrogen atom can be expressed in terms the orientation vector u having unit length
as follows

rj [Ω(t)] = rj u [Ω(t) + Ωj ] , (4.133)

in which Ωj is the relative solid angle of the jth hydrogen position to the orienta-
tion vector u. Assuming independence of rotational and translational motion, the
incoherent intermediate scattering function of a single protein factorizes into

Iinc(q, t) = ITinc(q, t) IRinc(q, t), (4.134)

in which
ITinc(q, t) = 〈exp [i q {R(t)−R(0)}]〉 (4.135)

is the tranlational contribution and

IRinc(q, t) =

〈
1

N

N∑

j=1

exp [i q {rj (Ω(t))− rj (Ω(0))}]
〉

(4.136)

the rotational contribution to the scattering function. According to Eq. 4.105 the
translational part is ITinc(q, t) = exp

(
−DtQ

2 |t|
)
. For reasons of lucidity, we first

calculate the summand of the rotational intermediate scattering function. Note, for
readability we skip the index j

〈exp [i q {r (Ω(t))− r (Ω(0))}]〉 = (4.137)∫ ∫
exp [i q {r (Ω)− r (Ω0)}] P (Ω, t | Ω0) P (Ω0) dΩ dΩ0

Using the Green’s function of the rotational diffusion equation Eq. 4.128 and the
Boltzmann density distribution for the initial values P (Ω0) = 1/4π we obtain

=
1

4π

∑

l,m

exp [−l (l + 1)Dr t]

∣∣∣∣
∫

exp [i q r(Ω)] Yl,m(Ω) dΩ

∣∣∣∣
2

. (4.138)

In order to calculate the integral we make use of the following two lemmas
∫

exp (i X Y) Yl,m (ΩX) dΩX = 4π il jl(X Y )Yl,m (ΩY) (4.139)
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and

4π
l∑

m=−l
|Yl,m(Ω)| = 2 l + 1. (4.140)

We finally obtain the incoherent intermediate scattering function of a rigid protein,

IR
inc(q, t) =

∞∑

l=0

Bl(q) exp [−l (l + 1)Dr |t|] , (4.141)

and by applying Fourier transform (see Table 4.3) the incoherent scattering function
is obtained

SR
inc(q, t) =

∞∑

l=0

Bl(q)L [ω, l (l + 1)Dr] , (4.142)

in which L(ω, γ) = π−1 γ/
(
γ2 + ω2

)
is a Lorentzian function and the coefficient

Bl(q) = (2 l + 1)
1

N

N∑

j=1

j2
l (q rj) (4.143)

describes the distribution of the hydrogen atoms within the protein. For conve-
nience, we approximate the discrete sum by an integral using the radial distribution
function of the hydrogen atoms in the protein ρH(r) and obtain

Bl(q) = (2 l + 1)

∫
ρH(r) j2

l (q r) dr. (4.144)

4.6.3 Rotational Diffusion Coefficient of a Protein

Modeling a rigid protein as an ellipsoidal spheroid, the orientation averaged rota-
tional diffusion coefficient is according to Perrin [128, 90]:

Dr =
kB T

3

(
1

Ca
+

1

Cb
+

1

Cc

)
. (4.145)

Using the factors Pγ for γ = a, b, c as described in Eq. 4.93 the rotational friction
coefficients about the semi-principal axes (a, 0, 0), (0, b, 0) and (0, 0, c) are

Ca =
16π

3
η

b2 + c2

b2 Pb + c2 Pc
(4.146)

Cb =
16π

3
η

a2 + c2

a2 Pa + c2 Pc

Cc =
16π

3
η

a2 + b2

a2 Pa + b2 Pb
.
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4.6.4 Coupling of Translational and Rotational Diffusion

For this study we assumed the decoupling of translational and rotational diffusion.
We note that the employed experimental techniques in this study have not suffi-
cient accuracy to resolve this coupling. However, for a more accurate picture the
diffusion of a rigid protein in future studies, it is important to include the coupling
of rotational and translation diffusion. This coupling is taken into account by the
generalized Smoluchowski equation, which for N interacting spheres is

∂

∂t
P =

∂

∂X
·D ·

[
∂P

∂X
+ β

∂u

∂X
P

]
, (4.147)

therein, the location of the spheres are denoted by XT = (R1, ...RN ), and their
orientation is described by XR = (u1, ...,uN ). The total configuration is summarized
using the 6N -dimensional vector X = (XT ,XR). Hydrodynamic interactions are
described by the 6N × 6N -diffusion tensor D(X). The potential u(X) includes
interactions between particles depending on both orientation and position. The
rotational part of the gradient operator is

∂

∂XR
=

(
∂

∂u1
, ...,

∂

∂uN

)
(4.148)

with
∂

∂u
= eθ

∂

∂θ
+ eϕ

1

sin(ϕ)

∂

∂ϕ
. (4.149)

For a more detailed discussion of coupling of rotational and translational diffusion
we refer to the publications of the following authors: Felderhof and Jones [53] stud-
ied the orientational relaxation of a colloidal suspension of spheres based on the
generalized Smoluchowski equation. Jones [83] used the generalized Smoluchowski
equation to describe the relaxation of position and orientation in a suspension of
interacting spherical particles.
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In this chapter we review the materials and methods essential for the experiments
conducted within the framework of this thesis. Sec. 5.1 provides an overview

of the used materials. We describe the chemicals used for the sample preparation
and summarize their properties, which are relevant for this thesis. Additionally, we
will briefly comment on the sample cell and its material composition. Following the
experimental procedures, we will then in-detail explain the sample preparation pro-
tocol for the investigated protein solutions in Sec. 5.2. A comprehensive overview of
the employed instruments is contained in Sec. 5.3. Finally, Sec. 5.4 and Sec. 5.5 will
present the treatment and analysis of the measured data, respectively. In particular,
we will introduce two novel analytic frameworks in Subsec. 5.5.1 and Subsec. 5.5.2,
which we have developed along this thesis.
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Amino acid composition of Bovine Serum Albumin

Leucine 65 Proline 28
Lysine 60 Arginine 26
Glutamic acid 59 Tyrosine 21
Alanine 48 Glutamine 20
Aspartic acid 40 Glycine 17
Valine 38 Histidine 17
Cysteine 35 Isoleucine 15
Threonine 34 Asparagine 14
Serine 32 Methionine 5
Phenylalanine 30 Tryptophan 3

Table 5.1: Amino acid composition of bovine serum albumin, which has the chemical
formula C3071H6038N816O1533S40. The primary structure was obtained from [35].

5.1 Materials

5.1.1 Bovine Serum Albumin

Biological Role

Bovine Serum Albumin (BSA and HSA, respectively) widely serve as model proteins
in biochemistry and biophysical studies due to their low cost, high abundance and
stability. We briefly review the importance of serum albumin in biology. In the
circulatory system with a usual blood concentration of 50mg/ml, serum albumin
controls the colloid osmotic blood pressure [29]. Serum albumin has a high capacity
to bind water, Ca2+, Na+, K+, fatty acids, hormones, bilirubin and drugs. In
the plasma, it generally binds about 80% of all zinc and thereby acts as a major
transporter of zinc. Furthermore, serum albumin plays the role of a weak acid and
participates in acid-base balance to stabilize the pH value of the blood [56]. In the
following subsections we describe only those properties that are relevant for this
study. For an exhaustive review about albumin we refer to [29].

Structure and Shape

BSA is composed of 607 amino acids (see Table 5.1), closely packed into a heart-
shaped form [97]. To the author’s knowledge there is no crystallographic structure of
BSA available. However, Weggler et al. [175] constructed a homology model of BSA
based on the known crystal structure of HSA. Fig. 5.1 shows a superposition of the
secondary and atomistic structure of this homology model for BSA. A small number
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Figure 5.1: Homology model of bovine serum albumin in solution calculated at pH
7 [175]. Superimposed to the atomistic structure with atomic bonds indicated by
sticks is a cartoon drawing of the secondary structure. The secondary structure is
color coded as follows: α-helix (ice blue), 310-helix (red), turn (cyan), coil (lime).
The illustration was rendered using VMD [77].

http://www.ks.uiuc.edu/Research/vmd/
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of polypeptides occur in 310-helices (red), turns (cyan) and coils (lime color) whilst
α-helices (ice blue) dominate the secondary structure. Remarkably, there are no
β-sheets. From small-angle X-ray scattering measurements on BSA aqueous (D2O)
solutions Roosen-Runge et al. [137] derived that an oblate ellipsoidal with polar
semi-axis a = (1.8± 0.05) nm and equatorial semi-axis b = (4.6± 0.15) nm describes
the shape of a BSA molecule in solution.

Hydration Shell and Volume Fraction

When dissolved in water a protein, such as BSA, changes its structure and a shell of
hydrogen-bonded water molecules forms around the molecular surface [104]. Since
the hydration shell sticks to the protein and, thereby, changes its hydrodynamic
properties, an accurate knowledge of its size is essential for the investigation of the
dynamic behavior. A crucial parameter for the comparison of colloidal diffusion
models with measured diffusion coefficients is the protein volume fraction ϕ. In the
following we outline how to compute ϕ for a given protein concentration c. A more
comprehensive analysis is explained in Appendix A.3. In the sample preparation
process we dissolved BSA with mass m in D2O with volume V to obtain the protein
concentration c = m/V . With it the volume fraction of BSA reads

ϕ =
c
(
ϑ+ η

ρD2O

)

1 + c · ϑ , (5.1)

therein ϑ = 0.735ml/g is the apparent specific volume for the native structure of
BSA in solution [96] and η = 0.4 g D2O/g BSA is the hydration level, taken as
the average of published values [92, 44, 135]. The temperature dependence of the
density of heavy water ρD2O can be found in [70].

Surface Charge

At neutral pH BSA is soluble in D2O at very high volume fractions of up to 30% due
to the surface charge, which prevents aggregation. We observed that our samples at
neutral pH do not display any precipitate even after several months of storage. At
pH 7 the surface charge is Z = −11 [21] and consequently, due to the strong charge
stabilization, we can assume that the BSA solution consists mainly of monomers [78].
Tanford et al. [159] investigated the dissociation of H+ from BSA. They concluded
that the surface charge of BSA is primarily due to bound H+-ions and those that
dissociated from the proteins surface, but also influenced by bound salt ions. Zhang
et al. [184] have shown that Y3+ is strongly bound to the protein surface and can
cause charge inversion. For NaCl, Scatchard et al. [144] showed that Cl− is bound
to the protein surface, whereas Na+ is not.
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Coefficients for Viscosity Formula

Solvent C [Pa·s] a [K−2] b [K−3] c [K−4] γ T0 [K]

D2O 8.86 2.80 · 10−3 −1.63 · 10−5 2.91 · 10−8 1.55 231.83
H2O 8.02 3.47 · 10−3 −1.74 · 10−5 2.77 · 10−8 1.53 225.33

Table 5.2: Parameters for the empirical formula Eq. 5.2 describing the viscosity of
water in dependence of the temperature.

5.1.2 Water

In this section, we focus only on the physical parameters of water, which are rele-
vant for this study. For thermal neutrons the scattering cross-section of hydrogen is
much larger than the cross-section of deuterium (compare with Table 4.2). There-
fore, instead of using H2O as solvent, D2O is used to increase the scattering contrast
between solvent and solute. On the diffusive time scale, water acts as a featureless
matrix and its impact on the motion of the proteins is described by a viscosity
constant, which determines the strength of hydrodynamic interactions. The tem-
perature dependence of the viscosity of water was determined by Cho et al. [32] in
form of an empirical formula

η0(T ) = C (∆T + a∆T 2 + b∆T 3 + c∆T 4)−γ , (5.2)

with ∆T = T − T0. The corresponding empirical parameters for D2O and H2O
are listed in Table 5.2. In the presence of salts the viscosity changes with the salt
concentration cs for cs < 0.5M according to the Jones-Dole Formula:

η (cs, T ) = η0(T ) (1 +A
√
cs +B cs) , (5.3)

therein the parameters A and B can be found for different ions in a comprehensive
review from Jenkins and Marcus [81]. On the energy and q range of the spectrome-
ters IN10 and IN16 the dynamic structure factor S(q, ω) of D2O has a pronounced
coherent component (compare Table 4.2) and is nearly flat on the energy axis due to
the fast translational diffusion of D2O molecules comparable to H2O [160]. S(q, ω)

can be approximated by a background B(q) peaked at q ≈ 1.9Å−1 [16].

5.1.3 Resolution Calibration Sample

Vanadium is a strong elastic incoherent scatterer (Table 4.2) and serves as a standard
to determine both the resolution function and the efficiency of the detectors of a
neutron backscattering instrument. Furthermore, the peak of the vanadium line is
used as the zero-position for the energy channels. In the following we explain how
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Composition of Aluminum Alloy

Si Fe Cu Mn Mg Cr Zn Ti Al

0.3− 0.6 0.1− 0.3 0.1 0.1 0.35− 0.6 0.05 0.15 0.1 98− 98.75

Table 5.3: Aluminum alloy composition of sample cells in mass%. The alloy have
a linear attenuation coefficient for thermal neutrons of Σ = 0.011mm−1 due to
scattering and absorption. For comparison 100mg/ml and 500 mg/ml aqueous
(D2O) BSA solution have a linear attenuation coefficient 0.11mm−1 and 0.22mm−1,
respectively.

those two important instrumental quantities can be determined from the scattering
function of a vanadium standard. The theoretical incoherent scattering function of
vanadium in the µeV energy regime is:

SV
inc(q, ω) = exp

[
−
〈
u2
〉
T
q2
]
δ(ω) (5.4)

where
〈
u2
〉
T

is the temperature dependent mean-squared displacement, which for
T = 296K is

〈
u2
〉
T

= (6.7 ± 0.6) · 10−3 Å2 [85]. Hence, for the q-range of typical
backscattering spectrometers, 0.2Å−1 ≤ q ≤ 2Å−1 (IN10 and IN16), we can assume
that the Debye-Waller exponent in Eq. 5.4 is negligible at ambient temperatures.
Consequently, the vanadium signal can be approximated by a delta function with
a q-independent peak intensity. The corresponding measured partial differential
cross-section is

∂2σ

∂Ω∂E′
(q, ω) ≈ ‖k + q‖

‖k‖
NV σ

V
inc

4π ~
δ(ω). (5.5)

in which NV is the number of vanadium nuclei with incoherent scattering cross-
section σV

inc in the scattering volume by the neutron beam. k is the wavevector of
the incoming neutron.

5.1.4 Sample Cell

For the neutron scattering experiments we filled the protein solutions into cylindric
thin-walled aluminum containers (Fig. 5.2a) with an outer diameter 23mm and gap
width 0.23mm. The gap of 0.23mm between the cylinder walls is chosen such that
neutrons for a 500 mg/ml aqueous (D2O) BSA solution, our highest protein con-
centration, are scattered with a probability of approximately 9.9%. Consequently,
we reduce multiple scattering effects, because the probability for scattering twice is
for less concentrated sample less than 1%. Fig. 5.2b exemplifies that aluminum is
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Figure 5.2: Upper image: Aluminum sample holder consisting of an inner (gray)
cylinder and outer (transparent yellow) cylinder. Approximately 2ml of the sample
solution is filled into the outer cylinder and thereafter the inner cylinder is mounted
such that the sample is squeezed between the inner and outer wall of the cylinders. A
cross-section of the neutron beam for IN10/IN16 is approximately 3×3 cm2 (square
with dashed boundary line), hence the sample cell must be positioned in the beam
such that most of the sample solution is illuminated. Lower image: Quasi-elastic
spectrum for q = 0.81Å−1 recorded at IN16 of the empty cylinder (purple circles)
compared to the sample spectrum of a BSA 177mg/ml aqueous (D2O) solution with
0.118M YCl3 at 280K (light blue circles). The green dashed line denotes a gaussian
model of the resolution function scaled to the empty cylinder spectrum. Note that
the intensity of the sample spectrum is scaled to unity.
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Eppendorf Pipette precision

volume [µl] volume increment [µl] systematic error [%] error [%]

200µl pipette

50 0.2 ±1 ≤ 0.3
100 ±0.9 ≤ 0.3
200 ±0.6 ≤ 0.2

1000µl pipette

100 1 ±3 ≤ 0.3
500 ±1 ≤ 0.2
1000 ±0.6 ≤ 0.2

Table 5.4: Volume error of the two different pipettes from Eppendorf used for the
sample preparation.

a weak elastic coherent scatterer (compare Table 4.2) within the quasi-elastic en-
ergy range. Since the Debye-Waller factor is nearly unity in the temperature range
280 − 380K and for the typical momentum transfer values accessible by IN10 and
IN16 [88], it is sufficient to measure the background only for a single temperature.

5.2 Sample Preparation

For all measurements we purchased BSA powder with a purity of 99% and anhydrous
YCl3 powder with a purity of 99.99% from the Sigma-AldrichR© company (product
codes: A3059 and 451363, respectively) and stored it in a cold room at temperature
slightly less than 8◦C. D2O with a purity of 99% was kindly provided by the Institut
Laue-Langevin. Several days prior to the experiment we prepared the samples as
follows:

� Using an analytic balance with a precision of ±0.1mg we weighted the mass
m of BSA powder and filled it in 4ml glass vials by using a metal spatula.

� For samples without salt we added the volume V of pure D2O using 1000µl

pipette from Eppendorf. The manufacturer declares a volume precision as
stated in Table 5.4. For the samples with salt we prepared a stock solution

http://www.sigmaaldrich.com
http://www.ill.eu
http://www.ill.eu
http://www.eppendorf.com/
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with the highest salt concentration of the sample batch. We then added pure
D2O and stock solution to the BSA such that the required salt solution was
achieved. When small volume quantities were needed we used additionally a
200µl pipette.

� We closed the glass vials with lids and sealed them additionally with paraffin
strips wrapped tightly around the lid.

� For several hours we homogenized the sample solutions with a laboratory
shaker until the BSA was completely dissolved.

� We dispensed approximately 1.3ml of the sample solution into the aluminum
cylinder using the 1000µl pipette. The filling procedure must be done very
slowly and carefully to prevent air bubbles. If there were any air bubbles, we
aspirated them with the pipette. When the filling was done, we slowly mounted
the inner into the outer cylinder, such that the solution was homogeneously
distributed between the container walls. Finally we sealed the sample cell
against vacuum with indium wire and screwed the inner and outer cylinder
together with aluminum screws.

Mounted on a sample stick with temperature control the aluminum sample holder
was then put in the cryostat of the respective neutron spectrometer.

5.3 Instruments

In this section we briefly explain how cold neutrons are generated and delivered to
the instruments. Then, we will shed light on the principles of both cold neutron
backscattering and spin-echo spectrometry, since both techniques, particularly the
first one, were mainly used for studying the diffusive dynamics of proteins in so-
lutions. In the final part of this section, we will additionally explain the setup of
a X-ray small-angle scattering instrument which we used for complementary mea-
surements. For a comprehensive description of the synchrotron-based production of
X-rays we refer to the textbook by Als-Nielsen and McMorrow [6].

Reactor-based nuclear fission using for instance enriched uranium and
accelerator-based spallation using a metal target such as uranium, tungsten, lead or
mercury, serve as main sources to provide a high-flux neutron beam. The Institut
Laue-Langevin, where we conducted the majority of our experiments, employs the
first mentioned technique to produce a continuous high-flux neutron beam. As fuel
element serves an enriched uranium core with a content of 93% of the 235U isotope.
Initially, the fission-generated neutrons have energies of a few MeVs. However, the
energy transfers in matter are in the µeV – meV energy regime. Consequently, us-
ing a D2O moderator the highly energetic neutrons are thermalized and the average
thermal flux is Φ0 = 1.5·1015 neutrons per second. The neutron velocity distribution
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is approximately governed by a Maxwellian density function,

Φ(v) = Φ0
1

2

(
m

kB T

)
v3 exp

(
− mv2

2 kB T

)
. (5.6)

Therein, m is the mass of a single neutron and v its velocity. For the investigation
of translational as well as rotational diffusion of the BSA in the sample solution,
we used cold neutrons having a narrow energy distribution around E0 = 2.08meV.
Shifting the energy of the thermalized reactor-neutrons to even lower temperatures
produces these cold neutrons. Therefore a second moderator, consisting of 2.5 l of
liquid deuterium at a temperature of 25K is used. The liquid deuterium is confined
in an aluminum sphere immersed in the D2O of the first moderator near the uranium
core. Subsequently, the cold neutrons are delivered to the instrument by zigzagging
through the neutron guide by means of total external reflections on nickel-titanium
multilayers.

5.3.1 Cold-Neutron Backscattering Spectrometer

Maier-Leibnitz and Springer [103] discussed for the first time the feasibility and
possible usefulness of a neutron spectroscopy for cold neutrons and thereby initiating
the development of the neutron backscattering technique [5, 58, 60].

By operating in the so-called “inverse spectroscopy" mode, backscattering spec-
trometers achieve particularly high energy resolutions. This kind of spectrometer
only detects neutrons within a very narrow energy range around a precise value.
Different energy transfers by the sample can be detected by varying the energy of
the initial neutrons around this value using a Doppler monochromator.

The achievable energy range of a couple of µeV and the high energy (in the
order of µeV) resolution renders cold neutron backscattering instruments suitable
for the investigation of the diffusive motion of proteins in solution [141]. For the
experiments we will present in Chap. 7 till 9 we used the IN10 and IN16 backscatter-
ing spectrometer at the Institut Laue-Langevin (Grenoble, France) with the setup
shown in Table 5.5.

Before we will illustratively follow the trajectory of a neutron through a backscat-
tering spectrometer, we will briefly review the essential theory important for the
understanding of monochromators and analyzers, the most important components
in a backscattering spectrometer. To this end, we will begin with a description of
Bragg reflection, then explain the principle of a Doppler monochromator and finally
elucidate the operation mode of neutron detector.

Bragg Reflection at Monochromator & Analyzer

For a comprehensive review of the concepts used in the following theoretical section
we refer to the textbook about solid state physics by Ashcroft and Mermin [10]. In
order to explain the intensity peaks of X-rays elastically scattered from a perfect
crystal lattice, W. L. Bragg [173] derived the subsequent law
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Neutron Backscattering Spectrometers

Instrument IN10 IN16

Detector 7 3He counters 20 3He counters
1 monitor 1 monitor

Monochromator Si(111) Si(111)
Analyzer Si(111) Si(111)

Beam size at sample [cm2] 3.5× 3.5 3× 4
Flux at sample [n cm−2 s−1] ≈ 2 · 104 ≈ 5 · 104

Incident energy [meV] 2.08 2.08

Energy resolution δE [µeV] 0.9 0.9
Energy transfer range E [µeV] −10 . . . 10 −15 . . . 15
Elastic q-range [Å−1] 0.50 . . . 1.96 0.24 . . . 1.85
Accessible time scale τ [ns] 0.41 . . . 4.56 0.28 . . . 4.60
Accessible length scale l [nm] 0.32 . . . 1.26 0.34 . . . 2.62

Table 5.5: Configuration of the cold neutron backscattering spectrometers IN10 and
IN16 at the Institut Laue-Langevin (Grenoble, France) as used for the experiments
reported in this thesis. For a comprehensive overview of the possible setups of both
instruments we refer to Refs. [59] and [79]. Note, for both instruments the resolution
function can be adequately modeled by a Gaussian line shape with a full width at
half maximum of δE. We calculate the accessible time and length scales of the
instruments as follows: 2π ~/Emax ≤ τ ≤ 2π ~/δE and 2π ~/qmax ≤ l ≤ 2π ~/qmin,
receptively. In paper A and paper B (see Chaps. 7 and 8) we use IN10 and IN16
to investigate the short-time self-diffusion coefficient of the globular protein BSA
by analyzing the q-dependence of the line width of the scattering signal. In paper
C (see Chap. 9) we employ the elastic fixed window mode of IN10 to study the
temperature-induced denaturation of BSA.
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θ θ

ϕ ϕ�

Figure 5.3: Reflection of a neutron beam (red arrows) from a Bragg plane (blue
dashed line) at an angle θ. For reasons of generality the Bragg plane is not parallel
to the surface of the crystal slap (black rectangle). The incident angle of the neutron
beam and the angle of the reflected neutron beam, are ϕ and ϕ′, respectively. Note,
that for the crystal of the analyzers and the monochromator of a backscattering
spectrometer the Bragg plane of the reflection is parallel to the surface of the crystal
slap.
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Figure 5.4: Reflection curve R(y) of a perfect crystal calculated with Eq. 5.10. The
dimensionless variable y is defined by Eq. 5.11. Within the interval |y| < 1 the
reflectivity curve has a plateau.

‖Gh‖ λ = 4π sin (θBragg) , (5.7)

in which λ is the wavelength of the incident X-rays, θBragg the reflection angle and
Gh the reciprocal lattice vector perpendicular to the lattice plane, denoted by the
Miller indices h = (h1, h2, h3), on which the X-rays are scattered. The later known
as Bragg’s law applies equally to the scattering intensity of neutrons.

In reality the wavelength λ and the incident angle θ of a neutron beam are not
well defined and therefore their uncertainties are characterized by a wavelength error
∆λ and angular deviation ∆θ, respectively. Based on Bragg’s law the basic idea of
backscattering is to select the mean incident angle θ such that the wavelength error
of the reflected beam is minimized. Applying 2nd-order error propagation on Eq. 5.7
the relative width of the reflected wavelength band ∆λ reads

∆λ

λ
=

∆Gh

Gh
+ ∆θ | cot(θ)|+ 1

2
∆θ2 +

∆Gh

Gh

[
∆Gh

Gh
+ ∆θ | cot(θ)|

]
, (5.8)

with Gh = ‖Gh‖. In order to facilitate the readability, we colorize the 1st-order
term of the error in blue. Consequently, selecting θ = 90◦ the wavelength error is in
1st-order independent of the beam divergence and simplifies to

∆λ

λ
=

∆Gh

Gh
+

1

2
∆θ2 +

∆G2
h

G2
h

. (5.9)
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In the following we will rewrite the parameter ∆Gh/Gh in terms of properties of
the perfect crystal. Darwin [36] showed that even for a perfect crystal ∆Gh/Gh has
a finite value caused by primary extinction. For a perfect crystal with negligible
absorption, the reflectivity is [183]

R(y) =





1 if |y| < 1(
|y| −

√
y2 − 1

)2
if |y| ≥ 1

, (5.10)

in which the variable y is given by

y =
(1− b)ψ (0) + E α b

2
√
|b| |ψ (Gh)|

. (5.11)

For the case of neutrons the parameters in the above expression are

ψ (Gh) =
h

m
Nc F (Gh) (5.12)

E =
~2 k2

2m
(5.13)

b =
cos(ϕ)

cos(ϕ′)
, (5.14)

in which F (Gh) is the structure factor of the unit cell, reading

F (Gh) = bc exp

[
−(u0 |Gh|)2

2

] ∑

r∈V
exp (2π i Gh r) , (5.15)

Nc is the number density of unit cells, u0 is the root-mean-squared displacement of
the atom perpendicular to the Bragg planes, and E is the energy of the neutrons
(compare Eq. 4.19). For reasons of clarity, the angles ϕ and ϕ′ are illustrated in
Fig. 5.3. The parameter α in the case of variation of the wavevector k of the neutron
is according to [183]

α = 4
k − kBragg
kBragg

(5.16)

in which k = ‖k‖ and kBragg is obtained from Bragg’s law Gh = 2 kBragg sin (θB).
With this we finally obtain for the width of the plateau, which is shown in Fig. 5.4,
of the reflection curve Eq. 5.10:

∆y =
∆Gh

Gh
=

16πNc |F (Gh)|
G2

h

. (5.17)

∆Gh/Gh is often called the “radial” mosaic distribution caused by primary extinc-
tion in analogy to the mosaic spread of imperfect crystals. For the energy error
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vD < 0 v
D > 0

Figure 5.5: The principle of a Doppler monochromator: An incident neutron beam
(red arrow) is backscattered (blue arrow) on a moving single crystal slap (yellow
spherical element). Note the path of the Doppler monochromator is illustrated by
the superposition of time shots. The transparency level of the illustrated crystal
slap is higher if the time shots are further into the past. Left image: The monochro-
mator velocity is parallel to the direction of the incoming beam (red arrow) hence
the energy of the reflected neutrons (blue arrow) is decreased. Right image: The
monochromator velocity is antiparallel to the direction of the incident beam (red
arrow) therefore the energy of the reflected neutrons (blue arrow) is increased. Note
the energy of the neutrons corresponds to the length of the arrows.

∆E = 2E∆λ/λ we obtain using Eq. 5.9 in the case of backscattering [59]

∆E =
~2

m
4πNc |F (Gh)|+ ~2G2

h

8m
∆θ2 +

64 ~2 π2N2
c |F (Gh)|2

mG2
(5.18)

Consequently, in the backscattering geometry the energy resolution depends only
on two crystal parameters. The IN10 and IN16 spectrometers employ Si(111) single
crystals for the monochromator and analyzers (see Table 5.5). For both instruments
the angular beam divergence is approximately ∆θ = 3◦. Using the above formulas
with constants from Ref. [149] related to Si(111) the energy error is ∆E = (0.076 +

0.145)µeV. This value significantly underestimates the real energy resolution of IN10
and IN16 of approximately 0.9µeV (see Table 5.5). We attribute this difference to
the following missing contributions to ∆E: Firstly, the beam has a cross-section of
4× 4 cm2, which effectively increases ∆θ and, secondly, the Si(111) crystals are not
perfect crystal since they are spherically bent (compare Fig. 5.7) and therefore have
a mosaic spread, which additionally increases ∆Gh/Gh.
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Doppler Monochromator

Next, we describe how to vary the energy of the neutron with a moving monochroma-
tor crystal. For a detailed analysis of the Bragg reflection of neutrons from a moving
crystal we refer to the publication by Hennig et al. [72] and references therein. The
energy of neutrons E′ reflected from a Bragg plane with reciprocal lattice vector Gh

of a moving crystal is
E′ = E + ~Gh · vD (5.19)

in which E is the energy of the incident neutrons and vD is the velocity of the
moving crystal. Fig. 5.5 illustrates the reflection of neutrons from a moving crystal
for the case of backscattering. The energy of the reflected neutrons is increased or
decreased depending wether the direction of the incident neutrons is antiparallel or
parallel, respectively. The energy E′ of neutrons reflected from a crystal with the
Bragg plane moving parallel or antiparallel to the beam direction simplifies to

E′ = E + ~ vD
2π

λ
+ 2mv2

D (5.20)

≈ E + ~ vD
2π

λ
, (5.21)

in which λ is the wavelength of the incident neutrons. At IN10 and IN16 the Doppler
monochromator velocity has a sine profile, with maximal velocities of 1.57m/s
(IN10) and 2.3m/s (IN16), respectively, corresponding to maximum energy changes
of the incident neutrons of ±10µeV and ±15µeV.

3He-Detector

At the backscattering instruments IN10 and IN16, the detection of cold and thermal
neutrons is realized by 3He detectors. Fig. 5.6 illustrates schematically the design
and the principle of such a detector. A neutron passes through an aluminum en-
trance window (yellow transparent disk) and enters a cylindrical ionization chamber
filled with 3He. The cylinder is shielded with cadmium to prevent the count of
neutrons not entering the aluminum window (gray transparent cylinder). Between
the cylinder cathode and the anode (red line) there is a strong electric field. When
a neutron enters through the aluminum window, it is absorbed by a 3He molecule
causing the following nuclear reaction,

3
2He + n(2.08 meV) −→ 3

1H−(191 keV) + p(573 keV), (5.22)

thereby, the tritium ion and the proton are emitted in opposite directions since
the energy of the neutron is comparably small. The emitted proton is heavily
ionizing and travels through the chamber thereby leaving a trail of ion pairs along its
trajectory, making the gas conductive. This conduction is amplified by a cascading
effect due to the strong electric field. This causes an impulse, which is detected by
the acquisition electronics.
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Figure 5.6: Schematic of a 3He-detector using the example of IN10.

Principle

Fig 5.7 illustrates the path of a neutron through a backscattering spectrometer
in three steps. For clarity the essential parts of the instrument at each step are
highlighted in red, whilst the other parts are semi-transparently depicted.

� Fig. 5.7a: Cold neutrons (represented by the wavevector [red arrows]) with
an energy typically spread around E0 = 2.08meV are Bragg reflected at a
mosaic crystal, mounted on a rotating disk (red flat cylinder) – the so-called
phase space transformation chopper (PST). The basic idea of the PST is to
reshape the energy and angular distribution of the neutron beam such that
the reflected beam has a very narrow energy distribution about E0 and broad
angular divergence. A detailed description and analysis is given in Ref. [72].
When the neutrons hit the horizontally oscillating Doppler monochromator
(red rectangle, the trajectory of the movement is indicated by transparent
rectangles), they are back reflected and their average energy E0 is shifted in
correspondence with the Doppler velocity.

� Fig. 5.7b: By exciting or annihilating energy states of the sample system (red
cuboid in the middle) the neutron’s wavevector k changes to k′. Thereby the
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Figure 5.7: Principle of a backscattering spectrometer.5.7a: Incoming neutrons are
Bragg reflected by rotating disk (PST). A Doppler monochromator alters the ve-
locity of the perpendicularly impinging neutrons. 5.7b Neutrons are inelastically
scattered by the sample. 5.7c: Neutrons fulfilling the Bragg condition at the ana-
lyzer are back-reflected towards the detector.
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neutrons lose or gain energy,

~ω =
~2

2m

(
k2 − k′2

)
(5.23)

and synchronously experience a momentum change of q = k− k′. For a more
detailed description of the scattering process we refer to Sec. 4.2.

� Fig. 5.7c: At the analyzer crystal (red curved spherical element) only those
neutrons fulfilling the Bragg condition are back-reflected towards the cylindric
detector tubes (yellow cylinders). On their way, the reflected neutrons pene-
trate the sample again. Assuming that the scattering probability is less than
10 %, only 1 % of all neutrons are scattered a second time. Consequently, 90 %

of the analyzed neutrons reach the detector unscattered where it is counted.

Using the energy information prior to the scattering event from the Doppler speed,
the neutron count is stored in the corresponding energy channel. Knowing the
number neutrons per second at a given scattering angle and the energy change the
partial differential cross-section Eq. 4.47 can be calculated.

5.3.2 Spin-Echo Spectrometer

The idea of a high resolution neutron spectrometer employing the neutron spin pre-
cession – called spin-echo spectrometer – was first conceived by Mezei [108]. In the
following we will explain the basic principle of such a spectrometer. An exhaustive
and detailed description can be found in the textbook by Mezei et al. [110].

For the experiments reported in paper A and paper D (see Chaps. 7 and 10) we
employed the IN11 and the IN15 at the Institute Laue-Langevin (Grenoble, France)
by using the configuration presented in Table 5.6.

The basic idea is to use the neutron spin as an “internal clock” running at a
speed depending on the magnetic field to probe the intermediate scattering func-
tion Eq. 4.31. Hence, this method allows to measure the Fourier transform of the
scattering function, which for instance can be determined by neutron backscatter-
ing spectroscopy (compare the previous subsection 5.3.1). Fig. 5.8 displays both
the path (two gray arrows in the middle) and the corresponding spin (red arrows)
of a neutron traveling through a spin-echo spectrometer. We start describing the
neutron path and the essential instrumental components starting from the right- to
the left-hand side of the figure.

� A neutron beam with a wavelength distribution P∆λ (λ− λ0) centered at λ0

and having typically∆λ/λ0 ≈ 15% (see Table 5.6), is polarized by a polar-
izer often consisting of a mirror magnetized along the propagation direction
(schematically represented by a gray disk). The neutrons leave the polarizer
with a spin parallel to the guide field. Hence, the neutrons transverse the
guide field without any spin precessing, emblematized by a “internal clock”
turned off.
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Neutron Spin-Echo Spectrometers

Instrument IN11 IN15

Detector 32× 32 pixels 32× 32 pixels
3He delay line multidetector
multidetector 1 bar 3He

and 0.3 bar CF4

Polarizer FeAg supermirrors V cavity, 1 m long
FeCo-Si supermirrors
on Si substrate

Analyzer CoTi supermirrors FeCo supermirrors

Beam diameter at sample [mm] 45 40
Incident beam divergence [mrad] 15 < 17
Incident wavelengths λ0 [Å] 8.5, 10 8, 10, 16
Monochromatization ∆λ/λ0 (15 . . . 22)% 15%

Elastic q-range [Å−1] 0.04 . . . 0.2 0.023 . . . 0.23
Fourier time range τ [ns] 0.02 . . . 47 0.35 . . . 207
Accessible length scale l [nm] 3.14 . . . 15.7 2.73 . . . 27.3
Accessible energy scale E [µeV] −207 . . . 207 −12 . . . 12
Accessible energy resolution δE [µeV] 0.1 0.02

Table 5.6: Setup of the neutron spin-echo spectrometers IN11 and IN15 at the
Institut Laue-Langevin (Grenoble, France) for the experiments reported in paper A
and paper D (see Chaps. 7 and 10). Other setups and a review of the characteristics
of both spectrometers can be found in Refs. [79, 52, 145]. We calculate the accessible
energy and length scales of the instruments as follows: δE = 2π ~/τmax ≤ |E| ≤
2π ~/τmin and 2π ~/qmax ≤ l ≤ 2π ~/qmin, respectively.
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Figure 5.8: Principle of a spin-echo spectrometer. We describe the path of a neu-
tron beam from the right- to the left-hand side. A beam of unpolarized neutrons
with velocity vector v1 passes through a polarizer (left-hand gray transparent disk).
Thereafter, the neutron spin is parallel to the magnetic guide field (pointing along
the optical axis, [gray arrow in the middle of the two cylindric solenoids]). When the
neutrons pass a π/2-flipper (orange rectangular plate), the “internal clock” of the
neutrons is switched on by flipping the spin such that it is orthogonal to the magnetic
field B1 of the first solenoid (yellow cylinder with coils). Within the solenoid the
magnetic field is homogeneous and points along the optical axis. While transversing
the field the neutron spin (red arrows) is precessing about the field lines. After scat-
tered from the sample (purple cuboid) the neutron velocity is v2 and the neutron
spin is inverted by a π-flipper (orange rectangular plate). Then, the scattered neu-
tron beam enters a second solenoid (green cylinder with coils) with a homogeneous
magnetic field B2. Consequently, its spin (red arrow) continuously precessing about
the field lines. Next, the neutrons spin is flipped parallel to the guide-field by an
another π/2-flipper (orange rectangular plate) and transverse through the analyzer
(right-hand gray transparent disk) and finally, the beams intensity is measured by
a detector (blue cylinder).
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� After a short distance the neutrons hit a π/2-flipper, a very thin plat with two
orthogonal coil windings (flat orange rectangle), causing a flip of the spin such
that the spins turned to be orthogonal to the homogeneous field B1 of the
first solenoid (yellow cylinder with concentric coil). Now the “internal clock”
is switched on and while traveling along the field with a velocity v1 the spin
processes about the field lines with a Larmor frequency ω1 = −γLB1. Therein,
γL = 2/~ γn is the neutron’s gyromagnetic ratio with γn being the magnetic
dipole moment (see Table 4.1). The upper inset shows a spin s (red arrow) of
a neutron precessing about magnetic field vector B (green arrow), after time
t the spin is precessed by an angle φ = −γLB t. The precession angle after
transversing the first solenoid of length l1 at speed v1 is

φ = −γLB1 l1/v1. (5.24)

� When a neutrons scatters at the sample (purple cuboid) it experience a mo-
mentum and the energy transfer,

~q = m (v1 − v2) (5.25)

~ω =
m

2

(
v2

1 − v2
2

)
,

respectively. Since scattering is a statistical process, the scattering changes
the divergence and the energy distribution of the neutron beam. For a fixed
q, the energy change ~ω has probability density distribution P , which can be
expressed by the dynamic structure factor of the sample

P (q, ω) =
S(q, ω)∫
S(q, ω) dω

(5.26)

Thereafter, the neutrons impinge on a π-flipper (flat orange rectangle), as
result the spin angle φ is transformed into −φ.

� A precession about the homogeneous magnetic field B2 in the second solenoid
(green cylinder with concentric coil) will change the total precession angle to

φ = γL

(
B1 l1
v1
− B2 l2

v2

)
(5.27)

The energy changes ~ω relevant for the study of diffusion processes as carried
out in this thesis are small compared to the average kinetic energy of the neu-
trons. Therefore, restricting ourselves to small energy transfers and adjusting
the magnetic fields such that B1 l1 = B2 l2, the precession angle φ can be
approximated at v1 up to first order in ~ω by

φ ≈ γL
m2B1 l1
8π3 ~2

λ3 ω. (5.28)
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� Finally, the neutrons are π/2-flipped (orange flat plat) and after passing by a
second polarizer (gray disk) a detector (blue cylinder) measures the intensity
of the x-component of the polarization vector of the neutron beam:

Px = 〈cos(φ)〉 =

∫ ∞

0

∫ ∞

−∞
P∆λ (λ− λ0) P (q, ω) cos(φ) dω dλ (5.29)

Consequently, using Eq. 5.26 and restricting to small energy changes the measured
quantity turns out to be the normalized intermediate scattering function convoluted
with the wavelength distribution function,

Px = P∆λ (λ− λ0)⊗ Re [I(q, τ)]

I(q, 0)
. (5.30)

Therein, we have introduced the Fourier-time

τ = γL
m2B1 l1
8π3 ~2

λ3. (5.31)

The convolution with the wavelength distribution function causes a smearing out of
the Fourier-time and the q-values, which for small energy transfers are approximated
by

q =
4π

λ

(
v1

v1
− v2

v2

)
. (5.32)

In case of ~ω � kB T the detailed balance factor is unity and, hence, S(q, ω) is an
even function of ω. Therefore, the real part in Eq. 5.30 can be skipped (compare
Table 4.3 and last part of Sec. 4.2.3).

5.3.3 SAXS Instrument

Complementary to the neutron spectroscopy experiments, we employed small-angle
X-ray scattering (SAXS) to study the structure of the solution of proteins. In
Table 5.7 we show the setup of the ID02 beamline at the European Synchrotron
Radiation Facility (Grenoble, France) and the beamline 6.2 of the Synchrotron Ra-
diation Source at Daresbury Laboratory (Warrington, UK), used to for the exper-
iments reported in paper A and paper D (see Chaps. 7 and 10). With the used
instruments, we access q-values in the range of 0.002 . . . 0.5Å−1 (see Table 5.7) cor-
responding to inter- and intra-molecular length scales, such that it can access not
only the shape of the molecule but also its equilibrium structure (for details see
section 4.3). Therefore small-angle scattering is a crucial technique to investigate
macromolecules near physiological conditions. Here, we briefly explain the concept
of a small-angle-scattering instrument being aware of that the technical implemen-
tation is very complex. A detailed review of SAXS can be found in Ref. [23]. Fig. 5.9
displays the pathway of a X-ray beam through a small-angle scattering instrument.
The divergence of a highly monochromatized X-ray beam from a synchrotron source
with wavevector k (red arrow) is reduced by a collimator (purple cylinder). There-
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Small-Angle X-Ray Instruments

Instrument Beamline ID02 Beamline 6.2

Detector 2018× 2048 pixels CCD RAPID2 technology
10× 10 cm2 20 cm radius

Spatial detector resolution [µm] 80 –
Sample Detector distance [m] 2 3.3

Beam size at sample [mm2] 0.4× 0.2 1.3× 0.3
(horizontal × vertical) –
Incident beam divergence [µrad2] 20× 40 –
Monochromatization ∆λ/λ 2 · 10−4 (λ = 12.5 keV) ≈ 2 · 10−4

Incident Energy [keV] 16.062 15
Incident Wavelength [Å] 0.77 0.827

Elastic q-range [Å−1] 0.002 . . . 0.5 0.013 . . . 0.45
Accessible length scale l [nm] 1.3 . . . 314 1.4 . . . 48

Table 5.7: Configuration of the SAXS instruments at which the SAXS data for this
thesis was recorded. The SAXS measurements reported in paper A were carried out
on the beamline 6.2 of the Synchrotron Radiation Source at Daresbury Laboratory,
(Warrington, UK). For the SAXS data in shown paper D we employed the ID02
beamline at the European Synchrotron Radiation Facility (Grenoble, France).

after, the X-ray beam hits the sample (green cuboid) where it is scattered. The
scattered X-ray photons propagating with a wavevector k′ (red arrow) are imping-
ing on a CCD detector in a vacuum chamber (yellow transparent tube), which then
detects the scattering amplitude I(q) depending on q = k− k′.

5.4 Data Treatment

In this section we describe the treatment of neutron backscattering and SAXS data.
We note that the data treatment of the backscattering data can be analogously
applied to the spin-echo data. However, one minor modification has to be consid-
ered. Instead of using vanadium to determine both the detector efficiency and the
resolution function, graphite powder is used.
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Figure 5.9: Principle of a small-angle scattering instrument.

5.4.1 Neutron Backscattering

This section elucidates how to extract the incoherent scattering function Sinc(q, ω) of
a protein in solution from the intensity signal calculated from the monitor normalized
neutron counts recorded at the detectors of a neutron backscattering spectrometer.
For the data treatment of the backscattering data, we developed MATLAB [2] scripts
in accordance with the procedure outlined in this section. The measured intensity
I(q, ω) of a sample with a theoretical partial differential cross-section ∂2σ/∂Ω∂E′

(for details see Sec. 4.2.2.1) can be decomposed into

I(q, ω) := D(q)R∆ω(ω)⊗ ∂2σ

∂Ω∂E′
(q, ω) +B(q), (5.33)

where R∆ω(ω) indicates the resolution of the instrument, D(q) is the detector ef-
ficiency, and B(q) denotes a flat background. For the backscattering data of this
study, we determined the differential cross-section of a sample consisting of a protein
solution confined in an aluminum cylinder, denoted by IPWC. The subindex in the
previous symbol will be explained later. Therefore, besides the scattering from the
protein, both the cylinder and the solvent contribute to the measured scattering
intensity. In order to remove these contributions, the subsequent samples must be
measured additionally

� Vanadium foil similar to the sample geometry in the sample cylinder: IVC

� Empty cylinder: IC

http://www.mathworks.com/
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� D2O in the sample cylinder IWC

For clarity we use the acronyms V, C, W and P to denote vanadium, the alu-
minum cylinder, water and the protein, respectively. Hence, the subindex of the
symbol IPWC indicates each contribution, namely from the protein (P), the water
molecules (W) and the aluminum cylinder (C), to the measured scattering signal.
Consequently, we have to retrieve the protein signal by elimination those unwanted
contributions. Moreover, we remove the instrumental background and the influence
of the detector efficiency from the signal.

To begin with, we determine the detector efficiency D(q) and the instrumental
resolution function R∆ω(ω) using the vanadium signal (the reasons are explained in
Sec. 5.1.3). For this end, we subtract the empty cylinder background IC by using
the corresponding Paalman-Pings coefficients α and β accounting for self-shielding
effects (Appendix A.1):

IV(q, ω) = αVC(q) IVC(q, ω)− βVC(q) IC(q, ω) (5.34)

In the absence of an instrumental background, the detector efficiency could be easily
retrieved by

D(q) =

∫
IV(q, ω) dω. (5.35)

However, the background would significantly shift the detector efficiency due to the
integration. In its place, we fit the vanadium data with the following model function:

Imodel
V (q, ω) = A1(q)R∆ω(ω) +A2(q), (5.36)

therein, the coefficients A1 and A2 account for the detector efficiency and the back-
ground, respectively. For the spectrometers IN10 and IN16, the resolution function
R∆ω can be accurately modeled by a single Gaussian function

R∆ω(ω) =
1√

2π∆ω(q)
exp

[
− ω2

2 ∆ω(q)2

]
. (5.37)

From the fit we obtain the instrumental parameters, which are crucial for the further
data analysis:

D(q) ≈ A1(q), (5.38)

B(q) ≈ A2(q),

R∆ω(ω) ≈ R∆ω(ω).
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Next, we normalize the water and protein solution spectra with the detector effi-
ciency and synchronously subtract the empty cylinder background

IW(q, ω) =
1

D(q)
[αWC(q) IWC(q, ω)− βWC(q) IC(q, ω)] (5.39)

IPW(q, ω) =
1

D(q)
[αPWC(q) IPWC(q, ω)− βPWC(q) IC(q, ω).]

Finally, we subtract the water background by taking the volume fraction of the
hydrated proteins φ Eq. 5.1 into account:

I(q, ω) := IP(q, ω) = IPW(q, ω)− (1− φ) IW(q, ω). (5.40)

For backscattering experiments the kinematic factor in Eq. 4.47

k′

k
=

√
1

1 + ~ω/E0
≈ 1 (5.41)

can be neglected, since the energy of incoming neutrons is around E0 � ~ω. Fur-
thermore, the scattering is dominated by the incoherent contribution of the hydrogen
atoms of the protein. Therefore, we obtain

I(q, ω) ∝ R∆ω(ω)⊗ Sinc(q, ω), (5.42)

in which Sinc(q, ω) is the incoherent dynamic structure factor of the protein’s hydro-
gen atoms. Since the hydrogen atoms are nearly equally distributed over the protein
volume (compare Fig. 4.2), Sinc(q, ω) reflects the dynamics of the whole protein.

5.4.2 Small-Angle X-Ray Scattering

In this section we shed light on how to recover the differential scattering cross-
section Eq. 4.59 of a dissolved protein from the SAXS raw data recorded at the
CCD detector in Fig. 5.9. Each pixel of the CCD detector measures the counts of
the scattered photons from the sample per second. Due to the technical setup of
the SAXS instrument the pixel data have to be preprocessed. The preprocessing
occurs online immediately after the beam exposure of the sample and includes the
following steps:

� Dark image subtraction to eliminate the background due to photons not orig-
inating from the X-ray beam

� Distortion correction due to spatial orientation of the detector

� Flat field correction using a flat field image that describes the sensitivity of
each pixel of the CCD

� Average using a curve integral along a circle with constant q
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As result we obtain the number of photons per second, which is

I(q)exp = I0AdT ∆Ω e d
dΣ(q)

dΩ
, (5.43)

therein, I0 is the incident beam intensity, A the sample exposure area (beam size),
d is the sample thickness, T is sample transmission, e the detector efficiency and
∆Ω is the detector view angle. The scattering cross-section per unit volume is

dΣ(q)

dΩ
=
N

V

dσ(q)

dΩ
, (5.44)

which is also known as the absolute intensity in units of cm−1 and is related via
the particle density to the differential cross-section dσ(q)/dΩ. To eliminate the
instrument parameters in Eq. 5.43 we use a water calibration sample [120] since
theoretical value for the corresponding differential cross-section is known to be

(
dΣ(q)

dΩ

)

W

= ρ2
W kB T χT (5.45)

in which χT is temperature-dependent isothermal compressibility and ρW the
scattering-length density of water. Consequently, the product of the instrumental
parameters is

I0AdT ∆Ω e d =
IW(q)

ρ2
W kB T χT

, (5.46)

therein IW(q) is the preprocessed intensity of a water sample. We use Eq. 5.46
to normalize a measured intensity and thereby obtain the absolute intensity. To
calculate the differential cross-section of a protein in solution the following absolute
intensities are to be determined:

� empty glass capillary in which the sample is contained during the measure-
ment, (dΣ(q)/dΩ)C

� water background at the same temperature as protein solution, (dΣ(q)/dΩ)WC

� protein solution, (dΣ(q)/dΩ)PWC

Note, we use a similar acronyms convention as in Sec. 5.4.1. Consequently, C, W
and P denote the empty capillary, water and the protein, respectively. Similar to
the data treatment in Sec. 5.4.1 apart from the Paalman-Pings coefficients, we first
subtract the empty capillary intensity from the other samples and then retrieve the
protein absolute intensity by subtracting the volume-fraction scaled water signal
from the protein solution signal:

(
dΣ(q)

dΩ

)

P

=

(
dΣ(q)

dΩ

)

PW

− (1− ϕ)

(
dΣ(q)

dΩ

)

W

(5.47)

Using Eq. 5.44 the differential cross-section of the protein can be calculated.

http://physchem.kfunigraz.ac.at/sm/Service/Water/H2Obetat.htm
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5.5 Data Analysis

Following up the previous section, we will expound the data analysis used in this
study. Part of the analysis, particularly for quasi-elastic spectra, is well established
in the literature [46, 39, 125, 86, 140]. The other part was collaboratively elaborated
by the author of this thesis and his co-workers. Inspired by Perez et al. [125] we
develop in Sec. 5.5.1 an analytic framework to separate the translational diffusion
coefficient from the measurable diffusion at a finite volume fraction. Moreover,
in Sec. 5.5.2 we present a framework that allows to measure the mean-squared
displacement of the internal motion of a protein in solution from a fixed elastic
window scan.

5.5.1 Quasi-Elastic Neutron Backscattering

0.2

0.6

1

1.4

1.8

−15

−10

−5
0

5
10

15

0

0.2

0.4

0.6

0.8

1

Q [Å−1]
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Figure 5.10: Quasi-elastic neutron backscattering spectra of a 500mg/ml bovine
serum albumin aqueous (D2O) solution at a temperature of 300K (purple circles).
The data were recorded at the IN16 spectrometer at the ILL in Grenoble. The solid
pink line is a fit of the model function Eq. 5.55 to the data.



86 Chapter 5. Materials & Methods

In Sec. 5.4.1 we have explained how to calculate the spectrum of a protein so-
lution by using the spectra from background and calibration measurements. We
remind that the resolution function of the instrument was not reduced from the cal-
culated spectra and, consequently, has to be considered in the following data analy-
sis. Furthermore, we point out that the reduced data from a neutron backscattering
measurement as described in Sec. 5.4.1 is proportional to the incoherent scattering
function of the hydrogen atoms of the protein.

In this section we elucidate how to fit the neutron scattering spectrum of a
protein in solution. Emanating from a theoretical model on the quasi-elastic energy
range, we will derive a fit function that can be employed to extract important
dynamical parameters such as the self-diffusion coefficient of the protein.

Here, we shortly shed light on which principles we construct a theoretical model
that sufficiently captures the dynamics of a protein. In Sec. 4.2.4 we explained
the basic idea how to describe the different motions of a protein in terms of the
product of intermediate scattering functions. The dynamic modes of a protein are
hierarchically ordered on their time scales. One can approximately categorize the
dynamics into three main contributions:

� Atomic Vibrations
The atoms of the protein vibrate about a well defined equilibrium position.
Using a harmonic approximation one can prove that the scattering function
related to the vibrational modes of the molecule can be decomposed into an
elastic and inelastic part [13]

SV
inc(q, ω) = exp

[
−1

3

〈
u2
vib

〉
q2

]
{δ(ω) + SV

inel(q, ω)} . (5.48)

Therein,
〈
u2
〉
is the average mean-squared displacement of the atoms. The

inelastic component SVinel(q, ω) has pronounced peaks at distinct energies in
the meV-regime, which can be neglected on the quasi-elastic energy scale.

� Internal Motion
A diversity of amplitudes and correlation times renders the characterization
of internal motion an intricate task. At room temperature, the diffusive mo-
tion of side chains predominantly contributes to the internal motion. These
solvent exposed side chains (displayed in Fig. 5.11) perform spatially confined
reorientational diffusive motions. Furthermore, subdomain movements with
amplitudes on the Angstrom length scale and nanoseconds time scale give
rise to a wide range of spatial constrained diffusive modes. The incoherent
scattering function is approximated by

S I
inc(q, ω) = A(q) δ(ω) + [1−A(q)]Lβ(ω,Γ) (5.49)
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Figure 5.11: Hydrogen atoms (blue spheres) of the solvent-exposed side chains
(green) of the homology model of bovine serum albumin (secondary structure is
shown in different colors [purple, white, blue and cyan]) [175] . These solvent side
chains perform spatially confined reorientational diffusive motions and therefore
significantly contribute to the quasi-elastic scattering signal. The illustration was
generated by using VMD [77].

http://www.ks.uiuc.edu/Research/vmd/
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in which the Kohlrausch-Williams-Watts function [178]

Lβ(ω,Γ) =

∫ ∞

−∞

dt

2π
e−iω t exp

(
−|tΓ|β

)
, (5.50)

can describe a broad range of correlation times with a single phenomenological
parameter 0 ≤ β ≤ 1. A(q) is the elastic incoherent structure factor, which
is related to the average accessible space of internal diffusive scatterers, such
as side chains or molecular subunits [14]. Γ and β are assumed to be nearly
constant for q < 2 Å−2 [171, 86]. In this thesis we chose β = 1 since the
accuracy of the measured data does not allow to distinguish between different
β.

� Global Diffusion
Combining the scattering function of translational and rotational diffusion
(Eq. 4.105 and Eq. 4.142), denoted by ST

inc(q, ω) and SR
inc(q, ω), respectively,

yields
STR

inc(q, ω) = ST
inc(q, ω)⊗ SR

inc(q, ω). (5.51)

Perez et al. [125] showed that on the quasi-elastic energy scale the center of
mass diffusion and the rotational diffusion can be approximated by a single
Lorentzian function

STR
inc(q, ω) ≈ L(ω, γ), (5.52)

with a width γ = D q2, thereby defining the apparent diffusion coefficient.

Assuming independence of these modes, the total scattering function is the convo-
lution product

Sinc(q, ω) = SV
inc(q, ω)⊗ S I

inc(q, ω)⊗ STR
inc(q, ω), (5.53)

in which ⊗ denotes a convolution with respect to ω. Consequently, we describe the
incoherent scattering function of the hydrogen atoms with the general model [46,
39, 125, 86, 140]:

Sinc(q, ω) = exp

[
−1

3

〈
u2
vib

〉
q2

]
L(ω, γ)⊗ {A(q) δ(ω) + [1−A(q)]Lβ(ω,Γ)} .

(5.54)
Finally, taking the convolution with the instrumental resolution function into ac-
count, the fit model except for a scaling parameter reads

Imodel(q, ω) ∝ R∆ω(ω)⊗ Sinc(q, ω). (5.55)

Note, if the resolution function consists of one or more Gaussians the convolution
can be made explicit by using Voigt functions [8, 167, 146]. Fig. 5.10 exemplifies
the fit procedure with a sample data set. For each q-value of the spectra the model
function Eq. 5.55 (pink solid line) was fitted to the energy spectrum (dark purple
circles).
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Apparent Diffusion

h̄ω [µeV]

S
(Q

,
ω
)

Q2 [Å−2]
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Figure 5.12: Inset: Example backscattering spectrum S(Q,ω) (symbols) recorded at
IN16 for BSA in D2O (c = 500mg/ml, ϕ = 28.5%, T = 300K, individual detector
at q = 0.81Å−1). The magenta solid line is the fit of the model from Eq. (5.55). The
two Lorentzians in Eq. (8.3) are indicated by the dashed and dash-dotted lines. The
orange solid line denotes the resolution function. Main figure: Fitted γ (symbols)
versus q2 for the full q-range of the example data. The fit of γ = D q2 (blue line)
is consistent with simple diffusive behavior. For statistical reasons the fit range is
restricted to q2 < 1.5Å−2.

In the short-time limit translational self-diffusion of a protein in a concentrated
solution is described by a scattering function functionally equivalent to Eq. 4.105
aside from the interpretation of the diffusion coefficient. We will prove in the fol-
lowing section that this even holds for the inclusion of rotational diffusion to the
scattering function. In this section we elucidate how to determine the apparent
diffusion coefficient D, which we introduced in the previous section. D is simply an
observable originating from the fit parameters γ for different q-values of the model
Eq. 5.55 and characterizes the translational and rotational diffusion of the entire
protein. Fig. 5.12 shows the widths γ of an example sample. For q2 < 1.5Å−2, a
clear relationship γ = D q2 is observed, defining the apparent diffusion coefficient
D. For q2 > 1.5Å−2 the scattering signal from the proteins becomes weaker and
considerably broadened with respect to the accessible energy range. Since these two
factors can cause fitting artifacts, we neglected these data points for the fitting of



90 Chapter 5. Materials & Methods

!
!
!
!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!
!
!
!

!40 !20 0 20 40

10!8

10!7

10!6

10!5

10!4

"Ω !ΜeV"

in
te
ns
ity
!a.u."

Figure 5.13: Incoherent scattering function STR
inc(q, ω) of a diffusing hypothetical

particle of radius r = 36Å at q = 1Å−1 (orange circles). The translational and
rotational diffusion coefficients are Dt = 6Å2/ns and Dr = 3.1 · 10−3 ns−1, respec-
tively. These values reflect the respective parameters of bovine serum albumin at
room temperature in water. The dark blue solid line is a Lorentz function fitted to
STR

inc(q, ω). The light blue dashed line is the incoherent scattering function ST
inc(q, ω)

without taking the rotational diffusion into account. Note, that ST
inc was scaled to

the same peak position as STR
inc .

the diffusion coefficient, although the q2 relationship seems conserved.

Extraction of Translational Diffusion Coefficients

Perez et al. [125] revealed that because of a non-negligible contribution of the ro-
tational diffusion, the apparent diffusion coefficient is in general larger than the
translational diffusion coefficient. Therefore, in this section we develop an analytic
framework to extract the translational diffusion coefficient from the apparent diffu-
sion. This permits a comparison of the translational diffusion behaviour with the-
oretical models. Fig. 5.13 illustrates the theoretical incoherent scattering function
STR

inc of a hypothetical molecule emerged in a solvent for parameters that coincide
with a bovine serum albumin molecules in water at room temperature (orange cir-
cles). Additionally the scattering function ST

inc (calculated from Eq. 4.105) of the
same molecule only performing translational diffusion is depicted. Evidently, the
line broadening of STR

inc is larger than that of ST
inc illustrating that the rotational

contribution is significant. The scattering function STR
inc(q, ω) is the convolution of
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Eq. 4.105 and Eq. 4.142 and, consequently, reads

STR
inc(q, ω) =

∞∑

l=0

Bl (q)L (ω,Γl) , (5.56)

where
Γl = l (l + 1)Dr + q2Dt (5.57)

with Dt and Dr being the translational and the rotational diffusion coefficient,
respectively. We remind that the rotational dynamic structure factors for a molecule
are entirely determined by the density distribution of the position of the molecule’s
hydrogen atoms ρH (compare Sec. 4.6.2):

Bl(q) = (2 l + 1)

∫
ρH(r) j2

l (q r)dr. (5.58)

A comparison of STR
inc with the scattering function solely stemming from the trans-

lational diffusion (dashed light blue line), shows that the rotational contribution is
not negligible. Perez et al. [125] observed that STR

inc can be sufficiently accurately
approximated by a single Lorentzian function (solid dark blue line). Remarkably,
the line broadening of this Lorentzian reveals the same D q2 behavior, which is the
hallmark for free translational diffusion (see Eq. 4.105). In this section, we will an-
alyze this observation in detail and derive a relation defining the apparent diffusion
coefficient D in terms of Dr or Dt. Fitting a single Lorentzian line shape, with the
line broadening parameter Γ and the amplitude α, to the scattering function STR

inc

is mathematically equivalent to the minimization of the L2-distance between these
two functions:

min
α,Γ

{∫
[STR

inc(q, ω)− αL(ω,Γ)]2 dω

}
. (5.59)

Solving the above equation yields two coupled nonlinear equations determining the
parameters α and Γ:

α = 2 Γ

∞∑

l=0

Bl
Γl + Γ

(5.60)

0 =

∞∑

l=0

Bl
Γl + Γ

(
1

Γl + Γ
− 1

2 Γ

)
. (5.61)

For better readability, we skip the explicit q-dependence of Γ, α and Bl. In the
limiting case q → 0 Eq. 5.61 and Eq. 5.60 are explicitly solvable yielding Γ/q2 = Dt

and α = 1. This motivates to introduce the general (q-dependent) apparent diffusion
coefficient D by plugging Γ = D q2 into Eq. 5.61:

∞∑

l=0

Bl
Γl +D q2

(
1

Γl +D q2
− 1

2D q2

)
= 0. (5.62)
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Figure 5.14: General apparent diffusion coefficient D(n) (q,Dt, Dr) of a hypothetical
diffusing particle of radius r = 36Å(orange circles). The translational and rotational
diffusion coefficient are Dt = 6Å2/ns and Dr = 3.1 · 10−3 ns−1, respectively. For
the calculation we truncated the sum in Eq. 5.63 at n = 550, since convergence was
sufficient.
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As next step, we introduce a sequence converging toD. For this end, we approximate
Eq. 5.61 by truncating the infinite sum. Moreover, using Eq. 5.57 and replacing D
by D(n), we finally obtain:

n∑

l=0

Bl(q)
l (l + 1)Dr + q2

(
Dt −D(n)

)
[
l (l + 1)Dr + q2

(
Dt +D(n)

)]2 = 0. (5.63)

Thereby, we implicitly define a sequence of functions D(n) (q,Dt, Dr) converg-
ing to the general apparent diffusion coefficient for n → ∞. Fig. 5.14 shows
D(n) (q,Dt, Dr) for a particle with the same parameters as in Fig. 5.13. We ob-
serve that D(n) (q,Dt, Dr) starts at Dt for q = 0 (dashed orange line) and converges
rapidly to a constant value (dashed light blue line). Therefore, with the double limit
of the sequence

D (Dt, Dr) = lim
q→∞

[
lim
n→∞

D(n) (q,Dt, Dr)
]
, (5.64)

we eliminate the influence of q and define the apparent diffusion coefficient D. With
heuristic arguments we can finally turn the double into a single limit. Considering
that if we chose q = l/(2R) with R = sup {r, ρ(r) 6= 0}, Bl(q) in Eq. 5.63 strongly
decays for large l, we rewrite Eq. 5.64:

D = lim
n→∞

D(n)
( n

2R
,Dt, Dr

)
. (5.65)

This equation equally allows to calculate Dt in dependence of D and Dr, enabling
us to extract the translational diffusion coefficient from the measured apparent dif-
fusion.

5.5.2 Fixed Elastic Window Neutron Backscattering

In this section we develop an analytic framework for the calculation and decompo-
sition of the total mean squared-displacement

〈
u2
〉
of a protein in solution deter-

mined with fixed elastic window neutron backscattering. The presented new analysis
scheme is based on quasi-elastic concepts we have explained in the previous section.
With fixed elastic window neutron backscattering, one measures the incoherent scat-
tering function at ω = 0 within the instrumental resolution function. The so-called
elastic intensity of proteins in solution is

S (q, |ω| < ∆ω) := R∆ω(ω)⊗ Sinc(q, ω)|ω=0 =

∫
R∆ω(ω)Sinc(q, ω) dω. (5.66)

Anticipating the result from the derivation subsequent to this section, the total
mean-squared displacement

〈
u2
〉
is retrieved from the elastic intensity by fitting

−3 log [S (q, |ω| < ∆ω)] with the following polynomial:

P (q) = b+
〈
u2
〉
q2 + c q4. (5.67)
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Figure 5.15: Raw data (dark purple solid circles) for the elastic intensity
S (q, |ω| < ∆ω) of a 500mg/ml BSA aqueous (D2O) solution upon heating from
280 to 370K with 7.4 · 10−2 K/min. The data were recorded at IN10. Fits of the
polynomial Eq. 5.67 to the data at fixed temperatures are superimposed as purple
solid lines.
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Therein, b accounts for both the background and the arbitrary scaling of the experi-
mental elastic line, c originates from higher spatial correlations as described in detail
in the next section. In Fig. 5.15 we display raw data for −3 log [S (Q, |ω| < ∆ω)]

of a 500mg/ml BSA aqueous (D2O) solution upon heating from 280 to 370K with
7.4 · 10−2 K/min. At each temperature we fit the polynomial Eq. 5.67 to determine
the total mean-squared displacement.

Analysis of the Elastic Intensity

In the following, we derive a formula describing the elastic line intensity in terms
of vibrational, global and internal diffusive modes for small q values. To start with,
we solve the integral Eq. 5.66 by using the model function Eq. 5.54 and assume a
Gaussian resolution function of the instrument (which is valid for the spectrometers
IN10 and IN16) of the form

R∆ω(ω) = exp

(
− ω2

2∆ω2

)
, (5.68)

thereby, for reasons of readability we skip any scaling parameter. With this the
integral Eq. 5.66 yields

S (q, |ω| < ∆ω) = exp

(
−1

3

〈
u2
vib

〉
q2

)
·
{
A(q)F1

( γ

∆ω
, 0
)

+ [1−A(q)] Fβ

(
γ

∆ω
,

Γ

∆ω

)}
, (5.69)

where Fβ is the integral expression

Fβ(x, y) =

√
2

π
exp

(
x2

2

) ∫ ∞

0
exp

[
−1

2
(ξ + x)2 − |y ξ|β

]
dξ . (5.70)

Mean-Squared Displacement First we introduce the following apparent quan-
tity

〈u2〉 := −3 lim
q→0

{
log [S (q, |ω| < ∆ω)]

q2

}
. (5.71)

and term it total mean-squared displacement. In the following we will attach a
physical meaning to it and will prove that it merits its name.

General Mean-Squared Displacement In order to analyze 〈u2〉, we define the
general (q-dependent) total mean-squared displacement

〈
u2
〉
q
by

exp

[
−q

2

3

〈
u2
〉
q

]
:= S (q, |ω| < ∆ω) . (5.72)
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Note that the explicit q-dependence is denoted by a subindex q to distinguish it
from

〈
u2
〉
. Using Eq. 5.72 and Eq. 5.69, we obtain

〈
u2
〉
q

=
〈
u2
vib

〉
− 3

q2
log ξ(q), (5.73)

in which
ξ(q) = A(q)F1

( γ

∆ω
, 0
)

+ [1−A(q)] Fβ

(
γ

∆ω
,

Γ

∆ω

)
. (5.74)

We approximate Eq. 5.73 up to 3rd order using a Taylor polynomial at q = 0:

〈
u2
〉
q

=
3∑

n=0

an
n!
qn +O(q4), (5.75)

therein, O(q4) is the remainder of the series and the coefficients are defined by

an = lim
q→0

dn

dqn
〈
u2
〉
q
. (5.76)

nth-Derivative of Incoherent Elastic Structure Factor In order to calculate
the Taylor coefficients an, we have to first determine the nth-derivative of the in-
coherent elastic structure factor. To start with, we introduce a general form of the
incoherent elastic structure factor, which according to Bée [14] reads

B(q) =
1

N

N∑

j=1

∣∣〈eiq rj
〉∣∣2 . (5.77)

Therein, rj = (xj , yj , zj)
T might be the position vector of the jth scatterer in one

of the solvent exposed side chains of the protein (see Fig. 5.11). We recall that a
protein in solution has no preferential orientation vector due the random collisions
with the surrounding solvent molecules. We assume that the orientations of the
molecules are nearly equally distributed. Therefore, we have to average the general
elastic incoherent structure factor A(q) over all possible orientations yielding

A0(q) =
1

4π

∫ 2π

0

∫ π

0
B(q) sin θ dθ dϕ. (5.78)

in which q = q [cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)]T . For reasons of generality we
additionally consider the pseudo-elastic incoherent structure factor [86, 140], based
on the following conception: Correlation times much longer than the instrumental
time window correspond to a very narrow signal in ω, which is indistinguishable
from the elastic peak in the quasi-elastic signal. Therefore, a fraction p of scatterers
is considered as immobile, the remaining fraction 1− p as diffusive scatterers. This
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translates into the pseudo-elastic incoherent structure factor

A(q) = p+ (1− p)A0(q) (5.79)

The first five derivatives of A(q), denoted by A(n)(q), were obtained by employing
MathematicaR© [181]:

A(0) = 1 (5.80)

A(1)(0) = 0

A(2)(0) = −2 (1− p)
3

〈
∆r2

〉

A(3)(0) = 0

A(4)(0) =
1− p

5
(mx +my +mz + 2mx,y + 2mx,z + 2my,z)

A(5)(0) = 0, (5.81)

therein,
〈
∆r2

〉
=

1

N

N∑

j=1

〈
(rj − 〈rj〉)2

〉
(5.82)

is the average fluctuation amplitude, related to the size of the confinement of the
internal diffusive scatterer, such as the protein side chains. Moreover, the higher
moments of the scattering coordinates are

mx =
2

N

N∑

j=1

(〈
x4
j

〉
+ 3

〈
x2
j

〉2 − 4
〈
x3
j

〉
〈xj〉

)
(5.83)

mx,y =
2

N

N∑

j=1

(
2 〈xj yj〉2 − 2 〈yj〉

〈
x2
j yj
〉

+
〈
x2
j

〉 〈
y2
j

〉
− 2 〈xj〉

〈
xj y

2
j

〉
+
〈
x2
j y

2
j

〉)
. (5.84)

We note that the expressions my, mz and mx,z, my,z are analogously defined.

Taylor Coefficients Having obtained the nth-derivative of the incoherent elastic
structure factor A(n)(0), we proceed by calculating the Taylor coefficients in the
truncated series (Eq. 5.75). For this end, we first calculate the derivatives for ξ at

http://www.wolfram.com/mathematica/
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q = 0, which are

ξ(0) = 1 (5.85)

ξ(1)(0) = 0

ξ(2)(0) = −2D

∆ω

√
2

π
+

[
1− Fβ

(
0,

Γ

∆ω

)]
A(2)(0)

ξ(3)(0) = 0

ξ(4)(0) =

[
1− Fβ

(
0,

Γ

∆ω

)]
A(4)(0)

+
12D2

∆ω2

[
1− ∆ω

D
A(2)(0)

{√
2

π
+ F

(1,0)
β

(
0,

Γ

∆ω

)}]
(5.86)

ξ(5)(0) = 0, (5.87)

where F (1,0)
β denotes the derivative of Fβ (Eq. 5.70) in respect to the first argument.

Using ξ(n)(0) we obtain the Taylor coefficients:

a0 = −3

2
ξ(2)(0) (5.88)

a1 = 0

a2 =
1

4

[
3 ξ(2)(0)2 − ξ(4)(0)

]

a3 = 0 (5.89)

Finally, the general total mean-squared displacement
〈
u2
〉
q
can be approximated as

follows 〈
u2
〉
q

= a0 +
a2

2
q2 +O(q4). (5.90)

Decomposition of Total Mean-Squared Displacement Using Eq. 5.90 the
total mean-squared displacement simplifies to

〈u2〉 := −3 lim
q→0

{
log [S (q, |ω| < ∆ω)]

q2

}
= a0. (5.91)

by combining Eqs. 5.89, 5.87 and 5.81 the total mean-squared displacement can be
decomposed into the following sum

〈
u2
〉

=
〈
u2
vib

〉
+
〈
u2
sub

〉
+
〈
u2
diff

〉
(5.92)〈

u2
sub

〉
= (1− p)χ

〈
∆r2

〉

〈
u2
diff

〉
= 3

√
2

π∆ω2
D,

therein, χ =
[
1− Fβ

(
0, Γ

∆ω

)]
. Due to the energy resolution of the instrument the

global diffusion of the protein can only be observed within a time window of width
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τ = 2π/∆ω. During that time the protein has isotropically explored a space, which
size is characterized by a mean-squared displacement of

〈
∆R2(τ)

〉
= 6D τ . Hence,〈

u2
diff

〉
= (2π)−3/2

〈
∆R2(τ)

〉
.

Fit Strategy Determining the limit Eq. 5.91 from a measured elastic intensity
S (q, |ω| < ∆ω) is not feasible due to the experimental accuracy. Eq. 5.90 provides
a better way to retrieve

〈
u2
〉
from the elastic yielding the polynomial Eq. 5.67.
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This chapter summarizes the key findings of the papers A-D, which are incorpo-
rated in subsequent publication-style chapters. This will unavoidably lead to

some repetition caused by self-contained components that will overlap with parts of
the other sections of this thesis. For each paper we briefly outline the content and
put the key findings coherently into the context of this thesis.

6.1 Paper A. Protein Diffusion in Crowded Electrolyte
Solutions

Paper A (see Chap. 7) investigates the apparent diffusion of the globular protein
Bovine Serum Albumin (BSA) in crowded aqueous solution as a function of pro-
tein concentration and sodium chloride concentration by combining cold neutron
backscattering and spin-echo spectroscopy. Additionally, employing SAXS we re-
trieve complementary information on the equilibrium structure. The aim of the
study is to find an answer to the question: How concentrated does a protein solu-
tion has to be for crowding to impact the protein diffusion behavior?

By means of SAXS we find a qualitative change from an uncorrelated to a
strongly correlated solution due to increased excluded-volume effects. With a more
detailed analysis, we conclude that below a volume fraction of approximately 10%
crowding is induced by unscreened charges, whereas above that volume fraction
crowding is dominated by the excluded-volume contribution.

In contrast to the static data, the diffusion coefficients as obtained with quasi-
elastic measurements do not reveal a distinct value where crowding due to the
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excluded-volume contribution sets in. Instead, we find a continuously declining
apparent diffusion coefficient with increasing volume-fraction. Furthermore, the ad-
dition of sodium chloride has little or only a slight effect, although charge screening
is assumed to change significantly the intermolecular interaction.

Anticipatory, we point out that paper B (see Chap. 8) gives the explanation
for the latter observation. In this study we confirm the applicability of colloid
diffusion models to globular protein self-diffusion. The theoretical functions for
colloidal hard-spheres and charged hard-spheres are very similar in the short-time
limit [115, 4, 33, 165, 162]. As consequence of the given measured accuracy, we
cannot distinguish between these models. Moreover, the reduced diffusion coefficient
for charged hard-spheres is virtually independent of the surface charge, implying
that screening effects are almost not perceivable. Even though the formation of a
counter-ion layer on the protein surface alters the hydrodynamic radius [169], such an
expansion is not detectable within the instrumental accuracy. Finally, salt induced
solvent viscosity changes (compare Sec. 5.1.2) are negligible for the investigated salt
concentration range of 0− 300mM.

6.2 Paper B. Protein Self-Diffusion in Crowded Solu-
tions

Perez et al. [125] showed that the apparent diffusion coefficient of a protein measured
with quasi-elastic neutron spectroscopy is in general larger than the translational
diffusion coefficient due to a non-negligible contribution of the rotational diffusion.
Following up paper A, we develop an analytic framework to extract the translational
diffusion coefficient from the apparent diffusion. This enables a comparison of the
translational diffusion with theoretical models. Consequently, the motivation of
paper B (see Chap. 8) is to test the applicability of colloid models to protein diffusion
in crowded solutions.

Employing cold neutron backscattering spectroscopy (see Sec. 5.3.1), we measure
the short-time self-diffusion in bovine serum albumin solutions for volume fractions
in the range 7 % ≤ φ ≤ 30 % and compare it with existing short-time colloid models
for diffusion [115, 4, 33, 165, 162]. Moreover, by means of SAXS, we determine the
shape of the protein in solution using an ellipsoid. We demonstrate that within the
entire volume fraction range, the experimental translational diffusion coefficient can
be described by

Dt(ϕ) ≈ Dt(0) f

[
ϕ

(
Rh
R

)3
]
, (6.1)

in which f is indistinguishable from the series expansions of the reduced short-time
diffusion coefficient of hard-spheres [162] and charged hard-spheres [4] within the
error bars. R is the radius of a sphere with the same volume as the bare protein,
Rh is the hydrodynamic radius, retrieved from the ellipsoidal model, and Dt(0)

is the dilute-limit diffusion coefficient. In a nutshell, we show that effective hard-
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spheres no matter whether charged or non-charged accurately describe the measured
short-time self-diffusion of a globular protein. Since in the short-time limit hydro-
dynamic interactions prevail, our experimental study fundamentally validates the
simulation results from Ando and Skolnick [7], who found that the effect of macro-
molecular crowding on protein diffusion can be explained solely with hydrodynamic
interactions and excluded volume. Furthermore, the surprising finding that a rela-
tively simple colloidal model reproduces the behavior of the non-spherical and non-
homogeneously charged protein represents a reliable framework for future studies
on internal dynamics of proteins in solution and under crowding conditions.

6.3 Paper C. Dynamics of Highly Concentrated Protein
Solutions around the Denaturing Transition

After having investigated crowding effects and the volume-fraction dependence of the
self-diffusion of a protein suspension, we focus our research effort on the temperature
dependence of the diffusion coefficient and use it to extract the total mean-squared
displacement of the internal motion. Using computer simulations Kudlay et al. [91]
concluded that macromolecular crowding has an impact on the random coil to helix
transition of polymers. Mittal [111] found employing Langevin dynamics simula-
tions that for monodisperse repulsive crowders, protein stability and folding rate
will increase with increasing packing rate. It is therefore important to develop a
framework to experimentally quantify folding and particularly its inverse process
denaturing in the situation of crowding. Paper C (see Chap. 9) is a combined quasi-
elastic and fixed elastic window neutron backscattering study to investigate both the
global and internal dynamics of a highly concentrated bovine serum albumin solution
around the denaturing transitions. Using fixed elastic window neutron backscatter-
ing, we recorded the total mean-squared displacement

〈
u2
〉
for the temperature

range 280K < T < 370K and using quasi-elastic backscattering we determined the
corresponding apparent diffusion coefficient.

Along with the data we developed a novel framework to analyze the denaturing
process of the protein. Knowing that the secondary structure bovine serum albumin
is dominated by α-helices, we describe the temperature dependence of

〈
u2
〉
with a

model inspired by the Zimm-Bragg Model [187]:

〈
u2
〉

= a T + b−∆u2 Θ

(
T − T0

∆T

)
(6.2)

in which a, b, ∆u2, T0 and ∆T characterize the denaturing and cross-linking process
and Θ is the smeared-out step function

Θ(x) =
1

1 + e−x
, (6.3)

measuring the population of the denatured and cross-linked proteins. Using the
apparent diffusion coefficient D from the quasi-elastic spectra, we separate internal
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and global dynamics by
〈
u2
int

〉
=
〈
u2
〉
− (2π)−3/2 6D τ. (6.4)

Thereby, we reveal a discontinuous change in the first derivative of the temperature
dependence of

〈
u2
int

〉
at the denaturing temperature that has not been discovered

before. We speculate that this observation can be attributed to the higher confor-
mational flexibility of the unfolded protein chains in the cross-linked network than in
the native state. Importantly, the framework can also be applied to any system with
both center-of-mass and internal dynamics, such as conventional polymer solutions.

6.4 Paper D. Charge-Induced Dynamic Density Inhomo-
geneities in Protein Solutions

As we will explain in paper A (see Chap. 7), the addition of the monovalent salt
sodium chloride has little or only a slight effect on the diffusion of BSA. In con-
trast, a multivalent salt such as YCl3 induces a quite different behaviour. Zhang
et al. [185, 186] showed that highly positively charged metal ions such as Y3+ can
induce a charge inversion of negatively charged proteins. In particular, they showed
that if the ion-concentration approaches a distinct value c∗, which depends on the
protein concentration, short-range attractions increasingly become dominant and
finally describe the protein interaction. Furthermore, they showed that at c∗ the
surface charge of the protein is negligible.

Consequently, the specific binding effect of Y3+ on the protein surface is suitable
for tuning the intermolecular forces to investigate the competition between long-
range repulsion and short-range attraction on the diffusion of BSA below and near
the critical salt concentration c∗.

In paper D (see Chap. 10) we report on a combined neutron spin-echo spec-
troscopy and small-angle X-ray scattering study investigating the short-time self-
diffusion coefficient and the isothermal compressibility of a globular protein bovine
serum albumin in aqueous (D2O) solution at various concentrations of the trivalent
salt YCl3. We increase the salt concentration up to the critical concentration c∗,
where the protein surface charge is close to zero [185]. The normalized isothermal
compressibility reveals that upon addition of YCl3 the solution changes from a re-
pulsion dominated to a attraction dominated system. Synchronously, we observe
a reduction of the short-time self-diffusion. We attribute this slowing down to an
increased number of other proteins in the close proximity hindering the diffusion
by hydrodynamic forces. We speculate that the attraction-dominated nature of the
potential of mean force favors the formation of transient clusters [27, 99] having
a lifetime shorter than the instrumental time resolution due to the high surface
charge of the proteins. The more the system is dominated by attraction the longer
the lifetime of the clusters. When approaching the critical salt concentration c∗ the
lifetime diverges, coinciding with the observation that slightly above c∗ the BSA
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solution becomes abruptly turbid and shows macroscopic static clusters. Due to the
short lifetime of transient clusters, the proteins can be considered as independent
and therefore the dynamical response of the system will be essentially determined by
monomers. Importantly, Liu et al. [99] point out that transient clusters are strictly
speaking not clusters, but rather can be conceived as fluctuating inhomogeneities
in the particle density. To quantify this inhomogeneities, we generalize the model
of effective hard-spheres developed in paper B (see Chap. 8) to the present case
yielding

ds (cs, ϕ) = d0 fHS

[(
Rh
R

)3

ϕlocal (cs)

]
, (6.5)

in which fHS is the theoretical reduced translational diffusion function of hard-
spheres [115, 162] and d0 the dilute limit translational diffusion coefficient and R

is the radius of a sphere with the same volume as the bare protein volume. If no
salt is present the proteins are highly charged and favor a homogeneous density
distribution corresponding to a volume fraction ϕ, consequently ϕlocal(0) = ϕ. With
increasing salt concentration the density of the solution becomes more inhomoge-
neous expressed by an increase of the local density relative to ϕ:

ϕlocal (cs) = ξ (cs) ϕ, (6.6)

Therein, we introduce the local crowding factor ξ (cs). We find that the maximum
local crowding factor corresponds to a decrease of 20% of the nearest neighbor
distance of the protein, corroborating the picture of dynamic local inhomogeneities
rather than tightly bound clusters. Above the critical salt concentration c∗ we
observe the discontinuous onset of the formation of macroscopic clusters indicating
an abrupt increase of the cluster lifetime.
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7.1 Abstract

We report on a combined cold neutron backscattering and spin-echo study of the
short-range and long-range nanosecond diffusion of the model globular protein
Bovine Serum Albumin (BSA) in aqueous solution as a function of protein con-
centration as well as NaCl salt concentration. Complementary small-angle X-ray
scattering data are used to obtain information on the correlations of the proteins in
solution. Particular emphasis is put on the effect of crowding, i.e. conditions un-
der which the proteins cannot be considered as objects independent of each other.
We thus address the question at which concentration this crowding starts to in-
fluence the static and in particular also the dynamical behaviour. We also briefly
discuss qualitatively which charge effects, i.e. effects due to the interplay of charged
molecules in an electrolyte solution, may be anticipated. Both the issue of crowding
as well as that of charge effects are particularly relevant for proteins and their func-
tion under physiological conditions, where the protein volume fraction can be up to
approximately 40% and salt ions are ubiquitous. The interpretation of the data is
put in the context of existing studies on related systems and of existing theoretical
models.

7.2 Introduction

Proteins constitute the basis of the function of living cells. In addition to their
structure, the dynamics of proteins is closely related to their biological function.
Some proteins occur in cell membranes, whilst others - the so-called globular ones -
occur freely in water inside and outside the cells [134]. It is the latter category that
the present article is concerned with. These globular proteins cannot be understood
without their aqueous environment, and the ensemble of proteins and water may
be denoted a solution, suspension, or gel, depending on the physical – in particular
viscoelastic – properties of the ensemble [163, 112, 73].

In a simplified picture, living cells operate through the motion of proteins em-
bedded in a high-concentration ("crowded") aqueous solution of various macro-
molecules and salts [49]. Considerable debate therefore addresses the connection
of protein function and protein motion in an aqueous environment as a function of
environmental parameters such as charges and temperature. It can be assumed that
protein function cannot be understood without taking into account protein motion
in an aqueous environment and the interaction of proteins, ions, and water [11].

Neutron spectroscopy has since long been proven to be a useful tool to investigate
protein dynamics [15]. Whilst most other spectroscopic techniques, such as dynamic
light scattering, are restricted to Q ≈ 0, neutrons probe motion as a function of
length scale from interatomic to mesoscopic distances in the sample, on time scales
from sub-picoseconds to approximately 200 nanoseconds.

Most of the early neutron spectroscopy work concerning protein dynamics
has been performed on powders or hydrated powder samples (for a review, see
e.g. [61]). Interestingly, the biologically highly relevant case of protein solutions
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has rarely been studied, inter alia due to the difficulty of discriminating the con-
tribution from the centre-of-mass diffusion of both protein and solvent molecules
and also the problem of obtaining the required protein scattering volume whilst
keeping the solvent scattering contribution low. Various studies indicate that pro-
tein dynamics in solution strongly depends on the external environment parame-
ters, such as temperature, solution composition, concentration, ionic strength, and
pH [131, 129, 100, 144, 43, 87, 105].

In addition to the issues related to solutions in general, the issue of crowd-
ing has to be observed. It is clear that with increasing protein concentration the
protein-protein interaction becomes more relevant both for static and dynamic be-
haviour. However it is not at all obvious and also not well studied experimentally
at which concentration the behaviour changes qualitatively. In other words: How
concentrated does a protein solution have to be for crowding to impact the protein
diffusion behaviour? Furthermore, crowding is expected to be influenced by salt
effects, since proteins in solution are generally charged, and the screening of these
charges by salt ions has a profound impact on the effective interactions [184, 185].

In the present article we report on our experiments on protein dynamics in
crowded electrolyte solutions using high resolution quasi-elastic neutron scattering
techniques, namely backscattering and spin-echo techniques. We discuss the results
in the context of crowding and charge effects, i.e. effects due to the interplay of
charged molecules in an electrolyte solution, on different length scales – i.e. on
protein nearest neighbor distances and on intramolecular length scales – in the
context of structural information obtained by applying small-angle x-ray scattering
(SAXS) techniques.

This article is organized as follows. After a short review of some theoretical con-
cepts of diffusion in Sec. 7.3, the experimental details and data analysis procedures
are explained in Sec. 7.4. In Sec. 7.5, first the (static) SAXS data are presented,
followed by backscattering and neutron spin echo (NSE) data. We attempt a com-
prehensive discussion in Sec. 7.6. A summary and conclusions are presented in
Sec. 7.7.

7.3 Theory

For a general introduction into quasi-elastic neutron scattering we refer to the text-
books by M. Bée and G.L. Squires [13, 151]. Backscattering spectroscopy probes the
incoherent scattering function Sinc and thus the ensemble-averaged motion of one
single molecule, i.e., self-diffusion. In an idealized view, diffusion is referred to as
Brownian motion of one particle experiencing no interactions except from stochastic
forces due to solvent fluctuations which fulfill the fluctuation-dissipation theorem.
This so-called free diffusion is described by the Langevin equation and yields a mean
square displacement (MSD) linear in time:

W (t) =
〈
|r1(0)− r1(t)|2

〉
= 6D0 t (7.1)
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hereby defining the diffusion coefficient D0.
Since our experiments probe interacting particles (especially in crowded solu-

tions), truly free diffusion is not seen. Nevertheless, in many experiments which
probe only a certain time scale we obtain a MSD linear in time

W (t) = 6Dapp t (7.2)

where the apparent diffusion coefficient Dapp is defined analogously to D0.

7.3.1 Smoluchowski Equation

The apparent diffusion can be treated according to a Langevin equation with addi-
tional interaction forces which operate rapidly when compared to the experimental
time window. The aqueous medium causes a damping of motion, thus there exists
a time scale on which the moments relax to zero. For BSA this so-called diffusive
time scale equals

τD �M γ ≈ 2 ps (7.3)

where M = 66.43 kDa is the mass of the BSA molecule and the friction parameter
γ can be estimated from the dilute diffusion coefficient D0 = 6.62 · 10−11 m2 s−1 [87]
using the Einstein relation D0 = kB T/γ at a given temperature (T = 296K).

A generalized description of motion on the diffusive time scale can be derived
using the Smoluchowski equation, which describes the relaxation of interacting parti-
cles in a solvent experiencing a potential in their equilibrium distribution. Bundling
all position vectors rl of the centers of mass of the molecules into one single config-
uration vector r, the Smoluchowski equation describes the time evolution of the N
particle distribution function P (r, t) by

∂tP (r, t) = ∇D(r) [β [∇V (r)]P (r, t) +∇P (r, t)] (7.4)

where the diffusion tensor D characterizes hydrodynamic interactions [40] and V is
the total potential energy of all molecules. Diffusion coefficients are calculated by
averaging over the probability density function P obtained from the Smoluchowski
equation. This approach is applicable for our purposes, since the nanosecond time
scale probed by neutron scattering is comparable to the diffusive time scale τD.

Due to the high protein concentration, which we investigate here, the molecules
feel the presence of the surrounding molecules mediated by both hydrodynamic
interactions and direct interactions. While the former interactions act quasi-
instantaneously on the diffusive time scale, the latter are established on a longer
time-scale which is referred to as interaction time and can be estimated as

τI =
a2

D0
≈ 100 ns (7.5)

where a ≈ 2.8 nm is the radius of one BSA molecule [40].
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7.3.2 Self-Diffusion

The self-diffusion coefficient Ds, which in general depends on both time t and scat-
tering vector Q, is a measure of mobility of a single tracer molecule under the
influence of intermolecular interactions and is linked to the incoherent intermediate
scattering function by

Iinc(Q, t) = 〈exp {i Q (r1(0)− r1(t))}〉 = exp
{
−Ds(Q, t)Q

2 t
}

(7.6)

where the angular brackets denote the averaging over the joint distribution
P (r, r0, t) = P (r, t|r0) P (r0). The conditional distribution P (r, t|r0) is the so-
lution of the Smoluchowski equation given that the molecules were initially in the
configuration r0 and P (r0) is the Boltzmann distribution for the potential function.

In the short-time limit τ � τI the molecules diffuse a short distance on the order
of their own size influenced only by the quasi-instantaneously acting hydrodynamic
interactions. Direct interactions play a less important role, since the potential does
not change on the corresponding length scale. Thus, short-time self-diffusion can
be understood intuitively as relatively free diffusion on a length scale limited by
the direct interactions, while the hydrodynamic interactions act via a change of the
effective solvent viscosity. Expanding both sides of the equation 7.6 in time and
neglecting higher order terms, i.e. in the short-time limit, the MSD reads

W (t) =
〈
|r1(t)− r1(0)|2

〉
= 6Ds

s t. (7.7)

Here the short-time self-diffusion coefficient Ds
s turns out to be independent from

time and Q.

7.3.3 Collective Diffusion

Unlike self-diffusion, collective diffusion relates to the motion of many Brownian
particles simultaneously and describes in the small Q limit the relaxation of the
macroscopic density according to Fick’s law [55]. Therefore, it is measured in a
coherent experiment like dynamic light scattering or neutron spin echo spectroscopy.
The time and Q dependent collective diffusion coefficient Dc can be expressed by
means of the coherent intermediate scattering function as follows [40, 44]

S(Q) exp
{
−Dc(Q, t)Q

2 t
}

=
1

N

N∑

i,j=1

〈exp {i Q (ri(0)− rj(t))}〉 . (7.8)

The importance of direct interactions is reflected in the appearance of the static
structure factor S(Q). For large wave vectors Q the collective diffusion coefficient
converges to the self-diffusion coefficient, because all cross-terms (those with i 6= j)
become equal to zero, due to the rapidly oscillating behaviour of exp {iQ (ri − rj)}
[100, 44, 170].
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7.4 Experiments

7.4.1 Samples and Measurements

Serum albumin is the most abundant protein in the blood plasma with an important
role as stabilisator of both pH value and osmotic pressure of the blood. Furthermore
serum albumin acts as essential transport protein for a large variety of ligands,
including fatty acids and metals [29]. The native concentration of serum albumin
is typically 50mg/ml, which corresponds to a volume fraction of 3.6%. The high
solubility and availability of bovine serum albumin (BSA) and its importance as
multifunctional carrier make BSA a good model protein to study both collective
and tracer diffusion in crowded solutions.

BSA was purchased from Sigma with an indicated purity of 99%. The protein
was dissolved in D2O at the desired NaCl and protein concentrations. Measurements
of the pH-value confirmed a constant pH in all samples of pH 6.93 ± 0.07. After
preparation the protein solutions were left for several hours in the cold room to
achieve complete solvation and equilibrium. Right before the measurement the
solutions were filled into a cylindric thin-walled aluminum container (outer diameter
22mm, gap width 0.23mm) and sealed against vacuum.

Neutron backscattering spectroscopy data were collected at IN16 [59, 79] (BSA
volume fractions φ = 12.9% and 27% corresponding to concentrations of 200mg/ml
and 500mg/ml, respectively) and IN10 [79] (φ = 27%) at the ILL, Grenoble,
both using cold neutrons with a wavelength of 6.27Å and unpolished Si(111)-
monochromators with a resolution of 0.9µeV FWHM. The Q-range was 0.43 -
1.93Å−1 / 0.5 - 1.96Å−1 with a dynamic range of ±15µeV / ±10µeV (IN16 /
IN10).

Neutron spin echo scans were performed at IN11 [79, 109] (BSA volume fractions
φ = 3.6% and 12.9% corresponding to concentrations of 50mg/ml and 200mg/ml,
respectively) at the ILL, Grenoble, using wavelengths of 8.5 and 10 Å for Q-vectors
ranging from 0.04 to 0.2Å−1. Data sets were recorded for 280K (both NSE and
backscattering) and 325K (only backscattering), respectively. In the Q range of up
to 0.2Å−1 we were able to exploit the strong coherent small angle scattering signal
of the samples with NSE. At higher Q values this is not possible anymore, the
signal gets very weak and incoherent scattering becomes comparable in strength to
coherent scattering or even dominant. We note that for the different experiments on
NSE and backscattering spectrometers different cryostats have been used. Although
the temperature sensors were calibrated, a systematic error in the absolute sample
temperature of a few Kelvin may occur due to the distance between the temperature
sensor on the tip of the stick holding the sample and the sample itself as well as due
to thermal conductivity differences.

The SAXS measurements were performed at Daresbury, UK, employing proce-
dures similar to those of Ref.[184].



114 Chapter 7. Paper A. Protein Diffusion in Crowded Electrolyte Solutions

0.4
0.6

0.8
1

1.2

−1

0

1

x 10
−5

0

0.01

0.02

0.03

0.04

Q (Å−1)ω (eV)

S
(Q

,ω
) 

(a
.u

.)

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

correlation time (ns)

I(
Q

,t
) 

/ I
fi

t(Q
,0

)

 

 

12.9% 0.08 A−1

12.9% 0.12 A−1

12.9% 0.2 A−1

Figure 7.1: (a) Backscattering spectra recorded at IN16, ILL, at different Q vectors
for a BSA volume fraction of 12.9% without salt at T = 280K, after normalization
to the individual detector efficiencies. After the subtraction of the water background
the data (blue symbols) can be fitted well by a model function (black line) consisting
of two Lorentzians (red and magenta lines) convoluted with the Gaussian resolution
function (green line). (b) Example correlation functions I(Q, t)/Ifit(Q, 0) derived
from neutron spin echo (NSE) scans for a BSA volume fraction of 12.9% without
salt. The fits are single exponentials.

7.4.2 Data Analysis

Backscattering

After normalization of the backscattering data to the monitor spectrum, the spectra
of pure D2O were subtracted from the protein solution spectra. The bulk D2O and
the salt ions dissolved therein only contribute a constant signal, since their mobility
is on picosecond time scales and therefore beyond the accessible dynamic window
of a backscattering spectrometer. Therefore, we have neglected excluded-volume
effects in the solvent subtraction. The instrumental resolution σ and the detector
efficiency were determined detector-wise from the spectrum of vanadium measured
in the sample geometry at T = 280K by a fit of a Gaussian and integration of
the elastic line, respectively. This resolution was used as fixed parameter in the
fits to the scattering function Sexp(Q,ω) (Fig. 7.1). We used an approach with two
Lorentzian line shapes (as used also in Refs.[125, 25]). The fit function can thus be
written as

Sfit(Q,ω) = R(ω, σ)⊗ [A(Q)L (ω,Γ1) + (1−A(Q))L (ω,Γ2)] +B(Q) (7.9)

= A(Q)VΓ1,σ(ω) + (1−A(Q))VΓ2,σ(ω) +B(Q) (7.10)

whereR is the Gaussian resolution function with width σ, L is a Lorentzian function
with half width at half maximum (HWHM) Γ, and V, is a Voigt function [8, 146, 167].
B(Q) is the background and A(Q) is the quasi-elastic incoherent structure factor
(QISF). The half width at half maximum (HWHM) of the second Lorentzian was
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fixed in our fits to Γ2 = 8µeV, assuming that this broad Lorentzian accounts for
fast motions near the cut off due to the constant Q-independent dynamic window
of the spectrometer.

This model function can be interpreted as the combination of two dynamical
processes, the centre-of-mass movement (diffusion in an unconfined medium) of the
whole protein and other (faster) inter-domain and internal dynamics which are con-
fined due to the protein topology:

Sfit = Sdiff ⊗ Sinternal = L (ω,Γdiff)⊗ [A(Q) δ(ω) + (1−A(Q))L (ω,Γinternal)] (7.11)

In this interpretation the narrow Lorentzian corresponds to the global particle mo-
tion, whereas the broad Lorentzian consists of the convolution of both motions.

Error analysis: Different errors affect the experimental result. The counts Ik per
energy channel k and detector exhibit a Poissonian distribution, thus normalization
to the monitor spectrum yields for the kth energy channel an error in intensity

δIk = ∆

(
Nk

Mk

)
=

√
Nk

Mk
+
Nk

√
Mk

M2
k

(7.12)

where Nk corresponds to the detector counts andMk to the monitor counts, respec-
tively. The error of the experimental channel position due to a finite energy channel
width ∆E can be approximated by the deviation of the mean energy of all counts
in the kth channel:

δωk =

√
〈δE2〉
Nk

=
∆E

2
√

3Nk
(7.13)

where

〈δE2〉 =

0.5∆E∫

−0.5∆E

x.
x2

∆E
=

∆E2

12
(7.14)

corresponds to the deviation of one count (assuming an uniform distribution in
each channel). Further error propagation is treated according to Gaussian error
propagation.

Neutron Spin Echo (NSE)

The neutron spin echo data were processed by the standard IGOR routines (in-
cluding fits and error analysis) used at IN11, ILL. NSE spectroscopy measures
the real part of the normalized intermediate scattering function <[I(Q, t)]/I(Q, 0).
In our case the imaginary part of I(Q, t) is negligible, so we measure, in fact,
I(Q, t)/I(Q, 0)[109]. The resolution correction in NSE is achieved by a simple divi-
sion by the signal of an elastically scattering sample with the same sample geometry.
We used graphite powder as the elastic sample.

The resolution corrected I(Q, t) data were fitted accurately by simple exponen-
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tial decay curves exp(−t/τ), where τ is the decay time of the relaxation. The
Fourier transform of an exponential decay is a Lorentzian function as observed in
the backscattering spectra with a corresponding quasielastic broadening (HWHM)
given by Γ = ~/τ [13].

SAXS

With SAXS we measure the total scattering intensity I(q), which for a monodisperse
system can be expressed as

I(q) = N (∆ρ)2 V 2 P (q)S(q), (7.15)

where S(q) is the structure factor, containing information about the intermolecu-
lar interaction, and P (q), the so-called form factor, characterizes the shape of the
molecule. Furthermore, N is the number density of proteins and ∆ρ = ρP − ρs
the electron density difference of the protein molecule and of the solvent, usually
denoted scattering contrast. For an infinitely dilute solution the structure factor
is unity. Hence, assuming a monodisperse system and a concentration independent
form factor, we determined the form factor from a sufficiently dilute solution [184].
Finally, the total intensity data I(q) were fitted using the structure factor

S(q) = 1 + 4πN

∫ ∞

0
[g(r)− 1]

sin(q r)

q r
r2 dr (7.16)

via the Ornstein-Zernicke equation for different effective particle interactions, in-
cluding the static pair-correlation function g(r).

7.5 Results

7.5.1 Crowded Aqueous Solution of BSA - Charge Effect and
SAXS

It is useful to first characterize the correlations and static (or so-called direct) in-
teractions of crowded solutions by means of SAXS before examining their impact
on dynamical properties. In previous SAXS measurements the static interactions of
BSA in aqueous solutions has been systematically examined [184]. Here we focus
on the effects which are related to crowding behaviour.

The low Q regime corresponds directly to the structure factor. Figure 7.2(a),(b)
displays two typical scattering profiles for different protein and salt concentrations.
For all samples without salt a pronounced correlation peak is observed. The cor-
responding nearest neighbour distance rc-c = 2π

Qcorr
decreases upon increasing the

concentration of BSA and is shown in Fig. 7.3. The line in the plot denotes the
calculated nearest neighbour distance by simple geometrical consideration (see inset
of figure 7.3) assuming a closest sphere packing of virtual spheres whose centers
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Figure 7.2: Intensity data from SAXS measurements at BSA concentrations of
100mg/ml (a) and 500mg/ml (b) corresponding to volume fractions φ = 6.9%
(a) and 27% (b), respectively, for increasing NaCl concentrations. The dashed line
indicates the shift of the maximum upon salt addition. For low salt concentrations
both show an intense correlation peak. While for increasing NaCl concentration this
correlation peak disappears for BSA solutions at φ = 6.9%, the profile for φ = 27%
remains nearly unchanged upon increasing the salt concentration.

correspond to the equilibrium positions of the molecules:

rc-c ≈
(
φcsp
φ

) 1
3

2 a (7.17)

where φcsp = π

3
√

(2)
≈ 0.74 corresponds to the volume fraction of the closest sphere

packing, φ is the volume fraction of the molecules and a ≈ 2.8 nm the effective
radius of one molecule.

In Figure 7.2(a),(b) the salt dependence of the scattering profile is shown for
two crowded protein solutions (volume fraction 6.9% and 27%, respectively). For
the lower protein concentration the correlation peak disappears by addition of NaCl
due to the salt screening effect. The interaction used for the fitting changes from
a screened-Coulomb potential to an effective square-well potential. In contrast,
for protein volume fractions above 13% the correlation peak is conserved upon
addition of salt, and salt screening causes only a slight shift. The conservation
of the correlation peak also for higher salt concentrations implies the absence of
aggregation in this highly concentrated protein solution and indicates a behaviour
corresponding to hard spheres in a random sphere packing (but not crystallinity).

7.5.2 Global Motion of Single BSA Molecules in Solution:
Backscattering

Figure 7.1(a) shows a backscattering spectrum and the fit by two Lorentzian func-
tions convoluted with a Gaussian resolution function. The derived widths Γ1 of the
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Figure 7.3: Centre-to-centre distance rc-c normalized to the effective radius a =
2.8 nm of BSA molecules in aqueous solution as a function of the BSA volume frac-
tion φ obtained from SAXS data (circle symbols) and theoretical estimate according
to equation 7.17 (line). By increasing the protein concentration the particles move
closer together, as intuitively expected. The inset shows the geometrical consider-
ation leading to equation 7.17: the equilibrium positions of the molecules (corre-
sponding to the full spheres) are the centers of virtual spheres which establish a
closest sphere packing.
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Γ = Dinc

appQ
2 defines the apparent diffusion coefficient derived from backscatter-

ing spectroscopy, the fit range being restricted to the region where Γ ∝ Q2 holds
(see text). Data recorded on IN16 (square and diamond symbols) and IN10 (circle
symbols). (b) Apparent diffusion constants versus NaCl concentration. While for
different protein concentrations there are obvious differences in Dinc

app, the addition of
salt appears to have little effect. (Corresponding data recorded on IN10 and IN16.
The lines are guides to the eye.)
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narrow Lorentzian function for our fits are shown in Fig. 7.4(a) with a Q2 rela-
tionship for low Q according to simple diffusion. We note that for higher Q we see
a sub-Q2 behaviour (sometimes taken as evidence for “jump diffusion”), which has
also been observed in previous studies on proteins in crowded solutions by neutron
backscattering [25], whereas there are several studies by time-of-flight spectroscopy
in a comparable Q-range which do not show this deviation [125, 64]. This dis-
crepancy suggests that the deviation is caused by the finite energy window of the
spectrometer and therefore an inappropriate fitting model, but also real effects in-
cluding crowding could be considered [25]. Since our backscattering data do not
provide further information on the nature of the deviation, we concentrate on the
Q2 regime. We derive the apparent diffusion coefficient by a fit to the low-Q regime:
Γ1(Q) = Dinc

appQ
2. For the samples with a BSA volume fraction φ = 12.9% (mea-

sured at IN16) and φ = 27% (IN10) we constrain the fit to Q < 0.85Å−1 and
Q < 1.2Å−1, respectively (Figure 7.4(a)). The difference in the fit range accounts
for the fact that the deviation from Γ ∝ Q2 occurs for lower protein concentration
already at lower Q. We attribute this to the fact that at lower concentration (or
higher temperature) the mobility becomes faster than detectable by the dynamic
window of the spectrometer already at lower Q.

In Figure 7.4(b) the apparent diffusion coefficients are summarized. Two basic
conclusions can be drawn: Firstly, increasing the BSA concentration, the apparent
diffusion is clearly slowed down. Secondly, the addition of NaCl has little or no effect
for solutions with BSA volume fraction of 27%. For solutions with φ = 12.9% there
is a small decrease in diffusion upon addition of salt. We note that the choice of the
width of the second, broad Lorentzian (see section 7.4.2) has a systematic influence
on the fit result for the narrow Lorentzian. An increase of the width of the broad
Lorentzian results in a nearly constant shift of the apparent diffusion constants.
However, this influence has little effect on the observed salt- and concentration-
dependent trends. We motivate the choice of the value of 8µeV for the HWHM of the
broad Lorentzian by the dynamic range covered by the backscattering spectrometer
(see section 7.4.2).

7.5.3 Relaxation of Fluctuations of BSA Concentration in Solu-
tion: NSE

In Figure 7.1(b) three typical NSE spectra are depicted. The time window ac-
cessed by our experiment can be estimated from this figure (Fig. 7.1b)), i.e. ap-
proximately 30 ps to 50 ns. All data sets are fitted well by a single exponential
decay I(Q, t)/I(Q, 0) ∝ exp(−t/τ). The resulting decay times are summarized in
Figure 7.5(a). Assuming H(Q)/S(Q) = const. with the hydrodynamic function
H(Q) [44], the decay times τ can be related to a diffusion coefficient:

1

τ(Q)
= Dcoh

appQ
2 (7.18)
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Figure 7.5: NSE: (a) Inverse decay times τ−1 for different experimental conditions.
The linear fit τ−1 = DappQ

2 yields an apparent diffusion coefficient derived from
NSE. (b) Apparent diffusion coefficients versus NaCl concentration. Decreasing
protein concentration and increasing salt concentration enhance the diffusion. (The
lines in (b) are guides to the eye. The sample temperature was always T = 280K.)

Dcoh
app is the apparent diffusion coefficient, corresponding to the relaxation of fluctu-

ations of BSA density [100, 44, 69]. The corresponding Q2 fits are shown as lines
in Figure 7.5(a). For the fit, the lowest value in Q has been ignored (see discussion
below).

The apparent diffusion coefficients are shown in Figure 7.5(b). Two trends can
be observed: Firstly, the apparent diffusion is slowed down with increasing protein
concentration. Secondly, the addition of salt appears to slightly increase the diffusion
in this regime.

7.6 Discussion

As the starting point for the discussion of the data we consider the SAXS data
presented in Sec. 7.5.1. These provide information on equilibrium properties such
as (averaged) particle-particle distances and effective interactions. Whereas for a
protein volume fraction φ = 6.9% the addition of salt changes the SAXS pattern,
at a protein volume fraction φ = 27% salt has little impact, indicating that at such
a high concentration the solution is already rather crowded.

Generally, one obvious effect of crowding is simply the excluded-volume effect,
i.e., by increasing the protein concentration the particle-particle distance is de-
creased and thus the particle interactions are more important. We assume that
for volume fractions above a certain value, spherical macromolecules whose inter-
actions are dominated by strongly screened charges, i.e., close to the hard-sphere
limit, organize in a pattern similar to random sphere packing. At this volume frac-
tion the gap between two molecules drops below the diameter of one molecule, i.e.
rc-c < 4 a, we obtain for the corresponding volume fraction φ ≈ φcsp

8 = 9.25% from
equation 7.17.This qualitative change in the correlation of molecules is reflected in
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the appearance of a correlation peak in SAXS measurements at high concentrations
of both protein (φ > 12%) and salt (above 0.5M NaCl). For solutions without or
with less salt, the correlation peak is observed already for very dilute solutions [184],
indicating a long-range order of the time averaged position coordinates.

Concerning the change of dynamical behaviour of crowded solutions due to the
excluded-volume effect, a strong dependence of the long-time self-diffusion is ex-
pected, again changing qualitatively at a volume fraction around 10% and including
features like jump-diffusion in the high-concentration regime. In contrast, the short-
time self-diffusion is expected to change continuously over the entire concentration
range. In this time regime direct interactions are not relevant and the impact on
the particle motions increases continuously starting from very low concentrations, as
it is only mediated by long-ranged and quasi-instantaneously acting hydrodynamic
interactions.

Apart from this behaviour, which on a qualitative level is not surprising, the
screened-Coulomb interaction has additional effects on the issue of crowding. By
increasing the salt concentration the screening length is decreased. Hence, the length
scale on which direct interactions become important, the so-called interaction length
scale λI , is decreased. This interaction length scale λI corresponds to a shortened
interaction time scale τI ≈ λ2I

Dss
. Thus, crowding in terms of an increased (screened-)

Coulomb interaction causes a qualitative change in the dynamic behaviour.
Our neutron backscattering data show a Q2 relationship Γ = Dinc

appQ
2 for Q ≤

1.2Å−1. Upon increasing the protein concentration we observe a trend to slower
diffusion, whereas salt seems to have little or no effect. The neutron spin echo data
show a Q2 relationship 1

τ = Dcoh
appQ

2. In contrast to backscattering data, we see
an increase of diffusion upon addition of salt, whereas the dependence on protein
concentration remains qualitatively the same, i.e., a decrease of apparent diffusion
upon increasing protein concentration.

At this point, it is important to recall the similarities and the differences of
backscattering and NSE, as well as the associated time and length scales. Gen-
erally, the neutron backscattering technique depends on incoherent scattering and
thus studies self-diffusion. Since the interaction time τ ≈ a2

D0
≈ 100 ns (eq.7.5)

is larger than our experimental time window, the derived apparent diffusion can
be interpreted in terms of short-time self-diffusion. With this in mind, both ob-
served trends are reasonable. Whilst a variation of the protein concentration has a
strong impact mediated by hydrodynamic interactions, the addition of salt yields
only a slight variation. The latter can be rationalized as increasing of the effective
hydrodynamic radius due to the formation of the counter-ion layer [184, 169].

Neutron spin echo probes coherent scattering, thus in principle collective diffu-
sion. The interaction time is close to the experimental time window. Effects related
to charge interactions are therefore expected. In our data this effect is reflected in the
screening effect of salt. Importantly, in the high Q limit (i.e., Q� 2π r−1

c-c ), neutron
spin echo data can be interpreted effectively in terms of self-diffusion [100, 44, 170].
Since the nearest neighbour distances (see Fig.7.3) are around 15 nm (φ = 3.6%)
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NaCl D (10−11m2/s)
φ concentration 280K 325K

NSE 3.6% 0M 2.57± 0.50
0.05M 2.66± 0.36
0.1M 3.26± 0.48

12.9% 0M 1.87± 0.20
1M 2.06± 0.20

Backscattering 12.9% 0M 1.77± 0.13 4.44± 0.37
1M 1.73± 0.13 4.00± 0.35

27% 0M 0.422± 0.041 1.26± 0.12
2M 0.416± 0.040 1.33± 0.11

Table 7.1: Summary of apparent diffusion coefficients derived from our backscatter-
ing and neutron spin echo experiments on BSA solutions (see text).

and 10 nm (φ = 12.9%), this approximation is fulfilled relatively well for the three
higher Q values.

Both experiments agree quite well, as summarized in table 7.1, evidencing a
general slowing-down trend according to an excluded-volume interaction. The dilute
limit for the self-diffusion coefficient has been measured by dynamic light scattering
in H2O [87]. The derived D0 ≈ 6.62 · 10−11 m2/s agrees well with an extrapolation
of our observed trend towards the low concentration limit.

The different trends upon salt addition in our results are caused by different time
regimes – while backscattering is in the short-time limit, neutron spin echo probes
time scales comparable to the interaction time.

7.7 Summary, Conclusions, and Outlook

We have presented a high-resolution cold neutron scattering study of the dynamics
of the model protein BSA in crowded aqueous solution as a function of the protein
concentration and added salts. We have thus investigated molecular diffusion on
nanosecond time scales on length scales ranging from protein nearest neighbour
distances down to intramolecular length scales. These dynamical data have been
combined with small angle X-ray scattering data on the same system.

From SAXS data we find a qualitative change from an uncorrelated to a strongly
correlated solution due to increased excluded-volume effects. We conclude that
below a volume fraction of approximately 10% crowding is induced by unscreened
charges, whereas above that volume fraction crowding is dominated by the excluded-
volume contribution. For weaker screening (i.e. less salt) this correlation is found
already for lower protein concentrations.

For QENS data we find a continuously changing behaviour of the self-diffusion
due to the excluded-volume effect. The addition of salt has little or no effect on the
apparent diffusion coefficients, although charge screening is assumed to change both
interaction time and coupling strength. In the protein concentration range covered
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by our experiments, i.e. from approximately 4% to 27% volume fraction, our data
are in agreement with a continuous decrease of the apparent diffusion constants with
the protein concentration. In contrast to the static data, our dynamic data show no
distinct value where crowding due to the excluded-volume contribution sets in.

Understanding the dynamics of crowded solutions is not only a necessity to
interpret QENS data, because usually these involve higher protein concentrations to
achieve adequate statistics. Crowding itself, caused by a variety of hydrodynamic
and direct interactions, is an important feature of cellular environments and has
to be studied in further detail. We thus wish to prepare the ground for future
experiments using multivalent salts giving rise to more complex phenomena such as
the reentrant condensation [185] and the future extension to other protein systems.
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8.1 Abstract

Macromolecular crowding in biological media is an essential factor for cellular func-
tion. The interplay of intermolecular interactions at multiple time and length scales
governs a fine-tuned system of reaction and transport processes, including partic-
ularly protein diffusion as a limiting or driving factor. Using quasi-elastic neutron
backscattering, we probe the protein self-diffusion in crowded aqueous solutions
of bovine serum albumin on nanosecond time and nanometer length scales em-
ploying the same protein as crowding agent. The measured diffusion coefficient
D(ϕ) strongly decreases with increasing protein volume fraction ϕ explored within
7 % ≤ ϕ ≤ 30 %. With an ellipsoidal protein model and an analytical framework
involving colloid diffusion theory, we separate the rotational Dr(ϕ) and translational
Dt(ϕ) contributions to D(ϕ). The resulting Dt(ϕ) is described by short-time self-
diffusion of effective spheres. Protein self-diffusion at biological volume fractions is
found to be slowed down to 20% of the dilute limit solely due to hydrodynamic
interactions.

8.2 Introduction

The interior of biological cells is a medium with a macromolecular volume fraction
of up to 40%. This crowding crucially affects reaction kinetics and equilibria in the
cell [49, 188]. Cellular function and structure thus cannot be understood without a
systematic understanding of both phase behavior and transport processes in crowded
media. Diffusion is the main transport process for systems at low Reynolds numbers,
governing many dynamic processes in nature [133]. From the perspective of a single
tracer molecule, all other molecules act as obstacles. In-vivo diffusion coefficients for
globular proteins in living cells [7, 179, 9, 168] are strongly decreased compared to
the in-vitro diffusion coefficient in dilute buffer solutions. Systematic measurements
of the tracer diffusion of proteins dissolved in concentrated suspensions of crowding
agents, i.e. other proteins or polymers, reveal a complex dependence of the slowing
down on the combination of tracer molecule and crowding agent [174, 113, 42].
Furthermore, macromolecular crowding is found to induce subdiffusive behavior in
several cases [12, 176], being suggested as a slower but more reliable diffusive search
process inside the cell [67]. This anomalous diffusion process has been found also in
theory and simulations [107, 143, 176, 67] suggesting a crossover from subdiffusive
behavior at small times to diffusive behavior at larger times.

Proteins are macromolecules generally with a non-spherical shape and a non-
homogeneous surface charge, showing specific interactions with ligands. Further-
more, proteins not only show global motions like translational and rotational diffu-
sion but also internal and inter-domain motions. Therefore, proteins pose a challenge
to colloid theory [130, 185]. In a recent simulation study T. Ando and J. Skolnick [7]
revealed that using an equivalent-sphere model for macromolecules is a reasonable
approximation to describe diffusion. Moreover, they demonstrated that interactions
between the molecules, including both hydrodynamic interactions mediated by the
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solvent and direct interactions due to hard-sphere and Coulomb potentials crucially
affect diffusion in a crowded environment. Consequently, it is of fundamental interest
to test the applicability of colloid models to protein diffusion in crowded solutions.

The dynamics of a colloidal suspension is characterized by different time scales,
corresponding to different regimes of motion [115]. The solvent time scale τs is in
general much shorter than the diffusive time scale of the dissolved particles τB ≈
m/(6πηR) on which the motion changes from ballistic to diffusive motion. In this
diffusive regime and for non-interacting particles with radius R and mass m in a
solvent with viscosity η the well-known Stokes-Einstein diffusion constant Dt(0) =

kBT/(6πηR) is recovered. In real systems and at finite concentrations, interparticle
interactions give rise to additional relevant time scales. Hydrodynamic interactions
arise on the time scale τH ≈ R2ρ/(η ϕ) � τB with the solvent density ρ, and the
colloidal volume fraction ϕ, affecting the so-called short-time diffusive regime τH �
t � τI . The structural relaxation time τI ≈ R2/Dt(0) defines the onset of caging
effects on the particle center-of-mass diffusion due to direct interparticle interactions.
For t� τI long-time self-diffusion is observed, affected by both hydrodynamic and
direct interactions. For the short-time and long-time regimes, series expansions have
been derived for the self-diffusion of spherical colloids with and without charge [115,
4, 33, 165, 162].

In this study we report on extensive experimental data on protein self-diffusion in
crowded aqueous solutions of bovine serum albumin (BSA) as determined from quasi-
elastic neutron backscattering on nanosecond time and nanometer length scales.
Thereby, we investigate the fundamental case where tracer particle and crowding
agent are identical proteins. Quasi-elastic neutron scattering accesses both micro-
scopic spatial and time correlations by measuring the van Hove scattering function
S(Q,ω) [13].

Due to the large incoherent scattering length of hydrogen, neutron backscat-
tering of biological samples directly probes self-correlations of the hydrogen atoms.
Moreover, neutron scattering is the only non-invasive and non-destructive technique
to access protein solution samples at high protein concentrations. In an incoherent
measurement of a highly concentrated solution, all molecules can be conceived as
unlabeled and simultaneously play the role of both tracer molecule and crowding
agent.

Recent neutron scattering work studied protein dynamics in solutions, thereby
mainly addressing the hydration and temperature dependence of internal mo-
tions [125, 152, 80, 19, 153, 121]. Few studies, however, investigated protein short-
time diffusion [25, 69, 138, 154] or long-time diffusion [100, 44, 94].

Here, we present detailed results on the dependence of protein short-time self-
diffusion on protein concentration. We obtain the translational diffusion coefficient
Dt(ϕ) at different protein volume fractions ϕ and discuss the results in compar-
ison with colloidal suspension models, thereby testing the applicability of colloid
approximations.
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8.3 Protein Modeling

Proteins differ considerably from hard spheres for which theoretical predictions for
colloidal diffusion are available. A sensible comparison of experiment and theoretical
predictions requires a mapping of the protein on an effective sphere [82]. Simulations
of proteins in a crowded environment showed that effects of the shape on the diffusion
can be accounted for using effective spheres [7].

The simplest choice for an effective radius would be the radius of a sphere with
the same volume as the bare protein volume calculated from the specific volume
(see Methods), in our case R ≈ 2.68 nm.

In the case of diffusion, however, the resulting effective radius has to be larger
than R for the following reasons: First, the hydration shell surrounding the protein
increases the size of the proteins. Second, the anisotropic shape of the protein
described by the Perrin factors [128, 82] additionally increases the effective radius.

In order to determine the effect of the anisotropy and the hydration shell on
the effective radius, we performed small-angle X-ray scattering (SAXS) on dilute
aqueous BSA solutions, comprising the following samples: 0.15M NaCl (1, 2, 5,
10mg/ml BSA), 0.01M HEPES buffer with 0.4M NaCl (1, 2, 10mg/ml BSA) and
0.15M HEPES buffer (5, 10mg/ml BSA). Fig. 8.1 shows an example data set of
5mg/ml BSA in 0.15M HEPES buffer. Using an oblate ellipsoid the form factor of
all SAXS data was modeled (see Methods and Ref. [184]). Averaging the results,
we finally obtain an oblate ellipsoid with polar semi-axis a ≈ 1.8 ± 0.05 nm and
equatorial semi-axis b ≈ 4.6±0.15 nm. Note that the fit result includes the hydration
shell since the higher mass density of hydration shell water causes a scattering
contrast [158].

Based on this ellipsoidal protein model, we calculate the effective hydrodynamic
radii for translational diffusion, Rh = 3.62 nm which defines the translational diffu-
sion coefficient in the dilute limit (see Methods). Note the good consistency of the
effective radius Rh with the hydrodynamic radius RDLS

h = (3.66±0.03) nm calculated
from results from dynamic light scattering [62].

For theoretical predictions, the volume fraction of the effective spheres is of
central importance. This effective volume fraction is connected to the physical
protein volume fraction ϕ by

ϕt = ϕ

(
Rh
R

)3

. (8.1)

To compare the measured translational diffusion coefficient with the theoretical
prediction of a colloid model we use the effective volume fraction

Dtheory
t (ϕ) = Dt(0) f (ϕt) , (8.2)

in which f is the theoretical reduced translational diffusion coefficient and Dt(0) the
dilute limit translational diffusion coefficient.
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Figure 8.1: Small-angle X-ray scattering intensity for a dilute solution of BSA
(5mg/ml, room temperature) in 150mM HEPES buffer after subtraction of back-
ground contributions. The data (circle) can be fitted with the form factor of an
oblate ellipsoid (solid line). The deviation at higher Q is caused from the deviation
of the protein shape from an ellipsoid at smaller length scales. The fitting of scat-
tering data from several solutions with protein concentration below 10mg/ml and
varying concentration of HEPES buffer and NaCl is consistent with an oblate ellip-
soid with polar semiaxis a ≈ 1.8±0.05 nm and equatorial semiaxes b ≈ 4.6±0.15 nm.
This protein model of an oblate ellipsoid (inset lower left corner) is used as input
for the further data analysis based on colloid theory.
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8.4 Results

8.4.1 Quasielastic Spectra and Simple Diffusion Coefficient

We performed a series of quasielastic neutron backscattering measurements covering
the full range of protein volume fraction ϕ from 5 to 30% using the instruments
IN10 and IN16 at the ILL. The inset of Fig. 8.2 depicts a typical spectrum S(Q,ω)

recorded on IN16. All spectra can be fitted according to the model [125, 152, 25, 138]

S(Q,ω) = R(ω)⊗ Lγ(ω)⊗ [β1 δ(ω) + β2 LΓ(ω)] +B (8.3)

Therein, R denotes the instrumental resolution function, β1,2 are scalars, B is a
flat background accounting for the water diffusion which is beyond the accessible
dynamic range of both instruments, and δ(ω) designates the Dirac function of the
elastic scattering. The width of the two Lorentzians Lγ and LΓ represent the time
scales of two separated spectral components: while the broader width Γ accounts
for fast internal and inter-domain motions within the protein, γ is attributed to the
convolution of the translational and rotational diffusion of the entire protein [125,
152, 25, 138]. The widths γ as obtained from the fits (Eq. (8.3)) are plotted in
Fig. 8.2. For Q2 < 1.5Å−2, a clear relationship γ = DQ2 is observed, defining the
diffusion coefficient D. This clear relationship is observed for all samples in the full
volume fraction range and is consistent with simple diffusion on the accessible time
and length scales. Superdiffusive jump-diffusion or subdiffusion due to crowding
would cause a varying local slope corresponding to the changing diffusion coefficient
for different time and length scales, i.e. with scattering vector Q. For Q2 > 1.5Å−2

the scattering signal from the proteins becomes weaker and considerably broadened
with respect to the accessible energy range. These two factors can cause fitting
artifacts, we neglected these data points for the fitting of the diffusion coefficient,
although the Q2 relationship seems conserved.

8.4.2 Separation of Translational and Rotational Diffusion

Fig. 8.3 shows the resulting diffusion coefficients D(ϕ) (upper points). The extrapo-
lation D(ϕ→ 0) using a polynomial fit (upper blue line) reveals a higher dilute limit
compared to the value in D2O at T = 280K, Dt(0) = (3.01±0.04)Å2

/ns, calculated
from dynamic light scattering results [62, 32]. This indicates a non-negligible con-
tribution of the rotational diffusion to D. We thus have to separate the measured D
into the translational and rotational contributions. Pérez et al. showed numerically
that the rotational contribution causes an additional line broadening [125], assuming
spherical particles in the dilute limit. Inspired by this analysis, we develop an ana-
lytical method to extract Dt from D also for high concentrations (see Appendix for
a detailed derivation). The calculated scattering function St+r(Q,ω) for rotational
and translational diffusion can be approximated by a single Lorentzian line shape
with HWHM γ and amplitude α in the Q-range relevant for our experiment.

We recover γ = DQ2 for this approximation in the measured Q-range, defining
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Figure 8.2: Inset: Example backscattering spectrum S(Q,ω) (symbols) recorded at
IN16 for BSA in D2O (c = 500mg/ml, ϕ = 28.5%, T = 300K, individual detector
at Q = 0.81Å−1). The magenta solid line is the fit of the model from Eq. (8.3). The
two Lorentzians in Eq. (8.3) are indicated by the dashed and dash-dotted lines. The
orange solid line denotes the resolution function. Main figure: Fitted γ (symbols)
versus Q2 for the full Q-range of the example data. The fit of γ = DQ2 (blue line)
is consistent with simple diffusive behavior. For statistical reasons the fit range is
restricted to Q2 < 1.5Å−2.
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Figure 8.3: Measured diffusion coefficientsD for BSA solutions in D2O at T = 280K
(blue circles on upper curve) and translational diffusion coefficients Dt (purple cir-
cles on lower curve) computed from D using Eq. (8.4) and the theoretical rotational
diffusion coefficient from Ref. [4]. The lines are polynomial fits. The dilute limit
Dt(0) (diamond symbol) is calculated from results of dynamic light scattering [62].
The non-coincidence of Dt(0) and the fit to D indicates a significant rotational con-
tribution. After separation of the rotational contribution, the translational diffusion
coefficient Dt is in accordance with the dilute limit, supporting the validity of our
approach.

the diffusion coefficient D [125]. By minimizing the L2-norm ‖St+r(Q, ·)− αLγ(·)‖2
we obtain ∞∑

l=0

Bl(Q)
Dr l (l + 1) + (Dt −D)Q2

[Dr l (l + 1) + (Dt +D)Q2]2
= 0. (8.4)

We assume that Dr can be approximated by the short-time rotational diffusion
for charged spheres Dr(ϕ) = Dr(0) (1 − 1.3ϕ2) [4] with the dilute limit Dr(0)

from Eq. (8.9). Using Eq. (8.4), we evaluate Dt(ϕ). Importantly, this extraction is
robust, since other models for short-time rotational diffusion do not change Dt(ϕ)

significantly.

8.4.3 Protein Self-Diffusion in Crowded Media

The resulting reduced diffusion Dt(ϕ)/Dt(0) is displayed for different temperatures
in Fig. 8.4, showing a strong decrease of the translational diffusion coefficient due to
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macromolecular crowding on nanosecond time scales. At volume fractions ϕ ≈ 25%

as present in living cells, the translational diffusion is decreased to 20% of the dilute-
limit value, implying a slowing down of diffusion-driven transport and diffusion-
limited reactions. Interestingly, the reduced diffusion seems to obey a temperature-
independent master-curve.

The experimentalDt(ϕ)/Dt(0) agree almost perfectly with the normalized short-
time self-diffusion coefficient predicted by colloid theory for charged [4] and non-
charged hard spheres [162] (Fig. 8.4). Both predictions take into account only hy-
drodynamic interactions, which depend on the equilibrium structure of the solution
and thus differ between charge-stabilized and hard-sphere suspensions [4]. Recon-
sidering the simplistic nature of the model system of effective hard spheres for the
complex soft protein, this excellent agreement is not expected.

8.5 Discussion

8.5.1 Colloid Picture of Protein Self-Diffusion in Crowded Media

We identify the measured self-diffusion coefficient with short-time self-diffusion.
This interpretation is consistent with theoretical expectations: the accessible time
scales of the neutron spectrometer,

0.3 ns ≤ τ ≤ 5 ns, (8.5)

are in the short-time regime for self-diffusion of BSA in D2O, since

100 ps ≈ tH � τ � tI =
R2

Dt(0)
≈ 425 ns. (8.6)

Short-time self-diffusion implies that the observed slow-down of the protein diffusion
is mainly caused by hydrodynamic interactions.

8.5.2 Reduction Factor and Influence of Hydrodynamic Interac-
tions

Experimental results on the in-vivo reduction factor of protein diffusion in a cellu-
lar medium compared to buffer solutions show a dependence on the protein size.
The reported values corresponding to BSA-sized molecules range from 1/70 [179]
to approximately 0.2 [9, 168]. Measurement in crowded in-vitro solutions of pro-
teins obtained a reduction factor of approximately 0.08 for albumin tracers at 25%
volume fraction of the crowding agent [42] and a factor of 0.35 for BSA tracers
at 13% volume fraction of BSA [113]. All these results have been obtained using
fluorescence-labeling techniques at the µs time scale and are generally rationalized
by an effectively increased viscosity, hindrance due to obstacles and transient adsorp-
tion at larger obstacles [174]. The reduction factors found in the present study of 0.2

at 25% and 0.4 at 13% occur already at nanoseconds and are attributed solely to hy-
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drodynamic interactions, i.e. an increased effective viscosity of the cellular medium,
but not to hindrance due to obstacles. The obtained short-time self-diffusion values
are of similar order of magnitude as the long-time values obtained from fluorescence-
labeling techniques, implying an important and non-negligible role of hydrodynamics
to the observed crowding effect. Protein dynamics and, in particular, protein dif-
fusion in a crowded environment thus cannot be understood simply by excluded
volume and confined motions, but has to include hydrodynamic interactions.

These experimental findings are in perfect accordance with recent results from
simulations [7]. Ando and Skolnick found that the effect of macromolecular crowd-
ing on protein diffusion can be explained solely with hydrodynamic interactions
and excluded volume, supporting the mentioned colloid picture of macromolecular
crowding. Their findings for the reduced short-time self-diffusion coefficient fit to
our data quantitatively.

For concentrated solutions of hemoglobin, the crowding effect on the diffusion
has been also investigated with quasi-elastic neutron scattering using neutron spin-
echo spectroscopy, obtaining a reduction factor around 0.2 at 22% volume fraction
[44]. Although the behavior seems qualitatively and quantitatively similar, the com-
parison to our data, however, fails for two reasons. First, the accessed time scales
are around 50 ns and comparable to the colloidal interaction time scale, implying
significant long-time effects of direct interactions on the diffusive motion. Second,
neutron spin-echo is a coherent scattering technique, thus probing collective diffu-
sion. In the short-time limit and at large Q, collective diffusion equals self-diffusion.
This equality does not strictly hold for the case of long-time diffusion, disallowing
a consideration of the measured diffusion as self-diffusion. Thus, while their data
probe collective diffusion with long-time effects, our data corresponds undoubtedly
to short-time self-diffusion.

8.5.3 Essential Role of Anisotropy in Protein Modeling

Proteins are non-spherical molecules. In order to account for this anisotropy, colloid
models have to be refined. In our modeling approach, the protein is mapped on an
oblate ellipsoid that incorporates the full anisotropy and governs the dilute limit
rotational and translational diffusion coefficients of the protein through the Perrin
factors. It is important to notice that rotational and translational diffusion are af-
fected differently by anisotropy and that this difference in the effective radii matters.
It should be noted that other macromolecular properties and processes could modify
the diffusion but seems to be less important or cancel out in our system. Water-
permeability of the protein core results in a larger Dt(ϕ)/D0 [3]. The effect of a
gradually changing hydration shell, the flexibility of the protein, the hydrophobicity
and non-homogeneous charge distribution has not been systematically studied to our
knowledge. Furthermore, in attractive systems below the solubility limit, oligomer-
ization and transient clustering could decrease the diffusion coefficient. Crowding
is known to induce compaction of protein structures [49, 155]. A decrease in the
radius of gyration of smaller than 0.4 % has been found when comparing a globular
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Figure 8.4: Normalized translational self-diffusion coefficients (Fig.8.3) Dt/Dt(0)
(circles) for two different temperatures (red and purple circles denote 280 and 300K,
respectively) after separation of the rotational contributions. The purple line super-
imposed on the data is a guide to the eye obtained from a polynomial fit indicating
the temperature-independent master-curve. The upper and lower dashed purple
lines indicate the upper and lower 96% prediction bounds, respectively. The blue
lines denotes the colloidal short-time self-diffusion for hard spheres (light blue, solid)
and charged spheres (dark blue, dashed). The inset in the upper right corner illus-
trates the flow field (light blue stream line plot) generated by the movement of
three spheres (velocities are denoted by blue arrows) and therefore experiencing a
hydrodynamic forces (pink arrows).

protein structure in dilute and crowded (ϕ = 0.25) protein solutions [155]. The
related change of Rh under crowding conditions is not discernible with our method
within the experimental errors and thus does not affect our conclusions.

8.6 Conclusions

We studied the effect of crowding on the self-diffusion of BSA by means of quasi-
elastic neutron backscattering. Our analysis confirms that crowding has a very
substantial effect on the protein self-diffusion already at the nanoseconds time scale.
Moreover, we reveal that the diffusion coefficient at biological volume fractions is
strongly decreased compared to the dilute limit. This finding is described with very
good accuracy in terms of colloidal short-time self-diffusion, outlining the important
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role of hydrodynamic interactions on crowding behavior. We conclude that general
features of protein diffusion can be understood in terms of existing colloidal hard
sphere models if anisotropy is considered using reasonable protein modeling. The
modeling approach used in this study is based on an experimentally established
protein shape model without adjustable parameters, i.e. an oblate ellipsoid from the
fitting of SAXS data. The analysis of the protein diffusion including the separation
of rotational and translational contributions is performed for effective spheres with
existing predictions from colloid theory. The success of this simple mapping of the
complex protein on an effective sphere is promising for further investigations.

8.7 Materials

8.7.1 Sample Preparation

BSA was purchased from Sigma-Aldrich with an indicated purity of 99% and used
without further purification. The samples were prepared by dissolving BSA powder
with mass mBSA in the solvent with volume Vsolv. For neutron scattering we used
pure D2O as solvent; for SAXS we used a H2O-based solution with 150mM HEPES
buffer as solvent. Correcting for the protein volume, we obtain the volume fraction
occupied by the bare proteins

ϕ =
ϑmBSA

Vsolv +mBSA ϑ
(8.7)

where ϑ = 0.735ml/g is the specific volume of BSA [96]. The prepared ϕ cover a
range of 7-30%. After complete dissolution and equilibration the solutions were filled
in double-walled aluminum cylinders (23mm outer diameter, 0.3mm gap), which
were sealed against vacuum and kept at T = 280, 300, and 325K, respectively, for
the measurements. The pH values of the samples were checked to be neutral over the
full concentration range. No precise data on oligomerization are available for high
volume fractions. However, the samples show no visible aggregation or precipitation
on time scales of months; monomeric aqueous BSA solutions are charge-stabilized
and have been shown to be thermodynamically stable [78, 184].

8.7.2 Quasielastic Neutron Backscattering

We used the backscattering spectrometers IN10 and IN16 at the Institute Laue-
Langevin in Grenoble, France, in the standard configuration with unpolished
Si(111)-monochromator and analyzer crystals, which set the selected neutron wave-
length to 6.27Å and achieve an energy resolution of approximately 0.9µeV (gaussian
FWHM). The energy range accessible by Doppler-shifting the incident wavelength
on both instruments defines the accessible time scales τ = 2π~/E, the Q-ranges set
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the probed length scales l = 2π/Q:

0.3 ns ≤ τ ≤ 5 ns

0.32 nm ≤ l ≤ 1.2 nm (IN10)

and 0.33 nm ≤ l ≤ 3.3 nm (IN16)

The raw data were normalized to the incident neutron flux and relative detector
efficiency. The scattering signal of an empty cylinder was subtracted to correct for
background contributions. Water background was not removed but included in the
data fitting as flat background.

8.7.3 Small-Angle X-ray Scattering (SAXS)

The SAXS data were measured at ID02 at the ESRF, Grenoble, France. For a
detailed description of the data treatment we refer to Ref. [184, 185]. In general,
SAXS measures the product of structure factor S(Q) and form factor P (Q), I(Q) ∝
P (Q)S(Q). Due to the low protein concentration of 5mg/ml and strong charge-
screening of the added buffer, protein-protein interactions can be neglected, i.e.
S(Q) ≡ 1. The data can be simply fitted by the formula I(Q) = n∆ρ2P (Q) with
the number density n, the scattering contrast ∆ρ2 and the form factor P (Q) on an
oblate ellipsoid.

8.7.4 Perrin Factors for Ellipsoids of Revolution and Effective Hy-
drodynamic Radii

For an ellipsoid of revolution with polar semiaxis a and equatorial semiaxes b, the
Perrin factors specify the translational and rotational diffusion coefficient in the
dilute limit:

Dt(0) =
kB T

6π η a
A(p) (8.8)

Dr(0) =
kB T

8π η a3
B(p) (8.9)

where p = b/a is the ellipsoid aspect ratio. Moreover, we can extract the effective
hydrodynamic radius Rh = aA(p)−1. A(p) and B(p) result from the angular average
of translational and rotational friction factors [128]:

A(p) =
1√
|1− p2|





arctan
(√

p2 − 1
)

(oblate: p > 1)

ln

(
1+
√

1−p2
p

)
(prolate: p < 1)

B(p) =
1 + 3 p2A(p)

2 p2 (1 + p2)
.
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For the present case of an oblate ellipsoid with a = 1.8 nm and b = 4.6nm, we
obtain p = 2.56 and thus A(p)−1 = 2.01 and B(p)−1/3 = 2.09.

8.8 Implicit Relation Between Rotational, Translational
and Fitted Diffusion Coefficient

The scattering function of a particle performing rotational and translational diffusion
reads [125]

St+r(Q,ω) =
1

π

∞∑

l=0

Bl(Q)
Γl(Q)

ω2 + Γl(Q)
(8.10)

with Bl(Q) =

∞∫

0

dr ρ(r) (2 l + 1) j2
l (Qr) (8.11)

and Γl(Q) = Dr l (l + 1) +DtQ
2, (8.12)

where Dr and Dt denote the rotational and translational diffusion coefficients, re-
spectively. The rotational dynamic structure factors are entirely determined by the
radial density distribution of the hydrogen atoms in the molecule, ρ(r). jl(x) is the
lth-order spherical Bessel function of first kind.

It was found [125, 152] and reproduced in our study that a single Lorentzian
line shape with HWHM γ and amplitude α approximates the calculated scattering
function St+r(Q,ω) for rotational and translational diffusion inside error bars in the
Q-range relevant for our experiment. The minimization of the L2-norm

‖St+r(Q, ·)− αLγ(·)‖2 =

∫
[S(Q,ω)− αLγ(ω)]2 dω (8.13)

reduces to two non-linear equations:

α = 2 γ(Q)
∞∑

l=0

Bl(Q)

Γl(Q) + γ(Q)
(8.14)

0 =
∞∑

l=0

Bl(Q)
γ(Q)− Γl(Q)

2 γ(Q) (Γl(Q) + γ(Q))2
(8.15)

Inserting Eq. (8.12) and the Q-dependent diffusion coefficient d(Q) = γ(Q)/Q2 into
Eq. (8.15), an implicit relation of the three involved diffusion coefficients d(Q), Dr

and Dt is derived:

0 =
∞∑

l=0

Bl(Q)
Dr l (l + 1) + (Dt − d(Q))Q2

[Dr l (l + 1) + (Dt + d(Q))Q2]2
. (8.16)

For given Dt and Dr, which are Q-independent, the Q-dependence of d(Q) can be
discussed. For Q = 0, we obtain Bl = δl,0 which renders the implicit Eqs. [8.14,
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8.15] explicitly solvable yielding γ = DtQ
2 and α = 1, i.e. d(0) = Dt. For finite Q,

d(Q) monotonously increases with Q and converges rapidly to a constant value. By
the limit

D = lim
Q→∞

d(Q), (8.17)

we define the observable diffusion coefficient D. The rapid convergence of d(Q)

restates the simple diffusive relation γ(Q) = DQ2 as observed in the accessible
Q-range, as found already numerically [125, 152]. Rotational diffusion thus acts as
an additional contribution not distinguishable from translational diffusion without
careful modeling and approximations.

Inserting d(Q) = D into Eq. (8.16) finally returns the implicit relation Eq. (8.4)
connecting the three diffusion coefficients D, Dr and Dt. For a given pair of two
diffusion coefficients, the third can thus be calculated by solving Eq. (8.4). This is
performed numerically for a truncated sum. The truncation is dependent on the Q
range and generally valid since Bl(Q) rapidly decays to zero at finite Q for increasing
l [125]. For our Q range, we use nmax = 250.
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9.1 Abstract

Using both quasi-elastic and fixed-window neutron spectroscopy, we study the dy-
namics of highly concentrated aqueous protein solutions of bovine serum albumin
around the denaturing transition. For the temperature range 280K < T < 370K,
the total mean-squared displacement

〈
u2
〉
is recorded. Below and above the dena-

turing, we observe that
〈
u2
〉
increases monotonically with T , but at the denaturing

transition it decreases strongly. This observation can be rationalized and quanti-
tatively modeled as a transition from a liquid protein solution to a gel-like state.
Atomic vibrations, molecular subunit diffusion and, most importantly, diffusion of
the entire protein determine

〈
u2
〉
. The latter is strongly hindered due to entangle-

ment and cross-linking of the chains and causes the pronounced decrease of
〈
u2
〉
.

Using information from the full quasi-elastic signal, we separate the diffusion con-
tribution from

〈
u2
〉
and reveal the transition temperature. For the analysis of this

separation, we introduced a general concept which is applicable to other systems
exhibiting both center-of-mass and internal dynamics.

9.2 Introduction

Crucial to the physical understanding of soft and biological matter is the obvious,
but in general insufficiently understood, link between the microscopic properties and
the functionality of the system. Microscopic properties, such as dynamics have been
intensely addressed by, inter alia, neutron spectroscopy techniques [57, 61, 45, 100].
Neutron spectroscopy allows both the picosecond subunit diffusion and the nanosec-
ond translational and rotational diffusion of globular proteins to be probed [15, 13].
A significant amount of work on protein dynamics has been carried out on pow-
der or hydrated powder samples (for a review, see e.g. [61]), which simplifies the
analysis, since some degrees of freedom including the center-of-mass motion do not
contribute. Solutions of proteins [15, 28, 54, 152, 125, 50, 138] are obviously more
complex, but closer to physiological conditions. Importantly, in many situations in
biology, proteins are found at rather high concentrations, known as macromolecular
crowding, up to and above 30% in volume. This implies that, in contrast to dilute
aqueous solutions with effectively independent proteins, the interactions between
the dissolved proteins are important and give rise to qualitatively different effects.

At elevated temperatures proteins denature. The denaturing transition itself is
an important key to the physical behavior of the protein. The issue of denaturing
of a protein in a crowded environment was previously addressed by simulation [91],
concluding that crowding can enhance the structural stability, but experimentally
the effects arising upon denaturing of crowded proteins with their intrinsic complex
charge distribution are not clear. Only few experimental results on the dynamics
of protein suspensions around denaturation are available [140, 65], but a systematic
understanding and a theoretical framework have not been achieved yet. In this Let-
ter, we report on a detailed neutron spectroscopy study of the denaturing transition
of bovine serum albumin (BSA) in crowded aqueous (D2O) solutions and a newly
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developed framework to quantitatively investigate the hindered dynamics of the pro-
teins upon entanglement and cross-linking and to analyze the different contributions
to the mean-squared displacement

〈
u2
〉
around the denaturing transition. Impor-

tantly, our novel framework is not restricted to the study of denaturing of proteins,
but can be applied to any system with both center-of-mass and internal dynamics,
e.g. also conventional polymer solutions.

9.3 Experimental and Methods

For all neutron measurements the samples were prepared by dissolving BSA (Sigma-
Aldrich product code A3059, 99% purity) with mass m in D2O with volume V to
obtain the protein concentration c = m/V . After complete dissolution and equi-
libration, the solutions were contained in double-walled aluminum cylinders with
23mm outer diameter and 0.3mm gap which were sealed against vacuum. Due
to the complete filling and sealing of these sample holders, the neutron scattering
experiments were performed at constant sample volume while the pressure changes
with sample temperature. We used the neutron backscattering spectrometers IN10
and IN16 at the ILL in Grenoble in the standard configuration with unpolished
Si(111)-monochromator and analyzer crystals, which set the selected neutron wave-
length to 6.27Å and achieve an energy resolution of approximately ~∆ω = 0.9µeV
(gaussian FWHM). The Q-ranges set the probed length scales to 3.2Å ≤ l ≤ 12Å
(IN10) and 3.3Å ≤ l ≤ 33Å (IN16), respectively, with l = 2π/Q. The data were
normalized to the incident neutron flux. Using Paalman-Pings coefficients [122] the
empty cylinder signal was subtracted. Subsequently, all data were scaled by the in-
verse detector efficiency obtained from the elastic intensity of vanadium. Due to the
large incoherent scattering cross-section of the proteins, our data reflect the single
particle correlation function of the protein hydrogen atoms. For the quasi-elastic
data, we assume that vibrational and diffusive modes are uncoupled and obtain
[46, 39, 125, 13]

S(Q,ω) = exp

(
−1

3
〈u2

vib〉Q2

)
L(ω, γ)

⊗{A(Q) δ(ω) + [1−A(Q)]Lβ(ω,Γ)} (9.1)

A(Q) is the incoherent elastic structure factor and
〈
u2
vib

〉
denotes the so-called mean-

squared displacement of vibrations. The Lorentzian function L(ω, γ) models the
convolution of translational and rotational diffusion of the entire protein [125]. Us-
ing a single phenomenological parameter 0 ≤ β ≤ 1, the Kohlrausch-Williams-Watts
(KWW) function Lβ(ω,Γ) [178] describes a broad range of internal relaxation times.
Finally, δ(ω) designates the Dirac function of the elastic scattering. The experimen-
tal quasi-elastic scattering function reads

Sexp(Q,ω) = R∆ω(ω)⊗ S(Q,ω) +B (9.2)
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with the instrumental resolution function R∆ω(ω) and a flat background B ac-
counting for both the water diffusion and the phonon contribution which exceed the
accessible dynamic range of the instrument. The measured fixed-window scattering
is linked to the quasi-elastic signal by

S (Q, |ω| < ∆ω) =

∞∫

−∞

dωR∆ω(ω)S(Q,ω). (9.3)

The total mean-squared displacement is

〈u2〉 := −3 lim
Q→0

{
log [S (Q, |ω| < ∆ω)]

Q2

}
, (9.4)

consisting of three contributions from atomic vibrations
〈
u2
vib

〉
, molecular subunit

diffusion
〈
u2
sub

〉
and, most importantly, diffusion of the entire protein

〈
u2
diff

〉
(see

supplementary material Eq. 9.36):
〈
u2
〉

=
〈
u2
vib

〉
+
〈
u2
sub

〉
+
〈
u2
diff

〉
(9.5)〈

u2
sub

〉
= (1− p)χ

〈
∆r2

〉
(9.6)

〈
u2
diff

〉
= (2π)−3/2 6D τ, (9.7)

with χ = 1−
√

2/π
∫∞

0 exp
(
−ξ2/2− |y ξ|β

)
dξ, where y = Γ

∆ω (see supplementary
material Eq. 9.37). For our data χ ≈ 1, since for high resolution instruments we
can safely assume that Γ� ∆ω. A fraction p of protons has a correlation time far
beyond the accessible time window, such that they have a very narrow energy signal
and, therefore, can be considered as immobile. The internal diffusive modes are
confined on the given time scale to an average length of

〈
∆r2

〉1/2. The mean-squared
displacement due to the translational and rotational diffusion of the entire protein
is 6D τ , where τ = 2π/∆ω is the maximum observation time of the instrument.

9.4 Results and Discussion

Fig. 9.1(A) shows
〈
u2
〉
for a full temperature scan through the denaturation tran-

sition for an aqueous BSA solution with c = 500mg/ml corresponding to a vol-
ume fraction of 27%.

〈
u2
〉
was extracted from the data by a quadratic fit to

log [S (Q, |ω| < ∆ω)] versus Q2 (see Sec. 9.7.1) using the entire Q-range of IN10,
as shown for one example data set in the inset. Starting at T = 280K,

〈
u2
〉
in-

creases linearly with temperature up to 325K. A steep decrease is observed in the
temperature range of denaturing, namely 331K < T < 354K, consistent with struc-
tural changes observed by small-angle x-ray scattering [51]. Upon further heating,〈
u2
〉
starts to increase again with temperature.

〈
u2
〉
is significantly larger than

the typical observed vibrational amplitude of only 10−2 Å2, suggesting that protein
diffusive modes are present in addition to atomic vibrations confirming the validity
of Eq. 9.5. We rationalize the data depicted in Fig. 9.1(A), remembering that below
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Figure 9.1: (A) Total mean-squared displacement
〈
u2
〉

(circles) of an aqueous
BSA (500mg/ml) solution versus temperature T . The solution was heated at
7.4 · 10−2 K/min. Using Eq. 9.8 we describe the data (solid line superimposed
on the data) and determine the denaturing interval T1 < T < T2 (dotted verti-
cal lines).The upper images illustrate a colloidal suspension of native proteins (left)
and the cross-linked network of denatured proteins (right). Inset: Measured elas-
tic intensity S (Q, |ω| < ∆ω) versus Q2 (circles) for the same sample at T = 290K
recorded at IN10. As described in Sec. 9.7.1 a quadratic fit (solid line) was used to
determine

〈
u2
〉
. (B)

〈
u2
〉
−
〈
u2
diff

〉
(circles). The transition regime is denoted by the

two vertical dashed lines. At T0 = (T1 + T2)/2 a transition occurs, characterized by
a kink in the curve (arrow).
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the denaturation temperature, proteins occur in their native state, which for most
globular proteins is a solution of charge-stabilized monomers [78, 184]. The pro-
tein dynamics in this region consists of global translational and rotational diffusion,
internal and confined diffusive motion of side chains and protein domains and vibra-
tional modes. Upon increasing the temperature, the proteins enter the denaturation
regime (T1 < T < T2). We rationalize this transition in two steps. First, the pro-
teins unfold and extend, which can be understood as similarly to a helix to random
coil transition, initially proposed in the seminal paper by Zimm and Bragg [187].
Second, the unfolded protein chains entangle and potentially cross-link partly. This
entanglement and cross-linking process can be seen as in between chemical gela-
tion and polymer vulcanization [22, 18]. The entanglement significantly reduces
translational and rotational diffusion. While a quantitative theory of the amplitude
(∆u2 in the model described below) of the effect is not available at present, we can
qualitatively use the analogy to existing theories for the cross-linking of polymers
(vulcanization) [37]. The segment dynamics is then reduced typically by (some
power of) the inverse number of entanglement points, Ne, and it appears plausible
that a similar mechanism is at work also for concentrated protein solutions. Thus,
raising the temperature above the denaturation regime, a gel-like state is observed
which can be understood rather in terms of the dynamics of a cross-linked network
than in terms of the dynamics of separated molecules. In the spirit of the above, we
model the dynamics of the transition by

〈
u2
〉

= (a1 T + b1) [1−Θ (T ∗)] + (a2 T + b2) Θ (T ∗) (9.8)

where T ∗ = (T −T0)/∆T with the transition width ∆T and the denaturing temper-
ature T0. The indices 1 and 2 denote the liquid state of native proteins and gel-like
state of denatured proteins, respectively, and Θ(x) is a smeared-out step function,

Θ(x) = (1 + exp(−x))−1 (9.9)

with the functional characteristics of the helix melting models by Zimm and
Bragg [187]. For the case a1 = a2, which is approximately fulfilled here, the tem-
peratures T1,2 of the turning points of

〈
u2
〉
, defining the denaturing interval, are

T1,2 = T0 ±∆T ln
[
z +

√
z (z − 2)− 1

]
(9.10)

where ∆u2 = b1−b2 and z = ∆u2

2 a∆T . T1 can be interpreted as the temperature where
unfolding of the proteins starts and T2, where the entanglement and cross-linking
of the chains is completed. ∆u2/∆T is a measure of how rapidly

〈
u2
〉
decreases.

The width ∆T of the transition in a simple model depends on the inverse number of
participating units of the helix, but of course for a real protein this is more complex.
The reduction ∆u2 of the dynamics is due to entanglement. Although we observe
that the slopes ai are nearly the same below and above denaturing, we point out
that in the general case, ai probably depends on the protein concentration. Note,
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when the gel-like state is cooled back from 370K down to 280K, the curve for
T < T2 of

〈
u2
〉
(see Fig. 9.4) is well below the heating curve in Fig. 9.1(A), which

shows the irreversibility of the denaturing process and corroborates the assumption
that translational and rotational diffusion are significantly hindered by entanglement
and cross-links. Hence, upon cooling the cross-linked network of denatured proteins
persists.

In order to unveil the temperature dependence of
〈
u2
〉
−
〈
u2
diff

〉
, namely the cu-

mulative mean-squared displacement originating only from vibrational and subunit-
diffusive modes, we use the apparent diffusion coefficient D (see supplementary
material Table 9.1) extracted from quasi-elastic spectra to calculate the correspond-
ing contribution to

〈
u2
〉
by Eq. 9.7. Fig. 9.2 shows a typical spectrum recorded on

IN16. The width γ as obtained from the fits to Eq. 9.2 are plotted in the left-hand
inset of Fig. 9.2. We observe a clear relationship γ = DQ2 defining the apparent
diffusion coefficient D. Considering that not only the translational but also the ro-
tational diffusion contributes to D [125, 50], we can interpret D as a measure for the
global diffusive dynamics of the protein. The right-hand inset in Fig. 9.2 depicts the
temperature dependence of the mean-squared displacement

〈
u2
diff

〉
calculated from

Eq. 9.7 using the energy resolution ~∆ω = 0.9µeV. Below the transition regime,
indicated by the two vertical lines, we observe a linear relation

〈
u2
diff

〉
= a T + b.

Inspired by de Gennes’ scaling law for the diffusion of a polymer in a cross-linked
network [37], we assume a negligible global diffusion coefficient D for T > T2. In-
deed, near and above the denaturing temperature, fitting according to Eq. 9.2 yields
diffusion coefficients D dropping close to zero. Therefore, we describe the full tem-
perature dependence by

〈
u2
diff

〉
= (a T + b) [1−Θ (T ∗)] (9.11)

where Θ (T ∗) is the same smeared-out step function used for the fit of
〈
u2
〉
as shown

in Fig. 9.1(A). Fig. 9.1(B) depicts the temperature dependence of the mean-squared
displacement

〈
u2
〉
−
〈
u2
diff

〉
. We observe a change of the dynamics at a temperature

T0 = 343K characterizing the transition from a liquid protein solution to a gel-
like state. The inverse slopes of

〈
u2
〉
−
〈
u2
diff

〉
versus T , occasionally discussed in

the literature as a phenomenological force constant [182], are k1 = (a1 − a)−1 =

4.1 · 10−2 N/m and k2 = a−1
2 = 0.7 · 10−2 N/m, for T < T1 and T > T2, respectively.

We note that the physical significance of the force constant is limited in the present
case, but it is stated for reasons of comparability.

We speculate that the difference in k1 and k2 can be attributed to the higher
conformational flexibility of the unfolded protein chains in the cross-linked network.
In the native state the proteins are stiffer due to hydrogen bonds and surface charge
both of which are mainly responsible for the stable three-dimensional structure.
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Figure 9.2: Example spectrum S(Q,ω) (symbols) recorded at IN16 for BSA in D2O
(protein concentration 500mg/ml corresponding to a volume fraction φ = 27%, T =
301K, individual detector tube at Q = 0.6Å−1). The blue solid line superimposed
on the data indicates the fit of the model from Eq. 9.2 with β = 1, hence the
KKW function turns into to Lorentzian L(ω,Γ). The Lorentzians in Eq. 9.2 are
indicated by the dashed [R(ω) ⊗ L(ω, γ)] and dash-dotted [R(ω) ⊗ L(ω, γ + Γ)]
lines, respectively. The orange solid line denotes a Gaussian model of the resolution
function R(ω). The scattering signal decreases with Q, resulting in larger error bars
on the fitted γ. Inset left: γ (symbols) fitted to the signal from grouped detectors
versus Q2. Inset right: Temperature dependence of

〈
u2
〉
due to global diffusion

as calculated from Eq. 9.7 (symbols). The solid line is a linear fit for T ≤ 320K,
namely

〈
u2
〉

= a T+b. For temperatures beyond 320K we assume that the diffusion
is hindered by entanglement of the proteins and, hence, nearly zero. Therefore, we
postulate

〈
u2
〉

= (a T + b) [1−Θ(T ∗)]. The transition regime is denoted by the
two vertical dashed lines.
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9.5 Conclusions

In summary, we investigated the dynamics of crowded BSA protein solutions around
the denaturing transition. We have identified denaturing in the fixed-window data.
We have developed a novel physical framework for the unfolding and entanglement
allowing

〈
u2
〉

(T ) to be understood. Using both the quasi-elastic and fixed-window
scattering data, the measured

〈
u2
〉
can be decomposed into the vibrational, subunit

diffusive, and global diffusive contributions. The characteristic transition temper-
atures defining the denaturation range become observable. The driving force for
the drop in

〈
u2
〉
in the denaturing regime can be rationalized by the significant

slowdown of the global diffusion, accounting for both translational and rotational
diffusion. This slowdown is induced by structural change and entanglement as well
as cross-linking of the proteins. The experimental and analytical framework which
we have introduced will allow to accurately test computer models [91].
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Figure 9.3: Raw data (dark purple solid circles) for the elastic intensity
S (Q, |ω| < ∆ω) of a 500mg/ml BSA aqueous (D2O) solution upon heating from
280 to 370K with 7.4 · 10−2 K/min. The data was recorded at IN10. Fits of the
polynomial Eq. 9.12 to the data at fixed temperatures are superimposed as purple
solid lines.

9.7 Supplementary Material

Here we provide supplementary material for the fitting procedure and the analytical
framework quoted in the main text. Furthermore, we briefly discuss the tempera-
ture dependence of

〈
u2
〉
upon cooling of a denatured protein solution and provide

a table of the apparent diffusion coefficient used to determine the mean-squared
displacement of the internal dynamics

〈
u2
vib

〉
+
〈
u2
sub

〉
.

9.7.1 Data Fitting

Bringing forward the result of the analysis from the next section, we summarize
the fitting procedure to determine the total mean-squared displacement

〈
u2
〉
from

the measured elastic intensity S (Q, |ω| < ∆ω) of a protein in solution. We fit
−3 log [S (Q, |ω| < ∆ω)] with the following polynomial

P (Q) = b+
〈
u2
〉
Q2 + cQ4 (9.12)

therein, b accounts for both the background and the arbitrary scaling of the experi-
mental elastic line, c originated from higher spatial correlations as described in detail
in the next section. In Fig. 9.3 we display raw data for −3 log [S (Q, |ω| < ∆ω)] of
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a 500mg/ml BSA aqueous (D2O) solution upon heating from 280 to 370K with
7.4 · 10−2 K/min. At each temperature we fit the polynomial Eq. 9.12 to determine
the total mean-squared displacement as shown in Fig. 9.1.

9.7.2 Analysis of the Elastic Intensity

In this section, we derive a formula describing the elastic line intensity in terms
of vibrational, global and internal diffusive modes for small Q values. Assuming
the independence of diffusive and vibrational modes, as well as the harmonicity of
the latter, we can write the quasi-elastic scattering function of a protein solution
as [46, 39, 125, 86, 140]:

S(Q,ω) = exp

(
−1

3

〈
u2
vib

〉
Q2

)
L(ω, γ)⊗ {A (Q) δ(ω) + [1−A (Q)] Lβ(ω,Γ)} ,

(9.13)
where L(ω, γ) is a Lorentzian function with a width γ = DQ2, accounting for
translational and rotational diffusion [125]. A diversity of amplitudes and correlation
times renders the characterization of internal diffusive modes (expression in the curly
brackets) an intricate task. Using a Kohlrausch-Williams-Watts function [178],

Lβ(ω,Γ) =

∫ ∞

−∞

dt

2π
e−iω t exp

(
−|tΓ|β

)
, (9.14)

we can describe a broad range of correlation times with a single phenomenological
parameter 0 ≤ β ≤ 1. A (Q) is the elastic incoherent structure factor, which is
related to the average accessible space of internal diffusive scatterers, such as side
chains or molecular subunits. Γ and β are assumed to be nearly constant for Q <

2Å−2 [86, 171]. For an instrument with resolution function R∆ω the elastic line
intensity reads

S (Q, |ω| < ∆ω) = R∆ω(ω)⊗ S(Q,ω)|ω=0 =

∫
R∆ω(ω)S(Q,ω) dω. (9.15)

Assuming a Gaussian resolution function R∆ω(ω) = exp
(
− ω2

2∆ω2

)
, the integral

Eq. 9.15 using the model function Eq. 9.13 yields

S (Q, |ω| < ∆ω) = exp

(
−1

3

〈
u2
vib

〉
Q2

) {
A(Q)F1

( γ

∆ω
, 0
)

+ [1−A(Q)] Fβ

(
γ

∆ω
,

Γ

∆ω

)}
,

(9.16)
where Fβ is the integral expression

Fβ(x, y) =

√
2

π
exp

(
x2

2

) ∫ ∞

0
exp

[
−1

2
(ξ + x)2 − |y ξ|β

]
dξ (9.17)
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We define the Q-dependent total mean-squared displacement
〈
u2
〉
Q
by

exp

[
−Q

2

3

〈
u2
〉
Q

]
:= S (Q, |ω| < ∆ω) . (9.18)

Note that the explicit Q-dependence is denoted by a subindex Q to distinguish it
from the later introduced Q-independent total mean-squared displacement

〈
u2
〉
.

Using Eq. 9.18 and 9.16, we obtain

〈
u2
〉
Q

=
〈
u2
vib

〉
− 3

Q2
log ξ(Q), (9.19)

where
ξ(Q) = A(Q)F1

( γ

∆ω
, 0
)

+ [1−A(Q)] Fβ

(
γ

∆ω
,

Γ

∆ω

)
. (9.20)

We approximate Eq. 9.19 up to 4th order using a Taylor expansion around Q = 0:

〈
u2
〉
Q

=

3∑

n=0

〈
u2
〉(n)

0

Qn

n!
+O(Q4), (9.21)

therein, we use the following notation

〈
u2
〉(n)

0
= lim

Q→0

∂n

∂Qn
〈
u2
〉
Q
. (9.22)

Next we determine the Taylor-coefficients in Eq. 9.21. As we will show later in this
section, we can assume that the incoherent elastic structure factor has the following
properties A(0) = 1, A(1)(0) = 0, A(3)(0) = 0 and A(5)(0) = 0, where A(n) denotes
the nth-derivative of A in respect to Q. With these assumptions, we get the following
derivatives for ξ at Q = 0

ξ(0) = 1 (9.23)

ξ(1)(0) = 0

ξ(2)(0) = −2D

∆ω

√
2

π
+

[
1− Fβ

(
0,

Γ

∆ω

)]
A(2)(0)

ξ(3)(0) = 0

ξ(4)(0) =

[
1− Fβ

(
0,

Γ

∆ω

)]
A(4)(0) +

12D2

∆ω2

[
1− ∆ω

D
A(2)(0)

{√
2

π
+ F

(1,0)
β

(
0,

Γ

∆ω

)}]

ξ(5)(0) = 0,
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where F (1,0)
β denotes the derivative of Fβ (Eq. 9.17) in respect to the first argument.

Using ξ(n)(0) we calculate the coefficients of the Taylor expansion (Eq. 9.21):

〈
u2
〉

0
= −3

2
ξ(2)(0) (9.24)

〈
u2
〉(1)

0
= 0

〈
u2
〉(2)

0
=

1

4

[
3 ξ(2)(0)2 − ξ(4)(0)

]

〈
u2
〉(3)

0
= 0

We derive expressions for the nth derivatives of the incohrent structure factor at
zero denoted by A(n)(0). According to M.Bee [14] the general incoherent structure
factor B(Q) for a localized diffusive scatterer reads

B(Q) =
1

N

N∑

j=1

∣∣〈eiQrj
〉∣∣2 . (9.25)

where rj = (xj , yj , zj)
T . In a protein solution the proteins have no preferential

orientation. Consequently, we can assume that the orientations are nearly equally
distributed. Therefore, we have to average the general elastic incoherent structure
factor A(Q) over all possible orientations to obtain the solution incoherent structure
factor A(Q) in Eq. 9.13,

A0(Q) =
1

4π

∫ 2π

0

∫ π

0
B(Q) sin θ dθ dϕ. (9.26)

with Q = Q [cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)]T . Correlation times much longer
than the instrumental time window correspond to a very narrow signal in ω which
is indistinguishable from the elastic peak. Therefore, we consider a fraction p of
scatters as immobile, the remaining fraction 1 − p as diffusive scatters [86, 140].
Which translates into the following pseudo elastic incoherent structure factor

A(Q) = p+ (1− p)A0(Q) (9.27)
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To obtain A(n)(0) we employ Eq. 9.26 and calculate the corresponding integrals and
obtain:

A(0) = p+ (1− p)B(0) (9.28)

A(1)(0) = 0

A(2)(0) =
1− p

3

{
B

(2,0,0)
0 +B

(0,2,0)
0 +B

(0,0,2)
0

}

A(3)(0) = 0

A(4)(0) =
1− p

5

{
B

(4,0,0)
0 +B

(0,4,0)
0 +B

(0,0,4)
0 + 2B

(2,2,0)
0 + 2B

(2,0,2)
0 + 2B

(0,2,2)
0

}

A(5)(0) = 0,

using the notation

B
(n1,n2,n3)
0 =

(
∂

∂Q1

)n1
(

∂

∂Q2

)n2
(

∂

∂Q3

)n3

B(Q)

∣∣∣∣
Q=0

. (9.29)

Using the generalized product derivation rule we get

B
(n1,n2,n3)
0 =

1

N

N∑

j=1

n1,n2,n3∑

k1,k2,k3=0

3∏

l=1

(
nl
kl

)
(−1)kl inl

〈
xn1−k1
j yn2−k2

j zn3−k3
j

〉 〈
xk1j yk2j zk3j

〉

(9.30)

Evidently, B0 = 1. With Eq. 9.30 we arrive at

A(2)(0) = −2 (1− p)
3

〈
∆r2

〉
(9.31)

A(4)(0) =
1− p

5
(mx +my +mz + 2mx,y + 2mx,z + 2my,z)

where
〈
∆r2

〉
= 1

N

∑N
j=1

〈
(rj − 〈rj〉)2

〉
is an average fluctuation length, related to

the size of the confinement of the diffusive scatterer. Furthermore,

mx = 2
N

∑N
j=1

(〈
x4
j

〉
+ 3

〈
x2
j

〉2
− 4

〈
x3
j

〉
〈xj〉

)
(9.32)

mx,y = 2
N

∑N
j=1

(
2 〈xj yj〉2 − 2 〈yj〉

〈
x2
j yj

〉

+
〈
x2
j

〉 〈
y2
j

〉
− 2 〈xj〉

〈
xj y

2
j

〉
+
〈
x2
j y

2
j

〉)
. (9.33)

The expressions my, mz and mx,z, my,z are analogously defined. Finally,
〈
u2
〉
Q
can

be approximated as follows

〈
u2
〉
Q

=
〈
u2
〉

0
+

1

2

〈
u2
〉(2)

0
Q2 +O(Q4) (9.34)
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This approximation is crucial to determine
〈
u2
〉

0
from the experimental elastic line

data. The linear coefficient of a 2nd-order polynomial fit to −3 log [S (Q, |ω| < ∆ω)]

versus Q2 corresponds to
〈
u2
〉

0
.

− 3 log [S (Q, |ω| < ∆ω)] = x
(〈
u2
〉

0
+
〈
u2
〉(2)

0

x

2

)
+ b (9.35)

where x = Q2 and b originates from the arbitrary scaling of the experimental elastic
line. For the sake of a simpler notation we will use

〈
u2
〉

:=
〈
u2
〉

0
.
〈
u2
〉
is the total

mean-squared displacement for small Q-values and by using Eq. 9.24 and 9.31 can
be decomposed in the following way

〈
u2
〉

=
〈
u2
vib

〉
+
〈
u2
sub

〉
+
〈
u2
diff

〉
(9.36)〈

u2
sub

〉
= (1− p)χ

〈
∆r2

〉
(9.37)

〈
u2
diff

〉
= 3

√
2

π∆ω2
D. (9.38)

therein, χ =
[
1− Fβ

(
0, Γ

∆ω

)]
. Due to the energy resolution of the instrument the

global diffusion of the protein can only be observed within a time window of width
τ = 2π/∆ω. During that time the protein has isotropically explored a space which
size is characterized by a mean-squared displacement of

〈
∆R2(τ)

〉
= 6D τ . Hence,〈

u2
diff

〉
= (2π)−3/2

〈
∆R2(τ)

〉
.
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9.7.3 Cooling of a denatured protein solution
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Figure 9.4: Total mean-squared displacement
〈
u2
〉
for a 500mg/ml BSA aqueous

solution with 1M NaCl upon heating from 280 to 370K with 8.4 · 10−2 K/min (red
solid line) and cooling back to 280K with 12.4 · 10−2 K/min (blue solid line). The
dashed dotted lines denotes the 95% confidence intervals of the corresponding fits.
The transition regime is denoted by the red dashed lines. Note that for the heating
process between 324 and 342K no data was recorded due to an unexpected neutron
beam stop during the temperature ramp.

Fig. 9.4 shows
〈
u2
〉
for a 500mg/ml BSA aqueous solution with 1M NaCl for

two different processes: heating from 280 to 370K (red solid line) and cooling from
370 back to 280K. During the heating process we encountered an unexpected loss
of the neutron beam between the temperatures 324 and 342K, hence no data was
recorded. Upon heating

〈
u2
〉
displays the behavior described in the main paper.

Cooling reveals the irreversibility of the denaturing process, since for T < T2 the
curve progression of

〈
u2
〉
is evidently different from the heating curve. Note that

at T1 there is a weak kink indicating a change in the flexibility of the cross-linked
network. For cooling we observe a significantly lower

〈
u2
〉
which we attribute to the

hindered global motion of the proteins due to entanglement and cross-linking. We
assume that upon cooling the cross-linked network remains and that the denatured
proteins are not ‘disentangled’.



9.7. Supplementary Material 159

9.7.4 Temperature Dependent Apparent Diffusion Coefficient

T[K] 279 290 300 310 316 319

D [Å2/ns] 0.47 0.76 1.23 1.47 1.41 1.81
∆D [Å2/ns] ±0.26 ±0.01 ±0.27 ±0.39 ±0.33 ±0.25

Table 9.1: Temperature dependence of apparent diffusion coefficient for a 500mg/ml
BSA aqueous (D2O) solution measured at IN10 and IN16.
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10.1 Abstract

We investigate the structure and the dynamics of solutions of the globular pro-
tein bovine serum albumin near the transition from a homogeneous to a cluster-
dominated phase using small-angle X-ray scattering and neutron spin-echo spec-
troscopy. To this end, we tune the repulsive part of the protein interactions by
charge-control using the trivalent salt YCl3. We observe the emergence of dynamic
density inhomogeneities with the charge approaching zero. By analyzing the short-
time self-diffusion of the protein, we introduce an observable quantifying the charge-
induced inhomogeneities due to the cluster formation.

10.2 Introduction

The competition between long-range repulsion and short-range attraction charac-
terizes the interaction of charged proteins in solution and gives rise to a rich phase
behavior [75, 147, 142, 98, 132, 124, 27, 99]. This balance of repulsive and attractive
interaction is crucial to understand the crystallization of proteins [161, 63]. A bal-
ance in favor of attraction can cause protein aggregation, which is believed to be a
trigger of fiber formation [172] and neurodegenerative diseases such as Parkinson’s
disease [93, 139].

In addition to their biological role, proteins are of fundamental interest in the
context of soft matter science since they form highly monodisperse colloidal suspen-
sions [78, 184]. Proteins, however, differ in one important aspect from many simple
colloid systems: The distribution of charges on the surface of a protein is in gen-
eral inhomogeneous [102, 130]. This inhomogeneous surface charge distribution can
be assumed to have a fundamental biological relevance in controlling for instance
aggregation phenomena and biological activity such as docking processes. Charac-
teristic of proteins in their native environment is the aqueous solvent containing salt
ions, which can affect the competition between repulsion and attraction by both
screening as well as ion condensation [185]. The nature of the interaction between
the proteins crucially determines the equilibrium structure of the solution. While
repulsive interactions prefer a low local particle density, attractive interactions lead
to inhomogeneity in the particle density and can cause the formation of equilibrium
clusters [75, 147, 98, 132, 27, 99].

Using small-angle scattering Stradner et al. [157] provided experimental evidence
for the existence of so-called equilibrium clusters in lysozyme solutions by observing
a low-q peak that they associated with the formation of clusters. The first dynamic
measurement on equilibrium clusters using spin-echo spectroscopy was conducted
by Porcar et al. [132]. They investigated the short-time self-diffusion of lysozyme
clusters depending on the protein concentration and found that the size of the
clusters increased with rising volume fraction. Using small-angle X-ray scattering
and spin-echo spectroscopy Cardinaux et al. [27] characterized the structure and the
dynamics of a salt-free lysozyme solution undergoing a transition from a monomer to
transient cluster-dominated system with increasing volume fraction. Additionally,
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employing molecular and brownian dynamics simulation they confirm the existence
of transient clusters and verify their experimental results. Combining dynamic and
static scattering techniques Liu et al. [99] concluded in a recent study that there is
no direct connection between cluster formation in a solution and the existence of
the cluster peak. They point out that experimental evidence for the existence of
clusters has to rely on the dynamical behavior of the system and they attribute the
correlation peak to the density structure at the intermediate range.

Inspired by this previous work, we endeavor to tune the parameters determining
the competition between repulsion and attraction, such as the surface charge of the
protein. Thus, we aim to control the equilibrium structure of a protein solution and
favor the generation of equilibrium clusters as proposed by Liu et al. [99].

In this context, Zhang et al. [185, 186] showed that highly positively charged
metal ions such as Y3+ can induce a charge inversion of negatively charged pro-
teins. Thereby, the proteins undergo a condensation phase between two critical
ion-concentrations denoted by c∗ and c∗∗. Using small-angle X-ray scattering they
showed that when the ion-concentration c approaches c∗ short-range attractions
increasingly become dominant and finally describe the protein interaction in the
condensed phase, c∗ < c < c∗∗, causing molecular aggregates. For c > c∗∗ the sur-
face charge becomes positive and the protein aggregates redissolve. Consequently,
the specific binding effect of Y3+ on the protein surface is suitable for tuning the
intermolecular forces. In this paper we report on a combined neutron spin-echo
spectroscopy and small-angle X-ray scattering study investigating the short-time
self-diffusion coefficient and the isothermal compressibility of the globular protein
bovine serum albumin in aqueous (D2O) solutions at various concentrations of the
trivalent salt YCl3. We increase the salt concentration up to the critical concentra-
tion c∗ [185] where the protein surface charge is close to zero. Thereby, we gradually
compensate the repulsive part of the protein interaction and, hence, favor cluster
formation. Finally, from the dynamical data we introduce a local crowding factor
quantifying the salt-induced increase of the local volume fraction within the protein
clusters.

10.3 Experimental

10.3.1 Sample Preparation

For all measurements we purchased lyophilized Bovine Serum Albumin (BSA) pow-
der with a purity of 99% and anhydrous YCl3 powder with a purity of 99.99% from
the Sigma-AldrichR© company (product codes: A3059 and 451363, respectively) and
stored the samples in a cold room at a temperature of 8◦C. Weeks prior to the ex-
periment we prepared all sample solutions by dissolving 200mg of BSA in 1ml D2O
containing YCl3 in the range of 0 to 18mM and filled it into clean glass vials, which
we sealed with paraffin stripes. The volume fraction ϕ of BSA corresponding to the
concentration 200mg/ml is 13.6% [137]. Additionally, we prepared a very dilute
salt-free solution sample with 2mg BSA per 1ml D2O. For several hours we homog-
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enized the sample solutions with a laboratory shaker until the BSA was completely
dissolved. After 3 weeks of equilibration the solutions showed no visible traces of
aggregates or precipitates. Using pH-indicator stripes we determined the pD val-
ues of the 200mg/ml BSA solutions. For the salt-free solution and the highest salt
concentration we measured pD 6.7± 0.5 and pD 5.5± 0.5, respectively. All samples
were prepared at a room temperature of 297K.

10.3.2 Small-Angle X-Ray Scattering
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Figure 10.1: Normalized SAXS scattering intensity I(q)/(∆ρ2 V 2 np) of BSA
200mg/ml aqueous (D2O) solutions at room temperature of 297K containing dif-
ferent concentrations of YCl3 (see legend). The data were recored at the ESRF
beamline ID02. Inset: corresponding structure factor S(q) calculated from Eq. 10.1
by estimating the form factor P (q) from a BSA 2mg/ml aqueous (D2O) solution
sample. Note the pronounced protein-protein correlation peak qm ≈ 0.08Å−1 (indi-
cated by the arrow) is only discernible for salt concentrations cs < 7mM. For higher
salt concentrations the correlation peak disappears, indicating that the Coulomb
repulsion between the protein in solution becomes very weak.

We carried out the small-angle X-ray scattering (SAXS) experiments at the
ID02 beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble,
France). The X-ray beam with a cross section of 0.2 × 0.4mm2 (vertical and hor-
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izontal, respectively) had an energy of 16.062 keV corresponding to a wavelength
λ = 0.77Å. The SAXS detector was located 2m from the sample, yielding an ac-
cessible q-range from 2 · 10−3 Å−1 to 5 · 10−1 Å−1 setting the probed length scales
l = 2π/q to 12.6Å ≤ l ≤ 3.1 · 103 Å. For each measurement approximately 100µl
of protein solution was filled into a TeflonR© tube and part of it was pushed into
an adjacent quartz capillary tube with an inner diameter of 1.9mm using a syringe
pump controlled by a step-motor. To avoid beam damage of the protein solution the
SAXS counting time per illuminated spot on the sample was 0.05 s – 0.3 s and the
spot was exchanged after each exposure. After each measurement the capillary tube
was cleaned with deionized water containing a detergent. Additionally, we measured
water as background in exactly the same way as the protein solutions. Employing
the standard online reduction tool SAXS utilities, we reduced the raw data by cor-
recting for transmission, detector sensitivity and capillary thickness [117]. From the
resulting scattering intensity we subtracted the water background taking the protein
volume fraction into account and calculated the absolute intensity using water as
calibration standard [120].

With SAXS we measure the differential scattering cross-section dΣ(q)/dΩ, which
for a monodisperse solution of dissolved proteins factorizes as follows

dΣ(q)

dΩ
= ∆ρ2 V 2 np P (q)S(q). (10.1)

Therein, np is the number density of the scattering particles, each having a volume
V . The scattering vector q = 4π/λ sin(θ/2) depends on the scattering angle θ and
the wavelength λ of the X-rays. The contrast relative to the featureless solvent
background is expressed by the average excess scattering length density ∆ρ = ρ−ρs
with ρ and ρs being the average scattering length density of the particle and the
solvent, respectively. The form factor P (q) is the Fourier transform of the particle
shape:

P (q) =
〈
|f(q)|2

〉
Ω

(10.2)

f(q) =
1

V

∫

V
exp [iq r] d3r, (10.3)

in which the angular brackets denote the average over all orientations of q = q eΩ

with eΩ being the unit vector pointing into the solid angle Ω. Thereby, we assume
that in solution the protein orientation is equally distributed. In non-diluted system,
where interactions are present, the scattering intensity is additionally modulated by
the interparticle structure factor,

S(q) =

〈
1

N

N∑

j,k=1

exp [iq (rj − rk)]

〉
, (10.4)

where rj are the position vector of the jth particle. The angular brackets denote
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the ensemble average using the equilibrium conformational density distribution of
the system. If the system is isotropic the particle structure S(q) factor simplifies to

S(q) = 〈S(q)〉Ω = 1 + 4π np

∫ ∞

0
[g(r)− 1]

sin(q r)

q r
r2 dr. (10.5)

Therein, the pair-correlation g(r) function describes the spatial arrangement set by
the interparticle interactions. For very dilute sample (np ≈ 0) we have S(q) = 1,
consequently the q-dependence of the scattering intensity in Eq. 10.1 originates only
from the form factor.

Since the X-rays illuminate a small constant volume within the much larger
sample volume, we can classify the observed system as an open NV T–system with
constant V and T and where the number of particles N can fluctuate. This allows
the following interpretation of the structure factor in the q → 0 limit:

lim
q→0

S(q) =
χT

χideal
T

= 1− 2npBw (10.6)

Bw = −1

2

∫ [
e−β w(r) − 1

]
d3r, (10.7)

in which β = (kB T )−1, with T being the system temperature and kB the Boltzmann
constant. χideal

T and χT are the isothermal compressibility of the proteins in solution
and an ideal gas [116], respectively. The effective potential between two proteins
separated by a distance r ensemble-averaged over the remaining proteins in solution
is described by the potential of mean force, reading [116]

w(r) = −kB T log [g(r)] . (10.8)

Note, that the integral in Eq. 10.7 shares similarities with the second virial coeffi-
cient. Thus, analogously to the second virial coefficient, Bw characterizes the nature
of the potential of mean force, in other words: Bw < 0 and Bw > 0 indicate that
attraction and repulsion are dominating, respectively. Consequently, S(q → 0) < 1

indicates that the protein solution is controlled by repulsion, while S(q → 0) > 1 is
a sign that attraction prevails.

10.3.3 Neutron Spin-Echo Spectroscopy

The neutron spin-echo experiments were performed at the Institut Laue-Langevin
(ILL, Grenoble, France) using the IN15 spectrometer at incident wavelengths 8,
10 and 16Å for momentum transfers q ranging from 0.023 to 0.23Å−1 allowing
to observe the length scale range 27.3Å ≤ l ≤ 273Å. In this configuration the
instrument covers a Fourier time range from 0.35 ns ≤ τ ≤ 207 ns. Prior to the
experiment, we dispersed the solutions into thin quartz cuvettes with a thickness of
1mm. The measured raw data were reduced by applying standard IGOR routines.
Using neutron spin-echo scattering we probe the intermediate scattering function of
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Figure 10.2: Normalized dynamic structure factor of a 200mg/ml BSA aqueous
(D2O) solution with 10mM YCl3 at room temperature (circles) for different mo-
mentum transfers q. The data were recored at the IN15 spectrometer at the ILL.
The solid lines superimposed to the data are fits with a single exponential within
the short-time regime indicated by the two vertical dashed blue lines.

the protein solution, reading

S(q, τ) =
1

N

∑

i,j

〈exp [−iq {ri(0)− rj(τ)}]〉 , (10.9)

in which ri(τ) is the coordinate vector of the ith atom in a molecule at Fourier
time τ . For q-values larger than the particle-particle correlation peak position qm
of the structure factor S(q), Holmqvist and Nägele [74] showed that the normalized
dynamic structure factor can be written as follows:

f(q, τ) =
S(q, τ)

S(q)
≈ exp

{
−q2 Ds(q)

ds
W (τ)

}
. (10.10)

Therein, W (τ) is the mean-squared displacement of the diffusing particle, Ds(q) is
the short-time diffusion function and ds is the short-time self-diffusion coefficient.

In the following, we will discuss the time-scale behavior for W (τ) and, thereby,
elucidate the meaning of ds. Subsequently, we will briefly explain the asymptotic be-
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havior ofDs(q) for q � qm. In a very dilute solution the slope ofW (τ) coincides with
the dilute-limit diffusion coefficient d0 in the diffusive regime τ � τb ≈ m/ (6π ηRh).
Therein, m is the mass of the diffusing particle with hydrodynamic radius Rh, η is
the viscosity of the solvent and d0 is given by the well-known Stokes-Einstein diffu-
sion constant d0 = kB T/ (6π η Rh). By contrast, for a non-dilute solution, different
slopes of W (τ) are caused by the time-scale dependent diffusive behaviour of the
particles [115, 40]. Hydrodynamic interactions arise on the time scale

τh ≈
R2
h ρ

η ϕ
, (10.11)

with the solvent density ρ and the particle volume fraction ϕ, affecting the so-called
short-time diffusive regime τh � t� τi. The structural relaxation time

τi ≈
R2
h

d0
(10.12)

defines the onset of caging effects on the particle center-of-mass diffusion due to
direct interparticle interactions. On this time sale W (τ) yields the short-time self-
diffusion coefficient by

W (τ)/τ = ds. (10.13)

Short-time self-diffusion is mainly affected by hydrodynamic interactions and the
equilibrium structure of the solvent. For t� τI long-time self-diffusion is observed,

W (τ)/τ = dl, (10.14)

affected by both hydrodynamic and direct interactions [40]. In Eq. 10.10 the short-
time diffusion function is

Ds(q) = d0
H(q)

S(q)
. (10.15)

Therein, H(q) is the hydrodynamics function, reflecting the influence of of hydrody-
namic interactions. The hydrodynamic function can be decomposed as follows [40]:

H(q) =
dS
d0

+Hd(q) (10.16)

for q � qm the distinct part Hd(q) vanishes, in other words

Ds(q) ≈ ds. (10.17)

10.4 Results and Discussion

We commence this section by reviewing the critical salt concentration, which in-
duces a surface charge of BSA close to zero. Then we present the SAXS results and
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Figure 10.3: Short-time diffusion function Eq. 10.15 for a 200mg/ml BSA aqueous
(D2O) solution at room temperature for various YCl3 concentrations (circles). The
solid lines superimposed on the data are guides to the eye. For q � qm the diffusion
function Ds(q) converges to the short-time self-diffusion coefficient ds.

discuss them in context with the critical salt concentration. Thereby, we quantify
the nature of the potential of mean force between the proteins in solution at differ-
ent concentrations of the trivalent salt YCl3. In the subsequent section we comment
on the results from the dynamic response of the samples as measured with neutron
spin-echo spectroscopy and will give evidence for the existence of dynamic density
inhomogeneities. Finally, we combine the results from the static and dynamic scat-
tering by introducing a local crowding parameter quantifying the protein density
inhomogeneities induced by the addition of YCl3.

10.4.1 Critical Salt Concentration

Fig. 10.4 displays a photograph of a series of BSA 200mg/ml BSA aqueous (D2O)
solutions at room temperature with YCl3 concentrations around the critical salt
concentration c∗. The onset of the formation of macroscopic clusters is evidenced
by the abruptly increased turbidity of the solution (to the right of the vertical
line). This defines the critical salt concentration, which we determined by eye to
be c∗ = (19 ± 0.5)mM. According to findings by Zhang et al. [185, 186] increas-
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c∗

Figure 10.4: Photograph of glass vials containing 200mg/ml BSA aqueous (D2O)
solutions at room temperature with YCl3 concentrations (see labels on vials). The
vertical blue line indicates the critical salt concentration c∗ = (19± 0.5)mM in the
present case (cp = 200mg/ml). Below c∗ the solution is homogeneous and above c∗

abruptly becomes turbid and shows visible aggregates (to the right of the vertical
line).

ing the salt concentration up to a distinctive concentration c∗ = 19mM induces a
charge inversion of the initially highly negatively charged BSA molecules [21]. Most
importantly, they found experimental evidence that BSA possess specific binding
sites for the Y3+-ions, which are gradually occupied with increasing salt concentra-
tion. Therefore, the bound ions alter the surface charge. Furthermore, by employing
Fourier transform infrared spectroscopy and circular dichronism, they showed that
the secondary structure of BSA in the presence of Y3+-ions is conserved.

10.4.2 SAXS Data

Fig. 10.1 shows the normalized SAXS scattering intensity of BSA 200mg/ml aqueous
(D2O) solutions at room temperature of 297K with different YCl3 concentrations
cs. The inset to the figure contains the corresponding structure factor calculated
from Eq. 10.1 by using the dilute BSA solution sample (2mg/ml) as approximation
for the form factor P (q). For cs < 7mM we observe a pronounced protein-protein
correlation peak qm at approximately 0.08Å−1, corresponding to a nearest neighbor
distance d = 2π/qm = 78.6Å. For higher salt concentrations the correlation peak
disappears, indicating that the Coulomb repulsion between the protein in solution
becomes very weak. Investigating the structure factor at q approaching zero allows
to characterize the nature of the intermolecular potential of mean force Eq. 10.8.
To this end, we employ a 2nd-order fit polynomial extrapolation of the scattering
intensity to q = 0 over the region 0.006Å−1 ≤ q ≤ 0.01Å−1 to obtain the nor-
malized isothermal compressibility, which is depicted in Fig. 10.5. We observe a
dramatic increase of χT /χideal

T when cs approaches the critical concentration c∗, in-
dicated by the green vertical line. When crossing c∗ we observe a transition from a
clear homogeneous phase with no appreciable light scattering to a phase containing
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Figure 10.5: Dependence of the normalized isothermal compressibility χT /χideal
T

on the Y Cl3 concentrations cs (purple circles). The blue line denotes a fit with the
scaling law Eq. 10.18. Thereby, we skipped the data point at the salt concentrations
cs = 10mM, since it appears to be an outlier. The dashed blue line denotes the 95%
confidence interval of the fit. For χT /χideal

T < 1 the interaction is repulsive and for
χT /χ

ideal
T > 1 the interaction is attractive (the boundary χT /χideal

T = 1 is indicated
by a gray dashed line).

visible macroscopic clusters. Motivated by this observation, we tentatively model
the behavior of χT (cs) /χ

ideal
T near the critical point with the general form of a phase

transition [156]:

χT (cs) = χT (0)

(
ccs − cs
ccs

)−γ
. (10.18)

A fit to the data yields the critical-point exponent γ = 3.5±1.4, the proportionality
factor χT (0)/χideal

T = (1.2 ± 4.2) 10−2 and the critical point ccs = (25.3 ± 3.7)mM.
Notably, a comparison of the calculated critical point ccs = (25.3 ± 3.7)mM with
Fig. 10.4 shows that ccs within the error bars coincides with a salt concentration
regime, in which the protein solution is separated into two phases.

The normalized isothermal compressibility quantifies the competition between
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repulsion and attraction of the potential of mean force between two proteins in
solution. This becomes evident, when we decompose Eq. 10.7 into an attractive and
repulsive contribution:

Bw = Bw>0 +Bw<0 (10.19)

Bw>0 = −1

2

∫

w(r)>0

[
e−β w(r) − 1

]
d3r

Bw<0 = −1

2

∫

w(r)<0

[
e−β w(r) − 1

]
d3r.

Bw>0 quantifies the strength of the repulsion and is always positive. Conversely,
Bw<0 accounts for the contribution of attraction to the potential of mean force and
is always negative. Hence, the balance between repulsion and attraction crucially
determines the sign of Bw and, thereby, whether χT /χideal

T is below or above unity.
For salt concentrations cs < 14mM, the isothermal compressibility of the system is
χT /χ

ideal
T < 1, which indicates that the intermolecular mean force is repulsive. In a

salt-free solution BSA is highly negatively charged [21] and therefore the long-range
Coulomb repulsion dominates the interaction. Due to their short range, attractive
interactions play a less important role. The effects of the addition of YCl3 are
twofold: In D2O the salt dissociates into Y3+ and Cl−. A fraction of the salt ions
remain in the solution and screen the protein surface charge. Thereby, they reduce
the range of the repulsion. The other fraction of the Y3+-ions occupy specific bind-
ing sites on the protein surface and therefore lower the net surface charge [185, 175].
Consequently, the surface net charge is approaching zero and therefore the repulsive
part of the potential is weakened. Synchronously, the short-range attraction grad-
ually becomes stronger. This coincides with the observation χT /χideal

T > 1 for salt
concentrations cs ≥ 14mM. In an attraction dominated system, the formation of
equilibrium clusters is favored and causes fluctuations in the local particle density,
which evidently will affect the dynamical response of the system [132, 27, 99].

10.4.3 Spin-Echo Data

Fig. 10.2 shows the normalized dynamic structure factor f(q, τ) of a 200mg/ml
BSA aqueous (D2O) solution with 10mM YCl3 at room temperature for different
momentum transfers q. With the hydrodynamic radius Rh = 3.66 nm of BSA calcu-
lated from results from dynamic light scattering [62] and T = 297K, we determine
the short-time regime for self-diffusion of BSA in D2O from Eq. 10.11 and Eq. 10.12
yielding τh ≈ 89 ps � τ � τi ≈ 255 ns. For 1 ns ≤ τ ≤ 50 ns (indicated by the
two vertical dashed blue lines) there is no departure of f(q, τ) from a single ex-
ponential for fixed q, indicating that we are indeed in the short-time limit. From
the fit we retrieve the short-time diffusion function Ds(q), which is illustrated in
Fig. 10.3. In accordance with the SAXS data Ds(q) has a pronounced minimum
for q ≈ qm = 0.08Å−1, which is disappearing for higher salt concentrations. For
q > qm we observe a convergence to a constant value. Consequently, by averaging
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Figure 10.6: Short-time self-diffusion coefficient ds extracted from the short-time
diffusion function Ds(q) for a 200mg/ml BSA aqueous (D2O) solution at room
temperature for various YCl3 concentrations (purple circles). The solid line super-
imposed to the data is the phenomenological model function Eq. X. The vertical
solid line indicates the salt concentration causing a nearly zero charge of the protein.

Ds(q) for q > 0.15Å−1 we determine the asymptotic behavior of Ds(q) giving the
short-time self-diffusion coefficient ds. Fig. 10.6 depicts the normalized short-time
self-diffusion coefficient ds (cs, ϕ) /ds(0, ϕ) depending on the YCl3 concentration cs.
We recognize that with increasing salt concentrations the diffusion of the protein
significantly slows down. At a salt concentration cs ≈ c∗/2 the decrease is maxi-
mal and when cs approaches the critical concentration c∗ the slope of ds becomes
smaller. Using the phenomenological two-state transition model:

ds (cs, ϕ)

ds(0, ϕ)
= p+ (1− p) Θ

[
cs − c0

s

∆c

]
(10.20)

with the smooth step function Θ(x) = 1/[1 + exp(x)], we can adequately describe
the short-time self-diffusion coefficient and obtain the following fit parameters: p =

0.15±0.19, c0
s = (11.9±2.1) mM and ∆cs = (3.6±1.6) mM. Remarkably, we observe

that c0
s ≈ c∗/2 within the error bars.
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Figure 10.7: Dependence of the local crowding factor, calculated from Eqs. 10.21
and 10.22, on the normalized isothermal compressibility (purple circles). The green
vertical line denotes the normalized isothermal compressibility of a protein solution
with a salt concentration cs = c∗. Note that χT /χideal

T > 1 and χT /χideal
T < 1 indicate

an attractive and repulsive system, respectively.

We speculate that with the increasing attraction-dominated nature of the po-
tential of mean force the formation of transient clusters [27, 99] is favored, which for
low salt concentrations have a lifetime shorter than the instrumental time resolution
due to a the high surface charge of the proteins. With the salt-induced attenuation
of the Coulomb repulsion the lifetime of the cluster increases and finally rapidly
diverges in the vicinity of the critical salt concentration c∗. This coincides with
our observations that slightly above c∗ the BSA solution becomes turbid and shows
macroscopic static clusters (see Fig. 10.4). Due to the short lifetime of transient
clusters, the proteins can be considered as independent and therefore the dynamical
response of the system will be essentially determined by monomers. Importantly,
Liu et al. [99] point out that transient clusters are strictly speaking not clusters, but
rather can be conceived as fluctuating inhomogeneities in the particle density.

The short-time self-diffusion coefficient is sensitive for changes in the equilibrium
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structure of the solution and therefore unambiguously can confirm the existence of
dynamic density homogeneities [99]. This is for the following reason: Self-diffusion
measures the diffusion of a single molecule – the so-called tracer molecule – in the
solvent surrounded by the other molecules for a very short time, such that the
tracer molecule moves a distance comparable with its own molecular diameter. Its
diffusion is mainly determined by the hydrodynamic interactions with the surround-
ing molecules [116, 162, 115]. This motivates to introduce a local volume fraction
ϕlocal, which crucially determines the short-self diffusion coefficient. In previous
work [137] we found that the short-time self-diffusion coefficient ds of globular pro-
teins in salt-free solution can be accurately described by effective colloidal hard
spheres. Generalizing our model to the present case of local volume fractions yields

ds (cs, ϕ) = d0 fHS

[(
Rh
R

)3

ϕlocal (cs)

]
(10.21)

in which fHS is the theoretical reduced translational diffusion function of hard-
spheres [115, 162] and d0 the dilute limit translational diffusion coefficient and
R ≈ 2.68 is the radius of a sphere with the same volume as the bare protein vol-
ume [137]. If no salt is present the proteins are charged and have the smallest local
density ϕlocal(0) = ϕ. With increasing salt concentration the local density increases
relative to ϕ by

ϕlocal (cs) = ξ (cs) ϕ, (10.22)

thereby, introducing the local crowding factor ξ (cs).
Fig. 10.7 contains the local crowding factor ξ calculated from Eq. 10.21 and

Eq. 10.22 depending on the normalized isothermal compressibility. We observe,
an increase of the particle density inhomogeneities, when the system evolves from
a repulsion- (χT /χideal

T < 1) to a attraction-dominated (χT /χideal
T > 1) solution.

ξ > 1 quantifies the formation of local inhomogeneities in solution, while ξ = 1

corresponds to a homogenous solution. When the attraction is maximal, the initial
volume fraction is increased by a factor ξ = 1.9, causing a decrease of the nearest
neighbor distance [138] by a factor ξ1/3 ≈ 1.2. This moderate change of the nearest
neighbor distance indicates that the clusters are not tightly bound, but rather can be
considered as unattached assemblies of proteins, which is consistent with a picture
of dynamic local inhomogeneities.

10.5 Conclusions

In conclusion, we observe the formation of local inhomogeneities in solution of BSA
by progressively suppressing the charge stabilization through the addition of a mul-
tivalent salt. In order to quantify these inhomogeneities, we have described the
response of the short-time self-diffusion of a protein to the local inhomogeneities by
a generalized a model of effective spheres introduced in earlier work [137]. Thereby,
we present a local crowding factor quantifying the local inhomogeneities in the so-
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lution.
Moreover, from the knowledge of the reentrance effect discovered for globular

proteins for the first time by Zhang et al. [185], we can further conclude that weak-
ening the Coulomb repulsion between by the addition of a multivalent salt gradually
increases the life time of local inhomogeneities. We have found that the maximum
local crowding factor corresponds to a decrease of 20% of the nearest neighbor dis-
tance of the protein, corroborating the picture of dynamic local inhomogeneities
rather than tightly bound clusters. Above the critical salt concentration c∗ we ob-
serve the discontinuous onset of the formation of macroscopic clusters indicating an
abrupt increase of the cluster lifetime.

The experimental data and the analysis we have shown, proves that in absence
of a cluster peak in the structure factor, the dynamical response of the system can
unambiguously reveal the existence of dynamic local inhomogeneities.
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Chapter 11

Summary & Conclusion

The aim of the present thesis was to study the dynamics of a model globular
proteins, namely bovine serum albumin, in highly concentrated electrolyte

solution as a function of several parameters such as the protein concentration, the
ionic strength of the solution, the valence of the ions, and the temperature around
the protein denaturing point. This work was inspired by the simplified picture that
living cells operate through the motion of proteins embedded in a “crowded” aqueous
solution of various macromolecules and salts [49]. Therefore the motivation arose
from the pursuit to understand proteins under biologically relevant conditions by ex-
ploiting knowledge and methods established in soft matter macromolecules research.

In the following three paragraphs, we will consecutively discuss the findings of
our investigation on the effects of crowding, temperature related to protein thermal
denaturation, as well as ion strength and valence on the dynamics of the globular
protein BSA in aqueous solution. Thereby, we will briefly describe the steps that
took us through the research process, review the results and draw a conclusion. At
the end of each paragraph, we will discuss future perspectives on the basis of both
our results and recent findings by other authors.

Crowding Molecular crowding is an essential feature of the living cell, affecting
reaction kinetics and equilibria in the cell [49, 188]. Cellular function thus cannot be
understood without a systematic understanding of transport processes in crowded
media. Therefore, we studied the protein self-diffusion in crowded aqueous solutions
of BSA as determined from quasi-elastic neutron backscattering on nanosecond time
and nanometer length scales. In order to mimic the “crowded” cellular environment,
we investigated the protein volume fraction range 7 % ≤ ϕ ≤ 30 % and the fun-
damental case where tracer particle and crowding agent are identical proteins. We
observed a significant slow down of the self-diffusion with increasing volume fraction.
Moreover, we revealed that the diffusion coefficient at biological volume fractions be-
tween 20 and 30% [49] is strongly decreased compared to the dilute limit. We showed
that mapping the proteins on effective hard spheres with an identical dilute-limit
hydrodynamic radius allows describing the observed volume fraction dependence of
the diffusion with very good accuracy in terms of colloidal short-time self-diffusion,
outlining the important role of hydrodynamic interactions on crowding behavior.
This modeling approach was based on an experimentally established protein shape
model without adjustable parameters, i.e. an oblate ellipsoid from the fitting of
SAXS data. We conclude that general features of protein diffusion can be under-
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stood in terms of existing colloidal hard sphere models if anisotropy is considered
using reasonable protein modeling.

The success of this simple mapping of the complex protein on an effective sphere
is promising for further investigations. Assuming that globular proteins share com-
mon physical properties, it is crucial to validate our findings for other globular pro-
teins than BSA. Moreover, in a recent publication Ando and Skolnick [7] showed by
computer simulations that the size of crowding agents has an effect on self-diffusion.
This study inspires to systematically investigate the size and shape dependence of
crowders on diffusion to better understand how the molecular shape heterogeneity
in the cytoplasm influences transport-driven processes.

Thermal Denaturing At elevated temperatures proteins denature and form ran-
dom coils, thereby they lose their biological function. Consequently, denaturing de-
fines an upper temperature limit for the existence of live. Furthermore, it is assumed
that denaturing is also a key for understanding protein folding. In a simulation study
Kudlay et al. [91] provided evidence that crowding can enhance structural stability
and therefore effect denaturing. Using both quasi-elastic and fixed-window neutron
spectroscopy, we studied the dynamics of highly concentrated aqueous protein so-
lutions of BSA around the denaturing transition. Within the temperature range
280K < T < 370K, we recorded the total mean-squared displacement

〈
u2
〉
. Out-

side of the denaturing regime, we observed that
〈
u2
〉
increases monotonically with

T , but at the denaturing transition it decreases strongly. We rationalize this ob-
servation as a transition from a liquid protein solution to a gel-like state in which
the proteins form a cross-linked network. In order to quantify and understand
this observation, we developed a novel physical framework for the unfolding and
entanglement allowing to analytically describe

〈
u2
〉

(T ). The combination of the
quasi-elastic and fixed-window scattering data enabled us to decompose

〈
u2
〉
into

the vibrational, subunit diffusive, and global diffusive contributions. The charac-
teristic transition temperatures defining the denaturation range became observable.
We rationalize that structural change and entanglement as well as cross-linking of
the proteins significantly slow down the diffusion and, hence, explain the drop in〈
u2
〉
in the denaturing regime.

Recently, Stagg et al. [155] showed that crowding can significantly shift the de-
naturing temperature of globular proteins by increasing their compactness. This
observation inspires to quantify and understand the entropic contribution of crowd-
ing to unfolding. To this end our novel analysis can be enhanced by incorporating a
transition model similar to that by Zimm and Bragg [187] allowing to measure the
entropic penalty of unfolding.

Salt Effects The cytoplasm contains ions, which change the ionic strength of the
aqueous solution. Furthermore, it was found that multivalent ions can adsorb onto
the surface of globular proteins and change the net surface charge [185].

To study the effects of the presence of salt ions on the mobility of BSA we
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conducted two studies.
In the first study, using cold neutron backscattering we investigated the short-

time diffusion of BSA in crowded aqueous solution, inter alia as function of the ionic
strength using the monovalent salt NaCl. We observed that the addition of salt has
little or no effect on the diffusion, although charge screening is assumed to change
the coupling strength. We conclude that within the measured accuracy the short-
time scale diffusion coefficient is not affected by the ionic-strength. This observation
is in accordance with predictions from colloid theory for the following reason: the
theoretical functions for colloidal hard-spheres and charged hard-spheres are very
similar in the short-time limit [115, 4, 33, 165, 162]. Consequently, we can predict
that charge screening is not discernible within the given experimental accuracy.

The second study looked into the effect of a multivalent ion that can adsorb
onto the surface of the protein and change its net charge. We combined spin-
echo spectroscopy and small-angle X-ray scattering to investigate the dynamics and
structure of solutions of BSA near the transition from a homogeneous to a cluster-
dominated phase. To this end, we tuned the repulsive part of the protein interactions
by charge-control using the trivalent salt YCl3. We observe a substantial decrease
of the short-time self-diffusion coefficient with increasing the salt concentration up
a distinct value c∗ at which the proteins visibly aggregate [185]. We attribute this
slow down of the diffusion to the formation of local inhomogeneities in the solution
of proteins. In order to quantify these inhomogeneities, we described the response of
the short-time self-diffusion of a protein to the local inhomogeneities by generalizing
the model of effective hard spheres, which we have briefly explained in the first
paragraph. Thereby, we introduced a local crowding factor quantifying the local
inhomogeneities. We found that the maximum local crowding factor corresponds to
a decrease of 20% of the nearest neighbor distance of the protein, corroborating the
picture of dynamic local inhomogeneities rather than tightly bound clusters. Above
the critical salt concentration c∗ we observe the discontinuous onset of the formation
of macroscopic clusters indicating an abrupt increase of the cluster lifetime. From
the knowledge of the reentrance effect discovered for globular proteins for the first
time by Zhang et al. [185], we can conclude that weakening the Coulomb repulsion
by the addition of a multivalent salt, which adsorb to the protein surface and change
the net charge, significantly changes the mobility of the protein due to the formation
of local inhomogeneities.

This seems to be a remarkable mechanism to control or disturb transport-related
processes and inspires further research on small organic ions that can bind to the
surface. This balance of repulsive and attractive interaction is crucial to understand
the crystallization of proteins [161, 63]. A balance in favor of attraction can cause
protein aggregation, which is believed to be a trigger of fiber formation [172] and
neurodegenerative diseases such as Parkinson’s disease [93, 139].
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Appendix A

Appendix

A.1 Paalman-Pings Coefficients

Eliminating the sample container signal ICC from the measured intensity signal ISCSC of
the sample requires an absorption calculation based on the theory of Paalman and
Pings [122]. They showed that self-shielding and absorption of neutrons traveling
through the sample and the sample container has to be considered when subtracting
the sample container from the sample signal. For the sample container correction
they derived the following equation:

IS =
1

AS
SC

(
ISCSC −

AC
SC

AC
C

ICC

)
, (A.1)

in which IS is the scattering intensity from the sample, if there were no absorption or
self-shielding effects. AS

SC, AC
SC and AC

C are the q depended so-called Paalman-Pings
coefficients. For convenience, we introduce the following expressions:

αSC =
1

AS
SC

(A.2)

βSC =
1

AS
SC

AC
SC

AC
C

,

to which we will refer to as Paalman-Pings coefficients in Sec. 5.4. Note that the
upper index in Eq. A.1 denotes the volume effecting the absorption-based loss of
intensity and the lower index indicates which material is contained by the volume.
Depending whether the index S is at the upper or lower position, S denotes the
sample volume or the sample solution, respectively. Analogously, C denotes either
the can volume or the can material. Fig. A.1 illustrates the path of a neutron
beam traveling through the sample container filled with a sample solution. On
their path neutrons of the beam can be either scattered or absorbed, causing an
attenuation of the neutron beam intensity. The Paalman-Pings coefficients measure
the attenuation of the neutron beam intensity that is accumulated along the path
γ of a neutron with initial wavevector k scattered in the volume V (which either
denotes the sample volume S or the volume C of the sample container):

AV
Σ(q) =

1

V

∫

V
exp

[
−
∫

γ(x)
Σ(x′) ds(x′)

]
d3x. (A.3)



Figure A.1: A neutron beam illustrated by a red arrow with the initial wavevector k
is scattered at the position x in the sample container volume and therefore changes
its wavevector to k′ = k+q. Therein, q denotes the momentum transfer vector. The
sample container walls (gray) and the sample solution (yellow) have the different
attenuation coefficients ΣC and ΣS (yellow), respectively.



Attenuation Coefficient

Sample density [g/cm3] Σ [cm−1]

Vanadium foil 6.11 1.673
Aluminum sample container 2.7 0.147
Aqueous (D2O) BSA (200mg/ml) 0.174 0.708
Pure D2O 1.1056 0.649

Table A.1: Linear attenuation coefficient of different samples at room temperature
for neutrons with wavelength λ = 6.4Å.

Therein, Σ(x) is the linear attenuation coefficient at position x and ds(x) denotes
the infinitesimal line element of the line integral. If the lower index of the Paalman-
Pings coefficient A in Eq. A.3 is Σ = SC then the attenuation coefficient is Σ(x) =

ΣS ΩS(x) + ΣC ΩC(x), whilst a lower index Σ = S implies that Σ(x) = ΣS ΩS(x)

(an analog consideration holds for Σ = C). Therein, the function ΩV (x) is unity for
x ∈ V otherwise zero. A neutron with initial wavevector k scattered at position x

and thereby changing its wavevector to k′ = q + k travels along the path

γ(x) =

{
x + tk/k if t ≤ 0

x + tk′/k′ if t > 0
(A.4)

with t ∈ [−∞,∞]. The attenuation coefficient is calculated from both the neutron
scattering and absorption cross-section:

Σ = ρ (σcoh + σinc + σabs) . (A.5)

Therein, ρ is the number density of the scattering particles. Values for the cross-
section of various chemical elements can be found in Ref. [1]. Table A.1 shows some
exemplary attenuation coefficients, relevant for this thesis.

A.2 Correction of the specific volume measured by Den-
sitometry

In the following we want to elaborate the influence of a hydration shell of water
molecules, sticking to the protein surface, on the apparent specific volume ϑ, mea-
sured by densitometry. This will allow us to obtain the specific volume of the
non-hydrated protein, denoted by ϑp. Within the framework of densitometry the



apparent specific volume of a protein is determined by

ϑ =
1

ρbuff

(
1− ρsol − ρbuff

c

)
(A.6)

where c is the mass concentration of the proteins in the buffer solution with density
ρbuff. Finally, ρsol denotes the density of the protein solution. In a simple picture
we have Np proteins each with a volume Vp and a mass mp, surrounded by n water
molecules occupying a volume Vsp. In the bulk water in which these hydrated
proteins are submerged we have Ns water molecules each with volume Vs. We have
to distinguish between water molecules in solution and those which are sticking to
the proteins surface since they occupying different volumes. Using all these variables,
the solvent density reads

ρsol =
Npmp + (Ns + nNp) ms

Np Vp + (Ns Vs + nNp Vsp)
(A.7)

The buffer density is simply ρbuff = ms/Vs. Substitute these expressions into equa-
tion A.6 yields

ϑ =
Vp
mp

+
n (Vsp − Vs)

mp
(A.8)

By introducing the hydration level η = nms/mp, the bulk water density ρbulk =

ms/Vs and the density of the hydration shell water ρhydr = ms/Vsp as well as the
proteins dry specific volume ϑp = Vp/mp ϑ, we obtain finally the relation

ϑp = ϑ+ η

(
1

ρbulk
− 1

ρhydr

)
(A.9)

Using densitometry, Lee and Timasheff [96] determined the apparent specific volume
ϑ = 0.735ml/g for the native structure of BSA in solution. Taking the average of
published values, we assume the protein hydration level η = 0.4g/g [92, 44, 135] and
a density of protein-bound water which is 13% higher than bulk water [127, 106, 158].
We thus obtain the specific volume ϑp = 0.7795ml/g which is in agreement with
(0.7763 ± 0.0067)ml/g computed from the amino acid sequence of BSA following
reference [126].

A.3 Volume Fraction Calculation

A globular protein can be seen in a simple model as compact solid particle with
a layer of water molecules sticking to its surface. Even if the macromolecule is
somehow porous or permeable to the solvent, the fluid inside it is trapped, moves
along with it, and belongs to the hydrodynamic particle. With this simple notion of
a protein we will try derive with a formula for the volume fraction. In the following
we use the variables which we introduced in the previous section without further
explanation. Accounting for the volume of the protein, the number density of the
protein with hydration shell is



cn =
Np

NpVp +NsVs + nNpVsp
(A.10)

During the preparation of a protein solution, we put a mass of Np ·mp of proteins
together with a total volume (Ns + n ·Np)Vs of water, where (Ns + n ·Np) is the
total number of water molecules. Thereby, we introduce the quantity c, which is
not precisely a concentration but merely a preparative: detail.

c =
Npmp

(Ns + nNp)Vs
. (A.11)

Expressing Np in dependence of c and substituting into equation A.10 yields

cn =
c

mp

(
1 + c

[
Vp
mp

+ n
mp

(Vsp − Vs)
]) (A.12)

When introducing ϑp = Vp/mp, η = n ·ms/mp and the densities ρbulk = ms/Vs as
well as ρhydr = ms/Vsp becomes

cn =
c

mp

(
1 + c

[
ϑp + η

(
1

ρhydr
− 1

ρbulk

)]) (A.13)

The volume of a single hydrated protein reads

V = mpϑp +
η ·mp

ρhydr
(A.14)

Eventually, combining equations A.13, A.14 and A.9, the resulting volume frac-
tion φ = cn · V of proteins in the solution depends on the dissolved protein and
hydration shell sizes as follows

φ =
c
(
ϑ+ η

ρbulk

)

1 + c · ϑ (A.15)

As expected, the denominator accounts for the volume contribution of the protein
to the total solution volume. The hydration shell increases the apparent specific
volume with a term η

ρbulk
. We note that the volume effect of the increased water

density in the hydration shell is included in the apparent specific volume ϑ itself
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(
rN
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5.3 Reflection of a neutron beam (red arrows) from a Bragg plane (blue
dashed line) at an angle θ. For reasons of generality the Bragg plane
is not parallel to the surface of the crystal slap (black rectangle). The
incident angle of the neutron beam and the angle of the reflected neu-
tron beam, are ϕ and ϕ′, respectively. Note, that for the crystal of
the analyzers and the monochromator of a backscattering spectrom-
eter the Bragg plane of the reflection is parallel to the surface of the
crystal slap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Reflection curve R(y) of a perfect crystal calculated with Eq. 5.10.
The dimensionless variable y is defined by Eq. 5.11. Within the in-
terval |y| < 1 the reflectivity curve has a plateau. . . . . . . . . . . 69

5.5 The principle of a Doppler monochromator: An incident neutron
beam (red arrow) is backscattered (blue arrow) on a moving single
crystal slap (yellow spherical element). Note the path of the Doppler
monochromator is illustrated by the superposition of time shots. The
transparency level of the illustrated crystal slap is higher if the time
shots are further into the past. Left image: The monochromator ve-
locity is parallel to the direction of the incoming beam (red arrow)
hence the energy of the reflected neutrons (blue arrow) is decreased.
Right image: The monochromator velocity is antiparallel to the di-
rection of the incident beam (red arrow) therefore the energy of the
reflected neutrons (blue arrow) is increased. Note the energy of the
neutrons corresponds to the length of the arrows. . . . . . . . . . . . 71

5.6 Schematic of a 3He-detector using the example of IN10. . . . . . . . 73

5.7 Principle of a backscattering spectrometer.5.7a: Incoming neutrons
are Bragg reflected by rotating disk (PST). A Doppler monochro-
mator alters the velocity of the perpendicularly impinging neutrons.
5.7b Neutrons are inelastically scattered by the sample. 5.7c: Neu-
trons fulfilling the Bragg condition at the analyzer are back-reflected
towards the detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



5.8 Principle of a spin-echo spectrometer. We describe the path of a
neutron beam from the right- to the left-hand side. A beam of un-
polarized neutrons with velocity vector v1 passes through a polarizer
(left-hand gray transparent disk). Thereafter, the neutron spin is
parallel to the magnetic guide field (pointing along the optical axis,
[gray arrow in the middle of the two cylindric solenoids]). When the
neutrons pass a π/2-flipper (orange rectangular plate), the “internal
clock” of the neutrons is switched on by flipping the spin such that
it is orthogonal to the magnetic field B1 of the first solenoid (yellow
cylinder with coils). Within the solenoid the magnetic field is homo-
geneous and points along the optical axis. While transversing the field
the neutron spin (red arrows) is precessing about the field lines. After
scattered from the sample (purple cuboid) the neutron velocity is v2

and the neutron spin is inverted by a π-flipper (orange rectangular
plate). Then, the scattered neutron beam enters a second solenoid
(green cylinder with coils) with a homogeneous magnetic field B2.
Consequently, its spin (red arrow) continuously precessing about the
field lines. Next, the neutrons spin is flipped parallel to the guide-field
by an another π/2-flipper (orange rectangular plate) and transverse
through the analyzer (right-hand gray transparent disk) and finally,
the beams intensity is measured by a detector (blue cylinder). . . . . 77

5.9 Principle of a small-angle scattering instrument. . . . . . . . . . . . . 81

5.10 Quasi-elastic neutron backscattering spectra of a 500mg/ml bovine
serum albumin aqueous (D2O) solution at a temperature of 300K
(purple circles). The data were recorded at the IN16 spectrometer at
the ILL in Grenoble. The solid pink line is a fit of the model function
Eq. 5.55 to the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Hydrogen atoms (blue spheres) of the solvent-exposed side chains
(green) of the homology model of bovine serum albumin (secondary
structure is shown in different colors [purple, white, blue and
cyan]) [175] . These solvent side chains perform spatially confined re-
orientational diffusive motions and therefore significantly contribute
to the quasi-elastic scattering signal. The illustration was generated
by using VMD [77]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.12 Inset: Example backscattering spectrum S(Q,ω) (symbols) recorded
at IN16 for BSA in D2O (c = 500mg/ml, ϕ = 28.5%, T = 300K,
individual detector at q = 0.81Å−1). The magenta solid line is the
fit of the model from Eq. (5.55). The two Lorentzians in Eq. (8.3)
are indicated by the dashed and dash-dotted lines. The orange solid
line denotes the resolution function. Main figure: Fitted γ (symbols)
versus q2 for the full q-range of the example data. The fit of γ = D q2

(blue line) is consistent with simple diffusive behavior. For statistical
reasons the fit range is restricted to q2 < 1.5Å−2. . . . . . . . . . . . 89
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5.13 Incoherent scattering function STR
inc(q, ω) of a diffusing hypothetical

particle of radius r = 36Å at q = 1Å−1 (orange circles). The trans-
lational and rotational diffusion coefficients are Dt = 6Å2/ns and
Dr = 3.1 · 10−3 ns−1, respectively. These values reflect the respective
parameters of bovine serum albumin at room temperature in water.
The dark blue solid line is a Lorentz function fitted to STR

inc(q, ω). The
light blue dashed line is the incoherent scattering function ST

inc(q, ω)

without taking the rotational diffusion into account. Note, that ST
inc

was scaled to the same peak position as STR
inc . . . . . . . . . . . . . . 90

5.14 General apparent diffusion coefficient D(n) (q,Dt, Dr) of a hypothet-
ical diffusing particle of radius r = 36Å(orange circles). The trans-
lational and rotational diffusion coefficient are Dt = 6Å2/ns and
Dr = 3.1 · 10−3 ns−1, respectively. For the calculation we truncated
the sum in Eq. 5.63 at n = 550, since convergence was sufficient. . . 92

5.15 Raw data (dark purple solid circles) for the elastic intensity
S (q, |ω| < ∆ω) of a 500mg/ml BSA aqueous (D2O) solution upon
heating from 280 to 370K with 7.4 · 10−2 K/min. The data were
recorded at IN10. Fits of the polynomial Eq. 5.67 to the data at
fixed temperatures are superimposed as purple solid lines. . . . . . . 94

7.1 (a) Backscattering spectra recorded at IN16, ILL, at different Q vec-
tors for a BSA volume fraction of 12.9% without salt at T = 280K,
after normalization to the individual detector efficiencies. After the
subtraction of the water background the data (blue symbols) can
be fitted well by a model function (black line) consisting of two
Lorentzians (red and magenta lines) convoluted with the Gaussian
resolution function (green line). (b) Example correlation functions
I(Q, t)/Ifit(Q, 0) derived from neutron spin echo (NSE) scans for a
BSA volume fraction of 12.9% without salt. The fits are single ex-
ponentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Intensity data from SAXS measurements at BSA concentrations of
100mg/ml (a) and 500mg/ml (b) corresponding to volume fractions
φ = 6.9% (a) and 27% (b), respectively, for increasing NaCl con-
centrations. The dashed line indicates the shift of the maximum
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concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



7.3 Centre-to-centre distance rc-c normalized to the effective radius a =

2.8 nm of BSA molecules in aqueous solution as a function of the
BSA volume fraction φ obtained from SAXS data (circle symbols)
and theoretical estimate according to equation 7.17 (line). By in-
creasing the protein concentration the particles move closer together,
as intuitively expected. The inset shows the geometrical consideration
leading to equation 7.17: the equilibrium positions of the molecules
(corresponding to the full spheres) are the centers of virtual spheres
which establish a closest sphere packing. . . . . . . . . . . . . . . . . 118

7.4 Backscattering: (a) Widths of the narrow Lorentzian versus Q2 for
different protein concentrations which are derived as described in
Sect.7.4.2. The fit Γ = Dinc

appQ
2 defines the apparent diffusion co-

efficient derived from backscattering spectroscopy, the fit range being
restricted to the region where Γ ∝ Q2 holds (see text). Data recorded
on IN16 (square and diamond symbols) and IN10 (circle symbols). (b)
Apparent diffusion constants versus NaCl concentration. While for
different protein concentrations there are obvious differences in Dinc

app,
the addition of salt appears to have little effect. (Corresponding data
recorded on IN10 and IN16. The lines are guides to the eye.) . . . . 118

7.5 NSE: (a) Inverse decay times τ−1 for different experimental condi-
tions. The linear fit τ−1 = DappQ

2 yields an apparent diffusion co-
efficient derived from NSE. (b) Apparent diffusion coefficients versus
NaCl concentration. Decreasing protein concentration and increasing
salt concentration enhance the diffusion. (The lines in (b) are guides
to the eye. The sample temperature was always T = 280K.) . . . . . 120

8.1 Small-angle X-ray scattering intensity for a dilute solution of BSA
(5mg/ml, room temperature) in 150mM HEPES buffer after sub-
traction of background contributions. The data (circle) can be fitted
with the form factor of an oblate ellipsoid (solid line). The deviation
at higher Q is caused from the deviation of the protein shape from
an ellipsoid at smaller length scales. The fitting of scattering data
from several solutions with protein concentration below 10mg/ml and
varying concentration of HEPES buffer and NaCl is consistent with
an oblate ellipsoid with polar semiaxis a ≈ 1.8 ± 0.05 nm and equa-
torial semiaxes b ≈ 4.6 ± 0.15 nm. This protein model of an oblate
ellipsoid (inset lower left corner) is used as input for the further data
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8.2 Inset: Example backscattering spectrum S(Q,ω) (symbols) recorded
at IN16 for BSA in D2O (c = 500mg/ml, ϕ = 28.5%, T = 300K,
individual detector at Q = 0.81Å−1). The magenta solid line is the
fit of the model from Eq. (8.3). The two Lorentzians in Eq. (8.3)
are indicated by the dashed and dash-dotted lines. The orange solid
line denotes the resolution function. Main figure: Fitted γ (symbols)
versus Q2 for the full Q-range of the example data. The fit of γ =

DQ2 (blue line) is consistent with simple diffusive behavior. For
statistical reasons the fit range is restricted to Q2 < 1.5Å−2. . . . . . 132

8.3 Measured diffusion coefficients D for BSA solutions in D2O at T =

280K (blue circles on upper curve) and translational diffusion co-
efficients Dt (purple circles on lower curve) computed from D us-
ing Eq. (8.4) and the theoretical rotational diffusion coefficient from
Ref. [4]. The lines are polynomial fits. The dilute limit Dt(0) (di-
amond symbol) is calculated from results of dynamic light scatter-
ing [62]. The non-coincidence of Dt(0) and the fit to D indicates a
significant rotational contribution. After separation of the rotational
contribution, the translational diffusion coefficientDt is in accordance
with the dilute limit, supporting the validity of our approach. . . . . 133

8.4 Normalized translational self-diffusion coefficients (Fig.8.3) Dt/Dt(0)

(circles) for two different temperatures (red and purple circles denote
280 and 300K, respectively) after separation of the rotational con-
tributions. The purple line superimposed on the data is a guide to
the eye obtained from a polynomial fit indicating the temperature-
independent master-curve. The upper and lower dashed purple lines
indicate the upper and lower 96% prediction bounds, respectively.
The blue lines denotes the colloidal short-time self-diffusion for hard
spheres (light blue, solid) and charged spheres (dark blue, dashed).
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9.1 (A) Total mean-squared displacement
〈
u2
〉
(circles) of an aqueous

BSA (500mg/ml) solution versus temperature T . The solution was
heated at 7.4 · 10−2 K/min. Using Eq. 9.8 we describe the data (solid
line superimposed on the data) and determine the denaturing inter-
val T1 < T < T2 (dotted vertical lines).The upper images illustrate
a colloidal suspension of native proteins (left) and the cross-linked
network of denatured proteins (right). Inset: Measured elastic in-
tensity S (Q, |ω| < ∆ω) versus Q2 (circles) for the same sample at
T = 290K recorded at IN10. As described in Sec. 9.7.1 a quadratic
fit (solid line) was used to determine

〈
u2
〉
. (B)

〈
u2
〉
−
〈
u2
diff

〉
(circles).

The transition regime is denoted by the two vertical dashed lines. At
T0 = (T1 + T2)/2 a transition occurs, characterized by a kink in the
curve (arrow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.2 Example spectrum S(Q,ω) (symbols) recorded at IN16 for BSA
in D2O (protein concentration 500mg/ml corresponding to a vol-
ume fraction φ = 27%, T = 301K, individual detector tube at
Q = 0.6Å−1). The blue solid line superimposed on the data in-
dicates the fit of the model from Eq. 9.2 with β = 1, hence the
KKW function turns into to Lorentzian L(ω,Γ). The Lorentzians in
Eq. 9.2 are indicated by the dashed [R(ω)⊗L(ω, γ)] and dash-dotted
[R(ω)⊗L(ω, γ+Γ)] lines, respectively. The orange solid line denotes
a Gaussian model of the resolution function R(ω). The scattering
signal decreases with Q, resulting in larger error bars on the fitted
γ. Inset left: γ (symbols) fitted to the signal from grouped detec-
tors versus Q2. Inset right: Temperature dependence of

〈
u2
〉
due to

global diffusion as calculated from Eq. 9.7 (symbols). The solid line
is a linear fit for T ≤ 320K, namely

〈
u2
〉

= a T +b. For temperatures
beyond 320K we assume that the diffusion is hindered by entangle-
ment of the proteins and, hence, nearly zero. Therefore, we postulate〈
u2
〉

= (a T + b) [1−Θ(T ∗)]. The transition regime is denoted by
the two vertical dashed lines. . . . . . . . . . . . . . . . . . . . . . . 149

9.3 Raw data (dark purple solid circles) for the elastic intensity
S (Q, |ω| < ∆ω) of a 500mg/ml BSA aqueous (D2O) solution upon
heating from 280 to 370K with 7.4 · 10−2 K/min. The data was
recorded at IN10. Fits of the polynomial Eq. 9.12 to the data at
fixed temperatures are superimposed as purple solid lines. . . . . . . 152

9.4 Total mean-squared displacement
〈
u2
〉
for a 500mg/ml BSA aque-

ous solution with 1M NaCl upon heating from 280 to 370K with
8.4 · 10−2 K/min (red solid line) and cooling back to 280K with
12.4 · 10−2 K/min (blue solid line). The dashed dotted lines denotes
the 95% confidence intervals of the corresponding fits. The transition
regime is denoted by the red dashed lines. Note that for the heat-
ing process between 324 and 342K no data was recorded due to an
unexpected neutron beam stop during the temperature ramp. . . . . 158



10.1 Normalized SAXS scattering intensity I(q)/(∆ρ2 V 2 np) of BSA
200mg/ml aqueous (D2O) solutions at room temperature of 297K
containing different concentrations of YCl3 (see legend). The data
were recored at the ESRF beamline ID02. Inset: corresponding struc-
ture factor S(q) calculated from Eq. 10.1 by estimating the form
factor P (q) from a BSA 2mg/ml aqueous (D2O) solution sample.
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(indicated by the arrow) is only discernible for salt concentrations
cs < 7mM. For higher salt concentrations the correlation peak dis-
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10.3 Short-time diffusion function Eq. 10.15 for a 200mg/ml BSA aque-
ous (D2O) solution at room temperature for various YCl3 concentra-
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10.4 Photograph of glass vials containing 200mg/ml BSA aqueous
(D2O) solutions at room temperature with YCl3 concentrations (see
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T
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10.7 Dependence of the local crowding factor, calculated from Eqs. 10.21
and 10.22, on the normalized isothermal compressibility (purple cir-
cles). The green vertical line denotes the normalized isothermal com-
pressibility of a protein solution with a salt concentration cs = c∗.
Note that χT /χideal

T > 1 and χT /χideal
T < 1 indicate an attractive and

repulsive system, respectively. . . . . . . . . . . . . . . . . . . . . . . 175
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ϕ Volume fraction of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ĥ0 Free neutron Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ĥ Hamiltonian of sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b̂ Scattering length operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ŝ Smoluchowski operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U Total potential of N-particle system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m Mass of neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k Wavevector of incoming neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k′ Wavevector of scattered neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
q,Q Momentum transfer vector of neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E Energy of incoming neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E′ Energy of scattered neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ω Angular frequency corresponding to energy change of neutron . . . . . . . . . . . . .
λ Wavelength of neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R̂(t) Heisenberg operator of the position operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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