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Abstract 

In this thesis I present an investigation on the spin dynamics observed during 

moment localisation, non-ergodic magnetic phase transitions, and weak itinerant 

electron magnetism. 

The pseudo-binary compound Y(Mn1-xAlx)2 has been investigated under the 

influence of equivalent opposing chemical and mechanical pressures using Muon 

Spin Relaxation.  The results reveal the application of external mechanical pressure 

(4.5 kbar) to destabilise the manganese moment, and produce a ground state 

distinctly different to that seen under ambient pressure conditions.  Short-range 

nuclear and spin correlations have been studied via diffuse neutron scattering, and 

through a combination of analysis techniques I have mapped the temperature 

dependence of these correlations and their evolution due to the substitution of 

manganese for aluminium. 

Applying new models of hierarchical relaxation and non-extensive entropy I have 

studied the slow relaxation dynamics of the spin glass phase using Neutron Spin 

Echo spectroscopy.  The results are developed further by applying the same analysis 

to a variety of glassy magnetic phenomena: spin glass freezing (Y(Mn1-xAlx)2 and 

Y(Al1-xFex)2), speromagnetic freezing ((La1-xErx)Al2), and superparamagnetic 

blocking (Cr1-xFex).  I have shown that within this framework the underlying 

freezing mechanisms result in distinctly different responses, and that in the case of 

spin glass relaxation an apparently universal scaling relationship is present. 

Finally the results of a Muon Spin Relaxation study on the moment fluctuations in 

Au4V above the Curie temperature are reported.  The temperature dependence of the 

muon spin relaxation rate is found to be similar to that of the archetypal weak 

itinerant helimagnet, MnSi. 
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INTRODUCTION 

During the last century our understanding of real magnetic systems has 

improved greatly, due to both significant theoretical advances and a constant 

improvement of the experimental techniques available.  Consequently convergence 

between prediction and observation has grown, especially since the inclusion of 

interactions enhanced by, and in addition to, the exchange between spins.  Despite 

this however our understanding of the dynamics of exchange coupled spins, 

specifically how paramagnetic spin dynamics relate to the magnetic ground state, 

remains decidedly poor.  Fortunately the simultaneous improvement of experimental 

techniques has led not only to increased accuracy but crucially opened a vast region 

of momentum and frequency space over which scientists can investigate.  Motivated 

by this I present several investigations in to the spin dynamics of several evolving 

magnetic systems using neutron scattering and muon spectroscopic techniques. 

In YMn2 the manganese moments, which are separated by distances close to that of 

the pure metal, are found to localise at low temperature and adopt a complex anti-

ferromagnetic spin arrangement alongside a remarkably large lattice expansion.  The 

dynamics associated with this magnetic phase transition have previously been 

studied using a range of experimental techniques.  Partial substitution of aluminium 

for manganese not only counteracts this lattice expansion but also promotes Curie-

Weiss-like behaviour, collapses the long-range magnetic order, and ultimately leads 

to a spin glass phase at low temperatures.  The first question addressed in this thesis 

is whether using the application of external mechanical pressure the resulting change 

in spin dynamics can be reversed, leading to a magnetic ground state comparable to 
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that of the undoped parent compound.  To do this muon spin relaxation 

measurements have been performed and the divergence in the relaxation rate 

modelled using self-consistent spin fluctuation theory.  This investigation is then 

extended using neutron diffraction to study the evolution in nuclear and spin 

correlations across the transition temperature as a function of aluminium 

concentration. 

As stated, in this system the addition of non-magnetic aluminium promotes a low 

temperature spin glass phase largely due to the inherent geometric frustration of the 

crystallographic structure.  A spin glass phase is a disordered magnetic state 

characterised by the slowing, and eventual freezing, of magnetic moments in 

random orientation.  The dynamics associated with this process follow an 

unexplained but nonetheless apparently universal non-exponential form - hence this 

glassy relaxation has intrigued scientists for many decades. Noble prize laureate 

Philip Anderson has stated, 

“The deepest and most interesting unsolved problem 

in solid state theory is the nature of glass and the 

glass transition” 
1
 

Close analogy can be made between the relaxation dynamics of structural and spin 

glasses, leading many scientists to believe a deeper understanding of the glass 

transition should first be sought by establishing a theory for the spin glass transition.  

Attempts to do so have had unforeseen implications in many fields of research: 

neural networks, sociology, biological evolution, computer algorithms, artificial 

intelligence, and economics, all of which to a greater or lesser extent fall under the 

umbrella of what are known as complex evolving systems and as such the spin glass 

problem is therefore often considered to be a precursor to the study of complexity 

itself. 

In the context of this research, it has recently been discovered a degree of 

universality exists between the relaxation dynamics of several dilute spin glass 

systems studied within the framework of Tsallis’ non-extensive entropy.  Continuing 
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this work I present further investigations of this possibly universal relaxation 

response via the Neutron Spin Echo technique. 

Finally, discovered in the 1960s, weak itinerant magnetic systems are a fascinating 

class of material which obey the Cure-Weiss law very precisely, yet have an ordered 

moment significantly lower than the effective moment calculated for the Curie 

constant.  The intermetallic compound Au4V is extremely unusual in that it is found 

to be ferromagnetic despite neither gold nor vanadium carrying a magnetic moment, 

yet has characteristics of both localised and itinerant electron systems.  To resolve 

this issues a Muon Spin Relaxation study has been performed of the spin 

fluctuations above the Curie temperature, and comparison made to the archetypal 

weak itinerant system MnSi using Moriya’s unified theory as the framework. 
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Chapter 1 

MAGNETISM 

1.1 Introduction 

Our understanding of magnetism, despite it being ubiquitous in modern day 

life, is far from complete.  This opening chapter will introduce several key concepts 

such as symmetry, localised and itinerant models, and present a modern-day 

description. 

1.1.1 Symmetry 

Transition to a low temperature ordered magnetic phase is accompanied by a 

reduction of symmetry.  A simple way to envisage this is by considering the 

transition from liquid to solid state in condensed matter.  A liquid has complete 

translational and rotational symmetry, that is to say each point is identical averaged 

over time.  However when cooled below the melting point the resulting solid state 

must sacrifice much of this symmetry.  For example, a regular square lattice has only 

four-fold rotational symmetry, and translational symmetry of integer combinations 

of its lattice parameter.  Similarly, during a ferromagnetic phase transition a 

reduction in symmetry occurs due to the spins choosing a unique direction along 

which to align (up or down).  This can be illustrated by Landau’s theory. 

1.1.2 A Phenomenological Description 

The Landau theory is a phenomenological model which calculates the free 

energy of a system as a function of its magnetisation, (M).  For a ferromagnet in the 

absence of an external magnetic field the free energy is written as a polynomial 

series, 
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 ( )      ( ) 
      (1-1) 

where (F0) and (b) are positive constants and [a(T) = a0(T – TC)] is a temperature 

dependant parameter allowed to change sign passing the transition temperature, 

(TC).  By minimising the free energy, (δF / δM = 0), we find the ground state 

solutions, 

                [
  (    )

  
]

 
 ⁄

 (1-2) 

Cleary the first condition is true for all temperatures but produces an unstable 

equilibrium position with (T < TC), shown in Figure 1:1.  This instability is known 

as spontaneous symmetry breaking.  The second result is strictly only valid when 

(T < TC), thus the magnetisation is zero at all temperatures above the ferromagnetic 

transition, since we cannot take the root of a negative number, and then proportional 

to (TC – T)
 ½

.  In this case there are two so-called broken symmetry solutions which 

have the same free energy, one where the spins are aligned in the up direction and 

the other where they are aligned down. 

In a general sense the high temperature disordered paramagnetic phase is analogous 

to the liquid state in the previous example, where each spin is equivalent average 

over time, (M = 0), and like the solid state the low temperature ordered phase has a 

reduced symmetry once the magnetisation adopts a non-zero value.  Magnetisation 

is therefore the order parameter
*
 of the ferromagnetic phase transition. 

Unfortunately, the predictions of the Landau Theory ultimately fail when applied to 

real systems.  Experimental results are often more accurately described by the 

relationship [M  (TC – T)
β
], where the exponent takes a value in the range 

(0.2 ≤ β ≤ 0.4); significantly lower than that predicted. 

 

                                                 
*
 A parameter associated with a phase transition that indicates the existence of a particular 

symmetry.  Above the transition temperature it takes a value of zero and below a non-zero value. 
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Figure 1:1 Variation of the Landau free energy for a ferromagnet, F(M) for decreasing values of 

temperatures starting above the Curie temperature, (TC). 

It is important to mention that the susceptibility, specific heat, and correlation length 

are found to diverge at the critical point, meaning that each of these physical 

properties tend towards infinity at (TC).  In an analogous way so does the reciprocal 

of magnetisation.  To model this critical behaviour simple power laws are usually 

applied, such as the derivation above, where the indices are known as critical 

exponents.  These exponents not only contain valuable information on the nature of 

the phase transition under investigation, but also reveal systematic trends between 

microscopically different systems.  The term universality is used to describe 

circumstances where apparently different systems yield the same critical exponent.  

1.2 Theories of Magnetism 

The modern theory of magnetism started with the advent of quantum 

mechanics, which from the outset lead to two distinct models: one initiated by 

Heisenberg based on a picture of localised electrons 2, the other by Bloch based on 

band theory in which the itinerant electrons are so-called magnetic carriers 3.  These 

mutually opposite models caused considerable controversy and ultimately although 

the localised electron picture was able to describe the magnetism of Rare earth 

metals and alloys both had limited success in accounting for the magnetic properties 
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of 3d metallic metals.  Subsequently an alternative was developed in 1973 with the 

aim of interoperating between these extremes of fully localised or itinerant electron 

descriptions known as the Self-Consistent Renormalisation Theory, abbreviated to 

simply SCR theory 4. 

1.2.1 The Exchange Interaction 

Consider the simple case of a two electron system.  The total eigenfunction 

must be described by the following linear combinations, 

   
 

√ 
[  ( )  ( )    ( )  ( )] 

and 

   
 

√ 
[  ( )  ( )    ( )  ( )] 

(1-3) 

where (ψα) and (ψβ) describe the space and spin quantum states of the particle (1) 

and particle (2), respectively.  The first is called the symmetric and the second anti-

symmetric total eigenfunctions, which despite taking different forms both describe 

the same eigenvalue, a phenomenon called exchange degeneracy.  However if both 

particles were in the same quantum state the anti-symmetric expression would be 

identical to zero. 

   
 

√ 
[  ( )  ( )    ( )  ( )]    (1-4) 

This is in fact the basis of the Exclusion Principle which states indistinguishable
†
 

fermions cannot occupy the same quantum state, and by implication must be anti-

symmetric under particle exchange. 

In this brief explanation labels (1) and (2) contained both the space and spin 

variables of the electrons; three space and one spin quantum numbers.  In a very 

general way however it is possible to express the anti-symmetric total eigenfunction 

as the product of these separate factors 5, 

 

                                                 
†
 Particles such as electrons cannot be distinguished between if their wave functions overlap. 



8 

(total eigenfunction) = (space eigenfunction) × (spin eigenfunction) 

Due to the spin quantum number being a discrete variable there are subsequently 

three valid symmetric spin eigenfunctions (triplet state), but still just one anti-

symmetric spin eigenfunction (singlet state) for non-interacting electrons.  Since the 

total eigenfunction must be anti-symmetric with exchange of particle labels this 

leads to a coupling between the spin and space variables; they must have opposite 

symmetry.  There is no classical analogy for this exchange interaction; it is simply 

an electrostatic force driven by quantum mechanical effects which manifests in 

several ways. 

This is called direct exchange, which occurs when electronic wave functions 

overlap.  However, when such overlap is negligible exchange interactions may still 

be mediated via indirect mechanisms.  For the purposes of this work only the 

Rudderman-Kittel-Kasuya-Yosida (RKKY) interaction 6-8 need be discussed.  The 

RKKY exchange interaction is important when considering well localised magnetic 

moments such as those of the Rare earth metals, or in situations where magnetic 

impurities are well separated.  Briefly, such magnetic moments have a polarising 

effect on the surrounding sea of 6s- and 5d-conduction electrons leading to an excess 

of spin-up electrons close to the magnetic moment.  The spin density thus extends in 

an oscillatory fashion away from the magnetic moment throughout the lattice, 

polarising the surrounding magnetic moments, the magnitude and direction of which 

subsequently varies with separation.  

1.2.2 Localised Electron Model 

An atom has an eigenstate defined by its spin and orbital angular momenta 

given by the sum of its individual electrons: [S = ∑ si] and [L = ∑ li], illustrated in 

Figure 1:2.  Assuming the electrons of the atom in question are fully localised the 

ground state configuration can be determined by Hund’s empirically formulated 

rules which state: 
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1. The spin quantum number (S) is maximised in a way to minimise the Coulomb 

energy consistent with the Pauli Exclusion Principle. 

2. The orbital quantum number (L) is maximised in a way that is compatible with 

rule 1.  Hence minimising energy further by making it easier for the electrons to 

avoid one other. 

3. For shells less than half full the magnitude of the total angular momentum 

quantum number [J = | L – S |], whilst for shells more than half full 

[J = | L + S |].  This final rule attempts to minimise the spin-orbit energy. 

The total angular momentum can then be used to determine the local magnetic 

moment of the atom, 

        (1-5) 

where (gJ) is the Landé g-factor and µB is the Bohr magneton (= eℏ / 2me).  To 

derive the paramagnetic susceptibility we must consider a system of (N) non-

interacting local moments under the influence of an external magnetic field (B) 

which will tend to align the direction in which they point.  Thus each atom will 

possess a potential energy equal to, 

           (1-6) 

where (MJ) is the magnitude of (J) projected along the direction of the applied field.  

The probability of an atom being in state with energy (E) at temperature (T) is given 

by Boltzmann statistics, which through a lengthy derivation leads to susceptibility of 

the form, 

      
   
      (   )

    
 
 

 
 (1-7) 

where (C) is the Curie constant.  This is the well known Curie Law which often 

incorporates an effective moment, [µeff = gJ
2
[J(J + 1)]µB] per magnetic atom. 
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In 1928 Heisenberg introduce a model to account for direct exchange interactions 

taking place between neighbouring atomic spins.  In his model the energy of the 

system is given by the Hamiltonian, 

   ∑        
  

 (1-8) 

where (J) is now the so-called exchange integral which is positive for ferromagnetic 

alignment and negative for anti-ferromagnetic alignment 2.  The sum is taken over 

all nearest neighbour spins, (S) located on lattice sites i and j.  It is important to note 

that these spins are three-dimensional vectors allowed to point in any direction, 

(D = 3), however the dimensionality of the lattice on which they sit may be (d = 1, 2, 

3…n). 

The most frequently used spin model is perhaps the Ising model 9, where the spin 

operator is one-dimensional and is therefore restricted to point only up or down 

(D = 1).  However, regardless of the model chosen equation (1-8) presents a many-

body problem which is extremely difficult to solve exactly.  In general we resort to 

an amalgamated mean-field approach where the exchange between a finite number 

of spins are solved whilst the remaining lattice interactions are replaced by an 

effective field, (Beff). 

This is highly analogous to the first successful theory of ferromagnetism developed 

some 20 years earlier by Weiss 10.  Here it is assumed that the interactions 

responsible for magnetic ordering of atomic moments can be wholly represented by 

an effective mean-field given by,  

        (1-9) 

where the constant (λ) is called the molecular field coefficient.  
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Figure 1:2 The result of Hund’s rules applied to the lanthanide series, where n represents the number 

of electrons in the 4f subshell. 

 shell l=3 2 1 0 -1 -2 -3 S L J 

Ce 4f 
1
 ↓       1/2 3 5/2 

Pr 4f  
2
 ↓ ↓      1 5 4 

Nd 4f  
3
 ↓ ↓ ↓     3/2 6 9/2 

Pm 4f  
4
 ↓ ↓ ↓ ↓    2 6 4 

Sm 4f  
5
 ↓ ↓ ↓ ↓ ↓   5/2 5 5/2 

Eu 4f  
6
 ↓ ↓ ↓ ↓ ↓ ↓  3 3 0 

Gd 4f  
7
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 7/2 0 7/2 

Tb 4f  
8
 ↓↑ ↓ ↓ ↓ ↓ ↓ ↓ 3 3 6 

Dy 4f  
9
 ↓↑ ↓↑ ↓ ↓ ↓ ↓ ↓ 5/2 5 15/2 

Ho 4f  
10

 ↓↑ ↓↑ ↓↑ ↓ ↓ ↓ ↓ 2 6 8 

Er 4f  
11

 ↓↑ ↓↑ ↓↑ ↓↑ ↓ ↓ ↓ 3/2 6 15/2 

Tm 4f  
12

 ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓ ↓ 1 5 6 

Yb 4f  
13

 ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓ 1/2 3 7/2 

Lu 4f  
14

 ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ ↓↑ 0 0 0 

Table 1:1 The spin, orbital, and total angular momentum quantum numbers derived from the use of 

Hund’s rules. 
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In this case the susceptibility follows the Curie-Weiss form, 

  
 

   
 (1-10) 

where (θ) is the Weiss constant which defines the position of a transition below 

which spontaneous magnetic ordering occurs.  In the case (θ > 0) the moments adopt 

ferromagnetic alignment, and when (θ < 0) anti-ferromagnetic alignment.  However, 

being prior to the arrival of quantum mechanics this phenomenological model could 

not provide an explanation as to the origin of this internal molecular field. 

1.2.3 Itinerant Electron Model 

The nearly-free electron model offers a simple description of metals and 

states at (T = 0) eigenstates are filled up to the Fermi wavevector (kf).  If we take the 

points in k-space to be separated by (2π / L), where (L
3
) is the volume, and the 

number of states between (k) and (k + dk) to be equal to [4πk
2 

dk], 

 

Figure 1:3 The density of states in k-space is calculated by considering the volume of k-space 

between wavevector (k) and (k + dk). 

 

dk 

k 

kz 

kx ky 
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The density of states can be easily derived; 

 ( )   
     

  
 (1-11) 

Thus, the number of electrons (N) filling eigenstates up to the Fermi wavevector is,  

  ∫  ( )  
  

 

 
   
 

   
 (1-12) 

However, the occupancy of these states is governed by the Fermi-Dirac statistics, 

 ( )  
 

    ((    )    ⁄ )   
 (1-13) 

where E is the energy of a given eigenstate and (Ef) the Fermi energy.  From this 

equation it can be seen at absolute zero f(E) reduces to a step function, taking the 

value of unity when (E < Ef) and 0 when (E > Ef). 

Eigenstates with different spin quantum number have the same energy, meaning in 

the absence of an external field there exists a two-fold degeneracy.  When an 

external magnetic field is applied the electron’s energy is either lifted or lowered 

depending on its relative spin alignment.  In the first instance this gives rise to Pauli 

paramagnetism; the largely temperature independent susceptibility of the electron 

gas. 

This spontaneous splitting of the spin states may also explain the non-integer µB 

measurements of the magnetic moment per atom in metals such as iron (~ 2.2 µB).  

By analogy with the Weiss model, Stoner 11 proposed that electron-electron 

exchange interactions may be described using a molecular mean-field where each 

spin experiences an average exchanged field generated by all its neighbouring spins, 

taking the form, 

      (1-14) 
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This molecular field magnetises the electron gas due to Pauli paramagnetism, which 

in turn causes the molecular field.  This feedback mechanism is however strictly 

dependent on both the molecular field constant (γ) and the Pauli susceptibility (χ0) 

being large enough for the system as a whole to save energy by becoming 

ferromagnetic. 

 

Figure 1:4 The density of states, g(E), showing a spontaneous splitting of the spin bands.   

The model is as follows: in the absence of an external field a number of spin-down 

electrons are elevated by a small amount (δE) from the Fermi energy, changing spin 

state as they do so.  Hence spin-down electrons between (Ef – δE) and (Ef) now 

occupy eigenstates between (Ef) and (Ef + δE) in the spin-up band.  The number of 

electrons moved is equal to the density of states at the Fermi energy multiplied by 

half the energy change, [g(Ef) δE / 2].  The energy costs is therefore given by, 

     
 

 
 (  )  

  (1-15) 

However the interaction between the magnetisation and molecular field may give an 

energy reduction greater that (ΔEKE).  To illustrate this first the magnetisation is 

written in terms of the number density of up and down spins respectively, 

δE 

E 

g(E) g(E) 

Ef 
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    (     ) (1-16) 

Note that the magnetic moment predicted by this equation is not necessarily an 

integer value of the Bohr magneton.  The change in molecular field energy is 

therfore, 

      ∫        
 

 
 

(1-17)    
 

 
    
  (     )
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with [      
  ] essentially a measure of the mean exchange per electron driving 

the molecular field.  Figure 1:5 shows the calculated values of (U) and g(Ef) as a 

function of atomic number.  The total energy exchange (ΔE) is therefore the sum of 

the kinetic and molecular field energies: 

            
 

 
 (  )  

 (    (  )) (1-18) 

Clearly with [ g(  ) ≥  ] the change in energy given by this equation is negative, 

implying that spontaneous ferromagnetism is possible since it is energetically 

favourable for the system as a whole.  This condition not only requires strong 

Coulomb interactions but a high density of states at the Fermi energy, and is referred 

to as the Stoner Criterion.  With this in mind it is apparent that, at least for 3d 

transition metals, the band structure close to the Fermi energy is vital in determining 

the magnetic properties of the material. 

Thus under the influence of an applied external magnetic field the paramagnetic 

susceptibility is given by, 

  
 

 
 
   

 
 
    
  (  )

    (  )
 

  

    (  )
 (1-19) 
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Figure 1:5 Top: the Stoner parameter as a function of atomic number Z.  Middle: the density of states 

as a function of atomic number.  Bottom:  The Stoner criterion given by the product of the density of 

states and the Stoner parameter.  It can be seen that only the elements iron, cobalt, and nickel are capable 

of spontaneous ferromagnetism, however calcium, scandium, and palladium are very close.  Recreated 

from Solid-State Physics, Ibach & Lűth 
12

. 

  



17 

and so the Pauli susceptibility is enhanced by the denominator if (U < 1), a 

phenomenon called the Stoner enhancement which is especially evident in systems 

which are close to ferromagnetism such as palladium and platinum. 

1.2.4 A Unified Theory 

The localised electron model holds true at least for isolated atoms or for 

substances where the unpaired electrons are not perturbed too greatly by interatomic 

interactions, for example insulators and 4f-metals.  However its predictions are not 

consistent with empirical evidence, which reveals the saturation moment, (µs), of 

many metal’s does not take an integer value of the Bohr magneton despite obeying 

the Curie-Weiss Law, equation (1-10).  This is largely because the localised electron 

model does not account of the way chemical bonding significantly alters the 

electronic structure of atoms in the solid state, i.e. alters the conduction band. 

On the other hand, the itinerant electron model successfully predicts that 

spontaneous ferromagnetism exists only for three elements: iron, cobalt, and nickel 

which fulfil the Stoner criterion, and furthermore accounts for the observed 

saturation moment per atom being a non-integer value of the Bohr magneton.  

However compared with experimental results it fails in determining the 

susceptibility of transition metals above absolute zero, and predicts transition 

temperatures which are several orders of magnitude too high.  Most importantly it is 

unable to explain the Curie-Weiss Law. 

Insight as to a system’s degree of itinerancy was provided by the Rhodes & 

Wohlfarth 13, who by plotting the ratio between the effective and saturation moment 

(µeff / µs) as a function of the Curie temperature obtained the plot recreated in Figure 

1:6.  Since under a localised picture the moment does not change greatly across the 

transition temperature this ratio should be close to one (dashed line).  The itinerant 

limit is realised where (µeff ≫ µs) since the saturation moment is independent of the 

Curie constant.  The plot clearly implies that the vast majority of systems are neither 

fully localised nor itinerant in nature but instead evolve continuously between the 

two mutually opposite extremes. 
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Figure 1:6 The Rhodes-Wohlfarth plot recreated from Spin Fluctuations in Itinerant Electron 

Magnetism, Tôru Moriya 
14

. 

Subsequently Stoner’s theory was extended to include thermally induced spin flip 

excitations at the Fermi surface in the hope it would extend the model to finite 

temperatures 15.  By definition a spin flip excitation occurs when an electron is 

elevated above the Fermi energy, resulting in an electron-hole pair of opposite spin.  

This mechanism causes a smearing at the Fermi surface and an imbalance between 

the spin-up and spin-down bands, commonly referred to as a spin density 

fluctuations or Stoner excitations.  However, even with the inclusion of spin density 

fluctuations the model still fails when compared to experimental observations.  

Significant improvements arrived in the 1970s when theoreticians began to consider 

exchange-enhanced spin fluctuations
‡
, which were known to greatly enhance Stoner 

excitations. 

Moriya developed a unified theory of spin density fluctuations for itinerant electron 

systems incorporating exchange-enhanced effects which, by calculating the 

equilibrium state and spin density spectrum in a self-consistent manner, allows both 

                                                 
‡ The scattering of electron-hole pairs by exchange interaction. 
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local and itinerant magnetism to exist within the same framework and has greatly 

improved our current understanding of magnetism 4, 16.  A detailed discussion of SCR 

theory is beyond the scope of this work but a comprehensive account may be found 

in reference 14.  Perhaps the most significant results are the prediction of Curie-Weiss 

susceptibility without a local moment, and reasoning for the disparity between 

effective and saturation moment observed in weakly ferro- and anti-ferromagnetic 

metals is also accounted for. 

According to SCR theory the magnetic properties of a system are determined via the 

nature of their spin density fluctuations.  In the local electron limit the amplitude of 

the spin density is fixed and fluctuations are regarded as local in real space.  

Alternatively, in the itinerant electron limit the average spin density amplitude of 

spin fluctuation at low temperature is localised in reciprocal space, therefore 

extended in real space.  However, as shown in Figure 1:6 many magnetic materials 

occupy an intermediate range.  A general theory of Curie-Weiss susceptibility is 

developed in terms of a stiffness constant for spin fluctuations, (T0), which is a 

measure of the stiffness against a change in amplitude of the spin fluctuation. 
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where V(q) = [U / SL
2
(q)].  In the local limit (T0 → 0) and thus the general 

expression for magnetic susceptibility reduces to, 
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In the opposite limit (T0) is large, indicating that the spin fluctuations are “soft”, and, 
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In this case the susceptibility arises due to the linear increase of the squared spin 

density fluctuation amplitude SL
2
(T).  
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Figure 1:7 Possible examples of the temperature variation of SL
2(T), taken from Moriya 

14
.  Line a is 

the local moment case where the mean-square local amplitude of spin fluctuations is constant.  Lines b 

and c represent intermediate vales of stiffness constant, large and small respectively, and line d is for 

weakly ferromagnetic metals.  The vertical arrows represent the position of TC. 

For weak itinerant ferromagnets the theory predicts a Curie temperature far lower 

than those of the Stoner theory, moreover Curie-Weiss behaviour is predicted above.  

The spontaneous magnetic moment per atom is dependent on the band structure at 

the Fermi surface, and is independent of the Curie constant.  Finally, it is expected 

that the spontaneous magnetisation follows the relationship, 

  (  
 
 ⁄   

 
 ⁄ ) (1-23) 
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Chapter 2 

THE SPIN GLASS PHASE 

In this, the second preliminary chapter, a chronological account along with 

the salient properties of the spin glass phase are presented.  Key concepts are 

highlighted in order to aid inspection of several attempts to establish a general 

mean-field theory in the limit of static moments, before finally the dynamics of these 

systems are discussed in the wider context of non-exponential relaxation, 

emphasising two ‘new’ and analogous relaxation functions derived independently in 

recent years from the works of Weron and Tsallis. 

2.1 Introduction 

Louis Néel first investigated the materials which, some 40 years later, led to 

the discovery of the spin glass phase 17.  He hoped that by studying dilute alloys of 

transition metal impurities suspended in a noble metal matrix he could better 

understand the nature of magnetism in the pure transition metal itself.  By the 1950s, 

advancements in cryogenics made it possible to reach much lower temperatures, 

revealing unusual magnetic behaviour unlike that of a ferromagnet or anti-

ferromagnet 18.  Most early interpretations did not consider the existence of a phase 

transition, however the name ‘spin-glass’ was coined at the end of the 1960s to 

represent a new class of random magnetic alloy in which the magnetic structure is 

unrecognisable from that of the pure metal 19.  In 1971, at a conference on 

magnetism and magnetic materials, Cannella, Mydosh & Budnick revealed the 
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discovery of a sharp cusp in the susceptibility of dilute AuFe alloys 20, 21.  Thus 

interest in these new novel materials grew.  In 1975 the first attempt at establishing a 

theory behind the spin glass phase was proposed by Edwards & Anderson 22, 23, 

which will be discussed in more detail in the following sections. 

Subsequently many hundreds of different magnetic systems have been identified as 

having spin-glass-like properties.  This is perhaps not unexpected since almost all 

physical systems possess different types of interactions which compete to adopt 

different ordered states.  In a general sense, such competition is uncovered when due 

to a change in an external parameter (temperature, pressure, or magnetic field) the 

system undergoes a phase transition, indicating that the external impulse favours one 

interaction type over the others.  It is therefore not surprising that systems displaying 

spin glass properties are often fundamentally different, which prompted Mydosh to 

construct a broad scheme by which several discrete families could be identified 24. 

Spin glass family Example 

Noble metal – Transition metal alloys AuFe, CuMn, AgMn 

Transition metal – Transition metal alloys PbMn, MoMn, RhMn, VFe 

Rare earth alloys 
La1-xGdxAl2, La1-xCexRu2, 

La80Th20Ce 

Rare earth compounds 
Y(Mn1-x Mx)2, (La1-x Erx)Al2, 

(Ti1-xVx)O3 

Amorphous semiconducting (Sb2S3)x (SbI3)y Fez 

Crystalline insulating and semiconducting 
EuxSr1-xS, Eu1-xGdxS,       

Fe1-xMgxCl2 

The following sections are not intended to give an exhaustive account of this vast 

field, but instead present a general overview in order to highlight the most important 

concepts relevant to this work. 
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2.1.1 Spin Glass Properties 

  

Figure 2:1 Left:  A basic representation of magnetic moments placed at random on a non-magnetic 

cubic lattice.  Right: the RKKY exchange (Jij) plotted as a function of distance (R). 

Communication between randomly located impurity spins is mediated 

indirectly through the conduction electrons via the RKKY interaction, illustrated 

above, and due to the long-range oscillatory nature of this exchange some spin-spin 

interactions are positive, therefore favouring parallel alignment, whilst others are 

negative and favour anti-parallel alignment.  Subsequently, there is no mean 

ferromagnetic or anti-ferromagnetic order across the sample.  On the contrary, upon 

cooling to sufficiently low temperature the spins freeze in random orientations, and a 

disordered ground state is entered below a critical temperature (Tf).  As mentioned, 

the dynamics of this freezing process are analogous to those of structural glasses, 

and it is therefore hoped that in developing a model to understand the transition to 

the spin glass state a better understanding of the transition from supercooled fluid to 

amorphous structural glasses might be realised. 
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On a qualitative level at least, the physical behaviour of the different spin glass 

families is quite universal despite the diversity of mechanisms involved.  The 

aforementioned cusp in the low temperature susceptibility is commonly accepted to 

be the hallmark behaviour of a spin glass material, and its position is considered to 

identify (Tf).  In a small static field, the temperature dependence of susceptibility 

obeys the Curie-Weiss Law, indicating the spins are weakly coupled.  In the 

paramagnetic phase, above (Tf), the magnetisation responds rapidly to changes in 

magnetic field, whereas in the spin glass phase the response is extremely slow.   

Other measurements, such as Muon Spin Relaxation (§ 3.4), also shown similar 

sharp anomalies.  Surprisingly however specific heat, a common indicator of a phase 

transitions, shows no distinct anomalies but only a broad peak at temperatures above 

the freezing point together with a low temperature linear term similar to that of a 

structural glass.  This ‘smeared behaviour’ is also present in resistivity 

measurements 25. 

2.1.2 The Frustration Effect 

It has been said that extensive investigation on so-called spin systems only 

began in earnest with the introduction of a new concept called frustration, circa 

1977.  In his seminal paper Gérard Toulouse presented an analysis of disorder in the 

context of spin-glasses, identifying that the spin glass phase is a consequence of 

“serious disorder” borne of “frustration effects”, as opposed to simply a flipping of 

interaction signs on sites chosen at random on a regular lattice 26. 

Here the term frustration denotes a situation where a spin, or ensembles of spins, 

cannot orientate in a way to satisfy all the neighbouring interactions.  The plaquette, 

shown Figure 2:2, is perhaps the simplest example, where a single and double bond 

represent ferromagnetic and anti-ferromagnetic interaction, respectively.  Clearly, no 

configuration of orientations exists whereby all the  
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Figure 2:2 Left:  A frustrated plaquette where single and double bonds represent a ferromagnetic 

interaction, and an anti-ferromagnetic interaction, respectively.  Right:  Square lattice where the contour 

(bold line) represents two possible paths between A and B.  

 

 

Figure 2:3 Left:  Topological frustration for near-neighbour Ising spins on a triangular lattice with 

anti-ferromagnetic interactions.  Right:  Topological frustration in tetrahedral coordination. 
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interactions can be satisfied.  Furthermore, a parameter to measure the effect can be 

defined on any closed contour across a lattice (c), Figure 2:2. 

By taking (Jij = + 1) to denote ferromagnetic alignment, and (Jij = – 1) anti-

ferromagnetic alignment, the frustration parameter is defined, 

  ∏   

 

   

 (2:1) 

Hence, when it is possible to orient the spins between points (A) and (B) (  = + 1), 

and the system is not frustrated.  If however (A) sends contradictory signals to (B) 

along the two paths (  = – 1), and the system is frustrated.  In this simple example it 

should be noted that the frustration is established solely by competition between 

ferromagnetic and anti-ferromagnetic exchange interactions, since the inherent 

geometry of a regular square lattice is bipartite or unfrustrated. 

In contrast, a triangular plaquette with only anti-ferromagnetic near-neighbour 

interactions exhibits geometrical frustration, Figure 2:3.  As a result an anti-

ferromagnetic triangular lattice is fully frustrated since each individual plaquette has 

a negative frustration parameter.  The ground state must therefore be a compromise, 

which often gives rise to complicated non-collinear magnetic structures (§ 4.2). 

2.1.3 Mean-Field Theories 

As previously mentioned, the first attempts to construct a spin glass model 

were made by Edwards & Anderson, who in 1975 proposed a mean-field approach 

to the spin glass problem 22.  To characterise the onset of spin glass order they 

proposed the following parameter, 

 ( )  [〈  ( )    ( )〉
 ]    (2:2) 

where the angular brackets denote the thermal average of spin (Si), and the average 

of this square over the distribution of interactions (Jij) is given by the square 

brackets.  It simply states that in the spin glass phase there is a non-vanishing 
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probability that the orientation of a spin remains unchanged after time (t).  Assuming 

classical spins and a Gaussian distribution of exchange interactions it was shown 

that with (T ≥ Tf) the order parameter Q(t) = 0, whilst for T = 0, Q(t) = 1 23.  As will 

be discussed (§ 3.1.3), such correlation functions can be equated to the intermediate 

scattering function, S(Q, τ), which is attained via neutron spin echo spectroscopy 

(§ 3.2).  Edwards and Anderson further obtained expressions for the zero-field 

magnetic susceptibility and specific heat, predicting sharp cusps at the freezing 

temperature.  Again, this has only ever been observed in magnetic susceptibility 

data; however their model did correctly identify the liner dependence in specific heat 

at low temperatures. 

Further progress was made by Sherrington & Kirkpatrick who applied the Edwards-

Anderson theory to an infinite ranged Ising square (hyper-cubic) model 27.  To begin, 

they took a regular lattice of sites, labelled i, 

  ∑   (     )

   

                  (2:3) 

where the sum is taken over all spin pairs, interacting via exchange (J) given a priori 

from the same Gaussian probability distribution, 
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Thus, by means of the so-called replica symmetry method (RS), they were able to 

find an exact solution, and by evaluating the average partition function of n identical 

replicas, discovered a re-entrant region of the magnetic phase diagram, so named 

since the system appears to re-enter a less magnetically ordered state upon cooling 

between the limits (1 ≤ J0 / J ≤ 1.25), shown in the figure below. 
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Figure 2:4 The Sherrington and Kirkpatrick phase diagram for infinite ranged Ising spins, with a 

mean and variance exchange interaction J0 and J, respectively.  Note, for 1 ≤ J0 / J ≤ 1.25 the system 

exhibits three distinct phases upon cooling:  paramagnetic, ferromagnetic and finally a so-called re-

entrant spin glass phase, indicated by the shaded region.  Recreated from Sherrington & Kirkpatrick 
27

. 

Unfortunately at (T = 0) the calculated entropy was negative, violating the third law 

of thermodynamics.  Thouless  later avoided use of the replica method28 and found 

the Sherrington-Kirkpatrick model to be correct close to or above the transition 

temperature; although the solution was still unstable at low temperatures even in the 

presence of an external magnetic field 29. 

This instability was crucial as it suggested a breaking of symmetry between replicas.  

This brought about several attempts to construct a low temperature solution via so-

called replica symmetry breaking (RSB), the most comprehensive of which was 

offered in a series of papers by Parisi 30-32.  In short, provided the necessary 

restrictions are applied, Parisi’s model yields seemingly realistic results in the static 

limit, however the legitimacy and necessity for these restrictions is still not fully 

understood 33. 
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2.2 Spin Glass Dynamics 

Bantilan & Palmer introduced the term broken ergodicity in 1980 to portray 

the onset of the spin glass state as a sequence of bifurcations in phase space, 

resulting in many similar but mutually inaccessible microstates 34.  This is shown 

schematically in Figure 2:5.  It can be seen that as the temperature is reduced distinct 

valleys appear, separated by infinitely high energy barriers.  Once trapped in a 

branch of the bifurcation cascade the system is unable to jump from one microstate 

to another, even if it were more energetically favourable to do so.  In effect, with 

(T > Tf) a spin glass remains ergodic and given sufficient time can explore all points 

in phase space, whereas below (Tf) the system becomes non-ergodic.  Analogy can 

therefore be drawn with structural glasses which, on experimental time scales, are 

also effectively non-ergodic since the maximum relaxation time, although finite, is 

far larger than is conceivably measurable. 

 

Figure 2:5 Schematic plot of the free energy density as a function of a phase space coordinate for a 

spin glass at low temperature; partially recreated from 
35

.  Note there are many equivalent components or 

“valleys”, each of which corresponds to a ground state, |Φj
(i)|, or low-lying excited state.  

The fact that these numerous microstates are not related to one another by symmetry, 

rather appear due to the inherent degeneracy of the system, is a direct consequence 

of frustration in the system 36.  Therefore, the broken symmetry between replicas in 

the Sherrington-Kirkpatrick model is seen as a special case of broken ergodicity 37, 
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and as such any model which attempts to predict the properties of a non-ergodic 

system must first account for this inherent characteristic. 

Palmer approached this by partitioning phase space into a set of mutually 

inaccessible components (valleys).  This transition occurs suddenly; first order in the 

Ehrenfest sense, although for some structural glasses this need not be the case 38.  

Ergodicity within each component holds, which leads to a clear distinction between 

intra- and inter-component relaxation timescales.  Intra-component relaxation is that 

which occurs between the many metastable states within a given valley, and is often 

so fast as to only be included in the system’s entropy.  Inter-component relaxation on 

the other hand occurs on extremely long timescales and is therefore effectively 

frozen i.e. non-ergodic.  Ultimately, if we accept this doctrine we much infer that all 

glassy systems can break ergodicity if the timescale of the observation is much 

shorter than the characteristic relaxation time of the system. 

2.2.1 Non-exponential Relaxation 

With this in mind, three hundred years of empirical evidence including that 

of mechanical 39, electrical 40 and magnetic 41 relaxation, has shown slow non-

exponential behaviour to be a fundamental feature of many diverse materials 42.  

Moreover, for the past 150 years it has been customary to evaluate such anomalous 

relaxation via the so-called stretched exponential first suggested by Kohlrausch 43, 

and later derived by Williams & Watts 44.  This behaviour is also observed in the spin 

relaxation dynamics of spin-glasses, where early measurements above (Tf) quickly 

reported finding stretched exponential decay in both the remnant magnetisation and 

spin-spin autocorrelation function 45, 46. 

 ( )     [ (  ⁄ )
 
]        (2:5) 

Accordingly, several theories arose in the hope of explaining this ubiquitous 

behaviour, each based on different interpretations of the physical mechanisms 

driving it.  Each is successful in deriving a stretched exponential of the form given 

by the equation above, however rather that clarify the situation (as was intended) the  
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Figure 2:6 The time dependence of the stretched exponential formula, Eq.(2:5), with τ = 1 s, 

calculated for several (β) values, plotted on a logarithmic time axis. 

results caused considerable controversy 47.  In the first instance, it was found the 

simplest derivation was based on taking a statistical distribution of relaxation times, 

(τ), representing different atoms, or clusters of atoms.  This clearly implies the co-

existence of many independent or parallel relaxation channels, each with 

characteristic relaxation time (τi).  However, it was argued by Palmer et al. that such 

a model was unrepresentative of glassy systems  48.  Any legitimate model would 

have to incorporate and satisfy three prerequisites: broken ergodicity, interaction 

constrains, and hierarchy; not simply rely on this statistical and somewhat 

microscopically arbitrary approach.  In short, a hierarchically constrained model was 

put forward whereby faster degrees of freedom, such as the dynamics of single 

atoms successively constrain the slower.  To some degree this is the antithesis of a 

parallel picture, but nonetheless still derives at the same functional form.  Cleary, 

equation (2:5) cannot give any physical insight as to the mechanisms involved, and 
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besides, in many cases the stretched exponential is unable to adequately describe 

spin glass relaxation at, or close to, the transition temperature. 

This was clearly demonstrated by Ogielski, who in 1985 performed extensive Monte 

Carlo simulations, shown in Figure 2:7, from which he was able to show the time 

dependent spin-spin autocorrelation function is more accurately described by a 

stretched exponential incorporating a power law pre-factor 49, 

 ( )         [ (  ⁄ )
 
] (2:6) 

This phenomenological result revealed for the first time several interesting features 

in the time dependence of the exponents, (β) and (x).  Firstly, at temperatures 

relatively far above the glass transition temperature, ~ 4Tf, the stretching exponent 

(β → 1); this essentially means the exponential term is equivalent to simple Debye 

relaxation (exponential decay).  Upon cooling, (β → 1/3) as the transition 

temperature is approached.  At the same time the characteristic relaxation time (τ), 

diverges.  Secondly (x) is predicted to increase from a negligible value at the 

transition temperature up to approximately 0.5 at high temperatures. 

In recent years these predictions have largely been supported by neutron spin echo 

measurement 50, however despite its apparent success Ogielski’s power law still does 

not distinguish between parallel or hierarchical relaxation processes and therefore 

we cannot hope to clarify the fundamental question as to what mechanism, or 

mechanisms are driving this non-exponential decay.  Moreover, the power law pre-

factor can lead to unphysical values at short times i.e. (Q(t) > 1) as (t → 0). 

A new model is therefore needed to explain this seemingly universal power law 

response.  To this end, the remaining sections of this chapter will present two closely 

related candidates and discuss how these general relaxation equations have recently 

been extended by Cywinski & Pickup to neutron spin echo measurements  on several 

spin glass materials 51, 52.  
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Figure 2:7 Simulated dynamic autocorrelation function above Tf taken from Ogielski 
49

.  From right 

to left, the temperatures are T = 2.50, 2.00, 1.80, 1.70, 1.60, 1.50, 1.45, 1.40, 1.35, and 1.30.  The solid 

lines represent least square fits to the data using Eq. (2:6).  
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2.2.2 A Probabilistic Mechanism 

The challenge now for both theoretical and experimental physicists alike is 

to develop and apply a model which gives physical meaning and indeed an insight to 

the mechanisms responsible for these peculiar dynamics.  In 1991 Karina Weron et 

al. proposed just such a model based on a probabilistic interpretation of dielectric 

relaxation which, like that of spin-glasses, departs strongly from conventional Debye 

behaviour 53.  A schematic representation of the Weron model is offered in Figure 

2:8. 

Based on the correlated cluster model of Dissado & Hill 54, it is proposed that the 

relaxation of complex systems originates from co-operative positional or 

orientational relaxation over portions of spatially limited regions, i.e. clusters of 

atoms, molecules or aggregates, and that the scale of the relaxation of each 

individual entity is constrained such that small clusters relax first via intra-cluster 

dynamics.  As discussed earlier, it has long been argued that such a framework is 

physically more realistic, albeit a radical departure from previous derivations.  

Hence, by depicting a material in terms of cluster-type geometry the model 

inherently fulfils the requirement of hierarchical constraints on the dynamics. 

Although the main motivation of Weron’s work was to understand the universal 

power-law behaviour of dielectric susceptibility the resulting relaxation function was 

constructed in such a way as to be applicable to any relaxing system where the 

relaxation of the entire system can be related to a characteristic relaxation rate, 

(A = 1 / τ).  This generality has made it possible to apply this stochastic model to 

wide range of phenomena, including spin glass relaxation 51, 52. 

This rigorous probabilistic approach introduces two independent, non-negative 

random variables: a random waiting time (ηi) and a dispersion rate (βi).  This waiting 

time is associated with the relaxation rate of each individual entity, whilst the 

dispersion rate is an adjustment time for the local environment to move back to 

equilibrium.  
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Figure 2:8 2D representation of the cluster geometry used by the Weron Model, possessing both 

intra- and inter-cluster interactions. 

Essentially, their sum describes the time needed to reach equilibrium, and through 

this Weron derives, 
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where (0 < α ≤ 1) is a measure of the level of self-similarity within the system, and 

(k > 0) is an effective interaction parameter connected with the waiting time 

associated with both inter and intra-cluster relaxation processes.  Hence the latter 

expresses the strength of interactions and accordingly the degree of hierarchical 

constraint on the overall dynamics.  Moreover, in the limit (k → 0), equation (2:7) 

reduces to the stretched exponential form, in which case (α → 1) reproduces Debye 

relaxation, 
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This highlights the significance of the interaction parameter (k) in determining the 

nature of the relaxation process.  Furthermore, the relationship between the stretched 

exponential and Weron model in this limit indicates that the stretching parameter (β) 

is equivalent to the self-similarity or fractal paramter (α) between the metastable 

phases within an ergodic valley. 

Self-similarity and fractal geometry have received a great deal of attention over 

recent decades, and the link between this and the complex non-exponential 

relaxation exhibited in systems of broken ergodicity is attracting more and more 

interest.  Recent research suggests that Boltzmann-Gibbs statistical mechanics can 

no longer be used to describe the thermodynamic properties of such systems.  This 

departure has led many to consider a model constructed by Constantino Tsallis, who 

has defined a generalised form of entropy commonly referred to as non-extensive.  

The following section will introduce the salient ideas of his work. 

2.2.3 Non-Extensive Entropy 

An ever growing catalogue of evidence has, in recent years, led many 

scientists to apply the ideas of non-extensive statistical mechanics to: computer 

science 55-58; Earth, life and social sciences, geography and climate models 59-67; 

economic and financial patterns 68-71; and many more complex natural and artificial 

phenomena.  The idea stems from the belief that Boltzmann-Gibbs (BG) statistics, 

despite apparently being eternal (valid always), and ubiquitous (valid everywhere) is 

by no means universal (valid for all phenomena) 72-74, and although the precise 

definition of the domain in which BG-statistic remains valid is as yet an unsolved 

problem, the current consensus is that it may only be applied when the relevant 

phase space is smooth 75.  Already from Figure 2:5 we know that this is not the case 

in broken- or non-ergodic glassy systems which have a multi-fractal nature. 

Crucially the definition of standard thermodynamic entropy is not in question, 

having first been introduced nearly one and a half centuries ago by Clausis and later 

interpreted in the seminal works of Boltzmann and Gibbs from statistical mechanics.  

A suitable definition of entropy in non-ergodic systems is however a highly 
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contentious issue.  Nonetheless it should be mentioned how truly remarkable it is 

that Boltzmann-Gibbs statistical mechanics can bridge a link between microscopic 

laws and the macroscopic world of classical thermodynamics.  Hence Tsallis took 

this construct as his starting point, with entropy being related to the probability, (pi), 

of the total number of possibilities (W), 
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In this form entropy is an extensive property, such that for two independent systems, 

(A) and (B), 
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He then constructed a generalisation which considers the possible lack of additively 

between these systems by introducing an extensivity parameter (q), 
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Clearly when (q → 1) this formalisation recovers the usual Boltzmann-Gibbs 

entropy whereas the other limits, (q > 1) and (q < 1), both sub-extensive and 

super-extensive states exist respectively.  Hence, equation (2:9) is written in 

generalised non-extensive form, 

  (  )    
  ∑   

  
   

    
 (2:12) 

where (W) is still the number of microscopic possibilities of the system, and (kB) is 

still the Boltzmann constant. 
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Figure 2:9 Values of the entropy for typical values of q extensivity parameter (shown with curve).  

It can be seen that Sq / k diverges if q ≤ 1, and saturates at Sq = kB / (q - 1) when q > 1, in the limit 

W → ∞. 

To grasp this particularly difficult concept it is useful to consider a practical example 

of non-extensivity.  A tornado is perhaps most intuitive.  It seems legitimate to 

assume that the individual air molecules are independent of one another, and they 

interact only with other molecules in the immediate vicinity (i.e. short ranged 

interactions); this is the normal extensive statistical mechanics view.  However, it is 

clear that the formation of a tornado is an event that requires the highly correlated 

motion of trillions of entities over macroscopic distances, ultimately leading to an 

ordered vortex despite its microscopically disorder nature.  With this in mind it 

becomes easier to appreciate that the entropy of the system as a whole may be less 

than the entropy of its parts.  In such a case the Tsallis extensivity parameter would 

be (q > 1), saturating towards [Sq = kB / (q - 1)] in the limit of (W → ∞), as shown 

in Figure 2:9.  
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Using this principle Brouers & Sotolongo-Costa derive a two-power-law relaxation 

function 73, 76 , identical in form to that of Weron’s purely stochastic theory.  As such 

it gives a greater physical meaning to the mathematical parameters, (α) and (k).  In 

the first instance this phenomenological model begins in the normal way, by taking a 

weighted average of Debye decay using a distribution of relaxation times, ωτ(τ), 

 ( )  ∫   ( )     [ (
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The relaxation is again assumed to be the collective response of clusters, and as such 

dependent on their interactions and geometric structure.  Smaller clusters relax first, 

whilst long-range inter-cluster interactions take place on longer time scales.  The 

overall process is seen from a macroscopic perspective and derived in terms of two 

global parameters, one defining the time and space fractal nature of the relaxation, 

(α), and the other, (q), characterising the hierarchical structure of the cluster 

geometry though a the maximisation of non-extensive entropy. 

The cluster size distribution therefore needs to be related to the relaxation rate 

distribution in order for it to scale in an appropriate way with the number of relaxing 

entities within a cluster.  To do this the relaxation time is equated to the normalised 

volume of a cluster (v) via the following expression,  

     ⁄  (2:14) 

where (0 ≤ α ≤ 1).  Then by maximising the generalised entropy of Tsallis 77, 78, 
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the probability, p(x) of the system being in a state between (x) and (x + dx) is 

obtained.  From this the cluster size distribution function can be found, 
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where (1 ≤ q < 2) is the normalised version of (q) as derived by Tsallis et al. in 79, 80.  

Together these equations make it possible to write a relaxation function in terms of 

the distribution of relaxation rates, 
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where [A = 1 / τ] and, 
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which leads to the relaxation function, 
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Through comparison with Weron’s function, equation (2:7), it is clear to see that the 

interaction parameter is equivalent to, 

  (
   

   
) (2:20) 

and therefore must give a direct link to the non-extensivity of the system. 

This model has been simulated in Figure 2:10 for typical experimental time-scales to 

indicate its behaviour as a function of both (q) and (α). 
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Figure 2:10 Simulated results for the Tsallis relaxation function.  Each plot reveals the variation of 

Q(t) with extensivity parameter for α = 1.0, 0.6 and 0.33; top, middle and bottom respectively.  .  
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Recently the Weron-Tsallis relaxation function has been applied to Neutron Spin 

Echo measurements performed on a range of spin-glass, as well Random Anisotropy 

systems 51, 52, 81.  It has been found to provide a more accurate and self-consistent 

description of the evolution of the relaxation dynamics as the transition temperature 

is approached form above. 

A range of canonical systems, such as CuMn and AuFe, have been shown to follow 

a general pattern, Figure 2:11.  At high temperatures the non-extensivity parameter is 

close to one, which essentially indicates the dynamics are dominated by the parallel 

relaxation of clusters.  Upon a reduction in temperature the non-extensivity 

parameter is then seen to decrease continually and consistently took a value of 

(q = 5 / 3) at the transition temperature.  This value has been shown to mark a 

transition called the strong-disorder limit, where the dynamics are predominantly 

governed by the power law tails of the cluster size distribution function given in 

equation (2:16). 

Investigations on several Random Anisotropy Magnets have reached quite different 

conclusions.  The non-extensivity parameter is found to be independent of 

temperature and take a value of approximately 1.5, Figure 2:12.  This suggests that 

in this case the dynamics are not cooperative in nature, and that the behaviour of 

these systems is dominated by the local random anisotropy axis which causes the 

random distribution of moments. 

2.2.4 Summary 

A historical review of the spin glass problem has been presented highlighting 

many of the important concepts and stages in reaching our current understanding.  A 

general two-power law relaxation function is derived of the form, 

 ( )  [    (
 

 
)
 

]

  
 
 
 (2:21) 

where (α) is associated with the fractal geometry of the system which Brouers & 

Sotolongo-Costa have related to the normalised cluster volume distribution.  
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Furthermore their model, based on Tsallis entropy, gives a physical interpretation of 

the mathematical parameters of Weron’s purely stochastic theory founded on the 

survival probability of the initial state in any relaxing non-equilibrium system.  Both 

however can be seen as a derivative of stretched exponential or Kohlrausch decay 

law in the limit (  → 0), in which case (α) equates to the stretching parameter, 

(α ≤ 1), and is said to be a measure of the non-idealness of the relaxing process, i.e. 

variations in interaction and intra-cluster size 76. 

Function parameter Limits 

Weron interaction parameter k > 0 

Tsallis non-extensivity parameter 1 ≤ q < 2 

Normalised Non-extensivity 1 ≤ q < 2 

Given that the functional form of each theory is identical, despite their respective 

origins being unrelated, it may be assumed the parameter (ξ) is fundamentally 

equivalent.  In essence this parameter provides a measure of the level of constraint 

on the relaxation dynamics of the system, which for glassy systems is the direct 

consequence of broken-ergodicity. 
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Figure 2:11 The Tsallis non-extensivity parameter obtained by NSE measurements a range of spin 

glass systems; Recreated form the thesis of Pickup 
81

. 

 

Figure 2:12 The Tsallis non-extensivity parameter for Random Anisotropy Magnets (RAM).  

Recreated form the thesis of Pickup 
81

.  
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Chapter 3 

EXPERIMENTAL TECHNIQUES 

& INSTRUMENTS 

This final preliminary chapter is presented as a review of the techniques and 

instruments which have been employed during this project. 

3.1 Introduction to Neutron scattering 

In order to observe detail on an atomic scale we must use radiation with a 

wavelength comparable to the interatomic separation of atoms (~ 10
-10 

m).  Visible 

light is several orders of magnitude too large, and so alternative forms must be 

sought.  Fortunately, electrons, atoms, and x-rays are all suitable candidates; 

however it is the neutron’s unique set of physical properties that make it the 

outstanding choice for many condensed matter studies: 

Energy:  using the de Broglie - Einstein postulates we are able to calculate the 

energy associated with a given neutron wavelength. 

  
 

  
   

  

 
 (3:1) 

   
 

 
    

ℏ   

  
 (3:2) 
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Thus we find appropriate wavelengths correspond to the energies of many naturally 

occurring excitations (2 Å ≈ 25 meV).  Ultimately, this makes two distinct modes of 

neutron scattering experiment possible, one in which the positions of atoms are 

obtained (diffraction), and a second to study their dynamics are revealed 

(spectroscopy). 

Zero electronic charge:  unlike many atomic probes neutrons are able to penetrate 

deeply into most types of matter.  In the first instance this is because a neutron 

interacts via the strong nuclear force (~ 10
-15 

m).  If we consider that the separation 

between nuclei (in solids) is in the order of 40,000 times their typical diameter 

(~ 5 fm) it quickly becomes clear that, at least from the neutrons perspective, matter 

is relatively transparent. 

Neutron-nuclei interaction: the strength with which neutrons are scattered or 

absorbed varies in a non-systematic manner with isotope, as shown in Figure 3:1 and 

Figure 3:2 respectively.  Not only does this allow neighbouring atoms in the periodic 

table, or indeed isotopes of the same atomic species, to be easily distinguished 

between, but neutrons often scatter equally strongly from light atoms, unlike x-ray 

scattering. 

Magnetic moment: a neutron has a spin of ½ and therefore possesses an intrinsic 

magnetic moment (γ = -1.913 µN) which, only four years after Chadwick’s
§
 

discovery of the neutron, Bloch
§
 recognised could be exploited for the study of 

magnetism 82.  Put simply, in addition to the short-range nuclear potential, magnetic 

atoms also exert a dipole interaction potential from which neutrons will scatter.  

Although theoreticians such as Schwinger
§
 83 and Halpern & Johnson 84-86 quickly 

explored the prospects of using neutrons to probe magnetic phenomena, it took over 

a decade before such an experiment was feasible.  Shull
§
 and his colleagues had by 

1951 developed these techniques, and were able for the first time provide 

experimental proof of anti-ferromagnetic order in MnO 87.  

                                                 
§ Nobel Prize laureate in Physics 
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Figure 3:1 Non-systematic variation of the coherent scattering length with atomic number 
88, 89

 

 

 

 

Figure 3:2 Non-systematic variation of the absorption cross section with atomic number in units of 

brns (1 × 10−24cm-2) 
88, 89

.  
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3.1.1 The Production of Neutrons for Science 

Famously neutrons were first detected by Chadwick in 1932, when he used 

alpha particles released from Polonium-210 to produce neutrons from nearby 

Beryllium 90: 

               .      

Today several large scale central facilities operate worldwide dedicated to neutron 

scattering studies.  In general there are three methods through which neutrons are 

produced: Spallation, Fusion, and Fission.  Here the methods employed at ISIS and 

ILL are presented. 

ISIS:  Spallation of neutrons at the ISIS facility is driven by a pulsed beam of 

protons which originate from an ion source feeding negative hydrogen ions into a 

linear radio-frequency accelerator or LINAC.  This accelerator contains four 

accelerating tanks inside which are a series of drift tubes. 

These ions travel though the tanks accelerating between the drift tubes when the 

field is in the correct direction and being shielded by them when the field reverses.  

The subsequent 200 µs pulse of ions, at 70 MeV, is then stripped of its electrons by 

an aluminium oxide foil and injected into a 24 m radius synchrotron.  The remaining 

protons are gathered into two orbiting bunches and are accelerated by voltages 

reaching 140 kV to energies of 800 MeV.  The whole process is repeated 50 times 

per second producing a double pulsed beam with a mean current of 200 µA on the 

spallation target. 

This target is comprised of thick tungsten plates housed in a water cooled pressure 

vessel from which 18 beam lines link to the instruments.  Neutrons are produced 

when a proton impinges the target and is absorbed by a target nucleus, elevating it to 

a highly excited state.  This causes the expulsion of high energy nucleons which on 

the whole are reabsorbed and the process repeated, emitting close to 40 slow 

neutrons per proton as well as photons and neutrinos.  The neutrons’ energy is 

subsequently controlled by moderators placed before the entrance of the beam line. 
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The ILL research site; credit: Peter Ginter, ESRF 

ILL:  Fission reactors such as the ILL are usually powered by Uranium-235, an 

isotope that is present in only 0.7 % of naturally occurring Uranium.  By fission with 

thermal neutrons on average 2.5 fast neutrons and approximately 180 MeV of 

energy is produced, 

                          .               

The reaction is regulated by boron loaded control rods and becomes self-sustaining 

when on average ½ a neutron is absorbed by material other than the core, one 

neutron triggers a further fission event, and one neutron leaves the core for use at an 

instrument.  The energy spectrum of the neutrons produced in this way has three 

distinct regions, the first being a peak around 1-2 MeV which is referred to as the 

lamb distribution, these are the fast or high energy neutrons.  The next is an 

intermediate or epithermal region where the energy gradually decreases 

characterised by a 1/E distribution in intensity.  Finally the thermal peak which is 

characterized by a Maxwell-Boltzmann distribution of energies centred on 

approximately 25 meV.  Again the neutron’s energy is controlled by moderators 

prior to entering the beam lines.  
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3.1.2 Kinematics Approximation 

First consider a monochromatic beam of neutrons characterised by an initial 

wavevector, (ki) incident on a solid sample as depicted in Figure 3:3.  Since for the 

reasons already mentioned most samples are largely transparent to neutrons it is 

unsurprising that a large percentage of the beam’s initial intensity is transmitted 

without being affected.  The remaining beam fraction undergoes absorption or 

scattering. 

 

Figure 3:3 The scattering geometry in a generic neutron experiment; the incident beam, travelling in 

the x-direction, interacts with a scattering system located at the origin.  A detector counts the number of 

neutrons scattered into the solid angel dΩ. 

Absorbed neutrons form highly excited compound states with the parent nucleus, 

which under normal circumstances decay extremely rapidly (~ 10
-14

 s) expelling 

nucleons (n, p, α) or, more likely emitting gamma radiation. 

Scattered neutrons on the other hand are characterised by a second wavevector (ks) 

and can be counted in a detector a large distance from the sample.  The number of 

𝑧 

𝑟  Ω 

  

  

Detector 

   

   

𝑟 

𝑦 
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counts per second (C) is proportional to the initial beam intensity ( o), number of 

scattering centres at the target (N), and the solid angle subtended by the detector to 

the scattering system (dΩ). 

 

Figure 3:4 Scattering triangles for elastic and inelastic scattering events. 

Consequently, a sample specific constant of proportionality known as the differential 

cross section can be derived, 

  

  
 
 

     
 (3:3) 

essentially quantifying the number of neutrons scattered into the solid angle (dΩ), 

independent of any energy being transferred from or to the neutron.  Therefore this 

definition is not applicable to inelastic scattering.  The so-called double differential 

Energy given to sample: ks < ki Energy given to neutron: ki < ks 

      

   

    

      

   

  

   

  

 

 
        

Incident direction 

   

Scattered direction 

No energy transfer: |ki| = |ks| 
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cross section addresses this by counting neutrons within a given interval of energy 

exchange (dE), 

   

    
 

 

      
 (3:4) 

To quantify the momentum (m∆v) and energy (∆E) transferred, equation (3:1) can be 

rearranged, with (ki) and (ks) substituted into equation (3:2) to yield 

    ℏ(     ) = ℏ  (3:5) 

   
ℏ 

  
(  
    

 ) (3:6) 

where the scattering vector is defined as, 

        (3:7) 

Note that the total number of neutrons scattered by the system every second is 

defined as the total scattering cross section, and is related to equations (3:1) and 

(3:4) through integration. 

  

 Ω
 ∫ (
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 (3:8) 

       ∫ (
  

 Ω
) Ω

  

 (3:9) 

Returning to Figure 3:3, the scattered beam is isotropic (s-wave scattering), 

expanding in spherical wavefronts or radius (r).  This is because neutrons interact 

with the nucleus at an incredibly short range making the target appear point-like, and 

also that the neutron wavelength is such that the internal structure of the nucleus is 

unseen.  Accordingly, scattering from a single nucleus may be represented as a plane 

wave at large distance, 
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𝑟
   (   𝑟) (3:10) 

where ( 𝑟⁄ ) is the scattering amplitude, characterised by the scattering length 

constant (b).  Importantly, during the scattering process the target nucleus, with spin 

(𝒮), and neutron combine to form a compound system having spin [𝒮   ½] or 

[𝒮   ½].  Each of these spin states have a different scattering length denoted by (  ) 

and (  ) respectively, and it is this spin-dependence that results in two different 

types of scattering effect when scattering from many nuclei 84.  The first is coherent 

scattering, which is due to interference between neutron waves which have a phase 

corresponding to the interatomic distances between the nuclei.  This contribution can 

be shown to be proportional to the square of the average scattering length, 

       〈 〉
  (3:11) 

The second type is incoherent scattering, and is the direct result of there being a 

distribution of scattering lengths within the sample.  This might be due to the spin 

state of the neutron-nucleus system, or simply the presence of more than one isotope 

within the sample.  Both cause incoherently scattered waves which, since their 

relative phases are uncorrelated, simply add together and give rise to a flat 

background signal.  This contribution is proportional to the average square deviation 

of the scattering length constant, 

         [〈 
 〉  〈 〉 ] (3:12) 

Thus, the total scattering cross section is the sum of both terms, 

                   (3:13) 

However, this is not strictly the quantity measured during neutron scattering 

experiments.  It is generally the intensity of the scattered beam as a function of 
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scattering vector (Q) and energy (ω) which is measured, leading to a function 

S(Q, ω), referred to as the scattering function. 

3.1.3 Scattering & Pair Correlation Functions 

The scattered neutron measures both the angular dependence and frequency 

spectrum simultaneously, and so the function S(Q,ω) contains all the scattering 

properties of the system under investigation.  What's more, Van Hove defined a 

general expression for the angular and energy dependence of Born approximation
**

 

scattering in terms of a pair-correlation function, G(r, t) which he showed to be the 

Fourier transform of S(Q,ω) 91.  Classically this function can be interpreted as the 

probability of finding a particle at position (r) at time (t), and a particle (possible the 

same particle) at the space and time origin, (0r, 0t). 

 (   )  
 

(  ) 
∫      (    𝑟)∫       (   )  (   )

 

  

 (3:14) 

This pair-correlation function can be shown to be equivalent to a density-density 

correlation function, such that, 

 (   )  〈 (     ) (   )〉  (3:15) 

where (ρ) is the density operator of all the nuclei, each nucleus given by a δ-

function, 

 (   )  ∑  [    ( )]

    

   

 (3:16) 

Given equation (3:15), we are able to describe the two modes of neutron scattering 

experiment not only in terms of the scattering law and pair-correlation functions, but 

also the more intuitive density-density correlation function.  Diffraction is the 

angular dependence of elastic scattering, and is written as the energy-integrated 

                                                 
**

 Valid when the scattering is weak, the scattered wave is represented by a plane wave. 
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intensity of S(Q,ω), which is the Fourier transform of the density-density correlation 

function, 

 ( )  ∫ (   )   〈∫ (    ) (  )  〉 (3:17) 

Spectroscopy on the other hand measures the change in velocity of the scattered 

neutron, leading to the frequency spectrum S(ω), which is equivalent to the time-

dependence of the density function,  

 ( )  〈 (    )〉 (3:18) 

More rigorous derivation may be found in the following texts 92-94. 

3.1.4 Nuclear Scattering 

To make quantum mechanical predictions for the double differential cross 

section 92, 93 the interaction potentials from an assembly of nuclei at positions (Rj), 

with scattering lengths (bj), are substituted by a Fermi pseudo-potential of the form, 

 ( )  
  ℏ 

  
∑   (    )

 

 (3:19) 

where (mn) is the neutron mass and δ(r) is a Dirac delta function, taking the value of 

unity at (r = Rj) and zero everywhere else.  Upon scattering both the wavevector and 

spin state of the neutron change (kiσi → ksσs).  So too does the quantum state of the 

nuclei from which it scatters (λi → λs).  Clearly the detector count rate (C) may be 

replaced by the rate at which this transition occur (W), and so the differential cross 

section given by equation (3:4) may be rewritten as, 

(
  

  
)
             

 
 

     
               (3:20) 

Using Fermi’s Golden Rule the transition rate can be expressed as, 
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ℏ
|〈      | |      〉|

      (  ) (3:21) 

where the probability density of the transition occurring is given by the modulus 

squared of the matrix element, and      (  ) is the density of final neutron state 

(ksσs) per unit energy.  Setting periodic boundary conditions the incident flux and 

density of final states can be normalised 88, 95 to express the differential cross section 

as, 

(
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|〈      | |      〉|
  (3:22) 

By conserving the energy transferred between the neutron and nuclei, 

                  (3:23) 

and summing over all final nuclei and neutron-spin states, weighted to the 

probability of the initial and final states occurring, (ρi) and (ρs) respectively, we 

obtain the double differential cross section, or so-called Master equation of neutron 

scattering, 

(
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 (       ) (3:24) 

3.1.5 Magnetic Scattering 

The magnetic analogue of equation (3:24) is far more complicated to derive, 

but nonetheless has a very similar form, 

(
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 ∑∑   
  

∑  ⟨  |   
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 (       ) 
(3:25) 

where (Nm) is the number of magnetic ions in the sample, (r0) is the classical 

electron radius which determines the strength of the interaction, (γ) is the 
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gyromagnetic ratio of the neutron, and (D) is magnetic interaction operator.  For a 

detailed derivation please consult Methods of Experimental Physics – Neutron 

Scattering: Part A 94.   

As with the nuclear case however the magnetic double differential cross section is 

defined by evaluating the matrix element ⟨  | |  ⟩, where the interaction potential 

between a neutron’s magnetic dipole moment (Bn) and the magnetisation density 

(Me) of unpaired electrons is expressed as a dipole interaction potential of the form, 

  
 

    
  (𝑟)     (𝑟) (3:26) 

Furthermore, the magnetisation density at position (R) for a single electron with 

momentum (p), may be expressed as two terms, 

   
  
  
[(    

    

| | 
)  
   
ℏ

   

| | 
] (3:27) 

the first accounting for the spin angular, and the second orbital angular momentum 

respectively.  (  ) is the permeability of free space and (  ) is the electron’s 

magnetic moment. 

The salient features of magnetic neutron scattering are that the neutron is acted upon 

by the perpendicular component of the sample magnetisation to the scattering vector 

(Q), and secondly, since the volume occupied by a local atomic field is comparable 

in linear extent to the neutron’s wavelength the magnetic scattering amplitude is 

anisotropic. 

Due to the latter, magnetic scattering is Q-dependent and must therefore include a 

term referred to as the magnetic form factor f(Q), accounting for this angular 

dependency.  For this purpose, analytical expressions for approximating the atomic 

form factor in Kα x-ray crystallography 96 were adopted by neutron scattering 

community, which were originally based on a two-term Gaussian expansion, but are 

currently based on a three term expansion for increase accuracy.  In contrast to x-ray 

scattering however, the magnetic form factor is governed by the unpaired electrons 
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only, and is expressed as the sum of two independent contributions: one associated 

with the spin 〈𝑗 〉, and the other orbital 〈𝑗 〉 angular momentum of the magnetic 

atom.  Weighting of these contributions is enabled via the Landé-splitting factor (g), 

such that f(Q) is given by the formula, 

 ( )  〈𝑗 ( )〉  (  
 

 
) 〈𝑗 ( )〉 (3:28) 

which has been calculated for several manganese ions in Figure 3:5 

Where the spin contribution follows a form derived by Forsyth & Wells in 1959 97, 

〈  ( )〉       (   
 )       (    )       (    )    (3:29) 

and the orbital contribution follows the expansion, 

〈  ( )〉   
 [     (    )       (    )       (    )   ] (3:30) 

derived by Lisher & Forsyth in 1971 98.  In both cases, 

  
    

 
 
 

  
 (3:31) 

and the coefficients (A, B, C, D, a, b, c) are obtained by least-square fitting to 

Hartree-Fock calculations of the magnetisation density, (Me) 
89.  
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Figure 3:5 The magnetic form factor squared, f(Q)2 of a free manganese atom, as well as several of its 

ions calculated using equation (3:28).  It is clear the magnetic form factor falls sharply with scattering 

vector, and can vary significantly between ionisation states. 

 

〈  〉 A a B b C c D 

Mn 0.2438 24.9629 0.1472 15.6728 0.6189 6.5403 -0.0105 

Mn
+2

 0.4220 17.6840 0.5948 6.0050 0.0043 -0.6090 -0.0219 

Mn
+3

 0.4198 14.2829 0.6054 5.4689 0.9241 -0.0088 -0.9498 

Mn
+4

 0.3760 12.5661 0.6602 5.1329 -0.0372 0.5630 0.0011 

〈  〉       

Mn 2.6681 16.060 1.7561 5.640 0.3675 2.049 0.0017 

Mn
+2

 2.0515 15.556 1.8841 6.063 0.4787 2.232 0.0027 

Mn
+3

 1.2427 14.997 1.9567 6.118 0.5732 2.258 0.0031 

Mn
+4

 0.7879 13.886 1.8717 5.743 0.5981 2.182 0.0034 

 

Table 3:1 The spin and orbital coefficients calculated by Brown 
89

 used to produce Figure 3:5.  
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Figure 3:6 Schematic illustration of the relationship between the scattering vector, Q and the 

magnetic interaction operator, D. 

3.1.6 Polarisation Analysis 

Apart from analysing the wavevector and momentum of a scattered neutron, 

additional information can be gained through changes in its spin state.  This is 

because, as discussed in the previous sections, neutron scattering is a spin dependent 

process, and consequently techniques have been developed to exploit this since the 

early 1960s.  This section presents a short overview of xyz-polarisation analysis; a 

measuring technique which makes it possible to unambiguously separate nuclear, 

spin-incoherent and magnetic scattering cross-sections. 

The polarisation of an ensemble of neutrons is defined as the sum over all 

polarisation vectors of individual neutrons (j), within the beam. 

  
 

 
∑  

 

 

 (3:32) 

Subsequently, when (P = 1) the beam is perfectly polarised, and when (P = 0) the 

beam is totally depolarised.  Current technologies permit values of 0.98 and above 

are routinely achieved. 

At this point it is useful to note that coherent nuclear and isotope-incoherent 

scattering do not change the neutron’s spin-state and so are referred to as non-spin 

flip processes.  Nor will it change if the magnetic and nuclear spin components are 

| | 
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parallel to the incident beam polarisation direction.  However, when the relative spin 

components are perpendicular to one another the neutron’s spin state will flip. 

The “xyz” technique requires the scattering cross sections of spin flip and non-spin 

flip processes to be measured in all three polarisation directions, leading to six 

individual components:  

Spin flip processes: 
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Non-Spin flip processes: 
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By combining these partial differential cross sections it is possible to isolate each of 

the different forms of scattering, with the only exception being that of isotope-

incoherent scattering which cannot be separated from the nuclear coherent scattering 

cross section.  
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The nuclear and spin-incoherent cross section is defined in terms of the total spin-

flip (TSF) and total non-spin-flip (TNSF) partial differential cross sections, 
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and so the nuclear and spin-incoherent cross sections are expressed as, 
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There are of course limitations since these equations apply strictly to paramagnetic 

or disordered static magnets.  Non-collinear systems such as helical magnets cannot 

usually be studied using xyz-polarisation analysis. 

3.1.7 Polarisation Techniques 

The earliest polarised neutron experiments were performed in 1938, only six 

years after the discovery of the neutron 99.  From these initial experiments stemmed, 

almost simultaneously, two different methods of producing a beam of polarised 

neutrons.  One based on Bragg scattering 100-103 the other on total reflection from 

magnetic surfaces 104-106.  Only reflection techniques are implemented on the 

instruments used during this project, however a excellent and comprehensive review 

of current polarisation techniques is available in the following reference 107. 

As will become clear in the following section, one of the primary purposes of 

neutron spin echo spectroscopy is to decrease the long counting times generally 

associated with polarised neutron scattering experiments.  Subsequently, these 

instruments nearly always employ a polarising device known as a supermirror.  An 

example of the efficiency of a supermirror device is given Figure 3:7. 

First proposed by Turchin in 1967 108, and later rediscovered and successfully 
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Figure 3:7 Polarised neutron reflectivity measurements for both parallel and anti-parallel spin states 

of a 900 layer Fe-Si supermirror on a borofloat glass substrate, taken from Courtois 
109

.  Angular 

separation of parallel and anti-parallel spin states is evident, with a critical angle (~ 3 °) four times that of 

Nickel (m = 4).  

fabricated by Mezei & Dagleish 110, 111, these are a multilayer (surface) device, which 

consists of alternating magnetic and non-magnetic layers, saturated by external field 

(B), gradually decreasing in thickness (D) towards a substrate 112, 113. 

This graduation in layer thickness artificially increases the critical angle of incidence 

or wavelength so that a wider range of neutron energies are polarised.  The most 

crucial element is the choice of materials which make up the magnetic-non-magnetic 

bi-layers.  As discussed, the scattering length density of the magnetic material has 

two values, dependent on the neutron spin-state, adding to the nuclear potential 

when parallel, and subtracting when anti-parallel.  Therefore a non-magnetic 

material is chosen which matches the potential seen by the anti-parallel neutron in 

the magnetic material.  While those with spin parallel to (B) are reflected at the 

boundary between layers, anti-parallel neutrons pass straight through (not seeing the 

change in scattering potential between layers).  These are eventually absorbed by 

anti-reflecting / gadolinium doped layers covering the glass substrate 114-118. 
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3.2 Neutron Spin Echo Spectroscopy 

Conventional polarised neutron experiments demand careful preparation of 

the neutron beam, and generally employ parallel guide fields in order to maintain 

the beam’s polarisation direction (P) throughout the instrument.  As stated, the 

interaction between the neutron and the sample, and subsequently information on the 

sample, is gained by discerning the differences between the incident and scattered 

beams. 

Accordingly the instrument resolution is a function of the quadrature sum of the 

uncertainties in (ki) and (ks), and the resolution achievable in S(Q, ω) is therefore 

severely restricted by the precision of their measurement.  Unfortunately two 

problems arise:  firstly if we choose to more tightly control the velocity and 

divergence of the beam, using monochromator and collimating devices, we 

unavoidably remove more neutrons from the beam and reduce the overall flux.  

Secondly, even for a theoretically perfect instrument, improving the resolution is at 

best proportional to the square of the number of neutrons counted. 

In practical terms this means to improve the resolution by a factor of two we would 

need to count for four times as long and in view of this a difficult balance must be 

struck between controlling the physical parameters of the beam and the beam’s flux; 

collecting sufficient quantities of data whilst still maintaining an acceptable 

resolution.  Fortunately, in 1972 a radically different approach was proposed by 

Ferenc Mezei based on labelling each neutron with a unique time, allowing for the 

counting time to be completely decoupled from the resolution 119. 

Analogous to the NMR spin-echo technique from which its name was derived, 

neutron spin echo (NSE) uses perpendicular fields and static field-inhomogeneities 

at strategic positions along the neutron’s flight-path to carefully control the neutron 

spin polarisation direction (P).  Ultimately, it provides the highest energy resolution 

currently attainable using neutrons, whilst at the same time allowing the 

monochromatization to be broadened substantially (   ⁄   10 – 20 %), giving 

significant gains in flux and therefore reduced counting times.  A review of the NSE 

concept and its implementation is presented at this point. 
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3.2.1 Principles of NSE: A Classical Description 

The most accessible way to visualise the neutron spin echo concept is via a 

classical treatment.  In this way a simple pictorial representation can be developed to 

emphasise the neutron’s behaviour as it passes through the individual components of 

the instrument.  A corresponding quantum mechanical treatment can be found in 

references 120, 121.  To aid in this description the initial focus will be on: 

 The importance of a guide field, and its relative alignment to (P), 

 the effect of field-inhomogeneities on (P), 

 Mezei flipper coils. 

This will provide a framework on which a generalised NSE spectrometer can be 

described, deriving the so-called NSE equations. 

 

Figure 3:8 Larmor precession for a magnetic moment (µ) placed at an angle (θ) to a magnetic field 

(B).  The direction in which the moment rotates is shown by the blue arrow. 

Guide fields are sometimes generated by permanent magnets but in the case of NSE 

usually result from current carrying coils.  Conventional polarised neutron 

experiments are set up with the guide fields aligned parallel or anti-parallel to the 

beam’s polarisation direction.  They are required in order to maintain a constant 

polarisation direction since the neutron’s sensitivity to its local magnetic 

environment is so great that without them (P) would not only be influenced by the 

Earth’s magnetic field but also inhomogeneities due to nearby magnetic materials. 

θ  
µ   

B

   
α 
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NSE spectrometers differ, as (P) has a perpendicular component to (B) so that the 

neutron’s moment (µ) experiences a torque resulting in precession about the field 

direction.  This behaviour is known as Larmor precession, and was first observed in 

a neutron beam by Drabkin et al. in 1965 122. 

  

  
           (3:38) 

      (3:39) 

The Larmor frequency (ωl) and gyromagnetic ratio (γ) are related by      , with 

the total precession angle in radians (α) given by equation (3:39).  Since a neutron’s 

angular momentum is constant its precessional frequency (ωl), and therefore total 

precession angle (α), is independent of (θ).  As such each neutron in the beam will 

precess with the same frequency and each neutron’s total precession angle will 

depend only on the time it spends in the field i.e. the length of that field (l), and the 

exact velocity of the neutron (v), 

   
  

 
 (3:40) 

The guide field itself should be constant in magnitude and direction, however to 

progress further the effects of a change in field direction must be considered.  In the 

first instance we need only consider the rate at which the change occurs by defining 

an angular frequency, 

  
 ( | |⁄ ) 

  
 

(3:41) 
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Figure 3:9 Mezei flipper coil. 

The change can be considered slow if |ω| ≪ |ωl|, which is known as the adiabatic 

limit.  In this case the neutron polarisation direction simply tracks the change in field 

direction.  On the other hand if |ω| ≫ |ωl| the polarisation of the neutron is unable to 

follow the field, so only their relative alignment changes.  This is the so-called 

sudden approximation, which is vital to controlling (P) on many instruments since it 

is the basis on which Mezei coils operate. 

As shown in Figure 3:9, a Mezei coil is a simple rectangular coil of aluminium wire.  

The change from field direction outside to that inside occurs over a range 

approximately equal to that of the wire’s thickness (Ø ≈ 1 mm), thus fulfilling the 

condition for a sudden field transition.  This in turn means that (P) can be controlled 

in an isolated and predetermined precession mode inside the coil, making it possible 

to re-orientate the neutron’s spin direction. 

In the following discussion the guide field (B) is parallel to the z-axis, with the field 

generated by the Mezei coil (Bπ) normal to (B), in the y-direction.  Inside the coil the 

resultant field direction is labelled (Br) in Figure 3:10. 
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A NSE spectrometer has a velocity distribution significantly wider than normal, thus 

the spin direction on exiting the Mezei coil will be distributed accordingly.  Suppose 

(λ = λ0 ± 15) %, re-orientation through 180 ° would equate to an angular range of 

(180 ± 27) °, which corresponds to a reduction of the beam polarisation to ~ 90 %.  

Nonetheless this is still an acceptable value given the unique way in which the NSE 

technique performs a measurement. 

Using this framework the NSE concept is now very easy to understand.  Two 

identical homogeneous guide fields of length (l) are set up before and after the 

sample position i.e. [lB = liBi = lsBs].  A polarised beam of neutrons (in the z-

direction) pass through a π/2-Mezei flipper coil, orientating (P) into the xy-plane, 

Figure 3:10, causing the neutrons to undergo Larmor precession as they traverse the 

first guide field.  This can be seen as an encoding of each individual neutron with a 

unique time, given by the total precession angle which, as shown in equation (3:40), 

for a constant field of fixed length depends only on the exact velocity of the neutron.  

If we recall that the beam is only modestly monochromated, it is apparent that the 

beam polarisation is quickly lost simply due to the distribution of velocities.  

Crucially however, before entering the second guide field the beam encounters a 

Mezei π-flipper, rotating the neutrons 180 ° in the xy-plane, Figure 3:11, and so the 

second guide field, assuming perfectly elastic scattering with the sample, in effect 

recovers the initial polarisation, 

         [
    
  
 
    
  
] (3:42) 

In the quasi-elastic limit, this can be rewritten to provide a direct measurement of 

the energy transfer (ℏω) 123,  

  
   

   
ℏ  (3:43) 
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Action of a Mezei π/2-flipper on a polychromatic beam: 

 

Figure 3:10 The polarisation direction of the neutron beam as it exits the first supermirror is parallel to 

the field direction of the precession coils (B).  Changing its orientation so that it is perpendicular to z is 

preformed via the first of two π/2-flipper coils.  Its field (Bπ) and that of the precession coils (B) generate 

a resultant field (Br) orientated at 45° in the y-z plane.  The neutrons precess 180° about (Br), and so are 

perpendicular to (B) as they exit.  Note however, that since the beam is polychromatic a distribution of 

angles is observed (indicated by the blue region). 

 

Action of a Mezei π-flipper in the xy-plane on a polychromatic beam: 

 

Figure 3:11 Unwinding αi after scattering is not as simple as reversing the direction of (B) in the 

second coil.  This approach would generate a zero-field point at the sample position, quickly depolarising 

the beam.  The neutron spin must be rotated 180° about the y-axis using a π-flipper close to the sample.  

In this way the field in the second precession coil does not need to be altered, and the neutrons precess in 

the same direction.  

Before flip During π-flip After flip 

B B B 

Bπ 

αi αs 

1 

2 3 

4 

1 

4 

3 2 

Before flip During π / 2-flip After flip 

Br 

B B 

y 

x 

z 

Bπ 

 

µ  

B 

µ  

µ  

x x 

z z 

y y 



70 

The operation of the analyser-detector assembly in a sense measures the distribution 

of total precession angles (α) in the scattered beam, and as will be shown the 

resulting signal follows a damped cosine form generally referred to as an echo. 

  (   )  〈    〉  
∫    (

   
   
ℏ ) (   )  

∫ (   )  
 (3:44) 

This single and direct measurement of the energy transfer can be expressed as a 

normalised intermediate scattering function, where the numerator is the cosine 

Fourier transform of S(Q,ω).  This reveals the time-dependent nature of the 

correlation function 91, where the constant of proportionality (τ) is referred to as 

Fourier or spin echo time, and is measured in units of seconds.  

  
ℏ   

  ̅ 
 (3:45) 

This can be seen as a measure of the survival time for correlations between atomic 

spins in the sample.  Different Fourier times can then be scanned by varying the 

field integral (lB), which, using current technologies permits a dynamic range in the 

order of (0.3 ps – 300 ns).  These spectra will therefore be modelled using the 

Weron-Tsallis relaxation function. 

3.2.2 Effects of Sample Scattering 

Strictly, the above derivation only remains valid in the case of non-spin flip 

scattering, that is to say, when the neutron's spin polarisation direction remains 

unaltered upon scattering from the sample.  As stated previously this occurs 

thorough either nuclear coherent or isotope incoherent processes. 

Thus to generalise equation (3:44) to be inclusive of all possible scattering an 

additional term must be included, (Ps) known as the polarisation factor, 

    (   )    
 (   )

 ( )
 (3:46) 
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where, in this form, the scattering function has been integrated over all energies.  

Clearly (Ps = 1) will account for coherent nuclear scattering; however its value must 

be carefully evaluated for polarisation dependent processes such as nuclear spin 

incoherent and magnetic scattering. 

If the nuclear spins are orientated randomly then spin incoherent scattering has a 

well defined scattering ratio of 2:1 between spin flip and non-spin flip, irrespective 

of the scattering geometry.  Thus, in addition to the action of the π-flipper, two-thirds 

of the signal will undergo a second transformation in the xy-plane, reducing the 

amplitude of the echo signal to one-third.  The total transformation between the 

precession coils therefore reads (αi → – αs ± π); corresponding to (Ps = − ⅓). 

With regard to paramagnetic scattering, if the polarisation is along the scattering 

vector then all the magnetic scattering is spin flip.  However, if it were to be 

perpendicular to the scattering vector, as is the case with NSE, we know through the 

partial differentials given in equation (3:35) that the scattered beam is divided 

equally between spin flip and non-spin flip processes.  Therefore the polarisation of 

the scattered beam, without application of a π-flipper, reads, 

(       )  
 

 
(        )  

 

 
(         ) (3:47) 

where only the first term fulfils the echo condition (αi → – αs) and the second term, 

akin to non-spin flip contributions has opposite phase (αi → – αs + π), and therefore 

does not contribute to the echo signal.  Thus, it is possible to measure the 

paramagnetic spin echo signal separately from nuclear coherent and isotope 

incoherent scattering so long as the π-flipper is not active and a polarisation factor of 

(Ps = ½) is included. 

The study of ferromagnetic samples by NSE is rather more complicated due to the 

total beam depolarisation caused by random orientation of multi-domain or 

powdered samples.  To circumvent this an external field sufficient to saturate the 

sample must be applied in the z-direction.  Then with π/2-flipper coils place before 

and after the sample position the spin echo condition can be fulfilled via, 
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(        )  (         )  (      )  (      ) (3:48) 

Here, the initial polarisation in the x-direction is transferred to the z-direction, and 

vice versa, by the first flipper coil.  The z and y components of polarisation are then 

essentially forgotten due to the sample field.  The second π/2-flipper coil rotates the 

x-component of polarisation back to the relevant x-direction, which can then be 

written as, 

(      )  
 

 
(       )  

 

 
(        ) (3:49) 

Clearly, only the second term fulfils the echo condition and accordingly the 

amplitude is again reduced: (Ps = ½). 

Anti-ferromagnetic NSE spectroscopy can be even more complicated, and 

formalisation of polarisation analysis is beyond the scope of this review.  However, a 

macroscopically isotropic sample may be treated exactly the same as a paramagnetic 

sample, where the final polarisation reads, 

(         )  
   

 
(        )  

   

 
(         ) (3:50) 

where (A) is a parameter describing the anisotropy of the sample.  A full derivation 

is given in reference 123.  A summary of these results is given in the table below, 

which lists the sample environments and the polarisation factors needed to account 

for reduction in the amplitude of the spin echo signal. 

Type of Scattering Flip Coil Sample Field 
Polarisation 

Factor Ps 

Coherent Nuclear π small 1 

Nuclear Spin Incoherent π small 1/3 

Paramagnetic none small 1/2 

Ferromagnetic π/2 → sample → π/2 high 1/2 

Anti-ferromagnetic none small 1/2 ≤ Ps ≤ 1 

Table 3:2 The NSE configurations required for the study of different sample scattering types. 
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Figure 3:12 A simplified picture of IN11 to emphasise the major 

components for paramagnetic or disordered studies. 
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3.2.3 Implementation and Practicalities 

 

 

Figure 3:13 Representation of the spin echo group as a function of precession coil (symmetric scan) 

and symmetry coil (asymmetric scan): image created to Cywinski 
124

. 

From its conception in April 1972 it took only five years to design and build 

the first NSE spectroscopy, and only one more year for it to be fully deployed to the 

user community at the Institut Laue Langevin (ILL).  This instrument, named IN11, 

has been in operation ever since and has been used extensively for the purposes of 

this project.  This final section on NSE is intended to give a general overview of 

performing a measurement on this instrument, which is due to be decommissioned 

in the near future. 

Firstly, from equation (3:45), it can be seen the maximum attainable field integral 

governs the long-time limit; however the short-time limit is more subtle.  Both the 

Earth’s magnetic field and the fields required to control the neutron’s spin-

polarisation direction play a part, but most importantly the quasi-elastic limit must 

hold in order for equation (3:43) to remain valid. 
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Figure 3:14 Representation of an echo measurement indicating the four measuring points (En), average 

(Aver), and maximum amplitude determined by flipper on (up) and flipper off (down) measurements. 

Typical spectra consist of approximately thirty echo measurements performed by 

varying the field integral between these two limits.  The echo amplitude contains the 

information of interests, S(Q, τ), and the most common way of determining this is as 

follows:  First the maximum possible amplitude is determined by measuring the 

difference between the scattered beam polarisation with and without the π-flipper 

activated - this is used to account for instrumental deficiency and inefficiencies.  

Then, with precession fields closely matched, a small auxiliary coil (the symmetry 

coil) is used to find the exact symmetry point where the recovered polarisation is at 

its maximum, 

      𝑟       ( ) 

(3:51) 
      𝑟       ( ) 

      𝑟       ( ) 

      𝑟       ( ) 

This procedure generates the spin echo group, shown in Figure 3:14, however in 

practise only four symmetry points are measured, placed at 90° steps around the 

centre of the echo. 
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At this point it is perhaps relevant to note that the periodicity of the echo is governed 

by the average neutron energy, and the envelope in which the signal is encompassed 

is the Fourier transform of the wavelength distribution.  Hence, longer wavelengths 

increase the periodicity of the echo and a more tightly monochromated beam 

increases the envelope’s width. 

For equation (3:51), (Aver) is determined simply by taking the average neutron 

count of the four measurements; as this is the same for all Fourier times it can be 

determined very precisely.  Once the average is known the amplitude (A) and phase 

(φ) can be determined by taking the differences (Aver – En).  More accuracy can be 

gained by taking the echo group shape in to account, however its benefit is 

negligible and generally not included. 

The final step is simply to divide the calculated amplitude of the echo group by the 

maximum.  This normalised value is the so-called intermediate scattering function 

given in equation (3:46). 

The NSE experiments presented in the following chapters follow a well-known 

procedure, generally recognised to be the norm.  Once the instrument geometry is 

set the maximum attainable amplitude is measured using a resolution sample.  If the 

sample under investigation is known to scatter elastically at low temperatures it can 

also be used, removing any issues associated with maintaining the same sample 

position.  During the course of these studies it was found that a low temperature 

measurement of the sample consistently gave better data, free from abnormalities 

such as sudden changes in the autocorrelation function and unphysical values. 

The temperature dependence of the autocorrelation function was then measured by 

cooling the sample in helium reservoir cryostat, allowing the sample to thermalise 

for between 20 – 30 minutes before recording data.  Approximately thirty Fourier 

times were then measured before the temperature was changed and the process 

repeated.  



77 

3.3 The D7 Spectrometer 

Introduced here are the general requirements for a neutron spectrometer 

dedicated to the study of diffuse scattering, alongside the practicalities of performing 

such measurements.  The causes of diffuse scattering will be discussed in a later 

section prior to a study of short-range order in the pseudo-binary compound 

Y(Mn1-xAlx)2.   

3.3.1 General Requirements 

The review by Stewart on the use of neutron polarisation analysis for the 

study of disordered materials outlines the general requirements of a spectrometer 

dedicated to diffuse scattering from crystalline materials 125.  Several important 

design considerations are given, 

i. Diffuse scattering contributions vary smoothly with momentum transfer, and 

so it is favourable to relax the resolution in Q-space in order to gain higher 

flux. 

ii. Due to the relative weakness of diffuse scattering, minimisation of the 

instrument background is vitally important.  Normally this is achieved by 

secondary collimation prior to the detectors which ensures neutrons scattered 

from the sample environment are not recorded. 

iii. To truly differentiate elastic from inelastic (or thermal diffuse) the instrument 

should have the ability to analyse the final energy of the neutron. 

iv. Polarisation analysis is also vital so that nuclear coherent, nuclear spin-

incoherent and magnetic contributions can be separated. 

v. Lastly, since diffuse scattering contributions generally cover a wide range of 

Q-space it is also desirable to equip a wide-angle multi-detector array. 

D7, being one of the first instruments built in the cold neutron guide hall at the ILL, 

has had to undergo significant upgrades to achieve each of these requirements.  

Recently it was completely rebuilt during the first phase of the ILL Millennium 

Programme which aims to deliver 14 new instruments or radically upgrade existing 

ones. 

  



78 

 

Figure 3:15 D7 has four banks of detectors which have in total over 5000 supermirrors and 132 3He 

detector tubes.  Furthermore, the banks rotate about the sample position using pressure pads to give an 

angular range of (5 ° ≤ 2θ ≤ 150 °).  This image has been taken from Schäpf 
126

. 

3.3.2 D7 Overview 

Neutrons enter the instrument after being monochromated and double 

focused by a mosaic of pyrolytic graphite crystals before passing through a 

beryllium filter removing higher order wavelengths (λ / n; n = 2, 3…) of 3.1, 4.8 and 

5.8 Å.  The beam is subsequently polarised by a supermirror (m = 2.8, Co/Ti type) 

giving a typical polarised beam flux of 1.5 × 10
6
 neutrons cm

-2
 s

-1
. 

The first stage of the polarisation analysis is a Mezei coil flipper, allowing for the 

separation of spin and non-spin flip channels.  When activated the spin-flip channel 

is measured and when off the non-spin flip channel is measured.  Secondly the 

sample is centred between three sets of orthogonal coils which rotate the spin 

polarisation direction by (π / 2) before and after scattering, thus allowing 

measurements to be made alternately in each of the x, y, and z-directions. 

The multi-detector array consists of four banks of 
3
He tubes covering a horizontal 

scattering angle of (5 ° ≤ 2θ ≤ 150 °).  In total there are over 5000 supermirrors and 
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132 detector tubes, with each bank being mounted on pressure pads to allow them to 

rotate about the sample position and measure the total angular range.  

3.3.3 Data Corrections 

The first stage is to calculate the relative efficiency of each detector by 

scattering from a vanadium sample of known mass.  The total scattering cross 

section of vanadium is almost totally incoherent (therefore isotropic over 4π 

steradian) so it can be said over a sufficient length of time each detector receives an 

equal number of neutrons to which further measurements can be normalised.  

Secondly, using amorphous quartz which has a near complete non-spin flip cross 

section, the flipping ratio of each supermirror can be determined.  This is because 

there is a finite probability neutrons with the wrong spin will pass through the 

polariser/analysers supermirror.  Accurate separation of the flip and non-spin flip 

cross sections therefore relies on determining the flipping ratios of each supermirror. 

The instrument background scattering which is largely due to scattering for the 

sample environment, sample holder, and air, is separated in to two contributions.  

Neutrons that pass through the sample position (B1) and those that do not (B2).  The 

first is measured by scattering from the empty sample holder, the second by 

scattering from the sample holder with a rolled sheet of cadmium inside.  The 

following expression is then used to determine the real intensity, 

      
                  

 ( )
 (               ) (3:52) 

where T(θ) is the angular dependent transmission coefficient, accounting for the 

self-attenuation of the sample.  For a cylindrical holder, as was used, this can be well 

described by the Blech-Averback formula, 

 ( )     [ (        
  )   (        
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80 

where a1 = 1.7133, b1 = –0.0368, a2 = –0.0927, b2 = –0.3750 and (µ) is the linear 

absorption coefficient and (R) is the radius of the cylinder. 

Finally, normalisation to an absolute scale in units of barns / steradian / formula unit 

is achieved by using a known standard.  Again vanadium is used since it is known to 

have a total scattering cross section of precisely 5.07 barns / atom.  Thus, 

  
  
 
 .  

  
 (3:54) 

where (Nv) is the number density of the vanadium sample.  The final absolute scale 

differential cross-section is therefore given by, 
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3.4 Muon Spectroscopy 

The use of muons as a scientific tool, much like the neutron, is based on their 

fundamental physical properties and how they interact with their microscopic 

magnetic environment. 

 

Figure 3:16 Image from the CERN 2m bubble chamber: the incoming beam collides with a hydrogen 

atom, expelling an electron, spiralling anti-clockwise, and a pion (π+).  The pion decays to a muon (µ+), 

which travels ~ 1 cm (red line) before it decays into a positron (e+), spiralling clockwise. 

All muon spectroscopic techniques are referred to under the acronym µSR which 

covers three discrete experimental methods: Muon Spin Relaxation, Rotation, and 

Resonance.  These not only provide a uniquely sensitive probe for the internal 

magnetic fields and the dynamics of such fields within a sample, but also access a 

range of relaxation times which bridges the gap from bulk magnetisation and 

susceptibility measurements to neutron scattering methods 127. 

This section briefly discusses the main historical events and physical properties of 

the muon, illustrates current methods of producing muons, and eventually introduces 

the Relaxation technique employed during parts of this word (§ 4.3 and § 7.1).  

Details of the Rotation and Resonance techniques are available in reference 128. 
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3.4.1 The Muon 

The earliest sighting of what we now call the muon was in 1933 using a 

Wilson
†
 cloud chamber exposed to cosmic rays 129, 130.  It was noted that a mystery 

particle produced ionisation too weak to be a proton, but too strong to be an 

electron; these results had little impact and a discovery was not claimed.  Just three 

years later whilst performing similar experiments, Neddermeyer & Anderson
† 

found 

a particle of unit charge, with mass larger than that of the electron but much smaller 

than that of the proton; this work is generally accepted to be the true discovery of the 

muon 131. 

 µ
+
 µ

–
 

 

Mass 

 

206.77 me 

0.1126 mp 

 

207.62 me 

0.1131 mp 

Spin ½ ½ 

Charge + e – e 

Magnetic Moment (µµ) 4.84 × 10
−3

 µB 4.84 × 10
−3

 µB 

Gyromagnetic ratio, (γµ)   13.55 kHz/G 13.55 kHz/G 

Half life (τµ) 2.197 µs 2.195 µs 

Table 3:3 Currently accepted values of the fundamental muon properties 
132-135

. 

A year earlier the existence of such a particle had been predicted by Yukawa
†
 which 

he named the mesotron.  In his model this proposed particle was responsible for the 

strong nuclear force.  Understandably it was initially hoped the muon and mesotron 

were one and the same, however it quickly became apparent it was not 136; its 

negligible nuclear interaction disagreed with that required for the mesotron.  Shortly 

afterwards Tanikawa et al. worked to resolve this issue, proposing a two meson 

model whereby a  primary strongly interacting particle (the pion or π-meson) decays 

in to a secondary weakly interacting particle (the muon or µ-meson) 137.  Indeed it did 

not take long before this hypothesis was verified experimentally by Powell
†
 et al. 138. 

                                                 
†
 Nobel Prize laureate in Physics 
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The muon occurs with two charge types (positive µ
+
 and negative µ

–
), and so 

interacts with charged particles via Coulomb forces.  It has a large magnetic moment 

and is therefore extremely sensitive to magnetic fields.  Furthermore, its lifetime is 

extremely long.  Indeed, omitting the proton, electron, and neutrino, which are 

generally considered to be stable, the muon has the second longest lifetime of any of 

the unstable particles after the neutron.  It also has the second smallest mass after the 

electron.  It can be seen that due to these unique physical properties positively 

charged muons are often considered comparable to a light isotope of hydrogen. 

3.4.2 Pion (Muon) Production 

Early experiments relied upon naturally occurring particles produced as the 

Earth is bombarded by cosmic rays; however such low-intensity high-energy muons 

are unsuitable for spectroscopic studies.  It was not until the 1970’s that significant 

advancements were made; coinciding with rapid developments in accelerator 

science which enabled intense beams of low-energy muons to be produced with 

relative ease.  All the data presented in this thesis were collected using positive 

muons at the ISIS Rutherford Appleton Laboratory (RAL) in Oxfordshire.  

Accordingly the following discussions are tailored to muon production at this 

facility. 

As with all muon facilities the production of an appropriate muon beam begins with 

the collision of high energy protons on a target of light (low Z) nuclei.  At the ISIS 

facility the 800 MeV proton beam is incident on an intermediate graphite target, with 

approximately 2 – 3 % of the protons interacting with the carbon nuclei, liberating 

pions.  This particle, with either positive or negative charge, decays with a half-life 

of 26.03 ns in the following modes, 

         

       ̅  
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where ( ) is a neutrino and ( ̅) anti-neutrino.  A neutral pion also exists with a much 

shorter lifetime, however, rather than producing a muon, yields two gamma ray 

photons. 

Bunches of pions are created in the graphite target on every pulse of the synchrotron, 

which have a wide distribution of kinetic energies.  Those with low energy usually 

come to rest within the target itself, whilst more energetic particles often escape 

altogether, eventually decaying in-flight.  This leads to two distinct channels by 

which muon beams can be, and indeed are, generated at the ISIS facility. 

In the first only the low-energy pions decaying from rest are used.  The subsequent 

muons therefore have a relatively well defined energy (~ 4.1 MeV) since only those 

close to the target’s surface have sufficient momentum to escape.  Unsurprisingly, 

these are known as surface-muons which, due to the high pion stopping density of 

the graphite target, are used to produce highly intense beams of positively charged 

muons.  The rapid absorption of negatively charged muons at rest precludes them 

from this muon channel. 

The second method takes advantage of the high-energy pions which escape the 

target, directing as many as possible into a region of high longitudinal magnetic field 

where they decay.  Using this method both positive and negative muons can be 

harvested to produce what is often called a decay beam.  A detailed description of 

this was presented in the RAL report on muon facilities and experiments by Eaton 130 

but is outside the scope of this work. 

 

Figure 3:17 Positive pion decay - the relationship between muon and neutrino, propagation vector and 

spin polarization 

The figure above demonstrates how the muon is intrinsically spin polarised so to 

conserve total angular momentum with, in this case, the neutrino’s left-handed 
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helicity, and its spinless parent.  The muon and neutrino therefore always have 

opposite spin, anti-parallel to their respective propagation vector.  This means a high 

intensity surface beam not only has a narrow distribution of particle energies, but is 

also naturally 100 % spin polarisation in any chosen direction. 

The muon’s charge makes transportation from the target to the instrument relatively 

simple (in comparison to neutrons).  Quadrupole doublets are used for focusing the 

beam, whilst bending magnets are used both to steer and select a momentum.  To 

remove contaminant particles such as positrons, which not only arise due to muon-

decay but also gamma ray pair production from neutral pion-decay, a cross field 

electrostatic separator is employed. 

3.4.3 Behaviour of Muons Inside Condensed Matter 

Generally there are three states adopted by muons within the atomic lattice of 

a sample, shown in Figure 3:18.  For the purposes of this work however, we need 

only consider the behaviour of free positively charged muons.  Moreover, in line 

with the above description these muons are of low-energy and therefore thermalise 

rapidly, generally stopping to occupy an interstitial lattice site. 

 

Figure 3:18 Schematic of the three states adopted by muons within the atomic lattice of a sample: 

a) Bound (µ–) muonic atom, b) Muonium (µ+), c) Free muon (µ+) 

Several mechanisms are involved in this process, the primary being muon-electron 

scattering which drops the initial energy from 4.1 MeV down to the keV range 

a 

 

c 

 

b 
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within a nanosecond of being implanted.  In the following picosecond electron 

capture and loss reduces the energy further, down to approximately 200 eV, before 

scattering from atoms and molecules finally stops the muon completely.  Crucially, 

depolarisation during this process is negligible. 

The muon’s large moment makes it an extremely sensitive magnetic probe, and from 

this interstitial position it can survey extremely small local fields, down to ~ 10
-5

 T, 

produced by the surrounding atomic and nuclear moments.  If such a field were to 

have a perpendicular (transverse) component to the muon spin the torque would 

result in Larmor precession, equation (3:38). 

 

Figure 3:19 Positive muon decay emitting neutrino, anti-neutrino and high energy positron (e+) 

preferentially along its spin direction 

All Muon Spin Relaxation, Rotation, and Resonance experiments depend on this 

interaction and the subsequent depolarisation during the muon’s lifetime.  In the first 

instance, if the internal magnetic field is uniform in direction and magnitude 

throughout the sample then the polarization is preserved.  Alternatively, if there are a 

range of fields or temporal fluctuations the muons will correspondingly have a range 

of processional frequencies, and the initial polarisation will quickly dephase or be 

completely lost. 

The muon decays with a half-life (τµ = 2.197) µs, emitting a positron (e
+
), neutrino 

( ) and antineutrino ( ̅), 

           ̅̅ ̅  
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The angular distribution of the positron emission is highly anisotropic with respect 

to the spin direction of the muon, Figure 3:20, since the combined spin of the 

neutrino-pair add to zero, whilst the intrinsic right-handed helicity of the positron 

itself means it must be emitted along the muon polarisation direction.  This 

asymmetry is seen to be strongest at the maximum positron energy of 53 MeV, and 

is governed by the probability function, 

 ( )            (3:56) 

In this instance ( ) is the angle between muon spin and positron’s propagation 

vector, and the parameter (  ) is called the asymmetry coefficient which would 

equal 1/3 if it were possible to detect every positron emitted.  For most experiments 

however it is generally seen to take a value in the region of 0.25. 

 

Figure 3:20 Angular distributions of positron emission for: a) the most energetic particles (solid), and 

b) all energies (dashed), with respect to the muon spin direction (arrow).  
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3.4.4 Muon Spin Relaxation 

Relaxation experiments are performed in longitudinal (parallel to the 

polarisation direction) or zero field.  In both cases however the experimental 

arrangement is identical, with annular detector rings placed ‘forward’ and 

‘backward’ of the sample position, essentially measuring the positron asymmetry in 

the z-direction. 

 

Figure 3:21 The geometry of a typical longitudinal field µSR experimental: (T) is the target for muon 

production, the sample (S) is positioned centrally between two anular detector rings, one upstream, and 

one downstream of the muon beam. 

Often, the purpose of studying a sample under a longitudinal field is to obtain the 

time-evolution of the polarisation due to local atomic field fluctuations within the 

sample.  In zero-field however, the focus is more generally to observe the response 

due to randomly orientated local fields which produce characteristic spectra, the 

form of which unambiguously differentiates between dynamic and static behaviours.   

The relaxation function is in principle proportional to the normalised time-dependent 

muon polarisation Pz(t), and is calculated via the sum-and-difference ratio of the 

count rates in the forward (F) and backward (B) detector banks; equations (3:57) and 

(3:58) respectively: 

Backward Forward 

Muon Beam 

Positron Detectors 

Field Direction, Bext 

S T 

Proton Beam 
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 ( )     (    ⁄ )(      ( )) (3:58) 
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  ( )
 
 ( )    ( )

 ( )    ( )
 (3:59) 

The elapsed time (t) is taken from the moment the muon pulse enters the sample, (τµ) 

is the muon lifetime, and the parameter (  ) is the asymmetry coefficient defined in 

§ 3.4.3.  The instrumental asymmetry parameter, (α), is used to account for 

geometric factors, such as the sample not being located in the exact centre of the 

detector rings, and variation in detector efficiencies.  To determine its value a 

calibration measurement is performed by applying a small (~ 20 G) transverse field.  

The signal from the spin rotation equates to a damped cosine function, from which 

an accurate baseline can be determined since the forward and backward asymmetries 

should add to zero. 

At a facility such as ISIS data acquisition must be timed to coincide with the pulse 

structure of the synchrotron.  As stated, timing starts the moment the pulse reaches 

the sample, however each instrument has a unique time-offset that accounts for the 

difference between this start time and the middle of the pulse, often referred to as T-

zero.  It is not until the entire pulse has arrived that useful data can be obtained; the 

difference between this and T-zero is known as T-good, which can simply be 

determined from the raw detector count rates. 

3.4.5 Muon Spin Relaxation Functions 

More than a decade before the Muon Spin Relaxation technique was 

developed Ryogo Kubo and his student Toru Toyabe constructed a general stochastic 

model of zero-field spin relaxation in a system of static random local fields 139.  

Initially a system of concentrated spins was assumed and accordingly a Gaussian 

distribution of field strengths, centred on zero, was chosen to describe the average 

magnetic environment, 
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where (Δ) represents the distribution’s width.  The subsequent relaxation function is 

given below, where the relaxation rate (σ = γµ Δ).  As shown in Figure 3:22, this 

function initially displays rapid Gaussian-like decay, reaching a minimum-point 

governed by (Δ), but subsequently recovers to one third the initial value (t = 0), 
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Similarly, for a system of dilute spins a Lorentzian distribution, of width (a), 

provides an appropriate representation of the average magnetic environment; 
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The resulting relaxation function is unsurprisingly very similar, Figure 3:23; 
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Equations (3:61) and (3:63) do however represent the limiting cases for concentrated 

and dilute dipole systems respectively, but often spectra exhibit intermediate 

lineshapes somewhere between the pure-Gaussian and pure-Lorentzian functions.  

Here a generalised power law is invoked, the so-called Voigtian Kubo-Toyabe, 

which interpolates between these extremes 140. 
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) (3:64) 

where (1 ≤ β ≤ 2), and the parameter (λ) quantifies the relaxation rate, as above.  
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Figure 3:22 Gaussian Kubo-Toyabe relaxation function 

 

 

Figure 3:23 Lorentzian Kubo-Toyabe relaxation function  
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The recovery of the initial distribution-led decay to one third of the initial value can 

be understood intuitively by considering that for a random distribution of moments 

one third will have a component orientated in the z-direction, and thus preserve the 

initial polarisation.  However, this is significantly suppressed by the onset of even 

extremely slow field fluctuations, either from the internal fields themselves or the 

muon hopping between sites.  This behaviour is therefore fundamentally linked to 

the static (relative to µτ) nature of the random internal fields.  To account for the 

presence of such dynamical processes the strong-collision approximation is applied, 

which assumes: 

1. The local field experienced by the µ
+
 changes abruptly to a randomly 

chosen field, taken from the distribution P(Bi), 

2. There is no correlation between the field before and after this change, 

3. This change occurs at time ( ), with a mean fluctuation rate ( ), according 

to the probability distribution  ( )     (   ). 

However, the resulting dynamical Gaussian Kubo-Toyabe must be evaluated though 

lengthy numerical calculations 141, and so the following three analytical 

approximations are applied, as shown in Figure 3:25 where (R = σ / ν). 

Slow fluctuations (R < 1): the distinctive recovery to one third the initial value at 

long times is heavily suppressed leading to a hump at ~ 3/σ, 

  ( )  
 

 
   ( 

 

 
  ) (3:65) 

Intermediate fluctuation rates (1 < R < 10): further stretching the static relaxation 

function is observed; approximated by the so-called Abragam function, 

  ( )     [  (   (   )      )] (3:66) 

Rapid modulation (R > 10): well represented by a simple exponential, 

  ( )     (   ), where λ = 2σ
2
/ν (3:67) 
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Figure 3:24 Longitudinal field muon spin relaxation spectra for a Gaussian distribution of isotropic 

random local fields. 

 

 

Figure 3:25 The dynamic Gaussian Kubo-Toyabe function, where R = σ/ν   
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3.5 Sample Preparation 

Air sensitive polycrystalline samples are often made using an argon arc-

furnace since it can reach the extremely high temperatures required of melting most 

metals, and inherently does so in an inert atmosphere.  Since all the studies 

performed in this work were on samples prepared in this way a brief description of 

the technique is presented here. 

An arc-furnace is in essence a water-cooled copper hearth housed inside an airtight 

chamber, which once evacuated is partially refilled with high purity argon.  Good 

practice dictates that this process should be repeating several times to ensure an air 

free atmosphere prior to melting.  The hearth itself features several casting wells, 

one of which contains a getter; a material that is melted before the sample to absorb 

any residual reactive gases still present due to outgassing, leaks, or simply 

inadequate flushing, as it cools.  Here the getter was titanium but it is not uncommon 

to use zirconium or a zirconium alloy. 

In operation an arc of plasma passes between a tungsten electrode and the surface of 

the copper hearth.  This is capable of carrying between 100 and 200 amps direct 

current through ~ 300 mbar of argon. 

The predominant heating effect is a result of the potential energy released by the 

electrons entering the metal anode (sample / hearth), and correspondingly the 

magnitude of this effect directly relates to the work-function of the particular metal 

being melted (typically in the region of 4 V).  In simple terms, this means a plasma 

current of 100 A equates to 400 W of highly localised heating under the arc and in 

this way, provided sufficient current is supplied, temperatures can approach 

3000 K 142, 143. 

In practice however the highly localised nature of the heating restricts the maximum 

amount of raw material per melt since it is vital that the whole ingot be maintained 

in a fully molten state for a period sufficient to homogenise the solid solution.  Even 

so, each ingot is melted several times, flipping it once the pool has solidified so that 

the side in direct contact with the arc of plasma alternates, thus ensuring the raw 
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materials are indeed thoroughly mixed.  In this work the total combined weight of 

the constituent materials was kept below 12 g, and so to produce the relatively large 

amounts required for polarised neutron scattering experiments, ~ 30g, several of 

these ingots were made and then roughly crushed before the full amount was 

consolidated in a final melt. 

All but the (LaEr)Al2 samples required heat treatments, performed by sealing the 

ingots in fused quartz ampoules inside which was a reduced (~ 300 mbar) argon 

atmosphere.  To negate the chance of reactions occurring between the sample and 

SiO2 all the ingots were first loosely wrapped in tantalum foil, chosen for its 

exceptionally high melting point. 

Sample T (°C ) 
Duration 

(days) 

Y(Mn1-xAlx)2 800 7 

Y(Fe1-xAlx)2 300 (Al rich) 1 

 750 (Fe rich) 7 

Cr1-xFex 1000 7 

LaxEr1-xAl2 NA NA 

Au4V 1000 1 

 500 8 

Those samples containing yttrium-manganese or yttrium-iron were made slightly off 

stoichiometry by the addition of 5% excess yttrium.  This decision was taken to help 

avoid the formation of strongly ferromagnetic compounds which often form as a 

significant impurity phase in these samples.  Additionally, once the ingots were 

crushed the resulting powder was examined with a magnet to removing the 

remaining trace amounts of these ferromagnetic impurities. 
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Figure 3:26 Simplified cross-section of an archetypal helium reservoir cryostat used for neutron and 

muon studies at the ILL and ISIS with labelling of the salient features. 

By modern standards achieving the temperature range covered in this work is 

considered routine (1-300 K), however it is important to have a rough understanding 

of how these low temperatures are reached and controlled.  Therefore a simplified 

cross-section of the ubiquitous helium reservoir cryostat, optimised for neutron and 

muon studies is offered in Figure 3:26.  As can be seen, the cooling cycle is driven 

by baths of liquid refrigerant which encompass a long sample chamber reaching into 

the particle beam.  The sample is fixed to a rod and positioned it at the bottom of this 

well.  The influx of external heat is minimised by maintaining the outer chamber 

under high vacuum, however the inner chamber is partially filled with helium to act 

as an exchange medium for the flow of heat between sample and exchanger.  The 

helium reservoir is slightly over-pressurised, and a so-called cold valve controls the 

flow rate of helium vapour into to heat exchanger, with the exhaust helium being 

drawn by a vacuum pump and recycled. 

Temperature changes are governed by a PID controller and small heater positioned 

close to the sample holder. 
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Chapter 4 

LAVES PHASE SPIN GLASSES 

If two metals are alloyed then, broadly speaking there are two possibilities; 

a solid solution can form in which the resulting material adopts both structural and 

physical characteristics consistent with the linear interpolation between metal A and 

metal B, or an intermetallic compound forms.  Such compounds have well-defined 

stoichiometric compositions which, unlike random alloys, regularly possess 

structural and physical properties different from those of the constituent elements.  

This chapter presents several investigations of intermetallic compounds with AB2 

stoichiometry. 

4.1 Introduction to AB2 Intermetallic Compounds 

Early crystallographic studies of AB2 intermetallic compounds quickly 

established the existence of three primary polytypes, the majority of which were 

performed separately by Friauf and Laves 144-147.  Hence in 1939 Schulze et al. coined 

the term Friauf-Laves phase, colloquially shortened to Laves phase, so that these 

closely related topologically close-packed structures could be grouped 148.  It is 

important to note that these early studies focused almost entirely on just three 

compounds: MgZn2, MgCu2, and MnNi2, since these are now widely regarded as the 

archetype for each polytype or phase.  However, in recent years it has become 

customary to use the Strukturbericht symbols, C14, C15, and C36 to refer to each 

polytype respectively. 
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The Laves phase structures form the largest of any intermetallic species with well 

over 1400 entries in ‘Pearson’s Handbook of Crystallographic Data for 

Intermetallic Phases’ 149.  Geometrically, they are only slight modifications of one 

another due to differences in the periodicity of their stacking sequence which, along 

with several other salient properties, are presented in Table 4:1.  In the first instance 

it is generally accepted that the metallic radii of atoms A and B expand and contract 

mutually through the hybridisation of the outer electrons in order to approach the 

ideal space-filling ratio of (rA / rB = 1.225).  However, whilst it is true hexagonal 

polytypes are most abundant for atomic combinations naturally close to 1.225, the 

cubic C15 phase is frequently observed above this critical value 150.  Moreover many 

AB2 compounds exhibit an extended range of homogeneity into both the A-rich and 

B-rich sides of stoichiometry.  These peculiarities are not fully understood but the 

consensus is that such off-stoichiometric compounds are due to anti-site occupation, 

vacancies, or a combination of both 151.  The structure pertinent to this work is the 

cubic C15 phase which, it has been reported, can only accommodate anti-site B 

atoms. 

Phase 

Structure 

Strukturbericht 

Symbol 

Space Group Symmetry Type Stacking 

Periodicity 

MgZn2 C14 P63 /mmc Hexagonal AB 

MgCu2 C15 Fd3m Cubic AB1B2 (abc) 

MnNi2 C36 P63 /mmc Hexagonal AB1AB2 (abac) 

 

Table 4:1 Listed here are the Strukturbericht designations, space group and crystal symmetry, as well 

as the AB stacking sequences for each of the founding systems studied by Friauf and Laves circa 1930. 

In this lattice structure the larger A atoms can be seen to adopt a diamond-like 

configuration shown in Figure 4:1, whilst the smaller B atoms form a sub-lattice of 

staggered polyhedron constructed from pairs of corner sharing tetrahedra, shown in 

Figure 4:2.  The combined crystal lattice structure is depicted in Figure 4:3, in which 

the B sub-lattice has been extended outside the unit cell to give a fuller depiction of 

its geometry.    
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Figure 4:1 This 3D unit cell model 

illustrates the diamond-like configuration of 

the A lattice in the cubic C15 Laves Phase.  

These atoms occupy the 8a site at (⅛, ⅛, ⅛), 

but for clarity only the 1st nearest neighbours, 

at typical interatomic distance ~ 3.5 Å are 

included. 

 

 

 

Figure 4:2 The smaller B atoms form a 

complicated array of staggered polyhedron 

constructed between 1st and 2nd nearest 

neighbour B atoms at typical interatomic 

distances of ~ 2.7 Å and ~ 4.7 Å 

respectively.  These atoms occupy the 16d 
site at (½, ½, ½) in the unit cell. 

 

 

Figure 4:3 The complete MgCu2 

crystal structure, also known as the C15 

or cubic Laves phase.  The larger Mg 

sites on the A lattice are shown in blue, 

and the smaller Cu atoms on the B sub-

lattice in orange.  Again, the tetrahedral 

structure has been extended outside the 

unit cell boundary in order to give a 

fuller representation of the B sub-lattice. 
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Unfortunately despite considerable effort being made to construct a model derived 

from relative atomic sizes, electronegativities, and average valence electron 

concentration, we currently still lack the understanding necessary to predetermine 

the most stable polytype for a particular compound 151, 152. 

Making such predictions is made even more difficult due to the apparent 

contradictory behaviour of several well studied systems.  For instance, magnesium 

based Laves phase compounds commonly adopt the C15 structure at low electron 

concentration and the C14 structure at higher concentration, whereas the opposite is 

true for transition metal based systems.  Furthermore, when the B atom is nickel or 

cobalt many A atoms with the appropriate diameter to satisfy the space-filling ratio 

do not adopt any of the Laves structures.  What can be said however is that of the 

three, C36 is considered an intermediate phase between the more commonly 

observed C14 and C15 phases 149. 

Intermetallic compounds based on Rare earth (Re) 3d transition metals (T) have 

been the focus of a particularly large amount of research, with the majority of the 

literature dedicated to their magnetic properties.  The reasons for this are manifold; 

the well defined crystal structure, and specifically the comparable nearest neighbour 

distance of the B sub-lattice to that of pure transition metals, enables conclusive 

information to be gained on the nature of 3d metallic magnetism.  Furthermore, due 

to the chemical similarity
††

 of Re elements it can generally be said if one Re - T 

combination forms a particular polytype then the same will be true for all other Re 

combinations.  Hence it is possible to study changes in magnetic behaviour as the 4f 

- shell is filled 153, 154.  Of course this leads to a sub-class where the Re element is 

non-magnetic (La, Lu, Y) and polarisation of the 3d moment by the otherwise 

strong, localised 4f moment is totally eliminated. 

                                                 

††
 By reason of the tightly bound nature of 4f-electrons the outer electronic configuration, and 

therefore the chemical behaviour of all Rare earth elements is approximately uniform. 



101 

Additionally there exist a extremely large number of ternary systems, for example 

A(BC)2, through which concentration dependent behaviour is often studied.  

However it must be stated that all true ternary systems studied up to now adopt the 

C14 phase.  True ternary systems are those in which the respective binary AB2 and 

AC2 systems do not form Laves phase structures.  The systems studied in this 

project are referred to as pseudo-binary, since their binary systems do crystallise in 

one of the Laves polytypes.  Moreover they often preserve a single structure from 

one binary extreme to the other, or in other words from pure AB2 to AC2 

stoichiometry.  For this reason they too have been extensively studied since through 

them we are able to observe evolving behaviours as one atomic species is gradually 

replaced by another 155. 

4.2 Characteristics of YMn2 

Manganese exhibits four diverse allotropies, referred to as α, β, γ and δ.  The 

magnetic properties of these vary hugely from the non-magnetic β-phase to 

moments which fluctuate from near zero to 1.8 µB in the equilibrium α-phase 156.  

Subsequently, several manganese based systems have critically unstable moments, 

presenting an ideal framework by which the underlying processes of moment 

localisation can be studied. 

One such system is the binary C15 Laves phase compound YMn2.  Indeed the 

remarkable properties of YMn2 have been the focus of many experimental and 

theoretical studies, significantly advancing our current understanding of metallic 

magnetism.  The first published work was in 1967, which reported monotonic 

magnetic susceptibility, suggesting a single Pauli-paramagnetic state to temperatures 

as low as 10 K 157.  We now know that this measurement was inaccurate, however 

the report also identified the distinct evolution towards Curie Weiss-like behaviour 

as the average manganese separation was artificially increased via the partial 

substitution of aluminium onto the manganese sites.  
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Figure 4:4 The thermal expansion curve of YMn2.  The original measurements (black) 
154

 are 

presented for comparison with more recent high-resolution measurements (white) 
158

. 

In 1982 the discovery, via x-ray diffraction, of a spontaneous thermal expansion 

anomaly (TEA) indicated the existence of a previously unseen 1
st
 order phase 

transition at ~ 100 K with a large thermal hysteresis of ~ 40 K 159.  This behaviour is 

not unusual in Re-T Laves phase intermetallic compounds and often stems from 

magnetovolume effects 153, 160,  however if this were the case it would clearly be 

inconsistent with the previously reported Pauli-paramagnetism for YMn2.  Moreover 

the reported magnitude of this TEA equates to a remarkable 5 % expansion in 

volume. 

This unexpected result subsequently sparked a host of new investigations.  New 

magnetic susceptibility measurements confirmed a similar anomaly close to 100 K, 

and spin-echo NMR spectroscopy revealed two distinct peaks at a 3:1 ratio, which 

strengthened a growing belief that the TEA was driven by a magnetic transition.  

Moreover, due to the relative population of sites it was suggested that this transition 

led to localised moments ordered anti-ferromagnetically in the [111] direction 161. 
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To determine the precise magnetic structure several neutron diffraction 

investigations were performed in the following years 162, 163, including polarised 

neutron measurements 164, 165.  It was found that in the paramagnetic regime the spin 

fluctuations are accurately described using an itinerant electron picture within the 

framework of Moriya's SCR theory.  In the expanded phase moments spontaneously 

localise onto the manganese sites and, due to the topology of the B sub-lattice, adopt 

a complex anti-ferromagnetic spin arrangement, partially relieving the inherent 

geometric frustration.  The spins lay in the (1,0,0) plane and propagate helically in 

both the [1,0,0] direction with a period of 430 Å, and in the [0,1,0] direction with a 

much larger period in the order of 2500 Å 158.  Comparison of the nuclear and 

magnetic peak intensities determined the magnitude of the manganese moment to be 

in the order of 2.7 µB. 

Thus the TEA is attributed to the difference in atomic volume between manganese 

sites with and without localised moments, and the Néel temperature correspondingly 

is taken to be ~ 100 K 162.  At the time of these measurements however it was unclear 

if the lattice expansion was solely the result of this isotropic magnetostriction or if a 

second mechanism was also involved 166.  Following further x-ray and high-

resolution neutron diffraction, Figure 4:4, it was finally discovered that a tetragonal 

distortion to the I41/amd space group was also present at TN, characterised by a 

magnetostrictive strain of 5 × 10
-3

, acting to further relieve the topological 

frustration of the B sub-lattice. 

As has been mentioned, TEA are not uncommon for Re-T Laves phase compounds.  

Indeed investigations across a series of C14 and C15  Re-Mn2 based systems reveal 

similar behaviour, in which a discontinuous volume expansion at or below 100 K 

occurs alongside the simultaneous onset of a large (2 - 3 µB) magnetic moment 167;  

the only exceptions being compounds in which the resulting manganese separation 

is equal to, or below 2.66 Å, namely HoMn2, ErMn2, and DyMn2.  Clearly then for 

this family of intermetallic compound the lattice parameter plays a crucial role in 

determining the presence of a localised magnetic moment, and as one might expect 

the stability and magnitude of this moment is therefore extremely sensitive to both 
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chemical and mechanical pressure 168, 169.  For example, the partial substitution of 

manganese for just a few percent iron or cobalt decreases the lattice parameter 

sufficiently to prevent moment localisation and subsequent long-range order 

developing.  Similarly the application of external pressure also rapidly reduces the 

lattice parameter (~ 0.016 Å /kbar) such that 2.7 kbar is again sufficient to fully 

suppress the magnetic transition 168, 170, 171. 

4.2.1 Spin Glass Behaviour in Y(Mn1-xAlx)2 

The pseudo-binary intermetallic compound Y(MnAl)2 has also been 

extensively characterised using a similar range of techniques 172, 173.  They have shown 

that while the value of the ordered moment remains largely unaffected (~ 2.7 µB per 

manganese atom) by the substitution of aluminium, both the structural and 

paramagnetic properties change markedly.  Not only does the negative chemical 

pressure exerted cause a gradual transition from weak itinerant to more localised 

electron behaviour, Figure 4:5, but also the average lattice parameter increases 

significantly.  In other words the substitution of aluminium onto the B sub-lattice 

effectively stabilises the manganese moments, and simultaneously causes the 

magnitude of the thermal expansion coefficient to rapidly fall.  The volume change 

steadily becomes less pronounced, as shown in Figure 4:6, and whilst the transition 

remains 1
st
 order for (x < 0.03), higher concentrations results in a more continuous-like 

transition.  By (x = 0.10) the volume change has disappeared completely and the high 

temperature susceptibility has become more Curie Weiss-like.  However at low 

temperature a relatively sharp cusp in the magnetic susceptibility is observed. 

Clearly this observation is indicative of a frustrated spin glass-like ground state, due 

to the apparent total or partial collapse of the long-range anti-ferromagnetic order 

associated with the parent compound.  In 1986 Motoya performed neutron 

diffraction measurements comparing the patterns from YMn2 with those of 

Y1.05(Mn1-xAlx)2; the magnetic contributions being deduced from the difference 

between the low and high temperature measurements 174.  His results showed that 

even for relatively low concentrations (x = 0.05) the magnetic scattering consisted of   
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Figure 4:5 Concentration and temperature dependent magnetic susceptibility of Y(Mn1–xAlx)2 

indicating the appearance of Curie Weiss–like behaviour with increasing Al concentration.  These results 

are taken from Shiga 
172

. 

 

Figure 4:6 Thermal expansion curves suggest a gradual shift towards a 2nd order transition in the 

range (0.03 ≤ x ≤ 0.05) and that for concentrations (x ≥ 0.10) the volume anomaly is fully suppressed.  

These results are taken from Shiga 
175
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only diffuse peaks, the largest being centred on the (210) magnetic Bragg reflection 

of YMn2, with secondary diffuse regions at the (110) and (211) peak positions.  He 

concludes that short-range magnetic correlations originating from the underlying 

anti-ferromagnetic structure clearly persist, and that a short-range correlated spin 

glass phase forms for concentrations (x ≥ 0.05.) 

4.2.2 Sample Preparation 

These samples were made in collaboration with Dr. M. Telling.  Samples of 

the intermetallic compound Y1.05(Mn1-xAlx)2 with x = 0.05, 0.10 and 0.30 were 

prepared by argon arc melting stoichiometric proportions of 99.995 % pure 

constituent materials.  The off-stoichiometric (1.05 / 2.00) atomic ratio was chosen 

to avoid the possible formation of manganese-rich ferromagnetic impurities, as 

discussed in reference 174.  The inability of the C15 lattice to accommodate anti-site 

A atoms and the general lack of a magnetic moment on the yttrium atom itself 

means this excess does not have any appreciable effect on the measurements. 

The polycrystalline ingots were sealed in quartz ampoules under vacuum and 

annealed at 800 °C for one week before quenching in liquid nitrogen.  They were 

subsequently crushed into a fine powder in an inert atmosphere. 

4.3 Pressure Dependence of Topological Frustration 

Previously μSR spectroscopy has proved extremely useful in the 

characterisation of spin dynamics in YMn2 
158, along with the collapse of long-range 

magnetic order in Y(Mn1-xAlx)2 
176.  Here I present the results of a further study on 

Y(Mn1-xAlx)2 at the concentration (x = 0.05) in which external mechanical pressure 

(P = 4.5 kbar) was applied to counteract the chemically induced lattice expansion.  It 

was hoped that in this way the manganese moment could once again be destabilised, 

and a pure YMn2-like state recovered.  This stoichiometry was chosen as the 

recorded magnetic susceptibility exhibited the early stages of a Curie Weiss-like 

contribution whilst still being beyond the limit of magnetic frustration, as found by 

Motoya’s neutron scattering work. 
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In 1991 Cywinski et al. performed transverse field measurements on a sample of 

YMn2 over a temperature range of 18 - 300 K, fitting the data to a single exponential 

relaxation function 158.  It was found that in the paramagnetic regime the 

characteristic relaxation rate (λ) was extremely small (~ 0.025 µs–1
), thus indicating 

rapidly fluctuating fields about the muon’s position.  Approaching the Néel 

temperature a critical slowing of (λ) was observed which reached a maximum of 

0.08 µs–1
 below which a broadly stable value of ~ 0.06 µs–1

 was recorded.  In 

contrast, later measurements on Y(Mn1-xAlx)2 with (x = 0.10) could not be described 

by as simple a model 176.  For temperatures above 60 K it was necessary for a small 

rapidly damped contribution (a2 = 0.02, λ ≈ 30 µs–1
), possibly due to ferromagnetic 

Y6Mn23 impurities, to be included, whilst the dominant relaxation process (t ≥ 0.5 

µs–1
) was now better described by a stretched exponential term, 

  ( )        ( (  )
 )        (   )     (4:1) 

The temperature dependences of (λ) and the stretching parameter (β) from this 

experiment are included in Figure 4:10 and Figure 4:11 for comparison with the 

current work.  It can be seen that (β) tends towards a value of 1.5, revealing a 

progression toward a Gaussian-like distribution of relaxation rates as the 

temperature increases.  Moreover the relaxation rate is considerably slower than that 

of the undoped compound, increasing from a value of ~ 0.04 µs
–1

 at high 

temperatures to a maximum of 0.75 µs
–1

 at 70 K.  Fitting (λ) to the critical form, 

 ( )    (
    

  
)

  

 (4:2) 

it was found (λ0 = 0.14 µs
-1

 ), (Tg = 60 K) and (γ = 0.9). 

The high pressure µSR measurements presented here were performed at the RIKEN-

RAL muon facility using the ARGUS spectrometer with the sample loaded into a 
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Copper-Beryllium pressure cell.  Pressure was applied using a helium gas intensifier 

and monitored as the temperature was reduced.  Any pressure drop resulting from 

helium contraction was compensated for above 45 K, ensuring a constant 4.5 kbar 

below the melting point of helium (~ 40 K at this pressure). 

4.3.1 Longitudinal Field µSR Measurements 

When working in longitudinal field geometry it is important to first perform 

a calibration measurement in a small transverse field (~ 20 G), Figure 4:7.  In this 

way the relative forward and backward detector efficiencies, and thus an accurate 

asymmetry baseline can be determined.  Simplification of the background response 

from the nuclear dipole relaxation associated with the pressure cell material was 

achieved by applying a 110 Gauss longitudinal field, as shown in Figure 4:8.  The 

sample was cooled in zero-field and all measurements were taken upon warming 

from the lowest temperature. 

Prior to discussion of these results it is important to consider the position of the 

muon within the host matrix.  It is generally accepted that the muon behaves much 

like a light isotope of hydrogen, and correspondingly occupies the same interstitial 

position.  At low concentrations hydrogen has been reported to occupy the so-called 

(2-2) position in YMn2 
177, which is at the centre of a tetrahedron surrounded by two 

manganese and two yttrium sites.  This is fortunately the same site thought to be 

occupied in Re-Al2 Laves phase compounds, although there is also a second 

possible, so-called (3-1), site seen at higher hydrogen concentrations.  This however 

is thought to be a highly unlikely position for a µ+ to occupy 178.   
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Figure 4:7 Typical instrument calibration measurement performed in a 20 G transverse field.  Solid 

line is a damped cosine fit to the data. 

 

 

Figure 4:8 Suppression of the background nuclear dipole relaxation from the empty pressure cell via 

the application of 110 G longitudinal field.  
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Figure 4:9 The observed muon spin relaxation spectra at 4.5kbar, with 110G longitudinal field; the 

solid lines represent least square fit to the data.  
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Figure 4:10 Temperature dependence of the muon spin depolarisation rate under ambient and applied 

pressure conditions with (x = 0.05).  The (x = 0.10) data is from Cywinski 
176

, and is included for 

comparison.  All solid lines are least square fits to equation (4:2), with vertical dashed lines indicating 

the position of Tg. 

 

 

Figure 4:11 Temperature dependence of the stretching parameter (β) under ambient and applied 

pressure for (x = 0.05), with previous measurements for (x = 0.10) included for comparison.  Solid lines 

are a guide to the eye.  
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As with the previous Y(MnAl)2 measurements, a small rapidly damped contribution 

was observed at short times, however rather than include an additional exponential 

alongside the dominant stretched relaxation process the results were truncated at 

short times, effectively removing this contribution without adversely affecting the 

results.  Thus all fits to the data were performed over the time range (0.5 ≤ t ≤ 12) 

µs
-1

 using the muon data analysis program WIMDA 179. 

Accurate subtraction of the background response associated with the pressure cell 

material was achieved by characterising the empty cell at each corresponding 

temperature.  It was found that these spectra were well described by a Gaussian 

relaxation function.  However, determining the relative sample to pressure cell 

signal ratio required characterisation of the sample alone.  Therefore the sample was 

measured under ambient pressure conditions in an external longitudinal field of 

110 G across several corresponding temperatures using the MuSR spectrometer.  By 

fixing these relaxation parameters along with those of the empty cell the relative 

signal ratio was determined to be (1 : 3.4). 

Under ambient pressure all spectra collected from the paramagnetic regime are well 

described using a relaxation function of the form, 

  ( )     ( (  )
 ) (4:3) 

with a (β) parameter that is close to unity at first, then falls rapidly with temperature 

to approximately 1/3 at 85 K, as shown Figure 4:11.  Such behaviour is a 

characteristic of many concentrated spin glass systems and is generally indicative of 

the muon experiencing a widening distribution of spin relaxation rates within the 

sample 51, 180. 

The associated relaxation rate is seen to increase slowly as the temperature decreases 

from (290 – 100) K before diverging.  Fitting the critical form described by equation 

(4:2) yields a glass transition temperature of Tg = (88.0 ± 0.2) K, which is consistent 
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with previous measurements, and values of λ0 = (0.026 ± 0.001) µs
-1

 and 

γ = (0.80 ± 0.03). 

In contrast, the application of 4.5 kbar external pressure not only leads to faster 

relaxation rates but also suppresses the aforementioned magnetic transition 

temperature, significantly changing the form of the muon spin relaxation function 

required to describe the data; Gz(t) evolving from stretched to simple exponential 

form, consistent with the muon sensing a single relaxation rate.  Interestingly, the 

exponent (γ) increases from 0.8 to the unusually high value of 2.0, indicating a 

significant change in the nature of the spin fluctuations with applied pressure. 

The application of external pressure therefore appears not only to have suppressed 

entirely the magnetic transition, but also to have destabilised the manganese 

moment, leading to faster spin fluctuations, and eliminating the spin glass-like 

response associated with the topological and exchange frustration seen at ambient 

pressure. 

4.4 Short-range Order in the Spin Glass Phase  

It is clear that the complex underlying anti-ferromagnetic spin arrangement 

of the parent compound YMn2 is increasingly perturbed as aluminium is substituted 

onto the manganese sub-lattice, however little is known on the character of short-

range magnetic correlations in the pseudo-binary system.  As mentioned, in 1986 

Motoya performed neutron scattering measurements to compare the diffraction 

pattern of YMn2 with those of Y1.05(Mn1-xAlx)2.  This revealed the collapse of long-

range magnetic order at concentrations (x ≥ 0.05), but detailed analysis of the 

magnetic cross section was not performed.  It could only be said that the general 

features up to and including (x = 0.20) were “essentially the same”. 

To explore this further nuclear and magnetic diffuse scattering cross sections have 

now been measured on a range of samples concentrations: (x = 0.03, 0.05, 0.10, and 

0.30).  The D7 spectrometer was used with an incident wavelength to 3.1 Å, giving 

an optimal flux of (1.2 × 10
6
) neutrons cm

-2
 s

-1
 covering a momentum transfer range 
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in the order of (0.5 ≤ Q ≤ 3.7) Å
-1

.  Powdered samples were packed into a cylindrical 

thin walled aluminium containers (Ø = 5 mm) and mounted in a helium reservoir 

cryostat.  The nominal beam diameter was set to 30 mm, but collimated to 25 mm 

slit for these experiments. 

4.4.1 Introduction to Diffuse Scattering 

Traditional crystallographic analysis of Bragg diffraction is built on the 

assumption that the crystal lattice is perfectly periodic and as such specific 

translational symmetry can be used to reduce every atomic position to just a small 

set of points on a unit cell.  However strictly speaking Bragg diffraction only relays 

information on the average crystal structure since real materials can never truly be 

perfectly periodic.  Even if a sample were to be totally free from so-called 

occupational disorder such as substitutional and interstitial defects, spatial 

displacement from the ideal atomic position is unavoidable due to both thermal and 

zero-point quantum vibrations. 

Ultimately the consequence of any such disorder is a reduction in the Bragg peak 

intensity
‡‡

; however this intensity is not lost but instead contributes to a portion of 

the total scattering cross section appearing beneath the Bragg peaks known as diffuse 

scattering.  Frequently this contribution is overlooked despite the valuable 

information it holds on the degree of deviation away from the prevailing long-range 

order defined by the unit cell. 

Again, there are two distinct categories of local lattice disorder which result in 

diffuse scattering: occupational and displacement.  To study displacement defects 

inelastic techniques are necessary which are outside the scope of this work, however 

the paper by Stewart 181 provides a useful introduction in relation to the D7 

spectrometer.  Static disorder on the other hand results from incomplete occupation 

of the crystal sites due to interstitial or substitutional defects, vacancies, nuclear 

isotope, and nuclear spin-incoherence; all of which may be studied using a general 

diffraction technique.  If the defects were to be distributed randomly throughout the 

                                                 
‡‡ Crystallographic analysis corrects for this using the Debye-Waller factor. 
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sample the resulting diffuse scattering signal would appear isotropic and broadly 

featureless.  The presence of correlations between neighbouring atoms however 

would produce smooth fluctuations in intensity across a wide range of Q-space.  The 

same is true for disordered or mixed magnetic systems which contribute, often far 

more weakly, through spin correlations.  Fortunately with the use of xyz-polarisation 

techniques these scattering types can be unambiguously separated and analysed 

independently. 

However, interpreting these fluctuations is far from trivial.  Prior to 1988 the 

principal method was to fit an analytic approximation of the diffuse scattering cross 

section using the least square method but in more recent years it has become 

increasingly popular to employ Reverse Monte Carlo (RMC) techniques 182. 

4.4.2 Nuclear Diffuse Scattering 

If the atomic substitution in Y(Mn1-xAlx)2 were truly random the average 

deviation from the mean scattering length would be distributed randomly across the 

sample.  The diffuse scattering would simply be incoherent and equal to the square 

deviation from the average scattering length, as discussed in (§ 3.1.2), 

(
  

 Ω
)
   
 〈  〉  〈 〉  

    
  (   )  

  (    (   )  )
  

  (   )(     )
  

(4:4) 

where (  ) and (  ) are, in this case, the scattering lengths of aluminium and 

manganese respectively, and x is the concentration of aluminium.  Clearly this final 

expression, called the Laue Monotonic Scattering cross section, is directly 

proportional to the scattering length contrast, (       ) and equates to a flat 

isotropic background.  If the occupational disorder were non-random then 

equation (4:4) would not hold since [     ≠ 〈 
 〉], and an ensemble average must 

therefore be taken of individual near-neighbour shells such that, 
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  (4:5) 

where pA (n) is the probability of finding a aluminium atom in the n
th

 near-neighbour 

shell around a central manganese atom.  For a binary system, the nuclear diffuse 

scattering cross section, derived independently by Cowley 183 and Warren 184, is 

subsequently given by the sum over all near-neighbour shells, 

(
  

 Ω
)
       

  (   )(     )
 ∑  (  

  ( )

 
)

 

   

   (     ) (4:6) 

where (Zn) is the coordination number of the n
th

 shell at the position vector (R) from 

the central atom.  The term in brackets is called the Warren-Cowley short range 

order parameter, 

   (  
  ( )

 
) (4:7) 

Regarding this parameter, it must be assumed that the probability of finding an A 

atom (pA) on the zero
th

 near-neighbour shell is zero, in which case (αn = 1); this is 

the first limiting value.  Likewise, when a central B atom (manganese) is surrounded 

completely by a shell of like B atoms the result is also (αn = 1).  On the other hand, 

when (pA = 1) and a central B atom is completely surrounded by A atoms the 

opposite limit is reached, its value being (    ⁄ ). 

If the occupation of substituent atoms were truly random the probability of finding 

an A atom would be governed by its concentration, thus the Warren-Cowley 

parameter would be exactly equal to zero.  In this case equation (4:6) would then 

reduce to the Laue Monotonic Scattering cross section given in equation (4:4). 

For the analysis of polycrystalline samples equation (4:6) must be averaged over all 

directions of the position vector.  The result is an analytical expression for the 

diffuse scattering cross section, 
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where (Rn) is the radial distance from the origin to the surface of the n
th

 spherical 

shell.  Figure 4:12 shows least square refinement of this equation to the normalised 

nuclear data measured at 10 K for the concentrations (x = 0.05, 0.10, and 0.30).  

Figure 4:13 plots the calculated Warren-Cowley short-range order parameter 

associated with these fits as a function of radial distance from the central manganese 

atom. 

A simple computer program was written in order to calculate the coordination 

number and radial distance up to the 32
nd

 shell.  Briefly, a (7 × 7× 7) supercell model 

of the C15 Laves phase B sub-lattice was generated from which basic geometric 

operations could be used to compute the bond lengths between a central atom and all 

others positions.  The lattice parameter used for this calculation was determined via 

the position of the (111) nuclear Bragg peak. 

In Figure 4:12 the coherent cross section has been separated via xyz-polarisation 

analysis and the nuclear Bragg peaks removed from the data leaving only a very 

weak diffuse scattering contribution.  The number of shells used to fit the data was 

chosen in respects to the diffuse magnetic scattering cross section which, as will be 

shown in more detail later, reveals a peak centred around (Q = 1.9 Å
-1) with a width 

approximately equal to 0.5 
 
Å

-1.  This value indicates short-range spin correlations 

are present at length scales of at least 12.6 Å, pointing to at least 14 near-neighbour 

shells needed to accurately describe the data.  Through trial and improvement this 

was increased ~ 18 Å (32 shells); constraints were applied to the high order 

parameters in order to avoid unrealistic values. 

Between shell numbers 1-4, the Warren-Cowley short-range order parameter was 

restricted to ± 0.03, between 5-13 this was reduced to ± 0.01 and between 14-32 

reduced further still to ± 0.05.  
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Figure 4:12 Diffuse coherent cross section taken at 10 K for Y(Mn1-xAlx)2, where 

x = 0.05, 0.10, & 0.30.  Each line represents a least square fit of equation (4:8) to the data.  
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Figure 4:13 The calculated Warren-Cowley short-range order parameter for each aluminium 

concentration from the fits shown in Figure 4:12.  The dashed lines are a guide to the eye; the dotted line 

indicates the first unit cell distance.  
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Within the first unit cell, as shown by a dotted line in Figure 4:13, the analysis 

indicates a greater-than-average probability of finding like atoms on the first, 

second, fourth, and fifth near-neighbour shell.  This would suggest a slight clustering 

behaviour of the manganese atoms.  Furthermore, it appears the aluminium atoms 

have a propensity to occupy the third and sixth near neighbour shells, after which 

the short-range order parameter oscillates about zero - suggesting random 

occupation at large distances.  It is interesting to note that the change in diffuse 

scattering cross section as a function of increasing aluminium concentration appears 

almost entirely to be the result of occupation on the sixth, and perhaps ninth, near-

neighbour shells. In all cases the Warren-Cowley short-range order parameter is seen 

to oscillate around zero at large distances.   

A major disadvantage of this type of analysis is there being no general means of 

applying non-linear constraints so that the sum of probabilities (pA) can be 

normalised.  This is due to the least square procedure fundamentally assuming 

independent variables which is clearly not the case for the Warren-Cowley order 

parameter. 

Despite their relatively subtle nature, the presence of these short-range nuclear 

correlations would be expected to have an appreciable effect on the magnetic 

properties of the system. 

xnom x (1) x (2) x (3) x (4) x (5) x (6) x (7) 

0.05 0.0478 0.0497 0.0497 0.0500 0.0505 0.0503 0.0498 

0.10 0.0918 0.0980 0.0989 0.0998 0.0992 0.0999 0.0988 

0.30 0.3088 0.2949 0.2961 0.2995 0.2982 0.2970 0.2963 

Table 4:2 The calculated aluminium concentrations within the first unit cell i.e. the first seven near-

neighbour shells, where xnom is the nominal sample concentration 
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4.4.3 Magnetic Short-range Order 

Figure 4:14 shows a comparison of the neutron diffraction patterns for four 

sample concentrations with nuclear and magnetic contributions separated.  The 

pattern of the (x = 0.03) sample is nearly identical to that of the parent compound 

YMn2, and the Bragg peaks have therefore been indexed in accordance with Motoya 

174.  It is clear that due to increasing aluminium concentration the magnetic scattering 

becomes progressively more diffuse; the primary peak is centred approximately at 

(Q = 1.9 Å-1
), the same position as the (210) magnetic Bragg peak of YMn2.  

Likewise a secondary diffuse region is centred on the (110) magnetic Bragg peak. 

All measurements were performed by increasing from the lowest temperature, as 

previously it has been shown that the (110) magnetic Bragg peak intensity displays a 

significant thermal hysteresis in YMn2; however this could not be detected in 

pseudo-binary compounds at the time.  Unfortunately due to the time limitations on 

this experiment such phenomena could not be investigated, however the temperature 

variation of the (x = 0.10) and (x = 0.30) patterns are shown in Figure 4:15 and 

Figure 4:16, respectively, and the integrated intensity between (0.6 ≤ Q ≤ 3.7) Å-1
 is 

shown in Figure 4:17, as a function of temperature. 
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Figure 4:14 Variation in both nuclear coherent (open) and magnetic (closed) neutron scattering cross 

sections as a function of aluminium concentration measured at 10 K. 
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Figure 4:15 The temperature dependence of diffuse magnetic cross section for x = 0.10. 

 

 

Figure 4:16 The temperature dependence of diffuse magnetic cross section for x = 0.30.  
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Figure 4:17 Temperature variation of the magnetic diffuse scattering intensities between 

(0.6 ≤ Q ≤ 3.7) Å-1 for compounds with (x = 0.10) and (x = 0.30) represented by closed and open circles 

respectively.  The intensity is seen to gradually decrease as the temperature increases. 

Magnetic neutron scattering from paramagnetic or disordered spin systems is always 

diffuse.  In a system with one magnetic species the diffuse magnetic cross section 

can be written, 

(
  

 Ω
)
       

   (
  𝑟 
 

 
)

 

  ( ) ( )  ( ) (4:9) 

where M(Q) is the Fourier transform of the magnetisation density, and S(Q) is the 

nuclear structure factor.  For a randomly orientated magnet the magnetic interaction 

vector (q = 2 / 3), and, 
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   (     ) (4:10) 
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Figure 4:18 Least square fit of equation (4:11), with 32 near-neighbour shells, to sample of 

concentration (x = 0.05). 

where (S0) and (Sn) are the atomic spin vectors at the origin and the n
th

 near-

neighbour shell respectively.  Thus, equation (4:10) can be factorised into near-

neighbour shells, and the powder average taken, 
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where (Rn) is the radial distance from the origin to the n
th

 shell, and (Zn) is the 

coordination number associated with that shell.  To arrive at this expression it is 

implicitly assumed that S(Q) = 1 so that there are no concentration driven 

fluctuations in the magnetic moment distribution due to nuclear short-range order. 

The square magnetic form factor calculation,   ( ), is performed using the 

approximation of Lisher & Forsyth, equation (3:30), using coefficients for Mn
+2

, as 

this has previously been shown to be more suitable than either Mn
+1

 and Mn
+3

 in this 

pseudo-binary compound 162.  
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Figure 4:19 Least square fit of equation (4:11), with 32 near-neighbour shells, to sample of 

concentration (x = 0.10). 
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Figure 4:20 Least square fit of equation (4:11), with 32 near-neighbour shells, to sample of 

concentration (x = 0.30). 
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Figure 4:21 Variation of the spin-spin correlation values as a function of radial distance at 10 K. 
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Figure 4:22 Variation of the spin-spin correlation values as a function of radial distance at 75 K. 
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Figure 4:23 Variation of the spin-spin correlation values as a function of radial distance at 180 K. 
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The normalised spin-spin correlations, [S0 · Sn / S(S+1)], up to (n = 32) have been 

calculated as a function of radial distance, (R), and plotted to allow comparison 

between concentrations at three temperatures: 10, 75, and 180 K, (unfortunately 

there was insufficient time to measure the (x = 0.05) sample at temperatures above 

10 K).  Inspection of the values obtained by least square fitting reveals interesting 

fluctuations within the distance of the first unit cell. 

At all temperatures and all concentrations the first spin-spin correlation tends 

towards anti-ferromagnetic (negative) alignment; ferromagnetic (positive) second; 

anti-ferromagnetic third; and anti-ferromagnetic fourth.  With (x = 0.10) these 

appear almost completely unchanged below 75 K, however a distinct shift is 

observed at 180 K where the fourth spin-spin correlation has a smaller negative 

value, suggesting atoms at this position tend towards anti-ferromagnetic alignment 

as the temperature is reduced.  A similar observation can be made of the fifth 

(negative), sixth (positive), and seventh (negative) shells, which are again largely 

unchanged below 75 K but change dramatically at 180 K.  For the concentration (x = 

0.30) the first near-neighbour shell becomes more negative as the temperature is 

increased, and the second nearest-neighbour shell approaches zero at 180 K from an 

initially high positive value.  The third shell remains largely unchanged with 

temperature.  In complete contrast to the (x = 0.10) sample, here the fourth shell 

becomes gradually more negative as the temperature is increased, however a similar 

divergence of the fifth, sixth and seventh spin-spin correlations is observed.  

At large distances only the (x = 0.05) sample oscillates about zero, both the (x = 

0.10) and (x = 0.30) samples are predominantly anti-ferromagnetic outside the first 

unit cell distance, and remain so up to (R = ~ 15 Å).  These calculations suggest 

relatively strong correlations persist to at least 180 K, however the validity of these 

fit parameters at this high temperature must be questioned due to the considerably 

weaker scattering and collapse of significant fluctuations.  
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Like the Warren-Cowley parameter before, these variables are obviously not 

independent, and what’s more equation (4:11) was derived on the basis that 

S(Q) = 1; however from (§ 4.4.2) it is clear that this is not the case. 
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4.5 NSE Measurements of Y(Mn1-xAlx)2 

In this section NSE measurements on Y(Mn1-xAlx)2 with (x = 0.10) are 

presented, performed using the IN11 spectrometer at the Institut Laue-Langevin.  

Since the most intense region of magnetic scattering is flanked by the (111) and 

(220) nuclear Bragg peaks it was decided that, despite being less intense, the region 

associated with the (110) magnetic Bragg peak would be used.  In this way it was 

hoped that possible signal contamination could be minimised.  To offset the 

subsequent reduction in neutron count rate a wide-angle multi-detector option was 

employed, consisting of 41 detector elements covering a (30 × 1.5) degree solid 

angle.  This however also reduces the accessible Fourier time range due to the 

difficulty of maintaining a perfectly homogenous field in the wider precession coil. 

The neutron wavelength was selected at a mean value of 5.5 Å, and the detector bank 

centred on (Q = 1.055) Å-1
, thus covering a total momentum transfer range of 

(0.781 ≤ Q ≤ 1.311) Å-1
.  The sample was loaded into a flat thin-walled aluminium 

container, of dimension (40 × 30 × 2) mm, which included a cadmium mask.  

Calculations revealed this thickness to allow approximately 85 % transmission; 

hopefully reducing multiple scattering effects.  Again, the sample was then mounted 

in a helium reservoir cryostat. 

Preliminary analysis of Q-dependence was performed by dividing the multi-detector 

in to five sub-groups.  It was found the spectra from each remained unchanged 

within experimental error, indicating that the spin dynamic across this range are Q-

independent.  Furthermore, the eight detectors closest to the (111) nuclear Bragg 

peak were discarded due to signal contamination, reducing the final momentum 

transfer range to (0.781 ≤ Q ≤ 1.213) Å-1
. 

This experiment began in November 2007, during which time a cryostat failure and 

reactor shut down greatly limited the time available to complete this investigation.  

A subsequent continuation proposal was accepted, and the experiment completed in 

early September 2009. 
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Figure 4:24 Neutron spin echo measurements revealing the temperature dependence of spin dynamics 

in Y(Mn0.90Al0.10)2 over the momentum transfer range (0.781 ≤ Q ≤ 1.213) Å-1.  The solid lines indicate 

fitting of the data to the Weron-Tsallis relaxation function.  
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Figure 4:25 Weron parameters for the NSE spectra of Y1.05(Mn0.90Al0.10)2 a) temperature dependence 

of (τ), solid line is fit to the Vogel-Fulcher law: τ = (1.56 ± 0.83)×10-4ns, Eα/kB = (134.60 ± 42.18) K and 

T0 = (35.95 ± 4.54) K. b) fractal parameter,where dashed line is linear fit to data c) the interaction 

parameter, (k).  
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The spectra presented in Figure 4:24 have been normalised to S(Q, 0) measured 

using the sample at 1.5 K.  This, it was found, gave more consistent spectra than 

were produced when using a dedicated resolution sample, most probably because the 

sample position was constant.  Measurements were performed at several 

temperatures above and below the glass transition, Tf ≈ 50 K, but unfortunately a 

series of malfunctions prevented sufficient statistical accuracy being achieved for a 

measurement at T = 58 K. 

It is immediately obvious that the full dynamic range in this, like most disordered 

systems, covers many decades in Fourier time and the data, at best, reveals only 40 

% of the total intermediate scattering function S(Q, τ).  Hence, initial least square 

fits of the Weron-Tsallis relaxation function produced inconsistent temperature 

variation in the fitting parameters, open circles in Figure 4:25, which over 

emphasised the flatness at low temperatures.  Such a result would imply significant 

relaxation occurring at very short times, τ ≪ 10
-15

 s, which is almost certainly 

unphysical given the Q-range being studied.  Moreover, the data recorded at higher 

temperatures suggests the system is almost entirely static on this time scale. 

For these reasons an artificial data point was added in each spectra at τ = 10
-16

 s 

where S(Q, τ) = 0.97 with an error of ± 0.06.  This point acted to pin the start of the 

relaxation function at short times, the results of which are shown by closed circles in 

Figure 4:25.  In this way a dramatic change occurs in the values taken by the Weron 

parameters, which can be seen to follow a more consistent temperature dependent 

behaviour. 

4.5.1 Evaluating the Weron Parameters 

At the highest temperatures there is clearly a well defined shape to the 

spectra, visible despite being largely outside the time window of IN11.  Approaching 

Tf the plots become progressively flatter, particularly evident at 50 K and 34 K, 

which suggests an extremely wide distribution of relaxation rates. 

Furthermore, the relaxation rate (τ) can be seen to diverge approaching the transition 

temperature, but this divergence did not follow Arrhenius form, 
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       [
  
   
] (4:12) 

where (Eα) and (τ0) are independent fitting parameters characterising the rate of a 

reaction, and the activation energy (Eα) represents the minimum thermal energy 

required for the reaction to proceed.  The reaction itself being governed by a 

frequency defined by the characteristic relaxation rate, [f0 = 1 / τ0]. 

Briefly, the Arrhenius Law is often successfully applied to systems of independently 

relaxing particles, but is usually unable to describe the cooperative motion which 

sets in during the cooling of glassy systems.  Such non-Arrhenius relaxation 

processes are modelled via the empirical Vogel-Fulcher Law 185, 186, 

       [
  

  (    )
] (4:13) 

with the ideal glass temperature (T0), defined by the divergence of (τ), being a 

measure of the fragility of the system, and characterising the rate at with the 

dynamics slow as the glass transition is approached.  A strong glass is one which 

approaches Arrhenius-like temperature dependence, (T0 → 0), whereas a system that 

slows over a narrower temperature range is referred to as a fragile glass former.  For 

spin glasses systems it has been suggested this parameter measures of the interaction  

strength (dipole, exchange or other) between clusters 187.  With (TK = EA / kB) two 

regimes of weak and strong coupling are defined such that weak coupling exists for 

(T0 ≪ TK ) and strong for (T0 ≫ TK) 188. 

Fitting the Vogel-Fulcher equation to the relaxation rates calculated by analysis 

using the Weron-Tsallis relaxation function reveals τ0 = (1.56 ± 0.83) ×10
-4 

ns, TK = 

(134.60 ± 42.18) K and T0 = (35.95 ± 4.54) K, indicating that the spin glass phase of 

Y(Mn0.90Al0.10)2 has an intermediate value (T0 / TK = 0.27) within the weak regime.  

This result is consistent with many other spin glass systems.  

With regards the Weron relaxation function, in the limit (k → 0) the (α) parameter is 

equivalent to stretching parameter (β) of the Kohlrausch formula, the temperature 
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dependence of which has been previously discussed in the context of spin glasses.  

Starting at 0.55 at high temperature, (α) is seen to decrease gradually, approaching 

0.20 at the freezing temperature.  It is interesting to note that (α) follows a strict 

linear temperature dependence.  Extrapolating to low temperatures reveals α = 0 is 

reached at approximately 20 K. 

The Weron interaction parameter, which indicates the level of hierarchical constraint 

imposed on the system as the energy landscape evolves during the freezing process, 

increases as the transition temperature is approached.  At the lowest temperature 

measured, significantly lower than the transition, the interaction parameter falls to 

zero.  However due to the divergence in relaxation rate, and the subsequent 

difficulty in determining its value, we cannot be confident that this result is real or 

due to interdependence between (τ) and (k).  The temperature dependence of the 

interaction parameter will be discussed in more detail in final chapter.  
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4.6 Spin Dynamics in the Concentrated Spin Glass Y(Al1–xFex)2 

All known binary intermetallic compounds of type Re-Al2 or Re-Fe2 adopt 

the cubic C15 structure, regardless of the Rare earth element involved.  YFe2 is 

believed to be an itinerant electron ferromagnet with a Curie temperature of 554 K.  

YAl2 on the other hand has temperature independent susceptibility, and is thought to 

be Pauli paramagnetic 189.  Unlike Y(Mn1-xAlx)2, several pseudo-binary systems of 

the type R(Al1-xFex)2 crystallise in the hexagonal C14 polytype at intermediate 

stoichiometry.  Indeed, Dwight et al.190, and later Muraoka et al. 191, revealed this to 

be true of Y(Al1-xFex)2 throughout the concentration range (0.45 < x < 0.60). 

For this reason two compounds of nominal concentration (x = 0.25, and 0.65), both 

cubic C15 Laves phase structures, have been studied to further test the Weron-Tsallis 

relaxation function and scaling relationship of the interaction and non-extensivity 

parameter. 

4.6.1 The Y(Al1–xFex)2 System 

Partial substitution of aluminium onto the iron matrix not only suppresses the 

size of the iron moment but also rapidly reduces the Curie temperature.  At the 

concentration (x = 0.78) long-range ferromagnetic order collapses, leading to an 

unusually extended spin glass-like regime within the bounds (0.1 < x < 0.78).  

However, given the geometry of the B sub-lattice, this percolation threshold for 

long-range ferromagnetic order is unexpectedly high.  For this reason the magnetic 

properties of Y(Al1-xFex)2 have been the focus of much experimental and theoretical 

effort over the past 40 years, with numerous models proposed in an attempt to 

explain the anomalous magnetic phase diagram shown in Figure 4:27. 

In the first instance, due to the relative electronegativities of iron and aluminium, it 

is very likely that electron transfer takes place.  Accordingly one of the first models 

proposed took an itinerant electron approach in which it was assumed each 

aluminium atom donated three electrons to the iron 3d-band 192.  Although in good 

agreement with the disappearance of the ordered moment, (x ≈ 0.70), this 

mechanism alone could not account for the rate at which the moment is collapses.  



140 

 

Figure 4:26 Linear concentration dependence of the lattice parameter in the C15 cubic phase of Y(Al1–

xFex)2; data taken from Besnus 
193

. 

 

 

Figure 4:27 The magnetic phase diagram of Y(Al1–xFex)2 where Tg (white circles) and TC (black 

circles) were determined via DC magnetisation and Mössbauer spectroscopy 
194

.  Tg (diamonds) were 

determined via µSR 
195

.  



141 

It was suggested that the local atomic environment could also be crucial to 

determining the magnitude of the iron moment 196, thus Besnus et al. constructed a 

simple model in which the iron atoms were non-magnetic unless surrounded by a 

critical number of like atoms in the first and second near-neighbour shells.  The key 

assumption being above this critical number the moment takes the same value as 

pure YFe2 
193, 197.  Analysis of compounds between (0.674 ≤ x ≤ 1) revealed this 

critical number to be 15 like atoms (out of a possible 16 B-sites).  Unfortunately 

several discrepancies arose;  firstly, 
57

Fe isomer shift revealed the iron site charge 

density in the iron-rich regime was largely unaffected by the local atomic 

environment; and secondly, it was demonstrated that the iron atom always carries a 

magnetic moment even when completely surrounded by aluminium.  It was clear 

that neither of these mechanisms, nor indeed so-called hybrid versions, could 

account for the collapse of ferromagnetism 198-200, and at this time the magnetic 

properties of this system are still not fully understood. 

More recently the low temperature spin glass state was investigated using Zero-field 

Muon Spin Relaxation by Telling et al. 195.  All spectra collected from three 

concentrations, (x = 0.25, 0.40 and 0.65), were well described by a depolarisation 

function incorporating a Kubo-Toyabe term multiplied by a stretched exponential; 

the latter representing a dynamic contribution from atomic fields.  The nuclear 

depolarisation rate was found to be temperature independent, scaling precisely with 

the concentration of iron.  Extrapolating this relationship to (x = 0) revealed the 

muon position to be that of the so-called (2-2) site. 

Briefly, at temperature well above the glass transition (β → 1), whist below (T ~ 3Tf) 

its value decreases, indicating a broadening distribution of relaxation rates (λ) 

approaching Tf.  A critical divergence in (λ) was used to determine the transition 

temperature of each compound, included in Figure 4:27.  Interestingly, below the 

transition the initial asymmetry falls well below the expected value (1/3 that 

observed at high temperatures), suggesting spin fluctuations well into the spin glass 

state. 
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To explore if the delay in the onset of ferromagnetism was a consequence of 

topological frustration due to anti-ferromagnetic correlations between spins on the 

tetragonal B sub-lattice, diffuse neutron scattering measurements were made by 

Preston et al., again on concentrations (x = 0.25 and 0.65) 201, with the cross sections 

being analysed using the Reverse Monte Carlo methods. 

The calculated Warren-Cowley order parameters indicated a slight anti-clustering of 

iron atoms in the first and second near-neighbour shells, beyond which (αi = 0).  

Applying this configuration to the magnetic cross section gave clear evidence that at 

radial distances (R ≤ 5 Å) spin correlations were predominantly ferromagnetic for 

both concentrations.  Furthermore these clusters show relatively little temperature 

dependence up to (T = 300 K).  At larger distances there was evidence of anti-

ferromagnetic correlations however these were regarded as too weak to account for 

the anomalous phase diagram. 

4.6.2 Sample Preparation 

Polycrystalline samples were prepared by melting the appropriate 

proportions of spectrographically pure starting materials in an argon-arc furnace.  As 

with Y(MnAl)2, the compounds were off-stoichiometric (1.05 / 2.00) to ensure phase 

purity;  it is reported that this has only negligible effects on the magnetic properties 

of the system.  Weight losses were less than 0.20 % for the iron-rich ingot, and less 

than 0.37 % for the aluminium-rich ingot. 

Both ingots were then loosely wrapped in thin tantalum foil and sealed in quartz 

ampoules under a reduced (~ 330 mbar) argon atmosphere and separate heat 

treatments performed in accordance with the literature 192.  The aluminium-rich (x = 

0.25) sample was annealed at 300 °C for 24 hours whilst the iron-rich (x = 0.65) 

sample was annealed at 750 °C for one week.  After this time, both samples were 

immediately quenched in a mixture of water and ice.  They were then roughly 

crushed, and a small piece removed from each for DC susceptibility measurements.  

The remainder was then crushed into a fine powdered in an inert argon atmosphere. 
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4.6.3 DC Magnetisation 

The following measurements were performed using a SQUID magnetometer 

at the Rutherford Appleton Laboratory.  Small, approximately spherical, specimens 

were taken from the coarsely crushed ingots of each compound.  A field of 1 mT was 

used to calibrate the instrument and centre the sample position.  The temperature 

was first reduced to 2 K in zero field, and measurements taken upon warming at a 

rate of 10 K per minute in a 0.1 T field for the (x = 0.65) sample, and fields of 0.02 T 

and 0.1 T for the (x = 0.25) sample.  Before discussing the results it is useful to first 

consider what has previously been reported. 

In 1981 Hilscher et al. published a comprehensive review of the magnetic properties 

of this system, including magnetisation, DC and AC susceptibility measurements.  

Fourteen compounds were investigated with concentrations between  (0.10 ≤ x ≤ 

0.82), taking measurements at temperatures as low as 4 K 202.  The results clearly 

show three distinct concentration dependent behaviours, broadly categorised as iron-

rich, intermediate (C14 phase), and aluminium-rich regimes.  The main features of 

each can be summarised as follows. 

Iron-rich compounds (x ≥ 0.65) exhibit Curie-Weiss behaviour at high temperatures.  

The effective moment is nearly concentration independent up to (x = 0.82), taking an 

average value of ~ 3.7 µB per iron atom.  Approaching the Curie temperature a 

significant upturn is observed in the temperature dependence of inverse 

susceptibility, moving the response away from linear Cure-Weiss behaviour.  This is 

attributed to strong clustering effects which, as discussed, have since been verified 

by diffuse neutron scattering.  Furthermore a distinct peak is observed at low 

temperatures indicating a spin glass transition. 

Due to the structural transition taking place between (0.45 ≤ x ≤ 0.60) a vastly 

different response is observed.  The temperature dependence of inverse 

susceptibility is significantly steeper, but still follows a Curie-Weiss law, resulting in 

a sudden drop of the effective moment from 3.7 to 2.4 µB per iron atom.  
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Figure 4:28 Molar magnetic susceptibility against temperature for Y1.05(Al1–xFex)2, where (x = 0.65) 

and (x = 0.25).  Samples were cooled in zero field and measurements were taken upon warming in fields 

up to 0.1 T.  Tf for the iron-rich sample is approximately 25K. 

In the aluminium-rich regime paramagnetic Curie temperatures are observed in the 

temperature range (80 - 150) K, however no long-range order was detected down to 

4 K.  Furthermore, in the concentration range (0.10 ≤ x ≤ 0.45) the effective moment 

per iron atom remains largely constant, having an average value in the order of 

2.3 µB per iron atom.  DC susceptibility in low fields reveals an initial steep increase 

followed by saturation at low temperatures.  Hilscher proposed this to indicate the 

onset of short-range order below the Curie temperature. 

Identical behaviour has been observed from these measurements.  For (x = 0.25) the 

low field data exhibits this saturation anomaly, shown above, with the effective 

moment calculated from the Curie constant being identical to that of Hilscher’s 

measurements, taking a value of (µeff = 2.05) µB per iron atom.  However Figure 

4:29 shows that the Curie temperature is ~ 171 K, just outside the accepted range. 
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Figure 4:29 Temperature dependence of 1/χm for the aluminium-rich (x = 0.25) sample fields of 0.02 

and 0.10 T.  The data has been binned to aid inspection.  Lines indicate fits to the Curie-Weiss Law at 

high temperatures. 

 

 

Figure 4:30 Temperature dependence of 1/χm for the iron-rich (x = 0.65) sample in a 0.1 T field.  Solid 

line indicates Curie-Weiss behaviour at high temperature.  Moreover, the predicted upturn at low 

temperatures and freezing peak are clearly visible.  
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The iron-rich sample displays both the distinct upturn at low temperature, due to 

clustering effects, and a freezing peak indicating transition to a spin glass-like state 

at Tf ≈ 25 K.  However, the calculated effective moment is significantly lower than 

that of Hilscher, taking a value of (µeff = 2.72) µB per iron atom compared to 

(µeff = 3.29) µB per iron atom.  Even so, this result is consistent with the rapid fall of 

the paramagnetic moment observed close to this concentration, Hilscher reporting a 

value of (µeff = 2.28) µB per iron atom for a compound with (x = 0.60). 

4.6.4 Spin Dynamics in Y1.05(Al0.35Fe0.65)2 

Using IN11 the spin relaxation dynamics have been studied over the 

momentum transfer range (0.2 < Q < 0.7) Å
-1

 between 1.5 K and 40 K.  The lowest 

temperature was used to normalise the correlation function.  The same multi-

detector setup was used as for the previous experiment, with an incident neutron 

wavelength λ = 5.5 Å, coinciding with the optimum flux.  The measurements were 

performed on powdered sample loaded into a flat 3 mm deep aluminium container; 

calculations had revealed this to allow ~ 90 % beam transmission. 

The detectors were again divided in to five sub-groups for the sample’s 

Q-dependence to be examined.  It was found that the spectra were indistinguishable 

within experimental error, and the dynamics across this range are therefore regarded 

as Q-independent.  Five measurements were then performed above and just below 

the glass transition temperature, which have been presented in Figure 4:31.  Again, 

the solid lines represent least square fits of the data using the Weron-Tsallis 

relaxation function.  The results, shown in Figure 4:32, display characteristics very 

similar to those of the previous study on Y(Mn1-xAlx)2, Figure 4:25.  Once again the 

open circles represent fits to the data without an artificial “pinning” data point at 

short times. 

At the highest temperature measured (T = 40 K) much of the dynamics occur outside 

the time window accessible by IN11.  Gradually these dynamics slow as the 

transition is approached, the spectra become visibly flatter which, as before, 

indicates a broadening distribution of relaxation rates.   
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Figure 4:31 Neutron spin echo measurements revealing the temperature dependence of spin dynamics 

in Y1.05(Al0.35Fe0.65)2 over the momentum transfer range (0.2 ≤ Q ≤ 0.7) Å-1.  The solid lines represent 

least square fit to the data using the Weron-Tsallis relaxation function. 
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Figure 4:32 The calculated Weron parameters for Y1.05(Al0.35Fe0.65)2.  a) Temperature dependence of τ, 

solid line is fit to the Vogel Fulcher law: τ0 = (3.71 ± 7.05)×10-6 ns, and Ea/kB =  (112.75 ± 74.33) K, and 

T0 = (9.12 ± 6.00) K.  b)  Fractal parameter,where dashed line is linear fit to data.  c)  The interaction 

parameter, (k); the dashed line is included to guide the eye.  
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Comparable linear temperature dependence is also observed, however extrapolating 

this trend reveals (α) does not fall to zero, reaching only a minimum value of 

approximately 0.05 at zero temperature.  The triangular point highlights that α was 

fixed to follow this linear trend for the temperature T = 10 K. 

The divergence of the relaxation rate (τ) is again well described by the Vogel-

Fulcher law with the parameters: τ0 = (3.71 ± 7.05) ×10
-6 

ns, TK = (112.75 ± 74.33) 

K and T0 = (9.12 ± 6.00) K.  Therefore T0 / TK = 0.08, which implies that the system 

is again within the weak coupling regime.  Moreover the relatively low ideal gas 

temperature indicates the relaxation processes involved are more Arrhenius-like, and 

the system therefore less fragile than Y(Mn0.90Al0.10)2. 

The interaction parameter (k) tends towards zero for temperatures significantly 

above the transition temperature, Tf = 24 K, increasing slightly at the transition 

before apparently diverging.  Again, due to the difficulty in determining (τ) close to 

and below (T0) it is difficult to say if the value calculated for (k) at T = 10 K is 

accurate.  It should also be noted that this temperature was not included in the fitting 

the Vogel-Fulcher Law. 
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Chapter 5 

RAM:  RANDOM 

ANISOTROPY MAGNETS 

Random anisotropy is generally associated with amorphous alloys however 

RAM-like ground states also exist in crystalline Rare earth intermetallic compounds.  

In this chapter the spin relaxation dynamics of RAM-like C15 Laves phase 

compound (LaxEr1-x)Al2 are investigated using NSE spectroscopy; the recorded 

spectra are analysed using the Weron-Tsallis relaxation function for comparison 

with the C15 Laves phase spin glass behaviour already discussed. 

5.1 Introduction to Random Anisotropy 

The magnetic properties of metallic glasses have been of great interest for 

many years 203, 204 since the intrinsic site-disorder results in exchange and anisotropy 

strengths which vary greatly from site-to-site.  The Harris-Plischke-Zuckerman 

(HPZ) Hamiltonian 205 provides the framework for discussing the magnetic 

properties of such systems, 

   ∑          ∑( ̂    )
       ∑  

    

 (5:1) 

 

  



151 

 

 

Figure 5:1 Schematic phase diagram of the possible magnetic states in the presence of RAM with 

average exchange J0 and exchange fluctuations ΔJ.  The axis are defined by δ = ΔJ / J0, d = D / J0 and 

t = kBT/Jo. 

In the first term (Jij) is the exchange coupling strength between the i
th

 and j
th

 spins, 

the magnitude of which is highly dependent on their separation.  The random 

distribution of spins in an amorphous alloy ultimately leads to a wide distribution of 

(J) across the system.  The second term describes the anisotropy at a single site 

which has a randomly orientated easy-axis of unit vector length ( ̂ ).  The parameter 

(D) is a measure of the anisotropy strength along that axis.  The final term accounts 

for the presence of an external magnetic field (H) acting on this spin. 

In zero field the HPZ-Hamiltonian has been shown to produce a complex phase 

diagram, depicted in Figure 5:1, which was introduced by Sellmyer & Nafis 206.  In 

calculating this phase diagram it was assumed that the exchange coupling strength 

can be expressed as two separate terms, one defining the average value (J0), and 

another the fluctuation (ΔJij) about that average.  Thus (Jij) was replaced by (J0 + 

ΔJij) in equation (5:1). 

The right-hand plane corresponds to a system of negligible anisotropy, where the 

behaviour is dominated by exchange interactions.  This leads to spin glass (SG), 

mixed (M), and ferromagnetic (F) regimes.  

SM 
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F 
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Figure 5:2 Schematic representations of the correlated speromagnetic phase (left) and speromagnetic 

phase (right). 

The left-hand-side depicts the opposing limit, where exchange fluctuations are weak 

compared to the coupling strength, (J0 ≫ ΔJij), and (δ) is therefore negligible.  The 

defining parameter here is the ratio of anisotropy strength to exchange, commonly 

labelled (d = D / J).  For very weak anisotropy (d ≪ 1) the system is on the brink of 

ferromagnetism; a state referred to as the asperomagnetic phase.  However, as the 

local random anisotropy increases all long-range ferromagnetic order is destroyed 

207, and the system enters a so-called correlated speromagnetic phase (CSM) 208.  This 

state is characterised by a smooth rotation of the local magnetisation, taking place 

over many interatomic distances.  Thus on a local scale ferromagnetic order exists 

despite the net magnetic moment being zero. 

Systems with (d ≥ 1) enter a frozen random magnetic state at low temperature called 

the speromagnetic phase (SM), where each spin essentially points along the 

direction of the local random anisotropy.  The magnetic properties are somewhat 

analogous to those of conventional spin glasses, despite the underlying mechanisms 

being clearly very different 209.  For instance, both display a frequency dependent 

cusp in the magnetic susceptibility.  However, for RAM systems the freezing occurs 

due to significant random anisotropy 209-211 , not competing exchange interactions 

(i.e. frustration).  Therefore it is of interest to investigate the relaxation dynamics of 

RAM behaviour for comparison with the previous conventional spin glass systems. 
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As stated, this phenomenon is usually associated with amorphous alloys, and the 

majority of literature on this subject pertains to metallic glasses beyond the 

ferromagnetic percolation threshold.  However RAM-like behaviour has also been 

observed for crystalline Rare earth intermetallics such as (Y1−xDyx)Al2 
212 and more 

recently (LaxEr1-x)Al2 
213. 

5.2 Introduction to (LaxEr1–x)Al2 

As already stated, Re-Al2 compounds adopt the C15 Laves phase structure.  

However in this system the magnetic spin are situated on the diamond-like A sub-

lattice and are perturbed by a crystal field comparable in magnitude to the RKKY 

exchange interactions between the localised 4f-moments 214.  As a result these 

systems often display a rich variety of magnetic properties 215. 

ErAl2 becomes ferromagnetic below (Tc = 14 K) and has an easy axis along the 

〈   〉 direction.  Magnetisation measurements reveal it to be strongly anisotropic, 

having a spontaneous moment of 7.9 µB, significantly smaller than that of the free 

ion value, ~ 9.6µB.  It has been discovered that this anisotropy leads to a freezing 

peak in the pseudo-binary system (LaxEr1-x)Al2. 

Magnetic susceptibility measurements performed on the compound (La0.8Er0.2)Al2 

indicate Curie-Weiss temperature dependence with an effective moment 

approximately equal to 10 µB 213.  However, in the ground state the erbium ion has 

been reported to have a moment of approximately 2.7 µB in the compound 

(La0.7Er0.3)Al2 
216. 

A characteristic freezing cusp is observed at (Tf ~ 3.5 K), with temperature and 

frequency dependence closely resembling that of archetypal RAM systems over an 

extended concentration range, (0.1 < x < 0.9).  The cusp appears distinctly rounded 

with a magnitude and temperature that is dependent on frequency, as shown in 

Figure 5:3.  Moreover, the imaginary component is substantially larger than is 

generally observed in conventional spin glasses 213 indicating a speromagnetic-like 

ground state 217.  
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Figure 5:3 The temperature and frequency dependence of χ’ (Top) and χ’’ (Bottom) for 

La0.70Er0.30Al2.  Pottinger 
218

.  
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Recently diffuse neutron scattering was used to study spin correlations within 

(La0.8Er0.2)Al2 via full xyz-polarisation analysis, which has revealed short-range 

order up to 5.4 K, significantly above Tf, consistent with a system in a 

speromagnetic state 213. 

The question of whether this RAM-like behaviour is due to random anisotropy of 

individual erbium sites, as is the case for conventional RAM systems, or perhaps 

shape anisotropy due to the formation of magnetic clusters remains open to debate.  

However, it can be said that the evolution of these weak correlations is slow 

approaching the freezing temperature from above, and that below the freezing 

temperature significant beam depolarisation suggests the onset of either medium to 

long-range ferromagnetic correlations or clusters. 

5.2.1 Sample Preparation 

Polycrystalline samples were prepared by melting appropriate stoichiometric 

proportions of spectrographically pure starting materials in an argon-arc furnace.  

The ingots were allowed to cool in an inert atmosphere and no further heat treatment 

was required.  Weight losses did not exceed 0.55 % for any of the ingots produced. 

5.2.2 NSE Study of (La0.70Er0.30)Al2 

Re-analysis of the NSE measurements performed by Mezei et al. 216, 219 in 

1984 indicate the Tsallis extensivity parameter, (q), to be temperature independent, 

taking a value below the strong-disorder limit, (q = 5/3).  However the temperature 

range across which these measurements were performed must be extended in order 

to test the validity of this result. 

The sample was crushed in to a fine powder and loaded into a flat 1 mm deep 

aluminium container allowing for approximately 80 % beam transmission, and 

mounted in a helium reservoir cryostat.  Using IN11 with a small angle multi-

detector option and wavelength λ = 7 Å it was found that above 5 K the intermediate 

scattering function, S(Q,τ), was Q-independent within experimental error for the 

range (0.03 ≤ Q ≤ 0.46) Å
-1

, however the dynamics become strongly Q-dependent 

below this temperature.  This was also reported by Mezei who suggested the spin 
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relaxation dynamics are therefore not governed by exchange interactions but “by 

some spin non-conserving effects… this also implies that the spins locally correlated 

in the SRO, as reflected by S(q), rotate together”. 

It should be mentioned that from Figure 5:4 Mezei took the following averages:  for 

T ≥ 10 K the data represent the averages taken over Q = 0.045, 0.09, 0.18, and 

0.36 Å-1
, for T = 7 K the points are averaged over Q = 0.18 and 0.36 Å-1

, and for 

T = 5 K, only Q =  0.36 Å-1
 was used. 

 

Figure 5:4 The temperature dependence of the total magnetic cross section at various momentum 

transfer values.  This graph has been taken from Mezei 
216

. 

New measurements were performed at Q = 0.46 Å-1
 where the enhancement in S(Q) 

is significantly less, Figure 5:5.  The temperature dependence of the Weron fit 

parameters for spectra recorded during both experiments is shown in Figure 5:6.  

The divergence in relaxation rate (τ) has again been fitted to the Vogel-Fulcher law: 

τ0 = (3.58 ± 2.14) ×10
-3 

ns, TK = (29.29 ± 7.91) K and T0 = (1.17 ± 0.68) K, which 

indicates near-Arrhenius, and therefore largely independent, relaxation processes are 

occurring within the sample.  
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Figure 5:5 Neutron spin echo measurements performed during this investigation (T = 3.5, 5.0, 7.0) K, 

and by Mezei (T = 10, 15, 20) K on (La0.70Er0.30)Al2.  The solid lines indicate fits to the data using the 

Weron-Tsallis relaxation function. 
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Figure 5:6 Weron parameters for the NSE spectra of (La0.70Er0.30)Al2 (a) temperature dependence of 

τ, solid line is a fit to the Vogel Fulcher law: τ0 = (3.58 ± 2.14) ×10-3 ns, TK = (29.29 ± 7.91) K and 

T0 = (1.17 ± 0.68) K, b) fractal parameter; the dashed lines are included to guide the eye c) the 

interaction parameter, k. 
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Comparable fits parameters were obtained when analysing these and Mezei’s data 

for T = 7 and 5 K, suggesting not only that the desired sample stoichiometry was 

achieved but that the measurements, performed nearly 30 years apart, are reliable. 

Unlike the linear trends of the previous concentrated spin glass systems, the fractal 

parameter, (α), appears to fall gradually from an initially high value approaching 

10 K, below which a sudden broadening in the distribution of relaxation rates is 

observed, (α) taking a constant value of 0.25 within error.  This could be linked to 

the onset of short-range order as the system enters a speromagnetic-like state, or 

perhaps an artefact of the Q-dependence or beam depolarisation observed at these 

low temperatures. 

Preliminary analysis of Mezei’s work had suggested the interaction parameter (k) to 

be largely temperature independent.  Indeed the high temperature measurements do 

not approach zero as was observed in the spin glasses already presented, but instead 

take values of between (0.9 ≤ k ≤ 2.2).  However, like the fractal parameter, below 

10 K the interaction parameter falls sharply towards zero.  Hence the Weron function 

reduces to a stretched exponential suggesting the dynamics in this low temperature 

regime are largely free from hierarchical constraints. 
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Chapter 6 

SUPERPARAMAGNETIC 

RELAXATION IN CR1-xFEx 

At low temperatures superparamagnetic materials enter a glassy state which, 

unlike the spin glass phase, does not depend on the interactions between individual 

particles, but manifest due to “blocking”.  This chapter presents an investigation in 

which the applicability of the Weron-Tsallis function to model such behaviour has 

been explored using NSE data recorded on Cr1-xFex with (x = 0.135 and 0.175). 

6.1 Superparamagnetism 

As the volume of a ferromagnetic particle is reduced the energy spent in 

forming domain walls eventually outweighs the demagnetising energy saved by 

reducing the dipole fields at the surface of the particle.  Subsequently, single-domain 

nano-particles form, the total moment of which is governed simply by the sum of all 

the atomic moments within it.  In such materials strong inter-particle exchange 

coupled with weak intra-particle interactions gives rise to paramagnetic-like state 

known as superparamagnetism. 

The magnetisation direction of these single-domain particles is often constrained to 

lie along an easy-axis, either due to the magnetocrystalline anisotropy or shape 

anisotropy associated with the particle itself.  To approximate the energy density of 

this anisotropy a series expansion is used, which in the uniaxial case takes the form, 
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     (6:1) 

where (K1) and (K2) are the so-called anisotropy constants and (θ) is the angle 

between the magnetisation direction and easy-axis.  From this equation it can be 

seen the energy is minimised at zero or π, where the moments lie parallel or anti-

parallel to the easy-axis. 

At high temperatures, (kBT ≫ KV), the particle’s moment fluctuates rapidly 

behaving much like a paramagnet.  The relaxation time associated with this process 

is governed by the Arrhenius Law, 

        (
  

   
) (6:2) 

where the activation energy, (Eα = KV/kB), defines the thermal energy barrier 

between parallel and anti-parallel directions; clearly this is highly dependent on the 

particle’s volume. 

As the temperature is reduced these fluctuations slow until at a critical temperature, 

known as the blocking temperature (TB), the system appears static.  This occurs 

when the observation time becomes far smaller than the intrinsic relaxation rate (τ0), 

at which point the magnetic particle is frozen or blocked on experimental time-

scales. 

Unlike spin glasses the strength of interactions between magnetic particles is 

regarded as being weak and consequently superparamagnetic relaxation provides a 

unique opportunity to study the Weron-Tsallis relaxation function on a relaxation 

mechanism which is independent of intra-particle interactions. 

6.2 The Chromium-Iron System 

  The first experimental evidence of a magnetic transition in chromium was 

provided by Bridgman in 1932 220, however it took several years before this was 

identified as a Néel point.  Indeed Néel himself first suggested that chromium was 
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anti-ferromagnetic in 1936 based on the observations he made in a dilute solution of 

gold 17.  The earliest detailed work on chromium’s magnetic structure came in the 

1950s when Shull & Wilkinson presented the results of their neutron diffraction 

studies 221.  However, their result caused considerable confusion as they indicated an 

anomalously high temperature transition to a commensurate anti-ferromagnetic 

structure which, it was later discovered, was due to internal strain in their cold-

worked sample.  Several years later the true transition was identified separately by 

Bykov et al. 222 and Corliss et al. 223. 

Below the transition, TN = 311 K, atomic moments in the chromium lattice adopt an 

incommensurate spin density wave (SDW) with a periodicity of 21 unit cells and 

root-mean-square value of 0.4µB per chromium atom.  The high temperature phase 

exhibits a Pauli paramagnetic susceptibility response.  A comprehensive review on 

the physical properties of chromium in relation to its anti-ferromagnetism has been 

published by Fawcett 224. 

When alloyed with elements to its right in the periodic table the Néel temperature 

usually increases, however for Cr1-xFex this is not the case.  Not only does the 

transition temperature decrease but the system is driven into a commensurate state 

above (x = 0.02) 225, 226.  At concentrations (x > 0.10) the iron atoms begin to form 

ferromagnetic clusters with 5-10 Å radii suspended within the anti-ferromagnetic 

host.  At high temperature these are superparamagnetic, and appear to enter a re-

entrant spin glass-like state below ~ 25 K 225. 

For alloys between (0.16 ≤ x ≤ 0.19) spin glass-like behaviour is displayed at low 

temperatures, with increased concentration leading to a percolation of the iron 

clusters and long-range ferromagnetic order being adopted 227, 228.  A number of 

different magnetic measurements have been compiled to reveal the complete 

magnetic phase diagram for Cr1-xFex, shown in Figure 6:1.  
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Figure 6:1 Magnetic phase diagram of Cr1-xFex alloys reproduced from 
227

.  Ferromagnetic boundary 

determined by Burke & Cywinski (filled circle); Loegel (open circle); Aldred & Kouvel (open triangle); 

Shull & Beck (filled triangle).  Anti-ferromagnetic boundary is a compilation of work by Burke & 

Rainford.  The spin glass transition temperature was determined by Burke & Cywinski.  Curved lines are 

to guide the eye, and the hatching indicates a region of complex magnetic properties. 

Neutron scattering measurements in the anti-ferromagnetic regime suggest 

interactions between the host SDW and ferromagnetic clusters are negligible, but 

that the strength of interactions between neighbouring ferromagnetic clusters 

increases rapidly close to the percolation limit 225, 226. 

However, whilst small angle neutron scattering measurements taken just below the 

percolation threshold suggest the onset of long-range ferromagnetic order, 

susceptibility measurements either side of this critical concentration show very little 

difference.  Such behaviour is often associated with a re-entrant phase, the existence 

of which has been confirmed via inelastic neutron scattering measurements 227. 

More recently µSR spectroscopy was employed to study the spin dynamics and 

nature of the phase transitions at the concentrations (x = 0.135, 0.175, and 0.22).  

For (x = 0.135) it was found that the muon depolarisation rate at room temperature 
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was small (λ ~ 0.02 µs
-1

), indicating an extremely fast field fluctuations.  Upon 

reducing the temperature there was a marked slowing of (λ) as the Néel temperature 

was approached.  However the temperature dependence of signal asymmetry 

indicated a progressive conversion to a magnetically ordered state.  It would 

therefore seem that the muon was able to sense the condensation of the SDW, not 

inter-cluster correlations, in the paramagnetic phase and that this muon response was 

most likely associated with the anti-ferromagnetic host, not the ferromagnetic iron 

clusters.  Upon further cooling towards the freezing temperature, Tf = 12 K, the 

fluctuation rate again slows, however the instrument resolution was insufficient, in 

regards to the time resolution, to fully characterise these complex spin dynamics at 

short times.  In contrast both the (x = 0.175 and 0.22) concentrations are consistent 

with the typical response of a spin glass system, the muon relaxation spectra being 

of Kohlrausch form where the stretching parameter falling from unity at high 

temperatures to 1/3 at the transition, Tf = 32 and 35 K respectively. 

6.2.1 Sample Preparation 

Two polycrystalline ingots were prepared, of concentration x = 0.135 and 

x = 0.175, by argon-arc melting appropriate proportions of the starting materials.  

Losses during the melting process were minimal and attributed to the evaporation of 

chromium.  These ingots were subsequently sealed in quartz ampoules under a 

reduced argon atmosphere and annealed at temperatures in excess of 1000°C, after 

which they were rapidly quenched in an ice-water mixture. 

6.2.2 NSE Measurements of Cr1-xFex 

The superparamagnetic spin dynamics of this system have been investigated 

using the IN11 spectrometer with an incident wavelength of λ = 5.5 Å, over the 

momentum transfer range (0.20 ≤ Q ≤ 1.31) Å-1
, using the wide angle multi-detector 

option discussed previously.  The samples was crushed into a fine powder and 

loaded into thin walled cylindrical aluminium containers.  Grouping the detectors, as 

before, revealed no significant Q-dependence and data was collected across the 

entire Q-range at six temperatures for each sample concentration.  
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Figure 6:2 Neutron Spin Echo spectra of Cr0.865Fe0.135; the solid lines are least square fit of a Weron-

Tsallis function modified to include a background term, the dashed lines (T = 20, 11, and 7.5 K) 

represent least square fit to the Weron-Tsallis function. 
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Figure 6:3 Neutron Spin Echo spectra of Cr0.825Fe0.175; solid lines represent least square fit to the data 

using the Weron-Tsallis relaxation function. 
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Figure 6:4 The calculated Weron parameters of least square fitting NSE measurements of 

Cr0.865Fe0.135.  a) the temperature dependence of (τ) where the solid line is fit to the Arrhenius law: τ0 = 

(9.46 ± 1.66) × 10-4 ns, Eα/kB = (33.51 ± 2.80) K, b) fractal parameter (circle) and background term 

(triangle), c) the Weron interaction parameter (k); the dashed curve is to guide the eye.  
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Figure 6:5 The Weron parameters calculated for Cr0.825Fe0.175.  a) the temperature dependence of (τ) 

where the solid line is fit to the Arrhenius law: τ0 = (7.42 ± 0.86) × 10-3 ns, Eα/kB = (33.42 ± 6.08) K, b) 

fractal parameter (α), c) the Weron interaction parameter (k); the dashed curve is to guide the eye.  
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Inspection of the different spectra measured for the concentration (x = 0.135) 

immediately reveals a departure from the conventional response; this is particularly 

evident at the temperatures T = 20, 30 and 60 K.  Within the time-window of IN11 

the data can be seen to fall quickly at short times before reaching a plateau for 

Fourier times greater than ~ 0.01 ns.  This would suggest the presence of an 

extremely slow relaxing component which is independent of the spin glass-like 

dynamics associated with the iron clusters.  Hence the spectra were fitted to a 

modified Weron-Tsallis function, 

 ( )    (   ) [    (
 

 
)
 

]

  
 
 
 

(6:3) 

where (0 ≤ a ≤ 1) effectively lifts the function in order to accommodate this plateau.  

The fits shown in Figure 6:2 reveal the data to be well described by this 

modification; the values calculated for (a) have been included in the results shown 

in Figure 6:4b (triangles).  At T = 180 K this background term is negligible, but 

steadily increases down to T = 20 K where it accounts for approximately 20 % of the 

intermediate scattering function.  Below this (a) increases rapidly, eventually 

accounting for over 60 % of the spectra at T = 7.5 K.  In this way it was discovered 

the fractal parameter of both sample concentrations was be equal to one at all 

temperatures; by fixing this parameter the fitting procedure was then greatly 

simplified and analogous temperature dependence observed in both concentrations. 

With regards the relaxation rate, the data was modelled using the Arrhenius 

equation, however the T = 20 K data for (x = 0.175) concentration was not included 

in the fit.  The IN11 spectrometer failed during this measurement and ultimately 

only half the full Fourier time range was measured.  For this reason it was not 

possible to accurately determine the value of (τ).  Within error the activation energy 

of both is identical, Eα/kB = 33.5 K, which by equating the activation energy to the 

cluster volume would suggest both samples have very similar cluster volume. 

The characteristic relaxation rates (τ0), however, were found to differ taking a value 

of ~ 1 × 10
-3

 ns for the concentration (x = 0.135), and 7.5 × 10
-3

 ns for (x = 0.175). 
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Finally, on a qualitative level, the interaction parameter follows a similar trend to 

that seen in the Lave phase spin glasses, taking a negligible value at high 

temperatures, before increasing as the transition temperature is approached.  

However, due to the narrower time-window over which these dynamics fall, it was 

not possible to accurately fit spectra just below the transition temperature.  This 

reveals the interaction parameter to continue diverging below Tf. 
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Chapter 7 

SPIN FLUCTUATIONS IN 

WEAK ITINERANT ELECTRON 

MAGNETS 

Although neither gold nor vanadium generally possess a magnetic moment, 

the intermetallic compound Au4V is found to be ferromagnetic below 42 K.  In this 

chapter I report the results of a muon spin relaxation study of the itinerant electron 

moment fluctuations in Au4V.  The temperature dependence of the muon spin 

relaxation rate is found to be similar to that of the weak itinerant helimagnet, MnSi. 

7.1 The Gold-Vanadium System 

The first investigations (1959) of magnetism in the gold-vanadium system 

were performed on disordered alloys ranging from 1-15 at.% vanadium 229, in which 

the temperature dependent susceptibility closely obeyed a Curie-Weiss law 

incorporating a temperature independent term, χ0, such that 

     
 

(   )
 (7:1) 

where C is the Curie constant and θ is the critical temperature.  
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Figure 7:1 Magnetic susceptibility measurements taken from Creveling 
230

, corresponding to a 

sample which underwent 45 day of annealing at 500 °C followed by 15 days at 300 °C.  The solid line is 

a least square fit to Eq.(6:2);    = 95 × 10-6 emu gram, C = 79.7 × 10-3 emu gram, and θ = 53 K. 

Interestingly the critical temperature of these relatively dilute alloys was found to be 

negative, despite there being no evidence of a magnetic transition.  To explain this 

behaviour a model was proposed in which a fraction of isolated vanadium atoms i.e. 

those without other vanadium nearest neighbours, possess a local moment with the 

remaining fraction contributing to the Pauli-like temperature independent term. 

Creveling et al 230 extended the study of Au-V to higher concentrations ranging from 

17 - 24 at.% vanadium. When annealed at ~ 500 °C, these alloys were found to 

undergo a structural transition forming an intermetallic compound with the nominal 

concentration Au4V with a body-centred tetragonal structure (I4/m).  This phase 

effectively isolates all the vanadium atoms and correspondingly a ferromagnetic 

transition was found at ~ 45 K.  In this ordered phase the susceptibility above TC 

obeys the Curie-Weiss law given in equation (6:2).  However a large disparity in the 

magnetic measurements between different samples was noted.  It has been suggested 

that this is due in part to magneto-crystalline anisotropy which is not only the result 
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of the non-cubic structure but also crystalline imperfections caused by the arbitrary 

alignment of the tetragonal c-axis. 

As generally observed for weak itinerant electron ferromagnets, the ordered moment 

of Au4V is substantially lower (approximately half that) of the paramagnetic 

moment; however, annealing under compression promotes alignment of the c-axis, 

and increases the ordered moment from the usual value of 0.4 - 0.6 μB to 0.83 μB per 

vanadium atom 231.  Furthermore, in extremely high pulsed magnetic fields (29 T) 

the ordered moment saturates to 1 μB per vanadium atom, indicating a spin-½ 

moment 232. 

The importance of the vanadium-vanadium distance in establishing a localised 

moment, and consequently ferromagnetic order, is further emphasised by the 

observation that when Au4V is prepared as a disordered solid solution the vanadium 

moment, and also ferromagnetism, collapses.  Au4V thus appears to belong to the 

same class of weak itinerant ferromagnets as ZrZn2 and Sc3In.  However, in marked 

contrast to systems such as ZrZn2, for which the application of external pressure 

rapidly decreases TC to zero by 20 kbar, the Curie temperature of Au4V increases 

with pressure to 90 K at ~ 180 kbar, at which point the magnetic order collapses 

entirely 233. 

Positive muon spin relaxation has proved to be an invaluable tool in investigating 

itinerant magnetic systems such as MnSi, as demonstrated in the seminal paper by 

Hayano et al. 234.  Therefore zero and longitudinal-field measurements on Au4V 

using the MuSR spectrometer (ISIS facility) were performed to follow the evolution 

of spin fluctuations with temperature between 5 K and 90 K.   

7.1.1 Sample Preparation 

Polycrystalline Au4V samples were prepared by argon arc melting 

stoichiometric proportions of gold and vanadium; weight losses were less than 0.03 

%.  The resulting 2 g ingots were pressed into disks, approximately 5 mm in 

diameter and 1.5 mm thick before undergoing two days of homogenisation at 1000 

°C under reduced argon atmosphere, followed by annealing at 500 °C for eight days  
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Figure 7:2 Instrument calibration measurement performed in a homogeneous 20 G transverse field.  

The solid line is a fit to a damped cosine function. 

to promote crystallisation to the ordered phase.  Several ingots were arranged in a 

mosaic fashion on a silver sample plate, so as to fill the muon beam as best as 

possible.  Instrument calibration was performed using a small transverse 20 G field, 

shown above. 

7.1.2 Muon Spin Relaxation in Zero-Field 

The observed zero-field muon spin relaxation spectra for Au4V were best 

modelled by a dynamical Kubo-Toyabe function, G
(DKT)

, representing a nuclear 

dipole contribution, multiplied by a simple exponential term, representing the 

contribution from atomic spin fluctuations .   

    ( )  [    
   ( )     (   )]     (7:2)  

where    is the initial asymmetry,    is the relaxing asymmetry and    is a 

background.  In order to determine an accurate value for the background,   , which  
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Figure 7:3 The structure of ordered Au4V in which vanadium atoms are black and gold atoms silver.  

The isosurface indicates the positions within the unit cell where the nuclear depolarisation rate, σ = 

0.34µs-1.  Labels 1 & 2 indicate the likely muon position. 

is largely due to those muons which decay from within the silver sample plate, the 

initial asymmetries from spectra far above and below the reported Curie temperature 

were examined.  By taking the drop in asymmetry to equal 2/3 of the total relaxing 

component, simple subtraction yields a good estimate of    (9.836 %); this 

calculated value was subsequently fixed throughout the entirety of the analysis, 

which was again performed using the muon data analysis program WIMDA. 

In the paramagnetic regime, above 50 K, the muon relaxation rate, (σ), from the 

randomly orientated nuclear dipoles is constant at 0.34 µs
-1

.  Estimates of the 

nuclear dipole contributions within the unit cell suggest possible muon sites 

corresponding to this value are at the centres of the 3Au-1V tetrahedron or 

the 4Au-1V octahedron as shown in Figure 7:3.  Furthermore, the slow fluctuation 

rate observed as a damping of the “tail” of the Kubo-Toyabe function, and likely 

arising from the muon hopping between these interstitial sites, is constant at 

~ 0.25 µs
-1

 in the paramagnetic regime, but slows significantly below 55 K.  At 

temperatures below 30 K the fluctuation rate once again plateaus, taking a value 

~ 70 µs
-1

, Figure 7:5b.  
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Figure 7:4 The observed zero-field muon spin relaxation spectra of Au4V; the solid lines represent 

least square fits using equation (7:2). 
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Figure 7:5 Parameter temperature dependence of equation (7:2) from least square fit of the zero-field 

data;  a) the relaxing asymmetry, (a1)  b) the fluctuation rate, (υ)  c)  the muon spin relaxation rate, (λ). 
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A sharp drop in asymmetry is observed, falling from ~ 12 % above 46 K to ~ 4 % at 

40 K and below.  Furthermore the muon’s precession decouples from the nuclear 

dipoles (σ   0) below 46 K, and the contribution from atomic spin fluctuations 

dominates the muon spin depolarisation process.  These results are entirely 

consistent with the onset of long range magnetic order, and agree with the reported 

Curie temperature. 

Simultaneously a marked divergence of the muon spin relaxation rate (λ) from a 

negligibly small value at high temperatures to a maximum at 40 K indicates a 

critical slowing of spin-lattice relaxation occurs, again at the reported Curie 

temperature.  At lower temperatures (λ) is seen to stabilise at ~ 0.1 µs
-1

.  It should be 

said that the muon spin fluctuation rate in Au4V is comparable to measurements 

made by Hayano et al. on the weak itinerant system MnSi. 

7.1.3 Muon Spin Relaxation in Applied Longitudinal Fields 

Spectra were also collected in sufficiently high longitudinal magnetic fields 

to decouple the muon from the nuclear dipole fields, but sufficiently small to offer 

negligible perturbation of the atomic spins.  In Figure 7:6 the spectra from a range of 

applied longitudinal-fields above the transition temperature, clearly show a full 

decoupling at 100 G.  Above this field the µSR spectra are well described by a 

simple exponential function, 

  ( )     ( (  )
 ) (7:3) 

The associated relaxation rate (λ) increases rapidly as the transition temperature is 

approached until below 50 K a there is a critical divergence.  As found for the weak 

itinerant helimagnet, MnSi 234 this critical divergence is best described by the simple 

formula: 

    
 

    
 (7:4) 
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Figure 7:6 The longitudinal field muon spin relaxation spectra form Au4V observed at 46 K in several 

applied fields.  Eq (7:2) was used to fit both the 0 G and 10 G data.  The application of 100 G fully 

decouples the nuclear dipole fields such that it can be fitted with a single exponential term. 

 

 

Figure 7:7 The scaled inverse muon spin relaxation rate (τ∞ / λ) versus reduced temperature for Au4V 

(closed circles) and MnSi (open circles).  The solid line represents the fit of Eq (7:4) to the data.  The 

experimental points for MnSi are taken from Hayano 
234

.  Insert:  The temperature dependence of 

relaxing asymmetry in Au4V.  
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A least square fit of equation (7:4) to the data provides:    = (42.0 ± 0.2) K and 

   = (3.17 ± 0.14) ×10
-3 

µs
-1

.  For comparison (  ) for MnSi TC = 29.5 K was found 

to be (6.55 ± 0.13) ×10
-3 

µs
-1

.  Figure 7:7 shows the critical scaling of (λ), described 

by equation (7:4), for both Au4V and MnSi with the data for the latter taken from 

Hayano 234. 

The critical scaling of the muon spin relaxation rate observed for Au4V shows close 

similarity with that obtained for the archetypal itinerant electron ferromagnet, MnSi, 

and correspondingly follows the predications of Moriya’s self consistent 

renormalisation (SCR) theory for itinerant systems 235.  In this respect Au4V may 

well prove a simpler system with which the mechanisms responsible for moment 

localisation in itinerant electron magnets can be explored. 

Short zero-field measurements were also made on a sample of Au4V solid solution 

between 30 K and 5 K.  Here all the spectra obtained were identical within 

experimental error, indicating a stable magnetic environment.  However, in contrast 

to the ordered sample the Kubo-Toyabe function is static, but again seems inclined 

to take a value of σ   0.34 µs
-1

.  Thus using equation (7:2) with a fixed fluctuation 

rate of zero, the muon spin relaxation rate was found to take an almost constant 

value of λ   0.25 µs
-1

.  
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Chapter 8 

CONCLUSION 

In this thesis I have presented investigations, using both neutron and muon 

techniques, concerning the spin dynamics of spin glass, superparamagnet, and 

random anisotropy magnet systems.  To begin with the remarkable magnetic 

properties of pseudo-binary intermetallic compound Y(Mn1-xAlx)2, due largely to the 

instability of the manganese moment and topological frustration arising from anti-

ferromagnetic correlations on the tetrahedral sub-lattice, were studied by 

longitudinal muon spin relaxation (x = 0.05), diffuse neutron scattering 

(0.03 ≤ x ≤ 0.30), and neutron spin echo spectroscopy (x = 0.10). 

Recent neutron diffraction measurements on a sample of (x = 0.05) using the 

OSIRIS instrument at ISIS, had measured the rate at which the lattice parameter 

contracts under the influence of mechanically applied pressure.  It was discovered 

that 4.5 kbar was sufficient to reduce the value to that of the undoped parent 

compound, YMn2.  The muon is an extremely sensitive local probe of static and 

dynamic magnetic fields and has previously been used to study the collapse of long-

range anti-ferromagnetic order in this system.  With this in mind, it was therefore of 

interest to compare the evolution of the muon depolarisation function with 

temperature, and therefore the nature of the spin fluctuations, at ambient pressure 

and 4.5 kbar. 
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Using the ARGUS spectrometer I have shown at ambient pressure the muon spectra 

are well described by a depolarisation function of stretched exponential form.  This 

indicates a broadening distribution of relaxation rates as the temperature is 

decreased, accompanied by a critical slowing of the muon spin relaxation rate.  

Fitting a critical scaling model to this divergence gives an exponent of γ = 0.8, 

which is in close agreement to the value reported previously by Cywinski et al. using 

transverse geometry, γ = 0.9, for (x = 0.10).  The calculated transition temperature 

was also consistent with previous reports, Tf = 88 K. 

It was found that 4.5 kbar of mechanical pressure induced substantial changes in the 

depolarisation function, which was described by simple exponential form.  The most 

likely explanation is the muon sensing a single relaxation rate, which is in general 

wholly uncharacteristic of spin glasses.  The relaxation rate is also significantly 

faster indicating increasing field fluctuations about the muon’s position.  Lastly, the 

aforementioned transition at 88 K appears to be totally suppressed. 

Based upon these results it can be said that the manganese moment localisation 

associated with the inverse chemical pressure arising from aluminium substitution is 

reversible via the application of 4.5 kbar pressure but that despite exhibiting a 

comparable lattice parameter to YMn2 the resulting temperature dependence of the 

muon spin relaxation rate is altered.  This is emphasised all the more by the 

temperature dependence of the initial asymmetry, which falls rapidly below 100 K.  

This rapid depolarisation suggests the presence of an additional relaxation process 

outside the time window of the ARGUS spectrometer. 

In §4.4 I have presented for the first time a detailed study of short-range spin 

correlations in Y(Mn1-xAlx)2 using the D7 diffuse neutron scattering spectrometer at 

the ILL.  Several concentrations were investigated across a wide temperature range, 

revealing both the initial collapse (x ≥ 0.03), and progressive decomposition of long-

range anti-ferromagnetic order between (0.05 ≤ x < 0.30).  The short-range nuclear 

correlations were also examined as to include their effects on the diffuse magnetic 

scattering cross section. 
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For samples (x ≤ 0.10) the results indicate the manganese atoms have a propensity to 

occupy the lower coordination shells, indicating a clustering behaviour which is 

significantly stronger at (x = 0.10).  For (x = 0.30) however this is reversed, with the 

occupancy of the first near neighbour shell strongly biased towards aluminium, a 

phenomenon commonly entitle anti-clustering.  The exact cause of such clustering is 

unknown, but generally forms due to favourable orbital overlaps.  This reversal is 

therefore likely to be associated with the increased unit cell volume. 

Inspection of the magnetic scattering cross section revealed it to become 

progressively more diffuse with increased aluminium substitution, disassembling the 

long-range anti-ferromagnetic order of the parent compound.  This analysis indicates 

strong anti-ferromagnetic nearest neighbour correlation.  It has also been shown that 

this structure is extremely sensitive to the substitution of non-magnetic aluminium 

atoms in place of manganese. 

The Neutron Spin Echo (NSE) technique has played a vital role during the course 

this work.  What’s more these investigations form part of a continuing series of 

experiments analysing the complex dynamics of disordered magnetic systems: spin 

glass, RAM, and superparamagnet.  Ultimately it is hoped that the Weron-Tsallis 

function will provide universal physical interpretation of non-exponential relaxation 

for a wide variety of condensed matter systems.  It is vital therefore that the function 

be tested extensively, not only on a per system basis, but systematically across 

different relaxation mechanisms and phenomena so that trends (or lack thereof) 

between individual classes of material can be explored. 

 



184 

 

Figure 8:1 Tsallis’ non-extensivity parameter calculated from Weron analysis of NSE spectra. 

The Weron function has been found to provide a good description of all the NSE 

spectra measured.  This is because the function itself reduced to the stretched 

exponential in the limit k → 0, and from stretched exponential to simple Debye 

relaxation in the limit α → 1, allowing for a smooth progression from Debye 

relaxation at elevated temperatures, where the thermal energy is sufficient to 

overcome all cooperative effects, to the complex response seen at low temperatures 

where constrains begin to be imposed.  It is the Weron interaction parameter (k) 

which provides a direct measure of the hierarchical constraints imposed on the 

overall relaxation process. 

Brouers & Sotolongo-Costa have related this parameter to Tsallis’ non-extensivity 

parameter, (q), derived from a generalisation of Boltzmann-Gibbs statistics.  It has 

recently been shown by Pickup & Cywinski that spin glasses are examples of sub-

extensive systems, (q > 1), where the entropy of the system as a whole is lower than 

the sum of its parts.  Furthermore, they discovered the temperature dependence of 

(q) in several dilute spin glass systems to scale very closely.  In this thesis I have 
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extended the investigation to include two concentrated spin glass system, namely 

Y(MnAl)2 and Y(AlFe)2.  The results display temperature dependence of the fractal 

parameter, (α), consistent with that seen previously for AuFe and CuMn, where a 

value close to unity was measured at high temperatures, before falling to 

approximately 0.3 at Tf.  However for these systems a smaller initial value at high 

temperature, indicating a distribution of relaxation rates is present at temperatures 

significantly higher than the transition.  This proved problematic in one respect as 

that the measured relaxation occurred over time scales significantly wider than the 

window accessible to NSE instruments.  Therefore to aid the fitting process an 

artificial point was included to pin the spectra at very short times outside the fourier 

time range of the instrument.  The temperature dependence of the non-extensivity 

parameter, shown in Figure 8:1, offers the clearest indication of a sudden onset of 

hierarchical constrain close to Tf, which maps directly onto the same q scaling 

relationship reported for the dilute systems.  Analysis of Tsallis relaxation function 

has shown the transition to be marked by the critical value q = 5/3 which is 

associated with the strong disorder limit, where the macroscopic behaviour begins to 

be governed by highly improbable collective events. 

Prior to this work the Random Anisotropy Magnet (RAM) α-Er7Fe3 had revealed 

results quite different to those of spin glass systems 81.  In short, (q) was found to be 

temperature independent, suggesting little or no cooperative freezing in RAMs at 

low temperature.  The analysis of RAM-like system (LaEr)Al2 is unable to 

corroborate this result.  As discussed, such systems are dominated by a large 

anisotropy to exchange strength ratio, resulting in a random distribution of moments 

frozen at low temperature.  The analysis presented in §5.2.2 reveals a temperature 

dependent (α) parameter which initially takes a value close to unity falling gradually 

with decreasing temperature, followed by a discontinuous drop to a constant value 

of 0.2 below ~3Tf.  The temperature dependence of (q), shown in Figure 8:2, also 

exhibits a sudden drop at this temperature.  Fitting the Vogel-Fulcher law to the 

relaxation rate reveals T0 / TK = 0.03, indicating that the system is extremely fragile 

and the dynamics therefore occur over a very narrow temperature range.  
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Figure 8:2 Tsallis’ non-extensivity parameter for RAM systems investigated using NSE spectroscopy 

The q-error for reduced temperatures less than 2 do not fit on this scale, hence are not shown. 

 

 

Figure 8:3 Tsallis’ non-extensivity parameter for superparamagnetic systems; solid lines are guides to 

the eye.  
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The final NSE investigations presented in this work centred on superparamagnet 

CrFe.  Superparamagnetic systems do not display cooperative relaxation behaviour 

since each paramagnetic cluster is considered to be independent of the others; hence 

the entropy of the system should equal the sum of its parts and therefore be 

compliant with Boltzmann-Gibbs statistics.  The non-extensivity parameter should 

therefore be equal to unity, which was the case in a previous study on archetypal 

superparamagnetic system CuCo.  However I have shown Cr1-xFex to display quite 

different behaviour, Figure 8:3.  In the first instance a measurements at x = 0.135 

required a modification to the Weron function due to what appears to be an 

extremely slow additional “background” relaxation process.   

This term was found to be temperature dependent, showing a gradual linear 

increasing from zero to 0.2 between 180 K and 20 K, before increasing far more 

rapidly until at Tf = 11 K it accounts for approximately half the total measured 

autocorrelation function.  However the Weron function still provides a good 

description of the non-exponential part of the spectra and what is more the 

parameters are, in a qualitatively sense, consistent with those calculated for a sample 

at x = 0.175 which did not require this additional background term. 

Both concentrations displayed a temperature independent fractal parameter (α) 

which takes the same value of unity.  Assuming the non-exponential term is 

associated with the superparamagnetic iron clusters this would indicate that the 

fractal nature of the relaxation is unchanged and the relaxation time, (τ), is directly 

proportional to the cluster volume, it would therefore seem more likely that the 

mechanism responsible for the additional background term is due to the chromium 

which has previously been shown to display an inhomogeneous and progressive 

conversion to long range anti-ferromagnetic SDW. 

Over the temperature range investigated the interaction parameter (k) does not fall to 

unity, as would be expected for independently relaxing entities, but instead takes a 

largely temperature independent value of 1.2 for x = 0.135 and 1.4 for x = 0.175, 

above 2Tf, suggesting that there are constraints imposed on this non-exponential 

relaxation even at elevated temperature.  To confirm this behaviour further 
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measurements are required in this range.  Moreover, below 2Tf the non-extensivity 

parameter increases rapidly, showing clearly for the first time that the dynamics of 

this system are in fact constrained in much the same was as a spin glass.  The 

magnetic nature of the CrFe system is therefore more complicated than first thought, 

not only due to the iron clusters which may not be truly superparamagnetic but also 

the distinct possibility of an underlying relaxation mechanism associated with the 

chromium spin density wave. 

Lastly, I have presented a muon spin relaxation study on the weak itinerant 

ferromagnetic Au4V, applying the predictions of Moriya’s Self Consistent 

Renormalisation Theory to the critical scaling to the spin relaxation rate, making 

comparison to the archetypal weak itinerant system MnSi which has lead to the 

discovery that the critical scaling plotted against reduced temperature are near-

identical for both systems. 

Suggestions:  Like YMn2, many weak itinerant ferromagnetic (ZrZn2, Ni-Pt, Ni-Al) 

and anti-ferromagnetic alloys (Cr-Fe) display magneto-volume effects.  Accordingly, 

this presents a particularly interesting area of investigation given the results present 

in this work.  Recently high pressure sample environments have been made 

available on the D7 instrument.  During the investigation presented in §4.4 two 

attempts were made, using different pressure cell equipment, to study the pressure 

dependence of the diffuse neutron scattering cross sections, however for reasons 

unknown the results were unusable.  Without doubt this new setup will be optimised 

in the near future, at which time such experiments could reveal crucial information 

to complement these studies. 

The IN11 instrument is due to be decommissioned shortly, and is being replaced by 

a wide-angle spin echo spectrometer named WASP.  Currently scientists must trade 

count rate for resolution, or vice versa, when using IN11, either choosing a wide 

angle or conventional setup.  The Helmholtz design of the WASP spectrometer is 

expected to provide 50 times the data rate, whist achieving the highest resolution 

currently available on IN11.  Given the high expense of neutron spin echo technique 
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and its high demand amongst scientists, this will provide a remarkable advancement 

in the field. 

It was found that the concentrated spin glass systems exhibit dynamics across a very 

wide time range leading to difficulty, not in applying the Weron function but in 

maintaining consistent parameters, particularly in (τ) and (k), below and far above 

the transition temperature where the spectra fall outside the window of NSE 

spectroscopy.  This was aided by including an artificial data point in many of the 

spectra measured during this work; however it would be far more appropriate to use 

complimentary techniques.  AC susceptibility would provide access to longer times, 

whereas the backscattering instrument IRIS at ISIS would, through Fourier 

transform of its scattering function, S(Q, ω), provide access to shorter relaxation 

times. 
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