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Abstract

This thesis focuses on the use of complementary neutron scattering techniques

to study both statics and dynamics of multiferroic MnSb2O6 and crystal and

magnetic structures of 2D van der Waals magnetic materials.

The first part of this thesis is dedicated to the study of the helicoidal magnet

MnSb2O6 which crystallizes in the trigonal space group P321. Its structural

chirality is coupled to its magnetic ground state under TN ≈ 12 K through

symmetric Heisenberg exchanges. One chapter is dedicated to neutron diffraction

studies on MnSb2O6 for a detailed study of both crystal and magnetic structures.

While the magnetic ground state could not be unambiguously determined,

between a pure cycloidal or a mixture of cycloidal and helical order, the

spin rotation plane can be tilted by the application of low external magnetic

field. Subsequently, a mechanism based on the coupled structural and magnetic

chiralities is proposed to explain the previously reported ferroelectric switching.

The following chapter presents the study of the spin dynamics in MnSb2O6. By

performing sum rules analysis on inelastic neutron scattering data, the seven

exchange constants based on a Heisenberg model are extracted. Testing the

stability of the spin excitations validates the cycloidal ground state.

The last part of the thesis focuses on the structures of 2D van der Waals magnets.

In these materials, the magnetic properties are coupled to the stacking of the two-

dimensional layers, in particular in Fe3–xGeTe2 and Fe1+xTe, where the magnetism

can be tuned by the iron concentration. Single crystal neutron diffraction study

on Fe3–xGeTe2 is reported as well as spherical neutron polarimetry on Fe1+xTe.

Finally, X-ray powder diffraction results on the crystal structure of honeycomb

layered VI3 are presented.
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the scientific collarations, and offering me a short insight into THz spectroscopy.

Thanks Yifei and Guratinder for sharing these nice moments during my stay in
Edinburgh. I hope we can all meet again in the near future around a dirty chai!
Special thanks to didi Guratinder for her care, and for taking time to proofread
this manuscript.

v



I’m glad to belong to this ILL PhD community, and would like to thank all the
PhD students that I have met, from the old to the new generation, with whom
I had opportunities to share unforgettable memories, from Office 110 to Buenos
Aires ... Special mention to the cuvée 2019, Oji, Maddy, Carmen and Mo with
whom I have shared almost all of my PhD time, and “younger” Fernanda and
Esther, for being great support until the end of my writing time.

Merci aux BGs du BCG, pour ces super moments passés à taper des volants, et en
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et mental, et je vous en suis fort reconnaissant.
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Chapter I

Introduction

I.1 Overview

Magnetism was already observed by the ancient Greek and Chinese civilizations

thousands of years ago. Lodestones were discovered to attract iron, and a compass

was the first magnetic technological device, using Earth’s magnetic field to guide

navigators for centuries [4]. Despite these uses, there was a lack of basic knowledge

of this invisible force which was often attributed to mystical reasons [5]. It is

only during these last two centuries that our understanding of magnetism has

deepened with classical electromagnetism, followed by the theory of relativity.

Quantum mechanics has successfully established the foundations of magnetism

in solids aiding the exponential discovery of novel materials permitted by the

immense development of experimental techniques. In particular, state-of-the-art

neutron scattering has been one of the main probe for investigating magnetism

in materials. Antiferromagnetic order was first observed in MnO by C. G. Shull

(Nobel Prize in Physics in 1994, shared with B. N. Brockhouse) and J. S. Smart

in 1949 using neutron diffraction [6], after its prediction in 1936 by Louis Néel

(Nobel Prize in Physics in 1970) [7].

In parallel, fundamental research has led to numerous technological applications

ranging from simple fridge magnets to magnetic levitation trains. One notable

example is the discovery of the Giant Magnetoresistance effect in 1988, indepen-

dently by Albert Fert [8] and Peter Grünberg [9] who shared the Nobel Prize

in Physics in 2007. Depending on the relative magnetization between two thin
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ferromagnetic layers sandwiching a nonmagnetic layer, the global resistance of the

multilayer changes significantly. This effect is nowadays used for high-sensitive

reading heads in hard disk drives, and has paved the way for spintronics, the

most promising field to enhance the semiconductors industry, by exploiting the

spin degree of freedom in electronics.

This motivation for engineering functional devices and the scientific interest in

understanding complex quantum phenomenon would be very limited without

the exploration of novel magnetic materials. Improving the energy efficiency

in electronics may be a way to limit climate impact, along with political

and individual decisions. High-temperature superconductors [10] are therefore

promising materials, as they have no resistivity and thus, no energy loss through

heating. In this thesis, we will focus on two types of materials: multiferroic and

2D magnetic materials. Multiferroism takes advantage of the connection between

electric and magnetic orders while 2D magnetism exhibits the strong quantum

fluctuations while reducing the system dimensionality. As shown in Fig. I.1, these

fields are hot topics of research, allowed by the advancements in computational

power and synthesis methods, leading to more theoretical predictions, and the

realization of complex compounds, along with the advances in complementary

techniques to characterize the materials, and the growing number of researchers

all around the world.

Figure I.1 Evolution of the number of publications per year referenced on Web
of Science using the keywords “multiferroic” (red) and “2D magnetic
materials” (blue) [11].

This thesis focuses on the characterization of multiferroic MnSb2O6 using both

2 Chapter I. Introduction



neutron diffraction and spectroscopy techniques, and of several 2D magnetic

materials using neutron and X-ray diffraction.

Chapter I is an introduction to multiferroics and 2D magnetism materials.

Chapter II presents the basics of the theory of neutron scattering and describes

the neutron techniques utilized to accomplish the work presented in this thesis.

Chapter III shows the results of diffraction studies on multiferroic MnSb2O6. The

crystal and magnetic structures are investigated in detail. While the magnetic

ground state is found ambiguous, it can be manipulated by the application of

an external electric field. A mechanism based on the coupled structural and

magnetic chiralities is proposed to explain the previously reported ferroelectric

switching. This work has been published in Ref. [1].

Chapter IV concentrates on the inelastic neutron scattering work on MnSb2O6.

An analysis based on the sum rules allows to determine the seven exchange

constants considering a Heisenberg model. The stability of the spin-waves is

tested and was found in agreement with a cycloidal ground state. This work has

been published in Ref. [2].

Chapter V focuses on the diffraction studies of 2D magnetic materials. A single-

crystal neutron diffraction study on Fe3–xGeTe2 is reported as well as spherical

neutron polarimetry on Fe1+xTe. In these compounds, the magnetic properties are

highly correlated with the iron concentration. Finally, X-ray powder diffraction

results on the crystal structure of honeycomb layered VI3 are presented. The

single-crystal neutron diffraction work on Fe3–xGeTe2 has been combined with

neutron spectroscopy and scanning tunnel microscopy studies, and published in

Ref. [3].

Chapter VI summarizes the work of this thesis and gives future directions of

research.

I.2 Multiferroic materials

While electric and magnetic fields are inextricably tied up by Maxwell equations

in classical electromagnetism, the relation between electric and magnetic orders in

solids is not obvious. The manipulation of magnetic moments by an electric field,

and electric polarization by a magnetic field, known as the magnetoelectric effect,

I.2. Multiferroic materials 3



was postulated by Pierre Curie in the end of the 19th century [12]. In 1959, linear

magnetoelectric coupling was predicted in the antiferromagnet Cr2O3 [13] and

experimentally observed a few years later [14, 15]. More strikingly, the complete

reversal of electric polarization by the rotation of an external magnetic field

was measured in boracite Ni3B7O13I in 1966 [16]. This material simultaneously

displays ferroelectric and (weak) ferromagnetic orders below 64K. According

to an earlier definition [17], a material is multiferroic when it has two or more

primary ferroic orders: ferroelectricity, ferromagnetism or ferroelasticity [18]. In

these materials, it is possible to control the orientation states with their conjugate

fields (see Fig. I.2). They are particularly interesting if a strong coupling exists

between the ferroic orders. Today, the multiferroic term is commonly used to

refer to magnetoelectric materials combining both electric and magnetic orders

due to their practical promises, for example for energy-efficient electrically-driven

magnetic memories [19, 20]. The definition has been extended to all kind of

magnetic order such as ferrimagnetism or antiferromagnetism [21].

Figure I.2 Primary ferroic ordering: ferroelectricity, ferromagnetism and
ferroelasticity are respectively associated to an electric polarization
(P), magnetization (M) and strain (ε), which can be switched by
their conjugate electric (E), magnetic (H) and stress (σ) fields.
Toroidal moments T which can be switched by E×H are studied as
ferrotoroidicity. O represents other possibilities. Figure taken from
Ref. [21].

After the first experiments, the research in multiferroic materials has been poor

since the 70s. The underlying principle itself was quite a contradiction, since the

ferroelectric materials are favored in transition metals with empty d orbitals, while

magnetism is held by unpaired electrons in partially filled d orbitals [22]. From a
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symmetry point of view, ferromagnetism breaks the time-reversal symmetry but

is invariant by spatial inversion, while ferroelectricity breaks inversion symmetry

and is invariant by time-reversal symmetry [23]. These contradictions were raised

by Hill (now Spaldin) in 2000 [22] in the paper “Why are there so few magnetic

ferroelectrics?”. This triggered the motivation for a proper understanding of

these materials and some experimental breakthroughs in the following years

brought a renaissance in the field [23–26]. In 2003, the electric polarization was

found enhanced in thin films of BiFeO3, compared to the bulk material [27].

Then, ferroelectricity induced by a magnetic order was found in orthorhombic

perovskites TbMnO3 in 2003 [28] and TbMn2O5 in 2004 [29]. These past twenty

years, numerous multiferroic compounds were observed, and many reviews were

published [30–35]. As shown in Fig. I.1, multiferroism is still a hot topic and

different branches of materials are now explored for deeper understanding and

observations [36].

Depending on the microscopic origin of ferroelectricity, multiferroic materials can

be divided into two types [37]:

• Type-I: the phase transitions of the ferroic orders are distinct. Generally,

different atoms are involved for ferroelectricity and magnetism, so that the

magnetoelectric coupling is weak. However, the transition temperatures for

these materials can be well above room temperature, an essential criteria for

functional devices. Also, the electric polarization is often important. One

example is BiFeO3 which is by far the most studied multiferroic [27, 38],

which becomes ferroelectric below a Curie temperature TC ∼ 1103K and

orders antiferromagnetically below a Néel temperature TN ∼ 643K [27].

In this material, a pair of Bi3+ valence electrons shifts towards the FeO6

octohedron, giving a spontaneous polarization P ∼ 100µC/cm2 [39]. This

is known as the lone-pair mechanism.

• Type-II: the ferroelectric order is induced by a magnetic phase transition.

In this case, the magnetoelectric coupling is very strong, but the net

electric polarization is generally weak (up to P ∼ 0.3µC/cm2 in CaMn7O12

[40]). Furthermore, the transition temperatures are often far below room

temperature. However, more and more spin-driven multiferroics have been

discovered since the pioneers TbMnO3 [28] and TbMn2O5 [29], and finding

room temperature materials with a large electric polarization would be a

great achievement.

In these type-II multiferroics, the electric polarization was often observed

I.2. Multiferroic materials 5



in materials presenting cycloidal magnetic structures, a noncentrosymmetric

ordering which is often found in frustrated magnets stabilized by the competition

between the magnetic interactions [32–34, 41].

Using Ginzburg-Landau phenomenological approach, Mostovoy has derived an

expression for the electric polarization P as a function of the spatial variation of

the magnetization M for a cubic crystal [42]

P = γχe[(M ·∇)M −M (∇ ·M )], (I.1)

where γ is the coupling coefficient and χe the dielectric susceptibility. A generic

expression of the magnetization is given by

M (r) = M1e1 cos (k · r) +M2e2 sin (k · r) +M3e3, (I.2)

where (e1,e2,e3) form an orthogonal basis where (e1,e2) is the spin rotation plane,

Mi is the coefficient associated to each direction i, k is the propagation vector

of the magnetic order.1 If only M1 or M2 is non-zero, the order is a spin-density

wave, as shown in Fig. I.3(a)-(b). If both M1 and M2 are non-zero, the order

is helical for the propagation vector perpendicular to the spin rotation plane,

k ∥ e3, shown in Fig. I.3(c), or cycloidal for the propagation vector within the

the spin rotation plane, k ⊥ e3, shown in Fig. I.3(d). For an intermediate k,

the order is helicoidal,2 and a non-zero M3 results in conical magnetic structures

[Fig. I.3(e)-(f)]. The average spontaneous polarization is obtained from Eqs.I.1

and I.2:

⟨P ⟩ = 1

V

∫
d3rP = γχeM1M2(e3 × k). (I.3)

From this, we can see that the polarization only exists for non-zero M1 and

M2. Also the k ⊥ e3 term excludes helical order. As a result, the net electric

polarization only occurs for cycloidal order, or more precisely for magnetic

structures having a cycloidal component, which includes helicoidal order (when

1A description of magnetic structures is given in Appendix B.
2The nomenclature of magnetic structures can be confusing in the literature. Spiral magnets

usually include all kind of orders described by Eq. (I.2) [41], but sometimes only refer to helical
order [43]. However, helical and cycloidal orders are unambiguously defined, and in this thesis,
the helicoidal order refers to the mixture of both orders [33].
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it is not purely a helix), and transverse conical order. In this case, the electric

polarization lies in the elliptical rotation plane of the cycloidal component. These

situations are summarized in Fig. I.3.

(a)

(b)

(c)

(d)

(e)

(f)

Figure I.3 Different magnetic structures and the resulting electric polarization
for (a) a transverse spin-density wave, (b) a longitudinal spin-density
wave, (c) a helix (proper screw), (d) a cycloid, (e) a longitudinal
cone (helix with a ferromagnetic component), (f) a transverse cone
(cycloid with a ferromagnetic component). Figure adapted from
Ref. [44].

Two microscopic mechanisms at the origin of electric polarization in noncollinear

orders were proposed, arising from spin current [45], and from the antisymmetric

exchange interaction [46].

The motion of an electric dipole produces a magnetic field perpendicular to

both the direction of motion and the electric polarization. By duality in

electromagnetism, the motion of a magnetic dipole, equivalent to a spin current

induces an electric polarization [45]. Based on this principle, Katsura, Nagaosa &

Balatsky (KNB) proposed that the spin current js ∝ Si×Sj between noncollinear

I.2. Multiferroic materials 7



spins Si and Sj, connected by the vector eij, induces an electric polarization [47]

P ∝ eij × js ∝ eij × (Si × Sj). (I.4)

The spin current is obtained from the Heisenberg equation of motion of the spin

operator in presence of spin-orbit interaction [32]. This spin current model, or

KNB model, is illustrated in Fig. I.4(a) for a superexchange interaction between

magnetic ions M1 and M2 with noncollinear spins. The consideration of spin-

orbit interaction affects the hybridization between the d orbitals of the magnetic

ions and the p orbitals of the oxygen ion resulting in a spin current and therefore

an electric polarization [47]

P ∝
(
V

∆

)3

Ie12 × (S1 × S2), (I.5)

where I = ⟨px| z |dxy⟩ is the matrix element, ∆ and V are the energy difference

and hybridization energy between the orbitals.

(a) Spin current mechanism (b) Inverse Dzyaloshinskii-Moriya mechanism 

Figure I.4 (a) Spin-current mechanism. Figure taken from Ref. [47]. (b) Inverse
Dzyaloshinksii-Moriya mechanism, for two spin configurations
leading to different displacements of ions. Figure taken from
Ref. [35].

Another mechanism is based on the Dzyaloshinskii-Moriya (DM) interaction

[48, 49]. This antisymmetric exchange comes from the relativistic correction to

exchange interactions due to spin-orbit coupling, whose Hamiltonian is [50]

ĤDM = Dij · (Si × Sj), (I.6)

where Dij is the DM interaction vector between spins Si and Sj, antisymmetric

by exchanging indices i ↔ j. This vector is determined by the symmetry of the

8 Chapter I. Introduction



system [49, 50]. It vanishes when the crystal field fulfills inversion symmetry with

respect to the center between the two magnetic ions. In the absence of inversion

symmetry, Dij favors the canting of the neighboring spins. For a perovskite

ABO3 (where B is a magnetic ion), the B-O-B bond is straight in the ideal case

(cubic symmetry), but any structural distortion could shift the oxygen ion from

the central position, bending the B-O-B bond and giving rise to a DM interaction

vector, constrained by symmetry to be [34]

Dij ∝ eij × d0, (I.7)

where eij is the vector connecting the magnetic ions, and d0 the displacement of

the oxygen ion from the central position.

Inversely, noncollinear neighboring spins, for example stabilized by frustration,

can favor the displacement of the intermediate ion (typically O2–) in order to

minimize the DM energy, as proposed by Sergienko and Dagotto [46]. This can

be seen as a fixed spin configuration Si × Sj would result in a change in d0 ∝
eij × (Si×Sj) in Eq. (I.7), to minimize the energy in Eq. (I.6). Hence, this ionic

shift of the charge distribution induces an electric polarization

P ∝ eij × (Si × Sj). (I.8)

This is the inverse DM mechanism, illustrated in Fig. I.4, for two configurations

of the spins.

While the inverse DM mechanism is based on a ionic shift, the spin current

mechanism is based on the electronic orbitals, but both are based on spin-orbit

interaction which makes the induced electric polarization generally small. The

effects are similar and in principle, the mechanisms can simultaneously be at the

origin of ferroelectricity [34]. In agreement with the phenomenological approach

[Eq. (I.3)], a uniform electric polarization only arises in cycloidal magnets. This

has been experimentally probed in numerous materials such as the orthorhombic

manganites perovskites RMnO3 (where R = Tb, Dy, Gd) [28, 32, 33]. Also

Eq. (I.8) immediately shows the role of the spin vector chirality Si × Sj on the

electric polarization. Indeed, together with eij, the spin rotation plane gives the

direction of the polarization, while the sense of rotation of the spins gives the sign

of the polarization along this direction. From this, ferroelectric switching can be
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induced by manipulating the magnetic ground state, or by favoring magnetic

domains, using an external electric or magnetic field [51–54].

Spin-orbit coupling is also at the origin of the metal-ligand hybridization

mechanism. In contrast to the mechanisms described above which implies two

magnetic ions, only a single magnetic ion is implied in this case to create a local

dipole along the bond direction with the ligand. This mechanism was proposed

to be at the origin of the observed electric polarization in the triangular lattice

magnet CuFeO2 with a helical order [55]. Moreover, electric polarization can

be induced in collinear magnets by exchange striction where the ions shift to

minimize symmetric Heisenberg exchanges, for example in the Ising chain magnet

Ca3CoMnO6 [56].

Multiferroic materials feature complex mechanisms, which are highly dependent

on the magnetic structure and the local environment surrounding the magnetic

ions. Also the relation between the crystal structure and the underlying

magnetoelectric properties can be determining factors. Bulk investigations are

therefore essential to have a complete understanding of these systems.

In this thesis we will present results from neutron scattering experiments on

the multiferroic candidate MnSb2O6, which displays a (debated) cycloidal order

[57, 58]. Chapter III is dedicated to the diffraction studies of its crystal and

magnetic structures, while Chapter IV is focused on the determination of the

Heisenberg exchange constants by applying sum rules analysis on inelastic neutron

scattering data.

I.3 2D magnetic materials

The experimental realization of graphene in 2004 [59] has provoked the discovery

of innumerable 2D materials and brought a boon to this field of research [60–

63]. These materials are composed of atomic structures held by strong covalent

bonding within 2D layers, and weak van der Waals (vdW) forces along the

third direction perpendicular to these layers. This makes them easily cleavable,

and even exfoliated down to monolayers by simply using adhesive tape [60].

The variety of electronic, mechanical and optical properties in this class of

materials, and the possibility to combine or to create new properties by building

heterostructures makes a sandbox for investigating novel physics and engineering
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functional devices such as tunnelling transistors, flexible electronics or light-

emitting diodes [64–66].

From a fundamental point of view, reducing the dimensionality of a system

enhances quantum fluctuations, allowing the observation of new phases and

phenomena. Formalized in 1966, the Mermin-Wagner theorem [67] states that

long-range magnetic ordering is forbidden in two dimensions for an isotropic

Heisenberg system at finite temperature. Indeed, the continuous symmetry

leads to gapless spin excitations with a finite density of states. Together with

the diverging Bose-Einstein statistics at zero energy and finite temperature,

this results in massive thermal fluctuations suppressing any long-range magnetic

order. To stabilize a magnetic order, anisotropy is therefore needed to open up

a gap in the magnon spectrum and to counter the thermal fluctuations [68]. On

the other hand, in 1944, Onsager solved exactly the Ising model in a 2D square

lattice, predicting a possible magnetic phase transition at finite temperatures [69].

In the past decades, the study of magnetism in low dimensions has been limited to

epitaxy-grown ultrathin magnetic films [70], but their magnetic properties were

strongly altered by the interaction with the substrates and the quality of the

interfaces [71]. Nonmagnetic 2D materials have been also tuned by introducing

vacancies to create local magnetic moments, by applying an electric field to change

the band structure, or by building heterostructures with adjacent magnetic

materials to transfer their properties by magnetic proximity [72]. However, this

results in local or extrinsic magnetic responses [72], and the intrinsic 2D vdW

magnetic materials have been only investigated in their bulk form [73] which

are only approximate 2D lattices. For a long time, despite the measurements

of magnetic order in several bulk 2D materials and some theoretical predictions

of their stability down to a monolayer, there was no experimental realization

measuring magnetism in monolayers [74].

Things started to evolve in 2016 [68], when Raman measurements indirectly

probed magnetism down to a few layers and monolayers of NiPS3 [75] and

monolayers of CrSiTe3 [76] and FePS3 [77–79]. But the real beginning of the

exploration of “magnetism in flatland” [80] is the direct experimental observation

in 2017 by magneto-optical Kerr effect (MOKE) microscopy of ferromagnetism

order down to a monolayer of CrI3 [81] and a bilayer of Cr2Ge2Te6 [82]. While

having similar bulk properties like a Curie temperature TC = 61K below

which they become soft ferromagnets, the properties diverge while reducing the

dimensionality of both systems. The ferromagnetic (FM) order persists down to
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monolayer CrI3, which is well described by a 2D Ising model with a perpendicular

anisotropy, somehow validating Onsager’s solution [69]. In accordance with

increased fluctuations in low dimensions, the ordering temperature is decreased

to TC = 45K. In addition, the magnetic order seems layer-dependent, as no

magnetization was measured in a bilayer of CrI3 until a critical applied magnetic

field, suggesting an antiferromagnetic coupling between the two layers, while

the ferromagnetic order is retrieved in a trilayer of CrI3 [81]. Similarly, the

Curie temperature of Cr2Ge2Te6 decreases with the number of layers. In MOKE

measurements, a small magnetic field is usually applied to pin the magnetic

moments and prevent from the formation of ferromagnetic domains. Contrary to

bulk materials, in which this field does not play much on the observed properties

[71], the transition temperature could be tuned by varying the value B of the

applied magnetic field in low-layer Cr2Ge2Te6 samples. For B = 0.065T, the

bilayer sample undergoes a FM transition around T ∗
C = 28K, which could be

increased to T ∗
C = 44K for B = 0.3T. The anisotropy was estimated to be very

small, which makes Cr2Ge2Te6 behave nearly like a 2D Heisenberg magnet. In

accordance with the Mermin-Wagner theorem [67], magnetic order was not found

in a monolayer (which is an ideal 2D lattice) down to the lowest temperature of

the measurement, T = 4.7K [82].

These two experiments illustrate the strong dependence of the magnetic proper-

ties on the number of layers (reflecting the closeness to an ideal 2D lattice), and

also the importance of anisotropy to stabilize magnetic order against enhanced

thermal fluctuations in low dimensions, in agreement with the theoretical

predictions [67, 69]. This triggers the exponential research in intrinsic 2D

magnetic materials [68, 72, 83–85]. As for the nonmagnetic van der Waals

compounds, this new class of materials provides a wide range of physical

properties, from metallic ferromagnets such as Fe3GeTe2 [86] to antiferromagnetic

insulator such as FePS3 [79]. Multiferroic 2D materials were also predicted

theoretically, but still awaiting for an experimental realization [87, 88]. The

ultimate goal is to find a high ordering temperature 2D material with high

stability under ambient conditions which can be implemented in functional

devices in spintronics or magnonics [72]. In order to achieve this, several

directions have been proposed, such as enhancing both exchange interactions

and magnetocrystalline anisotropy. This can be done by looking for new bulk

materials, for example based on 4d or 5d transition metals which have been

relatively unexplored compared to materials based on 3d transition metals [84, 85].

Owing to stronger spin-orbit coupling whose interaction with the crystal fields
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results in strong single-ion magnetic anisotropy, magnetic ordering at higher

temperature could be stabilized in these compounds [85]. The high sensitivity of

2D materials to external constraints such as strain, light, electric and magnetic

fields along with the ability to introduce defects or to intercalate atoms or

molecules in the vdW gaps gives another direction of research. Furthermore,

designing vdW heterostructures [68, 84] expands ever greater the possibilities of

investigating new physics and creating new devices. In addition, this constitutes

a playground to broaden the understanding in more exotic phases such as

quantum spin liquids, topological insulators, unconventionnal superconductors

or skyrmions [83].

Alongside the development of computing power allowing faster and more

sophisticated ab-initio calculations, the experimental achievements were allowed

by the improvement of sample preparation, from the synthesis aspect with

higher quality chemical vapor transport and molecular beam epitaxy, to accurate

micromechanical cleavage techniques [84]. A wide range of optical and electrical

methods were also developed or adapted to study magnetism in 2D materials

[84, 85]. Yet, it is essential to understand the origin of magnetism in the bulk

materials in order to compare the properties down to a few layers. Being sensitive

to the magnetic moments and magnetic excitations, neutron scattering remains a

powerful probe for 2D magnetism. Diffraction (neutron or X-ray) is also necessary

in order to accurately establish the crystal structures which are highly correlated

to the magnetic properties.

Chapter V will present the diffraction studies of several 2D magnetic materials:

Fe3–xGeTe2, Fe1+xTe and VI3.
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Chapter II

Neutron scattering techniques

Since the discovery of the neutron by James Chadwick in 1932 [89] and the early

experiments in 1936 probing Bragg diffraction by crystals, neutron scattering

has been facilitated by the development of neutron reactors providing more and

more flux [90, 91]. Decades of research and improvement of the facilities and

instruments have made neutron scattering techniques among the most useful

probes in condensed matter, accredited by awarding the Nobel Prize in Physics to

Clifford Shull and Bertram Brockhouse in 1994 for their respective contributions

to elastic [6] and inelastic [92] neutron scattering.

Most of the experimental results from this thesis were obtained by using neutron

scattering techniques. In this chapter, the basic properties of neutrons will be

introduced, followed by an overview of neutron scattering theory, covering both

nuclear and magnetic scattering, with a focus on polarized neutrons scattering.

Finally, we will focus on the techniques and instruments used during this thesis.

Definitions and conventions in the equations are introduced here and adopted in

the rest of the manuscript. More exhaustive details on neutron scattering can be

found in numerous textbooks [93–99].
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II.1 Introduction to neutron scattering

II.1.1 Properties and advantages of neutrons

A neutron is an electrically neutral particle composed of one up quark and two

down quarks. From the quantum mechanics perspective, a neutron follows wave-

particle duality. The momentum p = ℏk of a neutron, where ℏ = h/2π is the

reduced Planck constant, and k is the neutron wavevector, is therefore related to

its de Broglie wavelength λ = h/|p|. As a consequence, the kinetic energy E of a

non-relativistic neutron with mass mn is given by

E =
h2

2mnλ2
=

ℏ2k2

2mn

= kBT (II.1)

where kB is Boltzmann constant, and T is the temperature corresponding to the

neutron energy. This energy is usually given in units of meV but can be easily

converted into a temperature T in K, its speed v in km/s, its wavevector norm k

in Å−1 and its wavelength λ in Å with the relation:

E = 0.08617 T = 5.227 v2 = 2.072 k2 = 81.81/λ2. (II.2)

Thanks to their fundamental properties, summarized in Table II.1, neutrons are

suitable for various experimental investigations for condensed matter [98]:

• Neutrons produced for scattering experiments have typical de Broglie

wavelength of several Å (see Table II.2). This corresponds to the interatomic

distances in condensed matter, allowing interference effects and thus the

extraction of structural information from the material.

• For these wavelengths, the energies of neutrons are much lower than X-rays,

and are comparable to the energy of elementary excitations in condensed

matter. Hence, dynamical studies allow to study phonons and magnons.

• As neutrons are chargeless particles, there is no Coulomb interaction with

the electron cloud of the atoms. This enables them to penetrate deeply

and non-destructively into matter and investigate the bulk properties of

materials. It is also easier to operate neutron scattering under extreme

conditions (high pressure, very low and very high temperatures, high

magnetic and electric fields ...) because the shielding involves low loss of
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neutrons.

• X-rays interact with the electron cloud, so the scattering cross section is

almost varying linearly as a function of the atomic number. On the contrary,

neutron scattering is based on the strong nuclear interaction with the atomic

nucleus. Therefore, the neutron cross sections vary irregularly due to their

strong dependence on the details of the individual nuclear interaction. This

allows to distinguish chemical elements with close atomic numbers and also

isotopes.

• Finally, neutrons are an outstanding probe of magnetism in condensed mat-

ter because they possess a magnetic moment which allows the interaction

with the unpaired electrons of magnetic atoms. Neutron beams can further

be polarized in order to provide more detailed study and solve complex

magnetic structures.

These features make neutron scattering techniques widely used for the study of

condensed matter, but also in other fields like nuclear physics, engineering, soft

matter and biology.

Table II.1 Basic properties of neutrons. Table adapted from Ref. [99].

Properties Values
Mass mn = 1.675× 10−27 kg
Charge 0C
Spin 1/2

Magnetic moment 1.913 µN

Mean lifetime1 τn = 878.4(5) s

II.1.2 Neutron production

Neutrons used for scattering experiments in large-scale facilities are produced

in two kinds of sources: nuclear reactors and spallation sources [99]. Nuclear

reactors are the historical sources, based on the fission of heavy nuclei like 235
92U

isotopes in a chain reaction:

235
92U+ 1

0n −−→ 236
92U −−→ X+Y +N 1

0n. (II.3)

1The neutron lifetime is classically measured with the beam and the bottle methods,
leading in average to τn = 879.4(6) s and τn = 888(2) s [100]. It is still unclear whether
this 8.6 s difference comes from systematic errors in the experiments, or from unknown physical
phenomena. The value in the table is given by the Particle Data Group in 2022 [101].
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The 235
92U nucleus absorbs one neutron, and generally splits into 2 lighter elements

X and Y, with the release of N neutrons, 2.5 in average. The reaction is self-

sustained and a fraction of the produced neutrons with a typical kinetic energy of

2MeV are released from the reactor core. These neutrons must be slowed down

by a moderator in order to be suitable for scattering experiments. A moderator is

a medium in which the neutrons are having multiple collisions with the particles,

transferring their energy until reaching thermal equilibrium. After that, the

neutron energy follows a Maxwell-Boltzmann distribution, whose peak energy

density is determined by the moderator temperature. The neutrons coming from

these moderators are classified by cold, thermal and hot depending on their

energy. This is shown in Table II.2 with typical moderators liquid hydrogen,

water and heated graphite used for each range of neutron energy.

Table II.2 Types of neutron sources with their energy and corresponding
wavelength ranges (approximative), achieved by a typical moderator
at a specific temperature.

Source Energy Wavelength Typical moderator and temperature

Cold [0.1, 10] meV [3, 30] Å H2, D2, T ≈ 25K
Thermal [10, 100] meV [1, 3] Å H2O, D2O, T ≈ 300K

Hot [100, 500] meV [0.4, 1] Å graphite, T ≈ 2400K

The Institut Laue Langevin (ILL, Grenoble, France) is the most powerful source

with its 58 MW high flux reactor (Fig. II.1) producing a continuous flux of

neutrons of 1.5 × 1015 cm−2s−1 delivered to over 40 instruments. The National

Institute of Standards and Technology (NIST) through its Center for Neutron

Research (NCNR, Gaithersburg, United States) operates a 20 MW reactor for a

suite of 30 instruments.

In spallation sources, heavy nuclei (such as tungsten, mercury or lead) are

bombarded by high-energy protons (> 1GeV). Those protons are accelerated

by means of different methods: linear accelerators (linacs), cyclotrons and

synchrotrons. The target nucleus absorbs the high-energy proton and goes into

a short unstable excited state before decaying, emitting around 30 neutrons

per incident proton. Similarly to reactor sources, the produced neutrons are

thermalized through moderators before being transported to instruments via

the beam tubes. Most of the spallation sources, like ISIS (Didcot, United

Kingdom) produce pulsed neutron beams due to the periodic accelaration of

protons. SINQ at Paul Scherrer Institute (PSI, Villigen, Switzerland) is an

exception as it uses a cyclotron with a frequency high enough to produce a
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Figure II.1 Schematic of the ILL reactor, with beam tubes connected to cold
(blue), thermal (green) and hot (red) sources. Figure taken from
Ref. [102].

continuous beam. Despite having a peak neutron flux much higher than in

the reactor sources, the time-averaged flux is significantly lower in spallation

sources. But the tendency is changing by recent technological improvements

while the development of continuous reactor sources is reaching a plateau. The

next generation European Spallation Source (ESS, Lund, Sweden) will have a

time-averaged neutron flux comparable to the ILL.

II.1.3 Scattering cross section

During a neutron scattering experiment, an incident beam of neutrons with initial

wavevector ki energy Ei and spin state σi interacts with a sample from which

the neutron beam scatters. In this thesis, we will focus on crystalline solids,

but the sample might be in general, an amorphous solid, a liquid or a gas. In

the typical scattering geometry shown in Fig. II.2, a neutron detector counts the

scattered neutrons in a solid angle dΩ around the neutron final wavevector kf in

the direction (2θ, ϕ). The intensity measured by the detector is proportional to

the partial differential cross section defined as

d2σ

dΩdEf

=

neutrons scattered per second into dΩ

with energy between Ef and Ef + dEf

ϕ dΩdEf

, (II.4)

where ϕ is the flux of incident neutrons. With this definition, the cross section
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σ has the dimension of an area as expected, typically expressed in units of barns

(1 barn = 10−24 cm2).

Figure II.2 (a) Classical geometry for a scattering experiment: an incident
neutron beam with wavevector ki scatters from a sample. A
detector is placed in direction (2θ, ϕ), delimited by a solid angle
dΩ. Figure adapted from Ref. [93]. Scattering triangle for (b)
elastic scattering where |ki| = |kf | and (c) inelastic scattering where
|ki| ≠ |kf |.

During the scattering process, the sample goes from initial state λi with energy

Eλi
to final state λf with energy Eλf

with the momentum transfer2

Q = ki − kf , (II.5)

and an energy transfer

E = ℏω = Ei − Ef = Eλf
− Eλi

, (II.6)

by conservation of the total energy. The scattering is said elastic when no energy

is transferred to the sample (ℏω = 0). In this case diffraction techniques allow

the structural study of materials. When the energy transfer is non-zero, the

scattering is said inelastic, and spectroscopy techniques allow to study dynamical

properties of matter. Q is commonly named the scattering vector and represented

by the scattering triangle in Fig. II.2(b) for elastic scattering and Fig. II.2(c) for

inelastic scattering. The scattering angle 2θ is by convention two times the Bragg

2We note that the scattering vector can also be defined as the momentum transferred from
the sample to the neutron, in this case Q = kf − ki.
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reflection angle θ defined later in Fig. II.3.

Considering all the processes which transform the total system (neutron+sample)

from initial states |kiσiλi⟩ to final states |kfσfλf⟩, the partial differential

cross section can be expressed using Fermi’s Golden rule in the first Born

approximation:3

(
d2σ

dΩdEf

)
ki→kf

=
kf
ki

( mn

2πℏ2
)2∑

λiσi

pλi
pσi

∑
λfσf

∣∣∣⟨kfσfλf | V̂ |kiσiλi⟩
∣∣∣2δ(ℏω + Eλi

− Eλf
),

(II.7)

where V̂ is the interaction potential operator of the neutrons with the sample

which describes the scattering processes, and the Dirac function corresponds to

the energy conservation law. The sum is over the sample final states λf and the

neutron beam final spin state σf , and the cross section is averaged over the initial

states λi of the sample with the weight

pλi
=

e−Eλi
/kBT∑

λi
e−Eλi

/kBT
, (II.8)

when the sample is in thermal equilibrium, following the Boltzmann distribution,

and the neutron beam initial spin state σi with probability pσi

Equation II.7 is called the master equation as it rules all the processes encountered

during a scattering experiment. The next step of the calculation relies on

the matrix element depending on the interaction potential. In condensed

matter, neutrons are scattered by the nuclei and from unpaired electrons of

magnetic atoms. Thus, the interaction potential can be separated into one part

corresponding to nuclear scattering, and the other part corresponding to magnetic

scattering.

3The theory of scattering by a potential is derived using perturbation theory. For a weak
potential, the Born expansion can be limited to the first order which corresponds to single
scattering processes. In this case the scattering amplitude is the Fourier transform of the
interaction potential as incident and scattered neutrons are considered as plane waves.

II.1. Introduction to neutron scattering 21



II.1.4 Correlation functions

Before focusing on nuclear and magnetic scattering, we can simplify the

summation from the master equation. Let’s consider any operator Ô acting on

the sample states, we want to evaluate:4

∑
λiλf

pλi
⟨λi| Ô† |λf⟩⟨λf | Ô |λi⟩ δ(ℏω + Eλi

− Eλf
). (II.9)

The Dirac function can be expressed in its integral representation:

δ(ℏω + Eλi
− Eλf

) =
1

2πℏ

∫ +∞

−∞
dt e−iωtei(Eλf

−Eλi
)t/ℏ. (II.10)

Then introducing the Hamiltonian Ĥ of the scattering system for which the

|λ⟩ are eigenstates with eigenvalues Eλ, we have e−iĤt/ℏ |λi⟩ = e−iEλi
t/ℏ |λi⟩ and

⟨λf | eiĤt/ℏ = ⟨λf | eiEλf
t/ℏ, combining the two previous equations gives:

1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
λiλf

pλi
⟨λi| Ô† |λf⟩⟨λf | eiĤt/ℏÔe−iĤt/ℏ |λi⟩ . (II.11)

Using closure relation over the final states, and the Heisenberg representation

operator Ô(t) = eiĤt/ℏÔe−iĤt/ℏ, with Ô(0) = Ô, this gives:

1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
λi

pλi
⟨λi| Ô†Ô(t) |λi⟩ =

1

2πℏ

∫ +∞

−∞
dt e−iωt

〈
Ô(0)†Ô(t)

〉
,

(II.12)

where
〈
Ô†Ô(t)

〉
=

∑
λi
pλi

⟨λi| Ô†Ô(t) |λi⟩ is the correlation function correspond-

ing to the thermal statistical average of the operator Ô†Ô(t).

4Ô† is the adjoint operator of Ô.
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II.2 Nuclear scattering

Neutron scattering from nuclei is due to the strong interaction and can be

approximated by the Fermi pseudo-potential:5

V̂N(r) =
2πℏ2

mn

∑
j

bjδ(r − R̂j), (II.13)

where R̂j is the position operator of the j-th nucleus, and bj its scattering length.

It is a complex number whose imaginary part is related to energy-dependent

absorption. The Fourier transform of this potential is given by

V̂N(Q) = ⟨kf | V̂N(r) |ki⟩ =
2πℏ2

mn

N̂(Q), (II.14)

with the nuclear amplitude operator

N̂(Q) =
∑
j

bje
iQR̂j . (II.15)

II.2.1 Coherent and incoherent scattering

Assuming no correlation between the nuclear positions and the scattering lengths,

the evaluation of the matrix element from Eq. (II.7) with Eq. (II.12) and the

Fermi pseudo-potential gives the partial differential cross section for unpolarized

neutrons:

(
d2σ

dΩdEf

)
N

=
kf
ki

1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
j,j′

bjb∗j′⟨e
−iQ·R̂j′ (0)eiQ·R̂j(t)⟩, (II.16)

where the bjb∗j′ translates the average for a large number of nuclei of the

scattering lengths over random nuclear spin orientation6 and isotope distributions.

5The true nuclear interaction potential is very short range, but also very strong, so that
Born approximation is no longer valid. Yet, the Fermi pseudo-potential describes the expected
isotropic scattering far from the nuclei.

6In this thesis, we will ignore the interaction between the neutrons and the nuclear spins
which order at very low temperature or under very high magnetic fields.
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Assuming real scattering lengths we can write

bjbj′ =

b̄j b̄j′ , if j ̸= j′.

b2j , if j = j′.
(II.17)

Allowing to rewrite the sums into:

∑
j,j′

bjbj′⟨e−iQ·R̂j′ (0)eiQ·R̂j(t)⟩

=
∑
j ̸=j′

b̄j b̄j′⟨e−iQ·R̂j′ (0)eiQ·R̂j(t)⟩+
∑
j

b2j⟨e−iQ·R̂j(0)eiQ·R̂j(t)⟩

=
∑
j,j′

b̄j b̄j′⟨e−iQ·R̂j′ (0)eiQ·R̂j(t)⟩+
∑
j

(b2j − bj
2
)⟨e−iQ·R̂j(0)eiQ·R̂j(t)⟩.

(II.18)

Thus, one can split the partial differential cross section into:

(
d2σ

dΩdEf

)
N

=

(
d2σ

dΩdEf

)coh

N

+

(
d2σ

dΩdEf

)inc

N

, (II.19)

with the first term corresponding to coherent scattering describing the correlation

between different nuclei having average scattering lengths b̄j:

(
d2σ

dΩdEf

)coh

N

=
kf
ki

1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
j,j′

b̄j b̄j′⟨e−iQ·R̂j′ (0)eiQ·R̂j(t)⟩, (II.20)

and the second term corresponds to incoherent scattering describing self-

correlations of nuclei having random variations of the scattering lengths:

(
d2σ

dΩdEf

)inc

N

=
kf
ki

1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
j

σinc
j

4π
⟨e−iQ·R̂j(0)eiQ·R̂j(t)⟩, (II.21)

where σinc
j = 4π(b2j − bj

2
) is the incoherent cross section of the j-th atom.

Coherent scattering reflects interferences from the periodicity of the lattice
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and can be useful for structural determination (elastic scattering) or to study

collective excitations such as phonons (inelastic scattering). On the other hand

elastic incoherent scattering gives a constant background which can be used for

absolute normalization procedures, as described in Section IV.3.2, while inelastic

incoherent scattering provides dynamical properties and can be used to study

diffusive systems. These coherent and incoherent scattering lengths and their

associated total cross section are tabulated for most of individual isotopes and

their natural mix for each chemical element [103].

II.2.2 Elastic nuclear scattering

In this section, we will focus on elastic scattering in crystalline solids. The

translational symmetry in an ideal crystal allows to describe its periodic structure

as an infinite Bravais lattice. The basis (the same group of atoms) is repeated on

each lattice point. It is thus convenient to describe the crystal structure as the

3D repetition of primitive unit cells which are the smallest building blocks of the

crystal [104].

In order to take into account this periodicity of the crystal, the position of the

j-th atom can be rewritten as:

R̂j(t) = Rld(t) = Rl + rd + ûl,d(t), (II.22)

where Rl = naa+ nbb+ ncc is a real space lattice vector (with (a, b, c) the unit

cell primitive vectors, and (na, nb, nc) are integer coordinates), rd = xa+ yb+ zc

is the equilibrium position of the atom within the unit cell (with (x, y, z) ∈ [0; 1[

the fractional coordinates), and ul,d(t) is the displacement of the atom around

its equilibrium position. This allows to rewrite the sum from Eq. (II.20):

∑
j,j′

b̄j b̄j′⟨e−iQ·R̂j′ (0)eiQ·R̂j(t)⟩

=
∑
l,l′

eiQ(Rl−Rl′ )
∑
d,d′

eiQ(rd−rd′ )b̄db̄d′⟨e−iQ·ûl′,d′ (0)eiQ·ûl,d(t)⟩.
(II.23)

By defining U = −iQ · ûl′,d′(0) and V = iQ · ûl,d(t), the aim is to evaluate

the thermal average ⟨eUeV ⟩. This is done by considering the nuclei in isotropic

harmonic potentials [99]. This allows to write
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⟨eUeV ⟩ = e−Wd′−Wd e⟨UV ⟩, (II.24)

where

Wd =
1

2
⟨(Q · ûd)

2⟩ (II.25)

is the Debye-Waller factor describing the thermal motion of the atoms. By

translational symmetry there is no more dependence on the lattice index l. The

exponential e⟨UV ⟩ can further be expanded as power series in ⟨UV ⟩ where the n-th
term corresponds to the n-phonon process. In this thesis, we are not studying

any phonon processes, and can limit the exponential expansion to its zeroth order

(= 1). There is no more time-dependence in Eq. (II.23), so the time integral in

Eq. (II.20) can be written

1

2πℏ

∫ +∞

−∞
dt e−iωt = δ(ℏω). (II.26)

This is the condition for elastic scattering ℏω = 0 for which ki = kf . Moreover,

the lattice sum is given by

∑
l

eiQ·Rl =
(2π)3

v0

∑
G

δ(Q−G), (II.27)

where G = ha∗ + kb+ lc are the reciprocal lattice vectors and v0 the volume of

the unit cell. Using these two relations and by integrating Eq. (II.20) over the

final energy Ef , we finally obtain the diffential cross section for elastic coherent

nuclear scattering:

(
dσ

dΩ

)coh

N

= N
(2π)3

v0

∑
G

δ(Q−G)|FN(Q)|2, (II.28)

where N is the number of unit cells in the sample. FN(Q) is the unit cell nuclear

structure factor given by

FN(Q) =
∑
d

b̄d e−iQ·rde−Wd(Q). (II.29)
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The delta function δ(Q − G) translates the fact that strong diffraction only

happens when the scattering vector is equal to a reciprocal lattice vector. This

is known as the Laue condition and is equivalent to Bragg’s law (Fig. II.3) [104]:

nλ = 2dhkl sin θ, (II.30)

where n is an integer, λ = 2π/ki the wavelength of the incident neutron beam,

dhkl the distance between planes labeled by the Miller indices (hkl), and θ is the

Bragg reflection angle.

Figure II.3 Illustration of Bragg’s law: the incident beams are scattered from
a set of planes (hkl) separated by a distance dhkl with a path
difference 2dhkl sin θ between adjacent planes.

We note that for elastic scattering, the norm Q of the scattering vector

Q =
√
k2
i + k2

f − 2kikf cos 2θ (II.31)

is simply (as ki = kf)

Q = 2ki sin θ = 4π
sin θ

λ
=

2π

dhkl
. (II.32)

Assuming isotropic atomic displacements, the Debye-Waller factor can be

written [96]

Wd =
1

6
Q2⟨u2

d⟩ = Bd
sin2 θ

λ2
, (II.33)
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where Bd = 8π2

3
⟨u2

d⟩ is the isotropic displacement parameter in Å2. From this it

is immediate that the Debye-Waller factor attenuates the scattered intensity as a

function of Q. It also acts on the elastic incoherent nuclear scattering which can

be calculated in a similar way from Eq. (II.21):

(
dσ

dΩ

)inc

N

= N
∑
d

σinc
d

4π
e−2Wd . (II.34)

II.3 Magnetic scattering

In this section, we will consider the interaction between the neutrons and the

unpaired electrons in the crystal. We will introduce the unpolarized inelastic

cross section (the polarized case is treated in next section), and the elastic cross

section for magnetic diffraction studies.

II.3.1 Magnetic cross section

Magnetic interaction potential

Magnetic scattering occurs when the neutron at position r interacts with the

magnetic field created by an unpaired electron i, at position ri, with the

momentum p̂i and spin ŝi. Their respective magnetic moments are µ̂n = −γµNσ̂

(with σ̂ the Pauli spin operator) and µ̂i = −geµBŝi, with γ = −1.91 the neutron

gyromagnetic ratio, ge ≈ 2 the electron spin g-factor, µN and µB the nuclear and

the Bohr magnetons. The magnetic interaction potential is given by

V̂M(r) = −µ̂n · B̂(r), (II.35)

where

B =
∑
i

µ0

4π

{
∇×

(
µ̂i ×Ri

|Ri|3

)
− 2µB

ℏ
p̂i ×Ri

|Ri|3

}
(II.36)

is the magnetic field created by the unpaired electrons, and Ri = r − ri are

the distances between the neutron and the electrons. The contribution from the
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unpaired electrons can be separated into two parts: the first term of the equation

is due to the electron spins (flux density of a magnetic dipole moment) and the

second term is due to their motion (flux density of a non-relativistic charged

particle in motion), often refered as the orbital contribution.

The Fourier transform of the magnetic interaction potential in Eq. (II.35) can be

calculated giving [93, 95]:

V̂M(Q) =
2πℏ2

mn

σ̂ · M̂⊥(Q), (II.37)

where M̂⊥(Q) is the magnetic interaction vector7 built upon the spin ŝi and

momentum p̂i of the electrons

M̂⊥(Q) = γr0
∑
i

eiQ·ri [Q̃× (ŝi × Q̃) +
i

ℏQ
(p̂i × Q̃)], (II.38)

where r0 =
µ0e2

4πme
is the classical electron radius, with e and me the charge and the

mass of the electron. |γr0| ≈ 0.5×10−12 cm which makes magnetic scattering cross

section usually comparable to the nuclear one. Q̃ = Q/Q is the unit scattering

vector. M̂⊥ is the projection of M̂ perpendicular to the scattering vector Q:

M̂⊥ = Q̃× (M̂ × Q̃) = M̂ − (M̂ · Q̃)Q̃. (II.39)

Also,

M̂ †
⊥ · M̂⊥ = [M̂ † − (M̂ † · Q̃)Q̃][M̂ − (M̂ · Q̃)Q̃]

= M̂ † · M̂ − (M̂ † · Q̃)(M̂ · Q̃)

=
∑
αβ

(
δαβ − Q̃αQ̃β

)
M̂ †

αM̂β.

(II.40)

M̂ (Q) = − γr0
2µB

M̂(Q), where M̂(Q) is the Fourier transform of the total

magnetization operator M̂(r) = M̂S(r) + M̂L(r). The spin part is related

to the density of electron spin moments ρ̂S:

7We have included the factor γr0 into the magnetic interaction vector to simplify our
notations for the theory of polarized neutrons scattering in Section II.4.
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M̂S(r) = −2µBρ̂S(r) = −2µB

∑
i

δ(r − ri)ŝi, (II.41)

which Fourier transform corresponds to the first term of Eq. (II.38). It can be

shown similarly that the Fourier transform of the orbital magnetization operator

M̂L(r) corresponds to the second part of Eq. (II.38) [93]. Eq. (II.39) illustrates

the fact that magnetic scattering is only sensitive to magnetization perpendicular

to the scattering vector Q. This can be interpreted from Maxwell’s equation

∇ ·B(r) = 0, which Fourier transform imposes Q ·B(Q) = 0 [99].

Magnetic master equation

The master equation for magnetic scattering becomes

(
d2σ

dΩdEf

)
kiσi→kfσf

=
kf
ki

∑
λi,σi

pλi
pσi

∑
λf ,σf

∣∣∣⟨σfλf | σ̂ · M̂⊥(Q) |σiλi⟩
∣∣∣2δ(ℏω + Eλi

− Eλf
).

(II.42)

The matrix element in Eq. (II.42) can be further separated with the spin operator

acting on the neutron spin states, and the magnetic interaction vector acting on

the electron states (included in the states λ of the sample):

⟨σfλf | σ̂ · M̂⊥(Q) |σiλi⟩ = ⟨σf | σ̂ |σi⟩ · ⟨λf |M̂⊥(Q) |λi⟩ . (II.43)

For unpolarized neutrons (the polarized case is discussed in Section II.4)

performing the sum over initial and final states with pσi
= 1/2 in Eq. (II.42)

and using properties of Pauli matrices (Appendix A):

∑
σiσf

pσi
⟨σi| σ̂α |σf⟩⟨σf | σ̂β |σi⟩ =

∑
σi

pσi
⟨σi| σ̂ασ̂β |σi⟩ = δαβ, (II.44)

then introducing the Heisenberg operators in the thermal average from Eq. (II.12)

gives the cross section
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(
d2σ

dΩdEf

)
ki→kf

=
kf
ki

∑
αβ

(
δαβ − Q̃αQ̃β

)
Sαβ(Q, ℏω), (II.45)

where

Sαβ(Q, ℏω) =
1

2πℏ

∫ +∞

−∞
dt e−iωt⟨M̂ †

α(Q, 0)M̂β(Q, t)⟩ (II.46)

is the partial dynamical structure factor. The factor
∑

αβ

(
δαβ − Q̃αQ̃β

)
before

this structure factor is called the orientation factor and selects the magnetization

perpendicular to the scattering vector.

Spin-only scattering and dipole approximation

Evaluating the matrix element in Eq. (II.46) can be difficult, but some useful

approximations are usually taken. We suppose that the unpaired electrons are

localized around to the positions R̂ld of the magnetic ions in the crystalline

lattice,8 and that they have LS coupling. The energy of the neutrons is assumed

to be small enough, so that the unpaired electrons have the same spatial wave

functions and total spin length before and after scattering. If the magnetization

is only due to the spins of the electrons (L = 0), we can write from Eq. (II.41)

[93]

⟨λf |M̂(Q) |λi⟩ = γr0
∑
ld

fd(Q) ⟨λf | eiQ·R̂ld(t)Ŝld |λi⟩ , (II.47)

where the magnetic form factor fd(Q) is the Fourier transform of the electron

spin density (normalized so that fd(0) = 1) of the d-th magnetic ion of the unit

cell. Ŝld is the total spin operator of the unpaired electrons for each magnetic

ion in the crystal. The magnetic form factor can be seen as the smearing of the

unpaired electrons around the magnetic ions, attenuating the scattered intensity

compared to the scattering from point-like particles [105].

These approximations can be extended, for example for intermediate crystal

fields, typically for 3d ions studied in this thesis, where the orbital moment is

8As defined in Eq. (II.22), the l index refers to the lattice, and d to the atom in the unit
cell.
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usually quenched. In the dipole approximation (valid for Q−1 large compared to

the orbital wave function radius), the small spin-orbit coupling can be described

by a deviation of the g-factor from its spin-only value g = 2, and the matrix

element becomes

⟨λf |M̂(Q) |λi⟩ = γr0
∑
ld

g

2
fd(Q) ⟨λf | eiQ·R̂ld(t)Ŝld |λi⟩ , (II.48)

where the Ŝld are effective spin operators. Assuming an isotropic spatial

distribution of the magnetization, the magnetic form factor becomes

fd(Q) = ⟨j0(Q)⟩+ g − 2

2
⟨j2(Q)⟩, (II.49)

where ⟨jn(Q))⟩ =
∫ +∞
0

dr jn(Qr)r2R2(r) is the radial integral, jn(Qr) is the n-

th order spherical Bessel function, and f(r) is the radial wave function. The

magnetic form factor depends on the oxidation state of the d-th magnetic atom.

An analytical approximation of the form factors is tabulated for most of the

elements [106].

II.3.2 Inelastic magnetic scattering

Considering that the crystal has only one type of magnetic ion, the magnetic

partial differential cross section for unpolarized neutrons is

(
d2σ

dΩdEf

)
M

=
kf
ki
(γr0)

2

(
gf(Q)

2

)2

e−2W (Q)S(Q, E), (II.50)

where the term e−2W (Q) involving the Debye-Waller factor was obtained the

same way as in Section II.2.2, assuming that the spin directions are independent

from the ion positions, which allows to decouple the structural and magnetic

correlations. We then only consider the static part of the structural correlation,

ignoring any effects from magneto-vibrational scattering [93, 95]:

S(Q, E) =
∑
α,β

(
δαβ − Q̂αQ̂β

)
Sαβ(Q, E) (II.51)
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and the dynamical spin correlation function is

Sαβ(Q, E) =
1

2πℏ

∫ +∞

−∞
dt e−iωt

∑
ij

eiQ·(Rj−Ri)⟨Ŝα
i (0)Ŝ

β
j (t)⟩. (II.52)

II.3.3 Elastic magnetic scattering

Similarly as described above for nuclear scattering [Eq. (II.28)], the elastic

magnetic differential cross section is obtained by integrating Eq. (II.50) over the

final energy:

(
dσ

dΩ

)
el

= N
(2π)3

v0

∑
Gk

δ(Q−G− k)|FM⊥(Q)|2, (II.53)

where again N is the number of structural unit cells, and v0 the volume cell unit,

the sum is over the reciprocal lattice vectors G and the propagation vectors k

describing the periodicity of the magnetic structure (see Appendix B). FM⊥(Q) is

the component perpendicular to the scattering vector Q of the unit cell magnetic

structure factor

FM(Q) = p
∑
d

fd(Q)Skde
iQ·rde−Wd(Q), (II.54)

where d is the index of the d-th magnetic ion in the position rd within the unit

cell. Skd is the Fourier component associated to propagation vector k in units

of µB and p = γr0/2µB = 0.2695 × 10−12 cm/µB is the conversion factor from

magnetic moments in µB into scattering length in units of 10−12 cm. fd(Q) and

e−Wd(Q) are the magnetic form factor and Debye-Waller factor defined above.

For a commensurate magnetic structure which can be described by a magnetic

unit cell the magnetic differential cross section can be simplified as

(
dσ

dΩ

)
M

= NM
(2π)3

vM

∑
GM

δ(Q−GM)|FM⊥(Q)|2, (II.55)

where NM is the number of magnetic unit cells, and vM its volume. The sum is

over the reciprocal magnetic lattice vectors GM and the magnetic structure factor
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FM(Q) is given by

FM(Q) = p
∑
d

fd(Q)Sde
iQ·rde−Wd(Q). (II.56)

These expressions of the magnetic cross section are very similar to Eq. (II.28)

for the nuclear elastic cross section. In general, the magnetic structure can be

seen as a superstructure in the reciprocal space where the magnetic Bragg peaks

appears at ±k around the nuclear Bragg peaks.

II.4 Polarized neutrons

Polarized neutrons are nowadays used in powerful scattering techniques allowing

the separation of nuclear and magnetic cross sections, the determination of

complex magnetic structures, or the study of magnetic chiralities. The theory of

polarized neutron scattering was first developed by Halpern and Johnson in 1939

[107], and the derived equations were probed experimentally in the 50s [108, 109].

However, the studies were limited to ferromagnetic and simple antiferromagnetic

structures, omitting some terms in the scattering cross section of a polarized

beam, and on the calculation of the final polarization. More general expressions

were derived in the 60s independently by Blume [110] and Maleev [111] using the

density matrix formalism. In this section, an overview on the polarized neutron

scattering theory will be given, followed by an introduction to spherical neutron

polarimetry and Schwinger scattering.

II.4.1 Polarized neutron scattering cross section

Incident beam polarization

Using the notations introduced in this chapter, we want to evaluate the matrix

element ⟨σf | V̂ |σi⟩ in the master equation. The initial neutron spin state can

be described by a mixture of pure states |σi⟩ with probability pσi
by the density

matrix [112]
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ρ̂ =
∑
σi

pσi
|σi⟩⟨σi| . (II.57)

Then we can define the initial polarization Pi of the neutron beam as the

expectation value of the Pauli spin operator σ̂ (see Appendix A)

Pi = ⟨σ̂⟩ρ̂ = Tr[ρ̂σ̂]. (II.58)

With this definition |Pi| = 0 for an unpolarized neutron beam, and |Pi| = 1 for

a fully polarized beam. Noting that any 2 × 2 Hermitian matrix can be written

as a linear combination of the identity matrix and the Pauli matrices [113, 114]:

Ô = u1̂ + v · σ̂ (II.59)

We can compare Tr ρ̂ =
∑

σi
pσi

= 1 and Tr Ô = 2u, to get u = 1/2, and

Tr
[
Ôσ̂

]
= 2v to Eq. (II.58) to get v = 1/2Pi. Finally the density matrix for the

initial spin state is given by

ρ̂ =
1

2
(1̂ + Pi · σ̂). (II.60)

By closure relation, the spin part from Eq. II.7 becomes:

∑
σiσf

pσi
⟨σi| V̂ † |σf⟩⟨σf | V̂ |σi⟩ =

∑
σi

pσi
⟨σi| V̂ †V̂ |σi⟩ = Tr

[
ρ̂V̂ †V̂

]
. (II.61)

As we want to evaluate the action of the interaction operator V̂ = û1̂ + v̂ · σ̂ in

the spin space, using properties of Pauli matrices (Appendix A) this is equivalent

to

Tr
[
ρ̂V̂ †V̂

]
= û†û+ v̂† · v̂ + û†(Pi · v̂) + (Pi · v̂†)û+ iPi · (v̂† × v̂). (II.62)

From the previous sections, we can express the general Fourier transform of the

interaction potential as
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V̂ (Q) =
2πℏ2

mn

(N̂ + T̂ · σ̂ + M̂⊥ · σ̂), (II.63)

where the term T̂ (Q) =
∑

j Bj Îje
iQR̂j due to nuclear spins Îj of the j-th atom will

be neglected in the following. TheQ-dependence of the operators will be implicit,

in order to simplify the notations. With this interaction potential, Eq. II.62

becomes

Tr
[
ρ̂V̂ †V̂

]
= N̂ †N̂ + M̂ †

⊥ · M̂⊥ + N̂ †(Pi · M̂⊥) + (Pi · M̂ †
⊥)N̂ + iPi · (M̂ †

⊥ × M̂⊥).

(II.64)

We can generalize the correlation function based on the thermal average of the

scatterer states in Eq. (II.12) for any operator Ô and P̂ and use the following

notation for the time-energy Fourier transform:

〈
P̂†Ô

〉
ω
=

1

2πℏ

∫ +∞

−∞
dt e−iωt

〈
P̂†(0)Ô(t)

〉
. (II.65)

With this notation, from Eq. (II.64) the partial differential cross section becomes

d2σ

dΩdEf

=
kf
ki

{〈
N̂ †N̂

〉
ω
+
〈
M̂ †

⊥ · M̂⊥

〉
ω
+

Pi ·
(〈

N̂ †M̂⊥

〉
ω
+
〈
M̂ †

⊥N̂
〉
ω

)
+ iPi ·

〈
M̂ †

⊥ × M̂⊥

〉
ω

}
. (II.66)

Scattered beam polarization

The initial states |σi⟩ transform with the interaction operator into states V̂ |σi⟩.
Thus similarly to Eq. II.58, we can define the final polarization of the neutron

beam as the expectation value of the neutron spin operator over the final states

∑
σi

pσi
⟨σi| V̂ †σ̂V̂ |σi⟩ = Tr

[
ρ̂V̂ †σ̂V̂

]
. (II.67)

As the scattering process is in general non-unitary, this quantity has to be
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normalized to get a final polarization Pf with an amplitude within [0, 1] [112]

Pf =
Tr

[
ρ̂V̂ †σ̂V̂

]
Tr

[
ρ̂V̂ †V̂

] . (II.68)

Similarly to Eq. II.62 we can derive from the Pauli matrices properties (Ap-

pendix A) for a general operator acting on the spin space V̂ = û1̂ + v̂ · σ̂:

Tr
[
ρ̂V̂ †σ̂V̂

]
= û†v̂ + v̂†û+ û†ûPi − Pi(v̂

† · v̂) + v̂†(Pi · v̂) + (Pi · v̂†)v̂+

−i(v̂† × v̂) + iû†(v̂ × Pi) + i(Pi × v̂†)û.

(II.69)

Applying this with the interaction potential given in Eq. II.63 then multiplying

left- and right-hand sides of Eq. II.68 by Tr
[
ρ̂V̂ †V̂

]
and evaluating the matrix

element over the scatter states as described previously (thermal average value

and time Fourier transform), we obtain the relation between the final and initial

polarizations:

Pf
d2σ

dΩdEf

=
kf
ki

{〈
N̂ †M̂⊥

〉
ω
+
〈
M̂ †

⊥N̂
〉
ω

+Pi

〈
N̂ †N̂

〉
ω
− Pi

〈
M̂ †

⊥ · M̂⊥

〉
ω

+
〈
M̂ †

⊥(M̂⊥ · Pi)
〉
ω
+
〈
(M̂ †

⊥ · Pi)M̂⊥

〉
ω

+i
〈
N̂ †(M̂⊥ × Pi)

〉
ω
+ i

〈
(Pi × M̂ †

⊥)N̂
〉
ω

−i
〈
M̂ †

⊥ × M̂⊥

〉
ω

}
.

(II.70)

Eq. (II.66) and Eq. (II.70) are the so-called Blume-Maleev equations [110, 111],

generalized here for inelastic scattering cross sections.

II.4.2 Spherical Neutron Polarimetry

Spherical neutron polarimetry (SNP) is a powerful technique used to determine

complex magnetic structures and magnetic chiralities, which plainly demonstrates
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the benefits of using polarized neutrons [112, 115]. The idea is to measure in three

orthogonal directions the final polarization of the neutrons, for incident neutrons

polarized along each of the three directions. This allows to measure a 3 × 3

polarization matrix given by

Pif =
nif − nif̄

nif + nif̄

, (II.71)

where i, f = x, y, z denotes the polarization direction of the incident and scattered

neutrons in the local coordinates where x̂ is parallel to the scattering vector Q,

ẑ is perpendicular to the scattering plane and ŷ completes this right-handed set

as shown in Fig. II.4, nif and nif̄ are the number of scattered neutrons with spin

parallel and antiparallel to the f -direction.

Figure II.4 Local coordinates used in polarimetry, x̂ is parallel to the scattering
vector Q, ŷ is in the scattering plane, and ẑ is perpendicular to the
scattering plane, so that the magnetic interaction vector M⊥ lies
on the (yz)-plane.

Now we want to derive the final polarization for the initial polarization in each

of the three directions, in the local coordinates. We will introduce the following

notations to further simplify the equations:

σN =
〈
N̂†N̂

〉
ω
, the nuclear term

σM =
〈
M̂ †

⊥ · M̂⊥

〉
ω
, the magnetic term

Mii=yy,zz =
〈
M̂†

⊥iM̂⊥i

〉
ω
, the magnetic component term

Mch = i
〈
M̂ †

⊥ × M̂⊥

〉
ω
, the magnetic chiral term

Myz =
〈
M̂†

⊥yM̂⊥z

〉
ω
+
〈
M̂†

⊥zM̂⊥y

〉
ω
, the magnetic cross term

Ri=y,z =
〈
N̂†M̂⊥i

〉
ω
+
〈
M̂†

⊥iN̂
〉
ω
, the nuclear-magnetic real term

Ii=y,z = i
〈
N̂†M̂⊥i

〉
ω
− i

〈
M̂†

⊥iN̂
〉
ω
, the nuclear-magnetic imaginary term.

(II.72)
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Let’s consider Pi = Pxx̂ along the x -axis. In this case, the partial differential

cross section is simplified from Eq. II.66:

d2σ

dΩdEf

=
kf
ki
(σN + σM + PxMch), (II.73)

as M̂⊥x = 0 (neutrons are only sensitive to the magnetic moments perpendicular

to the scattering vector). The right-hand side of Eq. II.70 also simplifies by

identifying the components of the polarization vector:

Pf(σN + σM + PxMch) =

Px(σN − σM)−Mch

PxIz +Ry

−PxIy +Rz

 . (II.74)

We obtain Pf for Pi = Pxx̂ by dividing both sides of the equation, and this gives

the first line of the polarization matrix Pxf . Doing similar calculations for Pi along

the y- and the z-axis, we can calculate each corresponding final polarization and

derive the full polarization matrix [112, 115]:

Pif =


Px(σN − σM)−Mch

σN + σM + PxMch

PxIz +Ry

σN + σM + PxMch

−PxIy +Rz

σN + σM + PxMch
−PyIz −Mch

σN + σM + PyRy

Py(σN +Myy −Mzz) +Ry

σN + σM + PyRy

PyRzy +Rz

σN + σM + PyRy

PzIy −Mch

σN + σM + PzRz

PzMyz +Ry

σN + σM + PzRz

Pz(σN +Mzz −Myy) +Rz

σN + σM + PzRz

 .

(II.75)

Each element of the polarization matrix Pif corresponds to the polarization of the

neutron beam along the f -axis, for an initial polarization of the neutron beam

along the i-axis.

The first polarimetry technique, named longitudinal polarization analysis (LPA),

was introduced by Moon, Riste and Koehler in 1969 [116]. In this case the

polarization of the scattered beam is parallel (non spin-flip) or anti-parallel

(spin-flip) to the incident beam. This technique basically gives access to the

terms in the diagonal of the polarization matrix. This allows to separate

nuclear and magnetic scattering, to access the individual components of the
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magnetic cross section and the magnetic chiral9 term [113]. In addition, SNP

provides to the full vectorial information of the scattering process with the off-

diagonal terms of the polarization matrix, allowing to distinguish spin rotation

and creation/annihilation of the beam polarization.

For elastic scattering, the nuclear and magnetic terms σN and σM are simply

replaced by the amplitude squared of the unit cell nuclear and magnetic structure

factors |FN|2 and |FM⊥ |
2 respectively introduced in Eq. (II.29) and Eq. (II.54).

Furthermore, considering a purely magnetic reflection, the nuclear contributions

and nuclear-magnetic interference terms vanish, giving:

Pif =



−Px|FM⊥ |
2 −Mch

|FM⊥ |
2
+ PxMch

0 0

−Mch

|FM⊥ |
2

Py(|FM⊥y| 2 − |FM⊥z|2)
|FM⊥ |

2

2Py Re
{
FM⊥yF

∗
M⊥z

}
|FM⊥ |

2

−Mch

|FM⊥ |
2

2Pz Re
{
FM⊥zF

∗
M⊥y

}
|FM⊥ |

2

Pz(|FM⊥z| 2 − |FM⊥y| 2)
|FM⊥ |

2


. (II.76)

The polarization matrix provides accurate information on the relative directions

and magnitudes of the magnetic moments while unpolarized neutron single-

crystal diffraction is only sensitive to the amplitude squared |FM⊥|
2 of the

magnetic structure factor. In general, measuring a few magnetic reflections

is sufficient to solve complex magnetic structures [115, 117–119]. In absence

of nuclear-magnetic interference, only the relative magnitude of the magnetic

moments can be measured. In the presence of magnetic domains, the polarization

matrices have to be averaged. In particular, if chiral magnetic domains have the

same population, the chiral term will average to zero.

From an experimental point of view, SNP requires a system which can control

independently the initial and final polarization directions of the neutron beams

and protect them from parasitic magnetic fields. At ILL, the CRYOPAD

(Cryogenic Polarization Analysis Device) is used [120–122], and described in

Section II.5.3.

9In the sense of spin vector chirality defined in Eq. (III.3).
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II.4.3 Schwinger scattering

In the reference frame of a moving neutron, the electric field of a non-

centrosymmetric crystal creates an effective magnetic field which couples to

the neutron spin. This neutron spin-orbit interaction results in a polarization-

dependant scattering known as Schwinger scattering [123] which can be used as

a probe of the structural handedness of the crystal [124, 125].

In the local coordinates, where ẑ ∥ ki × kf is perpendicular to the scattering

plane, the asymmetric Schwinger structure factor is given by [125]

FSO(Q) = i
γr0
2

me

mp

FE(Q) cot(θ)σ̂ · ẑ, (II.77)

where γ is the neutron gyromagnetic ratio, r0 is the electron classical radius, θ

is half of the scattering angle, σ̂ is the neutron spin operator, and FE(Q) is the

electrostatic unit cell structure factor:

FE(Q) =
∑
j

[Zj − fj(Q)]e−Wj(Q)e−iQ·rj , (II.78)

where Zj, fj(Q) andWj(Q) are respectively the atomic number, the X-ray atomic

form factor [Eq. (II.86)], and the Debye-Waller factor of the j-th atom of the unit

cell. The small ratio between the electron and proton massme/mp leads to a weak

Schwinger scattering cross section ∝ γr0
2

me

mp
= −1.46× 10−4 in units of 10−12 cm

(nuclear scattering length) [124]. For a nuclear reflection, the contribution from

Schwinger scattering adds to the nuclear structure factor FN (Eq. II.29) leading

to an intensity:

I± ∝ |FN|2 + |FSO|2 ± I, (II.79)

where I = 2pRe(FNF
∗
SO) is an interference term and p is the polarization of the

incident beam along ±ẑ. Measuring both intensities with the incident neutron

beam polarized along ±ẑ allows us to compute the flipping ratio:

R =
|FN|2 + |FSO|2 + I
|FN|2 + |FSO|2 − I

. (II.80)
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The flipping ratio technique, very well known to the magnetization density

community, affords the extraction of the weak Schwinger scattering and to

distinguish structural twins in a single crystal discussed below. Indeed, each

twin would lead to a different flipping ratio. For example the flipping ratio is

inverted for an inversion twin.

As explained above, Schwinger scattering is weak compared to nuclear scattering.

In this case we can simplify the previous equation by dividing both numerator

and denominator by |FN|2, and writting ϵ = I/|FN|2 at first order of ϵ ≈ |FSO/FN|
we obtain

R ≈ 1 + ϵ

1− ϵ
≈ 1 + 2ϵ+O

(
ϵ2
)
. (II.81)

In this case, the flipping ratio of the inversion twin is directly given by R ≈ 1−2ϵ.

This gives the convenient constraint that the flipping ratios are at equal opposite

distance from 1:

R(hkl)− 1 = −(R(h̄k̄l̄)− 1). (II.82)

II.5 Instruments

Having introduced the theory of neutron scattering, several instrumental tech-

niques from continuous sources used during this thesis will be described in this

section.

II.5.1 Powder diffractometer

A powder sample can be seen as a very large number of small crystallites randomly

oriented. In average (ideally for grains of a few microns) there are always some

crystallites which are correctly oriented to satisfy Bragg’s law (Eq. II.30) for each

(hkl) plane. Actually each set of planes will scatter the neutrons in a Debye-

Scherrer cone centered around the incident beam direction, with the semi-angle

2θ corresponding to the Bragg angle. This is illustrated in Fig. II.5 where the

incident beam scatters from the red crystallites at angle 2θ1 and on the green

ones at 2θ2 into two diffraction cones.
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Figure II.5 Neutrons are scattered from red and green crystallites into different
scattering angles 2θ1 and 2θ2, forming two Debye-Scherrer cones.
Figure taken from Ref. [126].

In steady-state neutron sources, the incoming neutrons pass through a monochro-

mator10 which selects a unique wavelength, as illustrated in Fig. II.6 for the high-

resolution diffractometer D20 at ILL [127] used in this thesis (Section III.4.2.1).

Each set of planes (hkl) allows an elastic signal at scattering angle 2θ, which is

collected by a range of the microstrip multidetector around the sample.

The result of the measurement is a diffraction pattern showing the scattering

intensity as a function of the scattering angle. The Bragg reflections are not

perfect shaped as δ-functions as predicted in Eq. II.28 and Eq. II.53 but rather

convolutions with the instrumental resolution effects. As a result, diffraction

bands are observed corresponding to the intersection between the finite Debye-

Scherrer cone and the detectors (the Debye-Scherrer rings shown in Fig. II.5). The

peak positions, profile functions, instrumental parameters are taken into account

to calculate intensity profiles which are fitted to the observed intensities during

a Rietveld refinement [129]. It uses a weighted least squares method to minimize

the quantity

χ2 =
∑
i

wi(y
obs
i − ycali )2, (II.83)

where yobsi and ycali are the observed and calculated intensities for the i-th data

point, and wi a weight for the refinement, typically the inverse of the variance

10Basically a coalignment of single crystals such as pyrolitic graphite, copper, germanium or
silicium. For a given reflection plane, rotating the monochromator at a specific scattering angle
allows to select a specific incident wavelength λ according to Eq. (II.30). Higher harmonics λ/n
are typically suppressed by graphite or beryllium filters.
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Figure II.6 Diagram of high resolution powder diffractometer D20 at ILL.
A monochromatic neutron beam scatters on the polycrystalline
sample, and intensity is measured at scattering angles satisfying
Bragg’s law on the large microstrip multidetector. Figure taken
from Ref. [128].

of the observed intensities. The intensities are basically proportional (up to

a background term and some correction factors) to the amplitude square of

the elastic structure factors |FQ|2, which directly contains information from the

crystal and magnetic structures of the material.

II.5.2 Single-crystal diffractometer

In the case the sample is a single crystal, knowing its orientation is crucial in order

to control the Bragg scattering. This can be done by using the Laue method. A

polychromatic incident (neutron or X-ray) beam is sent on the single crystal for a

given orientation. Each set of lattice planes satisfying Bragg’s law would scatter

the beam onto the 2D detector at a particular angle, resulting in a Laue diffraction

pattern composed of a collection of Bragg spots. This pattern gives a picture of

the reciprocal space, depending on the crystal symmetry and its orientation, as

shown in Fig. II.7. The single crystal is usually fixed on a goniometer, so that

it can be oriented to the needed crystallographic axes before the single crystal

scattering experiments. During this thesis, we have used OrientExpress at ILL

[130], which uses CCD cameras coupled to a large-area neutron scintillator in the
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back-reflection geometry, allowing the measurements of neutron Laue pattern in

a very short time. We note that Laue diffraction also shows the quality of the

sample, a high mosaicity in the crystal giving a spread in the Bragg spots.

Figure II.7 Laue diffraction patterns for a cubic single crystal for different
orientations. Figure taken from Ref. [131].

After being correctly oriented11, the single crystal can be measured in a a four-

circle diffractometer using a monochromatic incident neutron beam. The sample

is mounted onto a Eulerian cradle on which it can be reoriented along three

rotation angles φ, χ and ω as shown in Fig. II.8. This allows a flexibility

in selecting the scattering plane (up to the instrumental limits of the rotation

angles). The 2D-detector can be moved along the scattering angle 2θ for the

selected Bragg reflection and records the intensity diffracted by the sample,

which is usually rotated around the vertical axis (ω-scan) through the settings

of the diffraction condition. This whole process is illustrated in Fig. II.8 for

the hot neutron four-circle diffractometer D9 at ILL, whose short wavelength

allows the accurate measurements of Bragg intensities up to very high momentum

transfer. This makes D9 ideal for detailed structural analysis as presented in

Section III.4.1.1 and Section V.1.2. We have also used the high flux four-

circle diffractometer D10 at ILL which uses thermal neutrons allowing accurate

11Actually in four-circle geometry, the sample could be oriented during the experiment by
finding reflections, but starting from a known orientation can save a lot of time. On the other
hand, having the correct orientation is primordial in normal-beam geometry where the vertical
axis of the sample is fixed with respect to the scattering plane.
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measurements of magnetic Bragg peaks located at low momentum transfer, as

presented in Section III.4.2.2.

Figure II.8 Diagram of hot neutron four-circle diffractometer D9 at ILL.
A monochromatic neutron beam scatters on the single-crystal
mounted on an Eulerian cradle which allows to select to desired
orientation for Bragg scattering, onto a 2D-detector from which
the intensities are integrated. Figure taken from Ref. [132].

The process is repeated for a numerous number of Bragg reflections (typically

several hundreds). The collected intensities are integrated taking into account an

instrument resolution ellipse. The crystal and magnetic structures can then be

refined with a weighted least squares method described in Eq. (II.83), where yobsi

is now the integrated intensity for the i-th Bragg reflection.

In this thesis the refinement of crystal and magnetic structures were performed

either on Fullprof [133] or on Mag2Pol [134] softwares, which both allow the

analysis of powder and single-crystal diffraction data.

In the process of refinement in these softwares, the goodness of fit can be evaluated

by the agreement factors such as the crystallographic R-factor [135]:

RF = 100

∑
Q

∣∣F obs
Q − F cal

Q

∣∣∑
Q F obs

Q

(II.84)
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which indicates the differences between observed and calculated structure factors,

or the Bragg factor:

RBragg = 100

∑
Q

∣∣IobsQ − IcalQ

∣∣∑
Q IobsQ

(II.85)

which indicates the differences between observed and calculated integrated

intensities. The sum is over the Bragg contributions to the given phase (allowing

to distinguish the nuclear and magnetic refinements for example).

II.5.3 Polarization analysis device

Diffraction techniques using unpolarized neutrons were introduced in the two

previous sections. While Schwinger scattering (Section II.4.3) only needs to

polarize the incident neutron beam, a polarization analysis device is necessary

for Spherical Neutron Polarimetry (Section II.4.2). In this section the use

of CRYOPAD (Cryogenic Polarization Analysis Device) [120–122] on the hot

neutron single-crystal diffractometer D3 at ILL will be discussed.

The device is pictured in Fig. II.9. The sample is located at the center of the

magnetic field free chamber created by two superconducting Meissner shields.

The incident monochromatic neutron beam is polarized vertically,12 the axial

guide field turns the neutron polarization axis towards the incident wavevector.

Then the incident nutator brings the neutron polarization to any direction

perpendicular to the incident wavevector. The combination with the rotation in

the secondary precession coil (protected from the nutator magnetic field by the

outer Meissner shield) allows the neutron beam to be polarized in any direction

in space. After scattering from the sample, and thus a change in the polarization,

a similar combination of the primary precession coil and the outgoing nutators

allow to pick the polarization which will be analyzed along the final wavevector

using a polarized 3He spin filter [137]. The integration of CRYOPAD into the

D3 setup is shown in Fig. II.10. We have used CRYOPAD on D3 to perform

SNP and Schwinger scattering on MnSb2O6 (Section III.4) and SNP on Fe1+xTe

(Section V.2.2). The data analysis was performed using the Mag2Pol software

12This is usually done using a Heusler Cu2MnAl crystal on which we apply a uniform vertical
magnetic field to create a single ferromagnetic domain. For the (111) reflection, FN ≈ −FM⊥ ,

so that the scattered intensity I± ∝ |FN ± FM⊥ |
2
is predominant for spin-down (−) neutrons

and almost zero for spin-up (+) neutrons, producing a highly polarized neutron beam [99].
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Figure II.9 Diagram of CRYOPAD. The incident and final polarization of the
neutron beam are set in any direction thanks to the combination of
nutators rotations and coil currents. The sample is located in the
cryostat in a zero magnetic field zone. Adapted Figure taken from
Ref. [136].

[134].

We note that CRYOPAD can be also used on some spectrometers such as

IN12, IN20, IN22 and THALES at ILL in order to perform SNP and access

the inelastic cross section. On TASP at PSI, polarization analysis is perfomed

using MuPAD (Mu-metal Polarization Analysis Device) [138]. The zero field

chamber is created by a non-cryogenic double layered mu-metal cylinder, and

the polarization direction of incident and scattered neutron beam is controlled

by a set of two precession coils. The polarization of the incident beam, and the

polarization analysis of the scattered neutron beam are performed with super-

mirror benders [139].

II.5.4 Triple-axis spectrometer

While the diffractometers measure scattering cross sections integrated in final

energy (including the inelastic part as a background), a triple-axis spectrometer

(TAS) allows the selection of the neutron final energy and thus provides an access

to inelastic cross sections. The principle is very similar to previous diffractometers
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Figure II.10 Diagram of D3 with the CRYOPAD setup. Figure taken from
Ref. [136].

and illustrated for TASP at PSI in Fig. II.11. The incident neutron beam is

monochromated, then scatters on the sample mounted on a goniometer. Finally,

an analyzer (which works the same way as the monochromator) is placed before

the detectors. The rotation (around a vertical third axis) of the analyzer

scattering angle allows to select the final neutron beam wavelength and thus

its energy. Therefore, these spectrometers allow to accurately explore the (Q, E)

map and are ideal to study excitations in condensed matter.

Vertically Moving
Shielding-blocks

Shielding

Neutron
guide

Vertically Focusing
Monochromator

Horizontally
Focusing Analyzer

Monitor (M0)

3
Single He

Detector Tube
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Collimator
or bender Collimator

or bender

Shutter

Primary
rotation table

Secondary
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Goniometer
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Environment
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Be-/PG-
filter

Monitor (M2)

Sample

Airpads

TASP

Figure II.11 Diagram of TASP. The monochromator selects the wavelength of
the incident neutron beam, which is scattered from the sample.
The analyzer selects the final energy, allowing to scan the (Q, E)
space. Figure taken from Ref. [140].

In this thesis, we have studied magnetic excitations in MnSb2O6 (Chapter IV)
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using the high flux cold neutron spectrometer MACS [141] at NIST. As inelastic

scattering cross sections are generally orders of magnitude smaller than the

elastic scattering cross sections, the sample used in spectroscopy must be bigger

than for diffraction to increase the scattered intensities. Because of chemistry

complications to grow big single crystals, it is possible to coalign arrays of single

crystals as a sample for inelastic experiments. This was done for the single crystal

experiments on MACS on MnSb2O6, as shown in Fig. IV.1.

TAS can also be used for more accurate studies of elastic scattering, as the

analyzer removes the background from the integrated inelastic scattering. We

have used cold TAS RITA-2 (now replaced by CAMEA) at PSI to perform

single-crystal diffraction on MnSb2O6 under an horizontal magnetic field (Sec-

tion III.4.3).

II.5.5 X-ray powder diffractometer

A laboratory X-ray powder diffractometer (Rigaku SmartLab at the University of

Edinburgh) was used to characterize the crystal structure of VI3 in Section V.3.

The theory of X-ray diffraction is similar to neutron diffraction (Section II.2.2)

and is therefore not detailed in this thesis. The main difference being that the

photons are scattered by the electron clouds of the atoms instead of the point-like

nuclei in the case of the neutrons. The scattering length in Eq. (II.29) is replaced

by the X-ray atomic form factor (in electron units):

fj(Q) =

∫
d3r ρj(r)e

iQ·r, (II.86)

where ρj is the electron charge density of the j-th atom. An analytical

approximation of the form factors are tabulated in Ref. [142]. The form factor

decreases with the scattering angle, and for θ = 0, it corresponds to the number

of electrons Zj.

For a X-ray powder diffractometer in the reflection (or Bragg-Brentano) geometry,

the X-ray source and the detector are mounted on a goniometer circle, centered

on the sample holder, on which the powder sample is uniformly spread. In the

θ− θ configuration shown in Fig. II.12, the sample is fixed, and X-ray source and

detector are moving symmetrically to scan the scattering angle 2θ.
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sample holder

X-ray source X-ray detector

Figure II.12 X-ray powder diffractometer in the Bragg-Brentano geometry, in
θ − θ mode, where the sample is fixed, and X-ray source and
detector moves simultaneously.
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Chapter III

Diffraction studies on MnSb2O6

The next two chapters will be dedicated to the study of MnSb2O6. Chapter III

consists of an introduction to the material followed by results of neutron

diffraction experiments. This chapter has been adapted from Ref. [1].

III.1 Introduction

III.1.1 A chiral structure

Coupling magnetism and ferroelectricity would allow the possibility for controlling

electric polarization with a magnetic field and magnetic moments with an

electric field. However, ferroelectricity and magnetism originate from disparate

microscopic mechanisms [25], and such multiferroic materials are rare. Despite

these challenges, complex coupling schemes have been intensively studied and

sought after for decades, motivated by the interesting physics and promising

multifunctional applications [32–35]. For example, noncentrosymmetric magnetic

ordering can break inversion symmetry and induce an improper electric polar-

ization via the inverse antisymmetric Dzyaloshinskii-Moriya (DM) interaction

[28, 143]. This is the case in cycloidal magnets, often stabilized by the competition

of exchange interactions, and where the sense of rotation of the spins can be

linked to the sign of the electric polarization [41, 42, 47]. Additional interest

can be found in materials having a crystallographic chirality that may naturally

stabilize a noncentrosymmetric magnetic structure. For example, iron based
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langasite (Ba3NbFe3Si2O14 [125, 144–148]) crystallizes in the trigonal space group

P321, and its structural chirality is coupled to the chirality of its magnetic helix

through symmetric Heisenberg exchanges.

(c)(b)

(a)

Mn
Sb
O

L R

Figure III.1 (a) Crystal structure of chiral MnSb2O6. The structural chirality
can be defined as the helical winding of the Mn-O-O-Mn super-
super-exchange path (blue lines) with respect to the c-axis: it is
clockwise for left-handed structure (b) and anticlockwise for right-
handed structure (c). Figures made using Vesta [149].

Analogous to iron based langasite, MnSb2O6 crystallizes in the trigonal space

group P321, which is among the 65 space groups containing only symmetry

operations of the first kind: translations, rotations and screw rotations [150].

Referred as the Sohncke groups, they allow chiral crystal structures such as

Ba3NbFe3Si2O14 and MnSb2O6. Magnetic manganese ions with a valence of

Mn2+ give a high spin S = 5/2 and orbitally quenched moment, L ≈ 0 [57].

Isolated MnO6 octahedra are interconnected by the SbO6 octahedra, as shown

in Fig. III.1(a). The structural chirality can be defined as the helical winding of

the Mn-O-O-Mn super-super-exchange (SSE) path along the vertical c-axis. It

is left-handed if the winding is clockwise around the c-axis [Fig. III.1(c)], and

right-handed if the winding is anti-clockwise [Fig. III.1(d)].
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(a)

(c)

(b)

Figure III.2 (a) The magnetic structure of MnSb2O6 reported in Ref. [57] : Mn
atoms form a triangle in the (ab)-plane. The moments are rotating
with a cycloidal modulation along the c-axis, and are dephased by
2π/3 within the triangle. The cycloidal polarity P defines the
sense of rotation of the cycloids. The axial vector A defines the
sense of rotation within the triangle, and can be: (b) parallel, or
(c) antiparallel to P , defining the magnetic domains MD1 and
MD2. Figure taken from Ref. [57].

III.1.2 A polar magnet

Magnetization measurements found long-range magnetic order below TN ≈ 12K

and some evidence for short-range correlations below 200K have been provided

[151, 152]. Based on earlier neutron powder diffraction experiment the magnetic

moments were determined to rotate nearly as cycloids, in the (ac)-plane, with

an incommensurate propagation vector k = (0.015, 0.015, 0.183) [151]. Nearest

neighbor moments arranged in triangular motifs in the (ab)-plane are dephased

by 120°. More recently, Johnson et al. measured a propagation vector k =

(0, 0, 0.182) and found out that the Mn moments are rotating in the (ac)-plane,

forming a pure cycloidal magnetic structure as shown in Fig. III.2 [57]. Two

vectors were introduced to describe the sense of rotation of the spins along the

cycloidal modulation and within a basal triangle:

• The cycloid polarity was defined as Pm = k × (S × S′), where S and S′

are adjacent spins along the c-axis. Pm is the same for the three Mn atoms

in the triangle.

• The magnetic moments of the Mn atoms within triangle are dephased by
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2π/3 and their sense of rotation was defined by the axial vector A = k×V

where V = 1
3
(S1 × S2 + S2 × S3 + S3 × S1) is the classical chirality vector.

Two distinct magnetic configurations where Pm and A are parallel or antiparallel

were labeled MD1 [Fig. III.2(b)] and MD2 [Fig. III.2(c)]. The sign of the product

Pm ·A could be distinguished by single-crystal unpolarized neutron diffraction.

They found out a domain fraction MD1(0.8)/MD2(0.2) which was attributed

to a non-racemic mixture of two chiral structural domains. In Section III.3.2,

we will redefine these vectors and relate them to well-defined, generic magnetic

parameters ηC and ηT that couple directly to the crystal chirality σ. In

Section III.4.2.2, we will show that the consideration of structural twins is actually

necessary to attribute the magnetic domains MD1 and MD2 to chiral structural

domains.

III.1.3 Comparison with iron langasite Ba3NbFe3Si2O14

(a) (b)

Figure III.3 Magnetic structure of (a) MnSb2O6 with a cycloidal order and
(b) Ba3NbFe3Si2O14 with a helical order. Senses of rotation of the
spins along the propagation order and within a triangle of magnetic
ions are described by magnetic parameters. Figures made using
Mag2Pol [134].

MnSb2O6 is structurally and magnetically very similar to Ba3NbFe3Si2O14 which

also crystallizes in the P321 space group [144, 145]. Fe3+ are the magnetic ions [in

red, green and blue in Fig. III.3(b)] and they also form triangles in the (ab)-plane.

The main difference is that the magnetic moments order below TN = 27K in the

(ab)-plane with an helical modulation with a commensurate propagation vector

k = (0, 0,∼ 1
7
) [148], as shown in Fig. III.3(b). In iron langasite, the rotation

of the spins along the helix and within a triangle are respectively described by

scalar chiralities ϵH and ϵT. This is similar in MnSb2O6 where the parameters ηC
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and ηT indicate the sense of rotation of the spins, respectively along the c-axis

and within a basal triangle, as shown in Fig. III.3(a).

MnSb2O6 magnetic structure can be seen as a global rotation of Ba3NbFe3Si2O14

magnetic moments by ±90◦ around the axial vector A (Fig. III.2) [57]. Only

enantiopure single crystals of iron langasite were observed [125, 144]. Moreover,

a single magnetic configuration was measured [144], and this was lately explained

by the presence of single-ion anisotropy which makes the helix elliptical rather

than circular, lifting the degeneracy by favoring one triangular chirality [125]. It

is also remarkable that the magnetic structure is rather stabilized by symmetric

exchange interaction than DM interaction [145, 146] which often has an important

role in noncentrosymmetric materials presenting rotating magnetic structures

[153]. For MnSb2O6, the DM interaction should neither play in the stabilization

of the cycloidal order, as it would be perpendicular to a threefold axis, and all

the DM vectors would exactly cancel out [57], if there is no structural transition

from the paramagnetic P321 space group. Hence, the reason why a cycloidal

modulation is favored over a helical modulation remains unclear.

III.1.4 Heisenberg model

The magnetic interactions are described by a dominant Heisenberg Hamiltonian

Ĥ =
∑
ij

JijŜi · Ŝj, (III.1)

with the symmetric exchange constants corresponding to the seven SSE pathways

in MnSb2O6 [57]. The nearest neighbor exchange paths are shown in Fig. III.4,

where the oxygen atoms are omitted for clarity. Each manganese and antimony

atom is surrounded by six oxygen atoms forming edge-sharing octahedra. In

a minimalist model considering only interactions between neighboring Mn2+

ions, there are therefore seven exchange constants which need to be considered.

Intraplane interactions are shown in Fig. III.4(a) where J1 connects a triangle

of MnO6 octahedra through a SbO6 octahedra centered at the origin, and J2

connects MnO6 octahedra between these triangles, through an interplane SbO6

octahedron shown in Fig. III.4(c). Interplane interactions within a Mn triangle

connected by J1 are shown in Fig. III.4(b), where J4 is the straight interplane

exchange interaction, and J3 and J5 are diagonal exchange interactions. Similarly,
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Figure III.4 Drawing of the seven nearest neighbors interactions in MnSb2O6.
(a) Intraplane interactions J1 connecting triangles of Mn centered
at the lattice origin, and J2 connecting between these triangles.
(b) Interplane interactions based on the J1 triangle, J4 is the
straight interplane interaction, while J3 and J5 are diagonal chiral
interactions. (c) Interplane interactions based on the J2 triangle,
with J6 and J7 as chiral exchange interactions. Oxygen atoms are
omitted here for clarity. Figure made using Mag2Pol [134].

Figure III.4(c) shows J6 and J7, the diagonal exchange interactions connecting a

Mn triangle linked by J2. Interestingly, J3 and J6 are related to the right-handed

helical winding of the Mn-O-O-Mn SSE pathways [shown in Fig. III.1(c) for J3],

while J5 and J7 are related to left-handed SSE pathways [shown in Fig. III.1(b)

for J5]. Thus, these chiral exchange paths are interchanged by applying inversion

symmetry operation between structurally left- and right-handed crystals [57]. We

note that only the five first exchange constants were necessary to describe the

SSE interactions in iron langasite, due to structural differences with MnSb2O6.

Indeed, in Ba3NbFe3Si2O14, the Fe-Fe bond distance d2 = 5.652 Å associated with

intertriangle interaction J2 is significantly larger than the Fe-Fe bond distance

d1 = 3.692 Å tied to intratriangle interaction J1 [146]. On the contrary, in

MnSb2O6, the Mn-Mn bond distance d2 = 4.845 Å is smaller than d1 = 5.596 Å,

as a result the related interplane interactions J6 and J7 are expected to be more

58 Chapter III. Diffraction studies on MnSb2O6



significant as they link magnetic Mn2+ ions through SSE pathways.

III.1.5 Ferroelectric switching mechanism

As explained in Section I.2, cycloidal magnets can hold an electric polarization

P ∝ rij × (Si × Sj), (III.2)

where rij is the distance between two spins at sites i and j. Magnetic domains

can exist when the symmetry of the paramagnetic phase is lowered by the ordered

magnetic structure. These domains are energetically equivalent, and related by

the symmetry operators which are broken during the phase transition [18]. In

the case of MnSb2O6, threefold symmetry is broken by the cycloidal magnetic

structure, hence at least three cycloidal domains are expected below TN. The

rotation plane of the cycloids for each magnetic domain defines a cycloidal

polarity, related to the other domains by threefold symmetry. In this case,

three directions of electric polarization are present in the crystal, as shown in

Fig. III.5(a). By applying an electric field greater than the ferroelectric coercitive

field in one direction, one could select one domain [Fig. III.5(b)], and by reversing

the sign of the electric field, one could switch to a mixture of two polar (thus

magnetic) domains [Fig. III.5(c)] [57].

(a) (b) (c)

Figure III.5 Unique ferroelectic switching mechanism predicted in MnSb2O6.
(a) Three polar domains exist in MnSb2O6. Applying a sufficient
electric field in one sense or the other allows to switch from (b)
a one-domain state to (c) a two-domain state. Figure taken from
Ref. [57].
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Additional magnetic domains related to the signs of ηC and ηT will also form, as

discussed later.

III.1.6 A tilted cycloid model

In 2016, Kinoshita et al. measured the (ab)-plane moments of the Mn atoms along

the [11̄0] axis [58]. By measuring the magnetic susceptibility as a function of the

angle of an applied magnetic field (⊥ [11̄0]), they found out that the cycloidal

rotation plane is tilted from the c-axis by an angle ±θ ≈ 13◦ as shown in Fig. III.6.

Their unpolarized neutron diffraction on single-crystal data agreed with this tilted

cycloid model, with a best fit at θ = 18(5)◦. An other interesting point is that

they found out one dominant magnetic domain (less than 1% of MD2) which

was attributed to a single chiral structural domain in their compound. As for the

previous interpretation [57], we will show in Section III.4.2.2 that structural twins

may be present, and have to be considered for the attribution of the magnetic

domains MD1 and MD2 to chiral structural domains.

(a) (b)

Figure III.6 The tilted cycloid model proposed in Ref. [58]. The moments are
aligned along [11̄0], and tilted from the c-axis by a (a) positive (b)
negative angle θ. Figures made using Mag2Pol [134].

In addition to the breaking of threefold symmetry from the P321 paramagnetic

space group, this magnetic structure is also breaking the twofold symmetry. This

was not considered in Ref. [57], because the a-axis, which is a twofold symmetry

axis, lies within the spin rotation plane. Here, the moments are perpendicular to

the twofold axis [110]. Therefore, this leads to six equivalent magnetic domains

which can be characterized by an electric polarization P (parallel or antiparallel

to the cycloidal polarity Pm). This is illustrated in Fig. III.7(a).

The key point is that twofold symmetry inverts the tilt of the rotation plane and
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(a) (b) (c)

Figure III.7 (a) Six magnetic domains are present with different electric
polarization P , the tilt of the cycloidal plane for each domain
is indicated by (±). Applying a magnetic field (b) out of the
plane towards [001], (c) out of the plane towards −[001] favors (b)
a positive tilt, (c) a negative tilt, for which the polarization are
inverted. From Ref. [58].

the cycloidal polarities Pm. For example the domains shown in Fig. III.7(b) and

(c) are related by twofold symmetry along [110]. This allows to easily select one of

the six domains by applying a magnetic field: (1) perpendicular to the rotation

plane to select the threefold domain, (2) directed positively [Fig. III.7(b)] or

negatively [Fig. III.7(c)] out of the (001) plane to select the twofold domain. As

one domain corresponds to one electric polarization, this allows an unique control

of the ferroelectric domain with a magnetic field. This polarization selection was

measured and studied in details in Ref. [58], and they showed that a low magnetic

field B ≈ 0.3T is sufficient to select the magnetic domain. However, according

to this theory, based on the tilted cycloid ground state, the positive tilt (+) is

favoring Pm along −[11̄0], while negative tilt (-) is favoring Pm along [11̄0] as

shown in Fig. III.7(b)-(c). In principle, for both positive and negative tilt, Pm

along ±[11̄0] should be energetically equivalent, and one should consider twelve

polar domains instead of six. This was done in our SNP study presented in

Section III.4.2.3, and we propose a theory based on DM interaction to favor the

polar domains in Section III.5.

III.1.7 Outline

Unpolarized and polarized neutron diffraction were used to study both powders

and single crystals of MnSb2O6 in order to study in detail both crystal and

magnetic structure. A mixture of chiral structural domains in our single crystal

is found while there is no clear evidence of the tilted model for the magnetic

ground state. Through magnetic diffraction under an applied magnetic field,
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it is shown that it is possible to manipulate the magnetic structure with small

magnetic fields. Finally an alternative mechanism for the appearance of electric

polarization will be proposed, based on the DM interaction under an external

magnetic field and coupled chiralities. This mechanism does not require a tilted

cycloid ground state for ferroelectric domain switching in an applied magnetic

field.

This chapter is based upon five sections including this introduction. After

describing the materials preparation and neutron instrumentation used for

diffraction studies in Section III.2, twinning afforded by the P321 symmetry

and various structural and magnetic chiralities in MnSb2O6 will be defined in

Section III.3. In Section III.4, the experimental results will be presented, followed

by Section III.5 with a phenomenological theory for ferroelectric switching

previously observed.

III.2 Experimental details

In this section we describe the materials preparation and neutron scattering

experiments used to study both powders and single crystals of MnSb2O6.

III.2.1 Materials preparation

Materials preparation followed the procedure outlined in Ref. [154]. Powders of

MnSb2O6 were prepared by mixing stoichiometric amounts of pure MnCO3 and

Sb2O3. After mixing through grinding, the powder was pressed into a pellet and

heated up to 1000◦C with the process repeated with intermediate grinding. It

was found that heating the pellet to higher temperatures introduced the impurity

Mn2Sb2O7. Single crystals of MnSb2O6 were prepared using the flux method.

Starting ratios for single-crystal growth were (by weight) 73% of flux V2O5, 20%

of polycrystalline MnSb2O6 and 7% of B2O3. The powder was ground and pressed

into a pellet and flame sealed in a quartz ampoule under vacuum (less than 1e−4

Torr). B2O3 was used to lower the melting temperature of the V2O5 flux. Back

filling the ampoules with ≈ 200 mTorr of Argon gas was found to noticeably

improve crystal sizes. Quartz ampoules were then heated to 1000◦C at a rate of

60◦C/hour and soaked at this temperature for 24 hours. The furnace was then

cooled to 700◦C at a rate of 2◦C/hour and held for 24 hours, before it was switched
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off and allowed to cool to room temperature. Crystal sizes in the range from a

few millimeters to nearly a centimeter were obtained through this procedure.

Powders and single crystals of MnSb2O6 were synthetized by J. Pásztorová, M.

Songvilay and C. Stock.

III.2.2 Neutron diffraction

The crystal and magnetic structures of MnSb2O6 were studied on the four-

circle diffractometers D9 [155] and D10 [156] (ILL, Grenoble) using a single

crystal sample of dimensions ∼ 3 × 2 × 0.2 mm3 (hexagonal shape). On D9,

a monochromatic neutron beam of wavelength λ = 0.836 Å was selected by the

(220) reflection of a Cu monochromator in transmission geometry. On D10,

a wavelength of λ = 2.36 Å was selected from a vertically focusing pyrolytic

graphite monochromator. The same single crystal was previously characterized

using the CRYOgenic Polarization Analysis Device (CRYOPAD)[122] on the spin-

polarized hot neutron diffractometer D3 [157] (ILL, Grenoble) using a wavelength

λ = 0.85 Å selected by the (111) reflection of a Cu2MnAl Heusler monochromator.

The good quality of the single crystal was confirmed by neutron Laue diffraction.

Powder diffraction was performed on the high-intensity two-axis diffractometer

D20 [158] (ILL, Grenoble) on ∼ 17 g of powder, using a wavelength λ = 2.41 Å

selected by the (002) reflection of a pyrolitic graphite HOPG monochromator

in reflection position. Single-crystal diffraction under an external magnetic field

was performed on the cold triple-axis spectrometer RITA-2 (now replaced by

CAMEA, SINQ, Villigen), using a horizontal cryo-magnet MA7 with wavelength

λ = 4.9 Å monochromated with a vertically focused pyrolitic graphite PG002

monochromator. The use of a horizontal field was necessary given the need to

apply the magnetic field along the c-axis, parallel to the magnetic propagation

vector which is kinematically constrained to be in the horizontal plane.

While conventional powder and single-crystal neutron diffraction was used in this

work, we relied as well heavily on the use of less standard techniques: Schwinger

scattering and spherical neutron polarimetry, to gain extra information into the

complex crystal and magnetic structures of MnSb2O6. These techniques were

introduced in Section II.4.2 and Section II.4.3.

The neutron scattering experiments on D3 at Institut Laue-Langevin were

performed before the beginning of this thesis by C. Stock, J. Pásztorová, M.
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Songvilay and N. Qureshi. The neutron scattering experiment on RITA-2 at

Paul Scherrer Institute was performed before the beginning of this thesis by C.

Stock, J. Pásztorová and Ch. Niedermeyer.

III.2.3 Transmission polarized optical microscopy

The transmisson polarized optical microscopy presented in Section III.4.1.3 was

performed by S.-W. Cheong at Rutgers University.

III.3 Theory and definitions

Given the complexity of the magnetic and crystal structure in MnSb2O6, we

outline in this section the various definitions for the structural and magnetic

chiralities and twins. This is required for presenting powder and single-crystal

neutron diffraction results discussed below.

III.3.1 Definition of twins

Twinning occurs when two or more single crystals of the same species are

intergrown in different orientations, related by the so-called twin laws [159, 160].

When the twin operation belongs to the point group of the lattice but not to the

point group of the crystal, the twinning is called twinning by merohedry. In this

case, the crystal lattices of the two twins overlap in both direct and reciprocal

space [161]. As all Bravais lattices are centrosymmetric, the noncentrosymmetric

basis of MnSb2O6 (space group P321) is expected to form inversion twins.

Furthermore, the absence of improper rotations in P321 (e.g. mirror plane)

implies the inversion twins will have opposite structural chiralities (known as

enantiomorphs). It follows that the reciprocal lattice of one twin is the inverse

of the other, i.e. (hkl) → (h̄k̄l̄). In the case of the P321 space group additional

merohedral twinning associated with twofold rotation around the c-axis, i.e.

(hkl) → (h̄k̄l), is also allowed [162]. We note that these twins related by

twofold rotation have the same chirality. Combining the twofold rotation with the

inversion twin leads to a fourth twin (hkl̄). In order to distinguish the structural

chirality of these four possible merohedral twins, we will subsequently use the

labels L(hkl), L(h̄k̄l), R(h̄k̄l̄) and R(hkl̄), where L(R) refers to the left(right)-
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handedness of the crystal structure, defined by the helical winding of the Mn-O-

O-Mn super-super-exchange pathways in Fig. III.1(b)-(c).

III.3.2 Definition of structural and magnetic chiralities

In crystallography, chirality can be defined as the property of an object “being

non-superposable by pure rotation and translation on its image formed by

inversion through a point” [150]. On the other hand, the definition of magnetic

chirality is not obvious because the time reversal operation (T) has to be

considered in addition to parity operation (P). Barron proposed a more general

definition: “True chirality is possessed by systems that exist in two distinct

enantiomeric states that are interconverted by space inversion but not by time

reversal combined with any proper spatial rotation”[163]. In this meaning only

helical magnetic structures are truly chiral [33, 112]. However, spin “chirality”

is commonly used to refer to the sense of rotation of the spins with respect to a

crystallographic reference often taken to be an oriented link between two atomic

sites, say rij, and can thus describe the spin configuration of cycloidal structures

and triangular networks [164].

The cross-product of two spins at sites i and j defines a vector chirality

Vij = Si × Sj (III.3)

which is a T-even axial vector (i.e. P-even), changing sign on exchange of indices

i ↔ j. This chirality vector is well-defined by providing the oriented link between

two spins.

For clarification and to understand our diffraction data, we redefine the vectors

introduced in Ref. [57] in the context of MnSb2O6. To do this, we consider an

orthonormal basis R = (x̂, ŷ, ẑ) where x̂ lies along the a-axis, ẑ along the c-

axis and ŷ completes the right-handed basis set of vectors. We define the spin

rotation plane using two vectors û and v̂, where we take û ≡ x̂ in the following.

In order to account for a tilt of the spin rotation plane we introduce θ as the tilt

angle about û such that v̂ = [0,− sin θ, cos θ]. We note that in our analysis, û

could take any direction in the (ab)-plane, and the definition of the tilt angle θ

can be generalized. By definition, any two spins Si and Sj, lie within the uv-

plane, so their cross product must lie along ±n̂ = û × v̂ = [0,− cos θ,− sin θ]
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(Fig. III.8). Note that when θ = 0, the spins rotate in a plane containing ẑ and

we obtain a proper cycloid [Fig. III.3(a)]. When θ = 90◦, the spins rotate in a

plane perpendicular to ẑ defining a proper helix, as reported in Ba3NbFe3Si2O14

[Fig. III.3(b)]. Intermediate values of θ give a generic helicoidal structure that

can be decomposed into an admixture of helical and cycloidal parts.

Figure III.8 û and v̂ are the main axis of the helicoidal spin structure envelope.
Any cross product of spins lies along n̂. A and Pm lie along û.

The spin configuration within a basal triangle of Mn2+ ions is described by the

classical vector chirality VT = 1
3
(S1 × S2 + S2 × S3 + S3 × S1) where the indices

are given by right hand rule around the axial vector ẑ defined as parallel to the

positive c-axis. Similarly, a vector chirality VC = Sα × Sβ can be introduced to

describe the rotation of the spins along the c-axis, relatively to the polar vector

rαβ where α and β refer to two neighboring layers along the c-axis. We can now

redefine the axial vector A and the polar vector Pm used to characterize the

cycloidal magnetic structure of MnSb2O6 (see Section III.1.2) in Ref. [57] as

{
A = ẑ × VT = [ηT cos θ, 0, 0]

Pm = rαβ × VC = [ηC cos θ, 0, 0],
(III.4)

where ηT and ηC are T-even P-even and T-even P-odd parameters associated

with the magnetic configuration within the (ab)-plane triangular motifs and on

propagation along the c-axis, respectively. Importantly, both parameters are

conserved upon rotation by θ. We can similarly redefine the triangular chirality

ϵT and spin helicity ϵH used to characterize the helical magnetic structure of

Ba3NbFe3Si2O14 in Ref. [144] as

{
ϵT = ẑ · VT = −ηT sin θ

ϵH = rαβ · VC = −ηC sin θ,
(III.5)

66 Chapter III. Diffraction studies on MnSb2O6



These expressions allow us to use ηT, ηC, and θ to parametrize a generic helicoidal

magnetic structure as shown in Fig. III.3(a) for θ = 0. The vector quantities of

Eq. (III.4) capture the cycloidal component projected into the (ac)-plane, and

the scalar quantities of Eq. (III.5) capture the helical part projected into the

(ab)-plane. We note that the helical part is odd in θ, while the cycloidal part is

even.

III.3.3 Magnetic structure description

Considering the two perpendicular unit vectors û and v̂ that define the spin

rotation plane, we can describe the magnetic moment for a Mn atom at site

j = (1, 2, 3) on a given triangular motif, in layer α (along the c-axis), and with

an angle ϕαj [58]:

µαj = Mu cosϕαjû+Mv sinϕαjv̂

ϕαj = 2πηCkzα + ηT(j − 1)
2π

3
,

(III.6)

Mu and Mv describe the shape of the ellipse (circular for Mu = Mv), kz is the

vertical component of the propagation vector k = (0, 0, kz). ηC and ηT describe

the sense of rotation of the spins respectively along the positive c-axis, and within

a Mn2+ triangle, following the definitions above. A full description of the magnetic

structure is given in Appendix C, along with its implementation in refinement

softwares.

The first magnetic structure proposed in Ref. [57] has û lying along the

crystallographic a-axis, and v̂ along the c-axis. This magnetic structure preserves

the twofold symmetry (magnetic space group B21′). This is not the case in the

model proposed in Ref. [58], with û ∥ [11̄0], which lowers the symmetry of the

magnetic space group to P11′ owing to the breaking of the twofold symmetry.

However, the tilting of v̂ from the c-axis reported in Ref. [58], by an angle θ, is

also allowed in the B21′ space group as long as the twofold symmetry is preserved.

Both models consider the presence of threefold domains, and for each of them,

the magnetic moments in Eq. (III.6) are transformed by rotating û and v̂ by 120◦

around the c-axis.
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III.3.4 Invariant from Heisenberg interactions

If we consider a Heisenberg Hamiltonian with seven SSE pathways as described

above and illustrated in Fig. III.4, the classical mean-field energy can be derived

as a function of the propagation vector kz > 0:

E0(k) = −1

2
(J1 + 2J2) + J4 cos (2πηCkz)

+ JR cos (2πηCkz + ηT
2π

3
) + JL cos (2πηCkz − ηT

2π

3
), (III.7)

where JR = J3 + 2J6 sums the right-handed interactions and JL = J5 + 2J7

sums the left-handed interactions. Minimizing Eq. (III.7) with respect to the

propagation vector gives for the ground state:

tan (2πηCkz) =
ηT

√
3(JR − JL)

JR + JL − 2J4
. (III.8)

As left-handed and right-handed exchange paths are switched between the

enantiomorphs, the quantity JR − JL changes sign upon inversion symmetry.

Thus taking the DFT values for the exchange constants from Ref. [57], a sign

analysis of Eq. (III.8) gives the invariant:

σηCηT = +1, (III.9)

where σ = +1 for a left-handed crystal structure (L), and σ = −1 for a

right-handed crystal structure (R). This is similar to iron langasite, where the

structural chirality is linked to the pair of magnetic chiralities readily obtained

by substituting θ = 90◦ into Eq. (III.5) [144].

III.4 Results and discussion

Having outlined the experimental neutron diffraction techniques and the defini-

tions relevant for the discussion of MnSb2O6, we now present the experimental

results. We first discuss the crystal and then the low temperature magnetic

structure.
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III.4.1 Crystal structure

III.4.1.1 Single-crystal neutron diffraction

For a given Bragg reflection Q, the inversion twin will scatter with a nuclear

structure factor FN(−Q). In absence of resonant scattering, Friedel’s law is valid,

and both twins will scatter the same nuclear intensity ∝ |FN(Q)|2. Inversion

twins are thus indistinguishable by unpolarized neutrons. On the other hand,

twofold twins reveal different nuclear structure factors depending on the (hkl)

indices so their domain population can be refined using unpolarized neutrons if

the appropriate Bragg reflections are measured. We collected intensities from 430

nuclear reflections at 50K on the four-circle diffractometer D9. Rocking scans

show nicely resolved Bragg peaks, with a full width at half-maximum ∼ 0.4◦ in ω.

The data were refined using Fullprof [133]. The parameters scale, extinction,

atomic positions, displacements, as well as domain population for twofold twins

were refined, showing that our single crystal has no twofold twins as one nuclear

intensity domain was refined to a population of 0.991(3). Our refinement results

(detailed in Table III.1) agree with the known crystal structure previously studied

by neutron powder diffraction at room temperature [151].

As the threefold symmetry from paramagnetic P321 space group is broken by the

cycloidal structure in the magnetic phase [57], this could relate to a symmetry

lowering of the nuclear space group below TN. To investigate this possibility of a

structural distortion coinciding with TN, a separate set of 318 Bragg reflections

was measured at 2K (below TN ≈ 12K), leading to 75 inequivalent groups of

reflections. If the crystal symmetry is reduced, the equivalent reflections in P321

should no longer be equivalent within each group of reflections. For example,

reflections (h, k, l), (k,−h − k, l) and (−h − k, h, l) are related by threefold

symmetry along the c-axis and are thus equivalent in P321. In the case where

the threefold symmetry is broken, these three kind of reflections are no more

equivalent. In addition, three structural domains rotated by 120◦ are expected.

If these threefold domains are exactly equi-populated, the intensities scattered

from each domain will average out, making them impossible to be distinguished

from a single threefold symmetric domain. Else, the intensities of reflections

within a group of P321-equivalent reflections will differ. The internal R-factor

is Rint = 4.1% for the data reduction in P321 symmetry, which indicates that

the differences of intensities for P321-equivalent reflections are not measurable
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Table III.1 Structural parameters of MnSb2O6 single crystal measured on D9,
refined with Fullprof [133] within nuclear space group P321
(No. 150)

T = 50K Measured, independent, observations with equivalent reflections: 430, 406, 44

Rint = 8.78% RF = 4.87% RBragg = 4.69% χ2 = 1.31

a = b = 8.784(8) Å c = 4.724(6) Å

Atoms Wyckoff x y z Biso (Å2) Occ.

Mn 3e 0.6319(3) 0.0000 0.0000 0.19(3) 1

Sb1 1a 0.0000 0.0000 0.0000 0.06(3) 1

Sb2 2d 0.3333 0.6667 0.5059(4) 0.04(3) 1

Sb3 3f 0.3050(3) 0.0000 0.5000 0.09(2) 1

O1 6g 0.1046(3) 0.8917(3) 0.7626(2) 0.24(2) 1

O2 6g 0.4711(2) 0.5891(2) 0.7286(2) 0.19(2) 1

O3 6g 0.2258(3) 0.7804(3) 0.2805(2) 0.16(2) 1

T = 2K Measured, independent, observations with equivalent reflections: 845, 529, 423

Rint = 4.09% RF = 5.27% RBragg = 5.40% χ2 = 1.37

a = b = 8.791(2) Å c = 4.718(1) Å

Atoms Wyckoff x y z Biso (Å2) Occ.

Mn 3e 0.6329(3) 0.0000 0.0000 0.30(3) 1

Sb1 1a 0.0000 0.0000 0.0000 0.16(3) 1

Sb2 2d 0.3333 0.6667 0.5061(5) 0.09(3) 1

Sb3 3f 0.3050(2) 0.0000 0.5000 0.09(2) 1

O1 6g 0.1047(2) 0.8920(3) 0.7628(2) 0.27(1) 1

O2 6g 0.4710(2) 0.5889(2) 0.7285(2) 0.25(2) 1

O3 6g 0.2253(3) 0.7799(2) 0.2804(2) 0.23(2) 1

given our setup. In addition, the data was refined including the threefold domains

in P1 symmetry, but this did not significantly improve the refinement. In the

end 845 nuclear reflections were measured at 2K, and were well refined in P321

space group as shown in Fig. III.9(b), in comparison to the 50K refinement

in Fig. III.9(a). From this, there is no significant evidence of breaking of

P321 symmetry below Néel temperature. Detailed refinement results for both

temperatures are listed in Table III.1.

III.4.1.2 Schwinger scattering

To characterize the chiral domains, Schwinger scattering was measured on D3 on

nine Bragg reflections at T = 3K on the same single crystal characterized on

D9, for which only two out of four possible twins were measured to be present as

explained above. Absolute indexation was determined on D9 by comparing the

nuclear intensities of Bragg reflections. This was not done on D3 (as only flipping

ratios were measured), so the reflections can be indexed with a twofold rotation

between D3 and D9 experiments. Thus, either {L(hkl), R(h̄k̄l̄)}, or {L(h̄k̄l),
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Figure III.9 Observed versus calculated intensities in P321 space group for
nuclear reflections measured at (a) 50K, (b) 2K.

R(hkl̄)} are the twins present (with the indexation from D3 experiment).

The experimental flipping ratios are then fitted to a linear combination of the

theoretical ones (calculated with the atomic positions from D9 data refinement

at 2K), as shown in Fig. III.10. The best fit is obtained considering the twins

L(h̄k̄l) and R(hkl̄), giving 0.54(2) of left-handed structural domain, and 0.46(2)

of right-handed domain. The error bars are quite large in this experiment, but

the flipping ratios being close but different than 1 within uncertainties indicate

that there is a mixture of chiral inversion twins in the crystal. For an enantiopure,

the flipping ratios should be close to one set of predicted flipping ratios, which

shows much more pronounced asymmetries as exemplified by the (511) and (153)

reflections. The results are thus different from enantiopure Ba3NbFe3Si2O14 single

crystals which were previously studied [125, 144, 146].

III.4.1.3 Transmission polarized optical microscopy

Chiral structural domains in a single crystal can also be measured with a

polarized optical microscope. Due to the optical activity in chiral compounds, the

polarization plane of a linearly polarized light is rotated after traveling through

the sample [165]. The sense of rotation depends on the handedness of the

considered domains, which can be distinguished by observing the transmitted

light through an analyzer [166, 167].
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Figure III.10 Measured flipping ratios are fitted to a linear combination of the
theoretical flipping ratios for two structural twins.

A different sample of MnSb2O6, synthesized following the same procedure

described in Section III.2.1, was observed under a transmission polarized optical

microscope. The directions of the polarizer and analyzer are shown in blue and

red in Fig. III.11(a)-(b), forming an angle θ = 90±3◦. These images show several

domains with opposite chirality. The constrast between neighboring domains is

reverted by rotating the analyzer from θ = 93◦ to θ = 87◦ because the polarization

plane of the transmitted light is rotated in the opposite sense for opposite chirality

domains in the sample. Fig. III.11(c) shows the difference of intensity between

Fig. III.11(a) and Fig. III.11(b), clearly revealing the chiral areas in the single

crystal.

Given the same chemical synthesis, our other single crystals, including the one

studied under neutron diffraction, are likely to have a similar behavior. They are

expected to be a mixture of chiral structural domains, which is consistent with

our Schwinger scattering analysis described above.

III.4.1.4 Magneto-structural effects

Neutron powder diffraction was performed on D20 from 2.5K to 89.5K (see

Appendix D for more details). The crystal structure was refined sequentially as a
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Figure III.11 Transmission polarized optical microscopy images of a single
crystal of MnSb2O6: for different angles between the polarizer
(P) and analyzer (A) in (a) and (b). (c) Images substracted,
showing the chiral domains in the sample.

function of temperature using Fullprof [133]. While no symmetry breaking of

the P321 paramagnetic space group was evidenced by our studies, as discussed

above, structural changes induced by the phase transition are visible from the

powder diffraction data refinement. Fig. III.12(a) shows the refined volume of

the unit cell as a function of temperature. The volume decreases sharply under

TN ≈ 12K, demonstrating a deviation from the linear thermal expansion of the

unit cell upon magnetic ordering. Actually, this results from the contraction of

both a and c lattice constants. Similarly, changes in bond distances are caused

by magneto-elastic effects, as shown in Fig. III.12(b) for the distance between

Mn atom (in purple) and symmetry equivalent O1 atoms (in red). More results
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on the MnO6 octahedral distortion as a function of temperature are presented

in Appendix D.3. We note that the unit cell volume shows some anomalies in

Fig. III.12(a) around 3K and 10K. We have over-plotted the different diffraction

patterns and could not observe any shift in the peaks positions. We think that

these jumps are numerical artifacts rather than real lattice parameters shifts.

d

Figure III.12 Refinement results from D20. Temperature dependence of: (a)
the unit cell volume, (b) the bond length between Mn (in purple)
and symmetry equivalent O1 atoms (in red). TN ≈ 12K is shown
in dashed gray lines.

III.4.2 Magnetic structure

III.4.2.1 Order parameter

Neutron powder diffraction is not sensitive to the direction of the magnetic

moments in the (ab)-plane, and neither to the magnetic chiralities. Yet the

magnitude of the magnetic moments can be refined from D20 powder diffraction

data, as a function of temperature. The cycloid was constrained to be circular

(Mu = Mv) and the refined moments are shown in Fig. III.13. The data in

the critical region (8K < T < 12K) are fitted to a power law ∝ (T − TN)
β,
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with the critical exponent fixed to β = 0.369 (solid red curve) as expected for

the nonfrustrated 3D Heisenberg model [168], and to β = 0.25 (dashed blue

curve) measured for iron langasite [146] and XY -like stacked-triangular magnets

[169]. The critical behavior near TN = 11.94(1)K is in agreement with the 3D

Heisenberg model as suggested previously in Ref. [151]. Therefore MnSb2O6 does

not have the same universality class as iron langasite and other layered-triangular

magnets.

Figure III.13 Refined magnetic moments from D20 as a function of
temperature, fitted to a power law ∝ (T − TN)

β with the critical
exponent β fixed for 3D Heisenberg model (solid red curve) and
for 2D XY model (dashed blue curve).

III.4.2.2 Unpolarized single-crystal diffraction

From the invariant derived in Eq. (III.9) (σηCηT = 1), a given structural

chirality σ is compatible with two pairs of magnetic configurations (ηC, ηT). We

can label the structural and magnetic configurations as σ(ηC, ηT), which gives

four possibilities L(1, 1), L(−1,−1), R(−1, 1), R(1,−1). L(1, 1) and L(−1,−1)

configurations lead to the same magnetic intensities, and R(−1, 1), R(1,−1) are

the respective configurations of their inversion twins, as ηC is P-odd and ηT P-even

from Eq. (III.4). Magnetic intensities of inversion twins satisfy Friedel’s law, so

the four configurations are undistinguishable by unpolarized neutrons. However,

as mentioned above, twofold structural twins can exist in the P321 space group,

leading to a different set of nuclear and magnetic intensities (see Table III.2).

In previous studies, unpolarized neutron single-crystal diffraction data were

refined with a mixture of two sets of calculated magnetic intensities, attributed
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Twin σ = ηCηT |FN|2 |FM⊥|2 R

L(hkl) +1 N1 M1 R1

L(h̄k̄l) +1 N2 M2 R2

R(h̄k̄l̄) −1 N1 M1 R3

R(hkl̄) −1 N2 M2 R4

Table III.2 Summary of the possible twins and their sensitivity to nuclear
(|FN|2) and magnetic diffraction (|FM⊥ |2), and Schwinger scattering
(flipping ratio R). Different subscripts denote different values. The
twins present in our single crystal are highlighted in red.

to two chiral structural domains. In light of the present study, one should

actually assign these two sets of intensities to at least two twofold domains, with

a potential further mixture of chiral domains to which the experiment was not

sensitive. In Ref. [57], the single-crystal neutron diffraction magnetic refinement

shows a 0.8(1)MD1:0.2(1)MD2 domain fraction of the calculated intensities,

which corresponds to a fraction 0.8 of twins {L(hkl), R(h̄k̄l̄)}, and 0.2 of twins

{L(h̄k̄l), R(hkl̄)}. In absence of a method (Schwinger scattering or anomalous

X-ray scattering) sensitive to the inversion twins, one cannot conclude on the

population of all four domains. A similar issue arose in Ref. [58], where only one

set of magnetic intensities was found and attributed to an enantiopure crystal,

but could actually include a mixture of a twin and its chiral inversion twin.

The same single crystal characterized on D3 and D9 was measured on D10.

The magnetic structure was refined using Mag2Pol [134] (cross-checked with

Fullprof [133], giving similar results), with 256 magnetic reflections collected

at 2K. The scale and extinction parameters are refined using 145 nuclear

reflections (40 inequivalent, giving RF = 4.88%). A single domain in terms

of magnetic intensities was found, meaning the absence of twofold structural

twins and confirming our results from D9. These intensities are consistent with

two twins related by inversion symmetry, shown in red in Table III.2, which

can be distinguished by Schwinger scattering (see Section III.4.1.2). Extinction

parameters can be significantly different for nuclear and magnetic reflections, due

to multiple magnetic domains having smaller sizes than the structural domains

[170]. This is the case from our refinement, where the extinction parameters

refined with the magnetic intensities are found smaller than the one refined with

the nuclear intensities. To keep a consistent comparison between the magnetic

structure models, the extinction parameters were set to zero for the magnetic

refinement described below.
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Name û Mu Mv θ (◦) p1 p2 p3 RF (%)

A â 4.5(1) 4.7(1) 0 1 0 0 19.26

B â 5.7(1) 3.7(1) 0 0.40 0.20(3) 0.40(3) 15.29

C â 5.6(3) 3.8(3) 9(28) 0.40 0.20(5) 0.40(3) 15.31

D [11̄0] 5.7(1) 3.7(1) 0 0.27 0.27(3) 0.46(3) 15.29

E [11̄0] 5.9(2) 3.8(3) 15(14) 0.28 0.25(4) 0.47(4) 15.26

Table III.3 Refined parameters obtained for non-tilted and tilted cycloidal
models. The directions of the threefold domains of each magnetic
model is illustrated in red (A, B, C) and blue (D, E) in Fig. III.14.

The refinement results using different magnetic structure models labeled from A

to E are listed in Table III.3. While including the threefold domains (A→B) with

populations p1, p2, and p3 improves the goodness of fit, there is no observable

difference between models with the in-plane main axis û of the cycloid along

the a-axis and along [11̄0] (B→D). Similarly, allowing a tilt around the a-axis

(B→C), and around [11̄0] (D→E) does not significantly improve the fit. This is

because the in-plane direction û of the spin rotation plane, and the tilt angle θ are

correlated with the magnetic domain fractions, which makes no much difference

in terms of goodness of fit between models B, C, D and E. Our best fit with

the model considered in Ref. [58] is obtained with a tilt angle θ = +15(14)◦

(Fig. III.15), compared to previously found θ = 18(5)◦. However, two equi-

populated tilt domains with θ = ±18(5) were considered in Ref. [58] while in our

refinement, a single tilt domain θ > 0 was more consistent. Based on our single-

crystal diffraction data, we however do not observe a significant improvement in

the resulting fit with inclusion of a tilt in the magnetic structure.

Figure III.14 Directions of the threefold domains for the spin envelop axis û
along â (red) or [11̄0] (blue).
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Figure III.15 Observed versus calculated intensities for magnetic reflections
measured at 2K.

III.4.2.3 Spherical neutron polarimetry

SNP was performed on D3, using the same experimental setup as for the

Schwinger experiment with the exception of a 3He spin filter necessary for the

polarization analysis of the final neutron beam. The full polarization matrices

of five magnetic Bragg reflections were measured at T = 3K. CRYOPAD

[122] is used to protect the sample from any external magnetic fields, and to

select independently the initial and final polarization directions of the neutrons.

In the case of MnSb2O6, SNP is sensitive to the threefold magnetic domains

and the cycloidal parameter ηC, while the triangular parameter ηT can not be

distinguished. The measured polarization matrices were fitted using Mag2Pol

[134] to a linear combination of the possible polarization matrices as Pmeas =∑
i αiPi with αi, Pi, the population and polarization matrix of the i-th magnetic

domain.

The magnetic moments were first refined in the ac-plane (û = â and v̂ = ĉ).

In the absence of a nuclear contribution to the scattered intensity, SNP is

not sensitive to the size of the magnetic moments. Therefore, since in this

experiment purely magnetic satellites are investigated, only the ratio e = Mv/Mu,

known as the ellipticity, can be deduced. Considering the model proposed in

Ref. [57], threefold and ηC = ±1 domain populations are refined, leading to six
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polarization matrices to consider. The refinement results for this model are shown

in Table III.4. The cycloids are found elliptical along the basal direction with

e = 0.92(1) and χ2
r = 7.14. The population for the third threefold domain with

ηC = +1 was fixed to 0 in order to avoid fit divergence and unphysical results.

ηC 1 3+z 3−z Sum

+1 0.20(1) 0.20(1) 0 0.40(2)

−1 0.09(1) 0.09(1) 0.42(2) 0.60(2)

Sum 0.29(1) 0.28(1) 0.42(2) 1

χ2
r 7.14

e 0.92(1)

Table III.4 Refined parameters for the non-tilted cycloid model.

The SNP data were then fitted to the tilted cycloid model proposed in Ref. [58].

In this case, the positive and negative tilt of the angle θ have to be taken account

because it changes the rotation plane and leads to different polarization matrices.

This doubles the number of polarization matrices to include, resulting in 12

domain populations to refine (threefold ×{ηC = ±1} × ±θ). The vectors û

and v̂ of each of these 12 magnetic domains are related by symmetry operators

and the absolute values of Mu are constrained to be the same for each magnetic

domain (the same forMv), so that each magnetic domain keeps the same magnetic

moment size. This also constrains the absolute value of the tilt angle to be the

same for θ > 0 and θ < 0 domains. The results are shown in Table III.5.

Again, the domains returning unphysical values in a first refinement step were

fixed to zero in the following. The positive tilt domains are predominant, with a

population of 0.89(4), giving θ = 14(7)◦ which is consistent with the best fit from

the D10 data. However, this tilted model only slightly improves the goodness of

fit to χ2
r = 6.68.

ηC θ 1 3+z 3−z Sum

−1 + 0.08(1) 0.32(3) 0 0.40(3)

+1 - 0.01(2) 0.07(2) 0.04(2) 0.12(3)

−1 - 0 0 0 0

+1 + 0.14(1) 0 0.35(2) 0.49(2)

Sum 0.23(2) 0.39(4) 0.39(2) 1

χ2
r 6.68

e 0.96(8)

θ 14(7)◦

Table III.5 Refined parameters for the tilted cycloid model.

Our diffraction study of the magnetic structure of MnSb2O6 evidences a mixture

of threefold magnetic domains and magnetic polarities. In the absence of a

substantial improvement in R-factors on inclusion of the model with in-plane
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moments along [11̄0], we propose that the model with moments along â is the

ground state because it has a higher symmetry (not breaking twofold symmetry).

The tilt is still allowed by symmetry, as pointed out in Section III.3.3. Thus

the possibility of a tilted cycloidal structure is not ruled out by symmetry

considerations our experiments. In Section III.5 we discuss the appearance of

a macroscopic electric polarization reported in Ref. [58] and propose a different

mechanism without invoking the need of a tilted cycloid ground state.

III.4.3 Magnetic field dependence

Before discussing the electric polarization we finally investigate the magnetic

field response of the magnetic structure in MnSb2O6 owing to its importance

in any domain switching. Magnetic phase transitions induced by low magnetic

fields (below 2T) were observed previously in MnSb2O6 bulk magnetization

measurements [58, 152]. This was explained by a very small anisotropy stabilizing

the cycloidal magnetic ground state, which can be easily overcome by applying

a magnetic field, changing the spin structure to another state. In order to

complement these macroscopic measurements, neutron diffraction was performed

on RITA-2 using a horizontal magnetic field, on a single crystal of MnSb2O6,

aligned in the (H, 0, L) scattering plane such that the magnetic field could be

aligned either along the c or a-axes. A single high intensity magnetic peak,

Q = (1, 0, 1)−k was scanned over a range of temperatures (between 1.75 and 11.5

K) and magnetic fields (between 0 and 5 T), applied parallel and perpendicular

to the c-axis. Unpolarized neutrons are sensitive to the magnetic moments

perpendicular to the scattering vector Q, so a change of the measured intensity

can be a direct proof of a change in the magnetic structure.

Fig. III.16 shows the results for the magnetic field applied along the c-axis.

Fig. III.16(a)-(c) show reciprocal space scans along the L direction of the

Q = (1, 0, 1) − k magnetic peak at T = 1.75K. The intensities are fitted to

a skewed Gaussian:

I(L) ∝
{
1 + erf

[
γ(L− L0)

σ
√
2

]}
exp

{
−(L− L0)

2

2σ2

}
, (III.10)

where γ is the skewness parameter, σ and L0 are the Gaussian standard deviation

and center. The mean values of the skew Gaussian are shown in dashed gray lines
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Figure III.16 The magnetic field is applied along the c-axis. (a)-(c) Scans
at T = 1.75K along the (00L) direction for different values of
magnetic field. The mean position of the skewed Gaussian fits
are shown in dashed lines and depend on the applied field. (d)
Summary of the field dependence of the propagation vector at
T = 1.75K. (e) Integrated intensities of the magnetic peak
Q = (1, 0, 1)−k as a function of the magnetic field. The zero-field
intensity is subtracted from each respective curve for a clearer
comparison of the field-induced intensity increase.

and change with the magnetic field. A nuclear reflection (201) was also monitored

as a function of the magnetic field and does not present any shift along the L

direction. This means that the shift of the magnetic peak Q = (1, 0, 1) − k

is caused by a change of the propagation k and not of the lattice parameter

c. This is summarized in Fig. III.16(d) where the propagation vector evolution

can clearly be observed until a threshold magnetic field (around 2T). Magneto-

elastic effects can be induced by a change in the magnetic structure as illustrated

in the change in bond distances at TN discussed above and shown in Fig. III.12.

A change in the bond distances would result in a change in the strength of the

III.4. Results and discussion 81



exchange constants, which consequently change the propagation vector in order

to minimize the ground state energy, from Eq. (III.8).

In Fig. III.16(e), the integrated intensities are displayed as a function of the

magnetic field, for different temperatures. The zero-field intensity is subtracted

from each respective curve, in order to compare the data on the same scale as the

magnetic intensity diminishes when the temperature increases. The integrated

intensities increase with the magnetic field until a threshold value (different for

each temperature) and then remain constant. For a cycloidal magnetic ground

state, when no external field is applied, one main axis of the spin ellipse lies in

the (ab)-plane, and the other one along the c-axis. Applying a magnetic field

H ∥ c is expected to flop the spin rotation plane from a cycloid to a helix,

where the latter is oriented perpendicular to the magnetic field. The gradual

increase of the intensity shows that the cycloid plane is continously tilted from

the c-axis. For T = 1.75K, the observed intensities (with a magnetic field < 2T)

of reflection Q = (1, 0, 1) − k match with calculated intensities for a circular

helicoidal magnetic structure (with the main axis û ∥ a and v̂ rotated around û

by an angle θ, see Section III.3.2) as shown in Fig. III.17. The observed intensities

were normalized to the intensity at 2.25T, while the calculated intensities were

normalized to the intensity at θ = 90◦. The matching of these normalized

intensities indicates that the spin structure goes from a nearly pure cycloid state

to a nearly pure helix state which is analogous to the zero field magnetic structure

of iron based langasite. At T = 1.75K, the tilt angle of the spin rotation plane

seems to increase linearly with the magnetic field, whereas the tilt starts at higher

magnetic field for higher temperatures.

The results are different when the magnetic field is rotated by 90° and applied

in the ab-plane. In this case, the in-plane main axis of the cycloid will tend

to be perpendicular to the magnetic field and the magnetic domains are simply

reoriented in the ab-plane. As mentioned above, magnetic diffraction is not very

sensitive to the direction of the in-plane main axis, because the intensities of the

magnetic peaks do not change significantly between two directions of this axis.

This is especially true for the magnetic peakQ = (1, 0, 1)−k, where the measured

intensities are constant as a function of the magnetic field (Fig. III.18(a)).

Contrary to previous thermodynamic magnetization measurements [152] the in-

plane reorientation of the spin structure cannot be detected in this experiment.

The propagation vector also remains constant, within error, as a function of the

magnetic field (Fig. III.18(b)-(e)), indicating the absence of measurable magneto-
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Figure III.17 (black points) Normalized integrated intensity of the measured
magnetic peak Q = (1, 0, 1) − k as a function of the magnetic
field applied parallel to the c-axis at T = 1.75K. (red curve)
Simulated magnetic intensity as a function of the tilt angle θ of
the spin rotation plane from the c-axis.

elastic effects in this case. We note that the difference in L0 values between the

two different field directions is an experimental artefact resulting from not being

able to refine a zero offset in the scattering angle. This is due to only being able

to measure a single Bragg peak owing to kinematic constraints imposed by the

horizontal magnetic field geometry.

III.5 Theory for an electric polarization

In their work, Kinoshita et al. have measured the pyroelectric current in a single

crystal of MnSb2O6 along û ∥ [11̄0] under a magnetic field rotating in the (11̄0)

plane [58]. An electric polarization was measured for the magnetic field slightly

off the (ab)-plane and was attributed to the selection of a tilted polar domain.

This polarization is reversed when the magnetic field is applied on the other side

of the (ab)-plane, favoring the opposite tilted polar domain. This mechanism

relied on the tilted cycloid model considered as the ground state in MnSb2O6.

In this section we discuss a phenomenological theory for the domain switching

observed in Ref. [58] under the application of a magnetic field in the absence of

a zero-field tilt as discussed in our diffraction results outlined above.
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Figure III.18 The magnetic field is applied perpendicular to the c-axis. (a)-(c)
Scans at T = 1.75K along the (00L) direction for different values
of magnetic field. The mean position of the skewed Gaussian fits
are shown in dashed lines and remain constant. (d) Summary
of the field dependence of the propagation vector at T = 1.75K.
(e) Integrated intensities of the magnetic peak Q = (1, 0, 1) − k
as a function of the magnetic field. The zero-field intensity is
subtracted from each respective curve for a clearer comparison
of the data.

As is the case for many compounds having a cycloidal magnetic structure,

MnSb2O6 is predicted to hold an electric polarization (see Section I.2) through

the inverse DM interaction [42] or spin-current induced [47] mechanisms which

predict an electric polarization P given by

P ∝ rij × (Si × Sj) (III.11)

which couples to the magnetic polarity Pm in the phenomenological free energy
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through a term ∝ λPm · P . Therefore the electric polarization P lies parallel or

antiparallel to to the magnetic polarity Pm depending on the sign of the coupling

constant λ [57].

Using our definitions in Eq. (III.4) and Eq. (III.5), we can build trilinear invariants

based upon Heisenberg exchange interactions from Eq. (III.9):

σϵHϵT = σηCηT sin2(θ)

σPm ·A = σηCηT cos2(θ),
(III.12)

Again, this shows the equivalence between the scalar and vector coupling schemes

from iron langasite and MnSb2O6, and also the mixture of both with the spin

rotation plane tilt angle θ. These invariants imply that the polarization P , does

not change sign with θ, based on Heisenberg exchanges alone.

However, we can consider a uniform DM interaction with Dαβ parallel to the

c-axis. Dαβ is a T-even axial vector that changes sign on exchange of indices.

Its sign will also depend upon the structural chirality σ, hence we can write

Dαβ ∝ σrαβ where rαβ is the bond vector between spins at sites α and β along

the c-axis. Following Eq. (III.5), the magnetic energy is then given by

EDM = Dαβ · (Sα × Sβ)

∝ σrαβ · VC

∝ σηC sin θ,

(III.13)

Therefore, for a given structural domain with a fixed σ, when the sign of

θ is inverted (through the application of a magnetic field) the uniform DM

interaction will favor a change of sign of ηC which in turn results in the sign

of Pm being inverted, from Eq. (III.4). This will change the direction of the

electric polarization P . The only condition for having a non-zero polarization is

an imbalance of structural chiral domains for a given tilt angle θ. This mechanism

does not need the magnetic ground state to be tilted. Indeed, the ground state

could be a pure cycloid stabilized by Heisenberg exchanges, where the anisotropy

overcomes this small DM term. When an external magnetic field is applied

slightly out of the (ab)-plane, this would overcome the anisotropy and tilt the

spin rotation plane. In this case the DM term would lift the degeneracy of ±ηC

domains, and give rise to a non-zero electric polarization for a given structural
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domain. We note that the DM term is allowed owing to the large distortion of

the oxygen octahedra surrounding the Mn2+ ions [50].

From our diffraction data under magnetic field, we know that a small magnetic

field (around 2 T) is sufficient to reorient the spin rotation plane perpendicular

to the magnetic field, which is consistent with a small single-ion anisotropy in our

compound and is consistent with the values used in Ref. [58] in their macroscopic

measurement of electric polarization. However, Ref. [58] has considered the

tilted cycloid ground state as essential for selecting the polar domains with

an external magnetic field applied perpendicularly to the spin rotation plane.

This explanation does not work in the case that magnetic domains with polarity

±ηC have the exact same populations, because the overall polarization would

compensate. As ±ηC domains are degenerate from Heisenberg model, our

mechanism based on a uniform DM interaction is more general. In particular

and in the context of MnSb2O6, this mechanism does not depend on a tilted

ground state, and requires an imbalance in structural chiral domains and the

underlying coupling between magnetic and structural chiralities.

III.6 Conclusions

In this chapter, we have performed a combination of unpolarized and polarized

neutron diffraction experiments on MnSb2O6. The study of the crystal structure

shows no evidence for the breaking of the paramagnetic crystallographic space

group at the magnetic transition. The consideration of structural twins in our

work shows that our single crystal is a non-racemic mixture of chiral structural

domains. There is no evidence of a helicoidal magnetic ground state, but

diffraction under magnetic field shows the possibility to manipulate the spin

structure with low magnetic fields. Finally, we propose that a uniform DM

interaction, combined with the underlying coupling between structural and

magnetic chiralities, is sufficient to explain an electric polarization switching

mechanism which was previously measured.
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Chapter IV

Sum rules on MnSb2O6

This chapter presents results from inelastic neutron scattering experiments on

MnSb2O6. This chapter has been adapted from Ref. [2].

IV.1 Introduction

Magnetic materials that lack an inversion center potentially host coupled

magnetic and ferroelectric order parameters while also providing a framework

for unusual magnetic excitations like directionally anisotropic (or nonreciprocal)

spin-waves [148, 171]. Determining these magnetic interactions that provide the

basis for coupled structural and magnetic properties is often complicated and

based on many parameter fits from complex magnetic ground states [33, 42]. In

this chapter we investigate the magnetic excitations in powder and in an array of

single crystals of the helicoidal magnet MnSb2O6 with the goal of extracting

the symmetric exchange constants from the Heisenberg model presented in

Section III.1.4. Given the complexity of the excitation spectrum, the number

of predicted exchange constants, and the ambiguities of the magnetic structure

(tilted versus untilted ground state as discussed in Section III.4.2), we apply

a first moment (Hohenberg-Brinkman) sum rule [172] analysis to extract the

symmetric exchange constants and compare the results to the excitation spectrum

from mean field linear spin-wave theory. This approach only depends on the

relative orientation of neighboring magnetic moments and does not depend on

whether the overall magnetic structure is tilted or untilted as discussed below. We
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also demonstrate a generalized methodology for obtaining symmetric Heisenberg

exchange constants from multiplexed neutron scattering where extensive regions

of momentum and energy transfers are sampled.

The results presented in this chapter are based upon six sections. In Sec-

tion IV.3.1, we present the excitation spectra from both powder and single

crystals of MnSb2O6. After describing our absolute normalization process in

Section IV.3.2, the total (zeroth) moment sum rule is applied to show we have

captured all the magnetic spectral weight in our experiments. Section IV.3.4

will show the use of the first moment sum rule to extract, and Section IV.3.5 to

determine the exchange constants from the Heisenberg model. Finally we apply

Green’s functions on a rotating frame to generate spin-wave spectra based on our

derived exchange constants in Section IV.3.6. Using the values of the symmetric

exchange constants from sum rules of neutron scattering, we refine the parameters

to obtain a good description of the neutron inelastic spectra. Based on the Green’s

functions neutron response, the stability of spin-wave excitations is further tested

for the proposed magnetic structures.

IV.2 Experimental details

IV.2.1 Materials preparation

Powders and single crystals of MnSb2O6 were synthetized by J. Pásztorová and

C. Stock, following the procedure detailed in Section III.2.1.

IV.2.2 Neutron spectroscopy

To investigate the magnetic dynamics, neutron spectroscopy was performed on

the MACS (NIST, Gaithersburg) triple-axis spectrometer [141] on both single

crystals and powder samples. 1.3 g of single crystals were aligned in the (HHL)

scattering plane on both sides of four aluminium plates and coated with viscous

hydrogen free Fomblin oil, as shown in Fig. IV.1. A select fraction of the crystals

were aligned with Laue diffraction and the remainder were aligned using polarized

optical microscopy based on the crystal morphology. These single crystals were

synthesized the same way as the samples measured in our previous studies in
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Chapter III, where we have performed Schwinger scattering and transmission

polarized optical microscopy and found only a small imbalance of chiral structural

domains in the single crystals. This small imbalance distinguishes MnSb2O6 from

the enantiopure single crystals of iron based langasite previously studied [134, 144,

145]. During the coalignment of the single crystals used here for spectroscopy,

great care was taken to align the relative a and b inplane axes, the choice of what

constituted ± [001] was done at random. For the purposes here we consider the

average crystal structure to be an equal mixture of the differing chiral domains.

We will show in Section IV.3.4 that our analysis holds no matter the proportion of

chiral structural domains. To probe the dynamics in our array of single crystals,

the final energy was fixed to either Ef=2.4 meV or 3.7 meV with BeO and Be

filters, respectively, being used on the scattered side to filter out higher order

neutrons from the monochromator. For all results presented here the pyrolytic

graphite PG(002) monochromator was focused both horizontally and vertically.

The lattice parameters were measured to be a = b = 8.733 Å and c = 4.697 Å.

For powder measurements, a 16.3 g sample was used with Ef=3.7 meV and a

BeO filter on the scattered side.

Figure IV.1 1.3 g of single crystals of MnSb2O6 aligned on four Al plates, and
coated with Fomblin oil for inelastic neutron scattering.

The inelastic neutron scattering experiments on MACS at NIST were performed

before the start of this thesis by C. Stock, J. Pásztorová, M. Songvilay and J. A.

Rodriguez-Rivera.

IV.3 Results and discussion

In this section, we will first present the neutron scattering data for both powders

and single crystals of MnSb2O6, before detailing our absolute normalization
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process. Then, zeroth and first moment sum rules are applied to our inelastic data

allowing the extraction of the symmetric exchange constants. We will finally use

Green’s functions on a rotating frame to compare the resulting spin-wave spectra

to the experimental ones and to test the stability of proposed magnetic structures.

Figure IV.2 (a) Powder averaged inelastic neutron scattering spectrum taken
on MACS at T = 1.4K. (b)-(c) Single crystal inelastic neutron
scattering spectrum from the Ef = 3.7meV dataset at T = 1.4K.
The logarithmic intensity scales are chosen to show the two
components to the scattering and in particular the higher energy
weak scattering displayed at ∼ 2 meV.
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IV.3.1 Excitation spectra

IV.3.1.1 Total excitation spectra

The excitation spectra of both powders and single crystals of MnSb2O6 at

T = 1.4K are shown in Fig. IV.2, with the Ef = 3.7meV MACS setup. The

powder data in Fig. IV.2(a) display intense low energy magnetic scattering

extending from the elastic line to ∼ 1 meV, and a weaker band of excitations

at approximately twice this value at ∼ 2 meV. The single crystal data displayed

in Fig. IV.2(b)-(c) illustrate two different types of scattering: one with intense

dispersive fluctuations that are well defined both in momentum and energy at

low energies, and the other with a weaker momentum and energy broadened

continuum of scattering extending to larger energy transfers. This continuum

of scattering is most apparent at the zone boundaries in the single crystal

data. Given the kinematics of these two types of scattering, we associate the

lower energy dispersive fluctuations with one-magnon scattering and the higher

energy continuum with two-magnon scattering. While two-magnon scattering

is expected to be most prominent in S = 1/2 magnets [173–181], it is a direct

result of the uncertainty associated with non-commuting observables and has

been studied extensively in other large-S magnets [182–184]. We discuss this

cross section later in the paper in the context of the zeroth moment sum rule and

show indeed that these two components of scattering originate from single and

multi magnon processes.

IV.3.1.2 Powder low-energy spectrum

Results of the low-energy powder inelastic neutron scattering experiment per-

formed on MACS, with fixed final energy Ef = 3.7meV are shown in Fig. IV.3.

The powder averaged spin-wave dispersion at T = 1.4K, below the Néel

magnetic ordering transition, is presented in Fig. IV.3(a), showing low-energy

spin dynamics below E ≈ 1.4meV. These dynamics are highly dispersive from

the magnetic ordering wavevector and are gapless within experimental resolution

(∆E ≈ 0.15meV). In contrast, above TN ≈ 12K, the magnetic scattering is

considerably broadened both in momentum and energy indicative of spatially

and temporally short-range correlations. This paramagnetic scattering is very

strong due to high spin S = 5/2 of Mn2+ magnetic ions, as shown in Fig. IV.3(b)

with the spectrum measured at T = 25K. Both experimental datasets below
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and above the magnetic ordering temperature also display a decay in intensity

with increasing momentum transfer, characteristic of magnetic scattering. The

powder averaged spectra establish the presence of dispersive magnetic dynamics

and the energy scale of the spin excitations.

Figure IV.3 Powder inelastic neutron scattering spectrum of the one-magnon
cross section at (a) T = 1.4K (below TN) and (b) T = 25K (above
TN).

IV.3.1.3 Single crystal low-energy spectrum

Results of single crystal inelastic neutron scattering performed on MACS with

a fixed final energy Ef = 2.4meV are displayed in Fig. IV.4 and Fig. IV.5 at

T = 1.4K below TN. The data are illustrative of dispersive dynamics originating

from the magnetic ordering wavevector. Constant energy slices at E = 0.1meV

and E = 1.25meV are shown in Fig. IV.4(a) and (b). Spin-wave dispersion along

(−1,−1, L) and (H,H, 0) are respectively shown in Fig. IV.5(a) and Fig. IV.5(b).

Spin-wave branches emerging from nuclear Bragg peak (-1,-1,0) and also its

magnetic satellites (-1,-1,0)±k are visible in Fig. IV.4(a) and Fig. IV.5(a). Within

the instrumental resolution (∆E ≈ 0.1meV), all modes seem gapless, which is

consistent with the low anisotropy measured from electron spin resonance [152],
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and observed from the tunability of the magnetic structure by small magnetic

fields presented in Section III.4.3 and in Ref. [58].

Figure IV.4 MACS single crystal inelastic neutron scattering spectra at T =
1.4K: constant energy slices for (a) E = 0.1meV and (b)
E = 1.25meV. The weak scattering in (a) at (H,H) ∼ -0.5 and
displaced at (H,H) ∼ -1.1 originate from some crystals misaligned
by ∼ 60◦ in the multi crystal mount.

As already presented in Fig. IV.2(b)-(c), inelastic neutron scattering data were

also obtained on MACS with the same array of single crystals, but with a fixed

final energy Ef = 3.7meV. In the following, the dataset used for each analysis

will be mentioned.

IV.3.2 Absolute normalization of magnetic cross section

In order to directly compare the magnetic scattering intensities from the different

datasets, they have to be converted into absolute units. This is particularly

important given our goal of applying sum rules of neutron scattering to obtain

the magnetic exchange constants in absolute units of energy. Through this we

will apply the zeroth moment sum rule to demonstrate that all of the magnetic
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Figure IV.5 MACS single crystal inelastic neutron scattering spectra at T =
1.4K: spin-wave dispersion along (a) (−1,−1, L) and (b) (H,H, 0).

spectral weight is measured in the experiments discussed above. We then apply

the first moment sum rule to obtain the symmetric exchange constants. In

this section, we describe our normalization process, adapted from Ref. [185] and

Ref. [186] and introduce our definition for the dynamical structure factor S(Q, E).

The intensity measured during the experiment I(Q, E) (in counts) is related to

the differential cross section via a convolution with an instrumental-dependent

resolution function R,

I(Q, E) =

∫
dQ0 dE0

d2σ

dΩdEf

(Q0, E0)R(Q−Q0, E − E0). (IV.1)

By assuming a slow variation of this resolution function in the region of study

(over the narrow energy range probed in this study), it can be approximated by

a constant R0, which allows us to decouple the intensity into

I(Q, E) ≈ R0
d2σ

dΩdEf

(Q0, E0). (IV.2)
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During the data reduction, the intensity is normalized to the monitor counts based

on a low efficiency detector placed in the incident beam after the monochromator

and before the sample. The efficiency of which is inversely dependent to the

speed of the incident neutrons, which is proportional to ki, giving the normalized

intensity (in counts/mon):

Ī(Q, E) = kiI(Q, E) = kiR0
d2σ

dΩdEf

(Q, E). (IV.3)

Having related the measured scattering intensity to the cross section, we now

focus on the magnetic differential cross section for unpolarized neutrons and

identical magnetic ions. Assuming isotropic spin excitations, we can define

the dynamic structure factor S(Q, E) = Sxx = Syy = Szz, where Sαβ is the

dynamic spin correlation function related to the Fourier transform of the spin-

spin correlation function as defined in Eq. (II.52). Neglecting the Debye-Waller

factor gives the following double differential cross section:

d2σ

dΩdEf

(Q, E) = N
kf
ki

(γr0
2

)2

(g|f(Q)|)22S(Q, E), (IV.4)

where N is the number of unit cells, γr0/2 ≈ 0.2695 × 10−12 cm is the typical

magnetic scattering length, g is the Landé factor and f(Q) the magnetic form

factor. Combining Eq. IV.3 and IV.4 we get the dynamical structure factor (in

meV−1) from the measured intensity by

S(Q, E) =
Ī(Q, E)

|gf(Q)|2(γr0
2
)22NkfR0

. (IV.5)

We can write directly the numerical values of the magnetic cross section (γr0/2)
2

into the equation:

S(Q, E) =
13.8(b−1)Ī(Q, E)

|gf(Q)|22NkfR0

. (IV.6)

The key for normalizing the magnetic intensity is thus to evaluate this instrumental-

dependent factor NkfR0 expressed in (meV)(counts/mon)(b−1).

There are several ways reported in the literature for obtaining this instrument

calibration factor. One possibility is to evaluate the incoherent scattering from the
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elastic line of a known standard compound (for example as done in Ref. [187]).

By energy integrating the measured intensity close to elastic energy transfer,

far from any magnetic or nuclear Bragg peak, we obtain, as ki = kf for elastic

scattering,

∫ +ϵ

−ϵ

dE Ī(Q, E) = NkfR0

∑
i

(binci )2, (IV.7)

where binci is the incoherent scattering length of atom i, and the sum is over the

unit cell. Vanadium having a large incoherent scattering cross section compared

to its coherent one, it is usually used as a standard sample to normalize inelastic

neutron scattering data. We have measured the vanadium sample in the same

geometry and instrumental configuration as our MnSb2O6 powder sample. With

NV the number of vanadium atoms and its incoherent scattering length bincV =

6.35 fm [103], we can write

NVkfR0 =

∫ +ϵ

−ϵ
dE ĪV(Q, E)

(bincV )2
. (IV.8)

By writing NV = mV/(Ar(V )mu) with mV the mass of the vanadium sample,

Ar(V ) the relative atomic mass of vanadium, and mu the atomic mass constant,

we can write the ratio N/Nv =
m/Ar(MnSb2O6)cell

mV/Ar(V )
with m the mass of the MnSb2O6

sample, and Ar(MnSb2O6)cell the relative mass of a unit cell (three formula units

of MnSb2O6 per unit cell), the normalization factor becomes

NkfR0 =
m/Ar(MnSb2O6)cell

mV/Ar(V )

∫ +ϵ

−ϵ
dE ĪV(Q, E)

0.403 b
. (IV.9)

This equation allows us to obtain the instrumental calibration factor from the

incoherent cross section centered at the elastic (E = 0) position. We note that

an alternate way to obtain this calibration constant is to measure the elastic

incoherent cross section from the sample given manganese has a comparatively

large incoherent cross section. We did not take this approach in this experiment as

we found the elastic line where incoherent scattering is present in our single crystal

geometry was contaminated by scattering from hydrogen free (yet fluorine based)

Fomblin oil. Fomblin, while having a comparatively small incoherent cross section

in comparison to hydrogen, has a non-negligible coherent liquid-like cross section.
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This cross section is difficult to disentangle from the purely Mn2+ incoherent cross

section and therefore we relied on a separate vanadium standard of known mass.

IV.3.3 Total moment sum rule

Having established the procedure for calibration of the instrument, we now discuss

the sum rules of neutron scattering. Magnetic neutron scattering is governed

by sum rules which are satisfied by integrating the dynamical spin correlation

function Sαβ(Q, E) over energy and momentum transfer [172]. In particular the

energy moments,
∫ +∞
−∞ EnSαβ(Q, E) dE are given theoretically [172, 188], with

n = 0, 1 the zeroth and first moment. Full derivations of these sum rules can be

found in Ref. [189].

The zeroth moment sum rule is often referred to as the total moment sum rule and

corresponds to the integral of all the magnetic spectral weights [185, 190–192]:

3
∫
d3Q

∫
dE S(Q, E)∫
d3Q

= NmS(S + 1), (IV.10)

where Nm = 3 is the number of magnetic ions per unit cell. This quantity

can be considered as a conservation rule and allows us to confirm whether we

have experimentally measured all of the spectral weight. This rule has become

particularly important in itinerant compounds near potential critical points [193].

We will apply this zeroth moment sum rule to our powder data, which was

normalized using a vanadium standard sample, following the process described

above. In this case, the total moment can be written as

I =

∫
dQQ2

∫
dE S(Q,E)∫

dQQ2
= S(S + 1) (IV.11)

with Q = |Q|. In order to estimate the spectral contributions from one-magnon

and two-magnon scattering, we can introduce the momentum integrated intensity:

Ĩ(E) =
3
∫
dQQ2S(Q,E)∫

dQQ2
, (IV.12)

which measures the magnetic density of states [191, 192]. Then the integral
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Figure IV.6 Momentum integrated intensities as a function of the energy, for
(a) E ∈ [0, 1.9] meV, and (b) E ∈ [1.3, 4] meV. The intensities are
integrated between the dashed blue (0.4 meV) and red (1.6 meV)
lines to get the one-magnon spectral weight I1, and above the red
lines to 4 meV to get the two-magnon spectral weight I2.

∫ Emax

Emin
dE Ĩ(E) gives the spectral weight for the energy interval [Emin, Emax].

Figure IV.6 shows the momentum integrated intensities as a function of the

energy. As discussed above, the magnetic intensity consists of two components

with a low-energy component which consists of harmonic excitations well defined

in momentum and energy and a second considerably weaker component which

is broadened in momentum and energy transfer. These correspond to single

[Fig. IV.6(a)] and two-magnon [Fig. IV.6(b)] dynamics and are separated in the

powder averaged data. We can see that the one- and two-magnon contributions

crossover around 1.6meV (red dashed line), but since the intensities are quite

low at this energy we consider 1.6 meV as the upper bound of the one-magnon

scattering, and 0.3 meV as its lower bound (blue dashed line).

To extract numerical values for the integrated zeroth moments from our powder

data we average the data in momentum. Accounting from the momentum powder

average, the Q-dependence of the integrated intensity is given by [190, 194]

L(Qmax) =

∫ Qmax

0
dQQ2

∫
dE S(Q,E)∫ Qmax

0
dQQ2

(IV.13)

and is shown in Fig. IV.7 for both (a) one-magnon and (b) two-magnon

contributions discussed above. The momentum average in this plot allows us

to account for limited kinematic coverage of the detectors at low momentum
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transfers (see low momentum transfers in Fig. IV.3). From Fig. IV.7, we can

see that L(Qmax) approximately fully saturates close to 2 Å
−1

thereby illustrating

that approximately all of the spectral weight has been sampled.

Based on this momentum average of the powder data, the spectral weight I1 =

2.7(2) for one-magnon scattering is then calculated by integrating the intensity

between 0.3 meV [dashed blue line in Fig. IV.6(a)], and 1.6 meV (dashed red

line in Fig. IV.6). The two-magnon spectral weight is obtained by integrating

between 1.6 and 4 meV, leading to I2 = 0.17(1).

Theory Experiment

Total S(S + 1) = 8.75 8.2(2)

Elastic ⟨Sz⟩2 = 5.3

One-magnon (S −∆S)(1 + 2∆S) = 3.2 2.7(2)

Two-magnon ∆S(∆S + 1) = 0.2 0.17(1)

Table IV.1 Contributions of the different components of the scattering for S =
5/2 and ∆S = 0.2 deduced from neutron powder diffraction.

The elastic (static) scattering contribution to the total moment is ⟨Sz⟩2 where

z indicates the direction of the Mn2+ spin in the rotated local frame. From our

neutron powder diffraction (previously outlined in Section III.4.2.1) the ordered

moment is g⟨Sz⟩ = 4.6µB at 2.6K leading to ⟨Sz⟩2 = 5.3, and a spin reduction

from the expected full saturated moment corresponding to S = 5/2 of ∆S = S−
⟨Sz⟩ = 0.2. This missing component from the experimental ⟨Sz⟩ by conservation

of spectral weight is expected to reside in the multimagnon component of the

neutron dynamics corresponding to longitudinal fluctuations.

Based on this elastic spectral weight, the theoretical total, one-magnon, and two-

magnon contributions can be computed [183, 195]. They are compared with

those obtained experimentally in Table IV.1. The experimental total moment

is 8.2(2), which is to be compared to the expected value of 8.75 for S = 5/2.

The discrepancies can be due to the relatively small Q-range measured during

this experiment and experimental systematic issues such as the use of an external

vanadium standard or small variations in the resolution function over the energy

range probed here. Given the small energy and momentum ranges, and that we

have integrated the intensity over all momentum and energy, we do not expect

that changes in the resolution to be important. However, the results are in good

agreement illustrating the relative weights of one- and two-magnon cross sections
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and the energy range over which the magnetic dynamics are present in MnSb2O6.

This also confirms our assignment of the higher energy component to longitudinal

two-magnon scattering and also illustrates all of the spectral weight is sampled

in the dynamic range of our experiments.

Figure IV.7 Integrated intensities as a function of Qmax the momentum
integration upper bound, for (a) one-magnon and (b) two-magnon
scattering. The dashed lines indicate the final values for Qmax =
2.05 Å.

IV.3.4 First moment sum rule

The previous discussion of the zeroth moment sum rule has established several

points relevant for the rest of the paper. First, we established the energy range

of the magnetic dynamics in MnSb2O6. Second, we have established the relative

spectral weights of the single and two-magnon cross sections and found these

to be in good agreement with missing spectral weight observed in diffraction

experiments. Third, we have established and verified a calibration procedure for

the powder data.
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IV.3.4.1 Theory

In this section, we discuss the first moment sum rule and how it can be applied

to extract symmetric exchange constants. The first moment is defined for general

dynamic spin correlation function Sαβ(Q, E) as

⟨E⟩(Q) ≡
∫ ∞

−∞
dE E Sαβ(Q, E)

=

∫ ∞

−∞
dE ⟨[Ŝα(Q, E), Ĥ]Ŝβ(−Q, 0)⟩

= ⟨[Ŝα(Q), Ĥ]Ŝβ(−Q)⟩.

(IV.14)

For nuclear scattering from a monotonic system, this reduces to ℏ2Q2

2M
, where

M is the mass of the scattering nucleus [196, 197]. For magnetic systems and

in the case for symmetric-only exchange where the Hamiltonian has the form

Ĥ =
∑

i,j JijŜi · Ŝj, the Hohenberg-Brinkman first moment sum rule is given by

[172, 185, 190–192]

⟨E⟩(Q) =

∫
dE E S(Q, E)

= −2

3

∑
i,j

nijJij⟨Ŝi · Ŝj⟩[1− cos(Q · dij)],

(IV.15)

where ⟨Ŝi · Ŝj⟩ is the ground-state equal-time correlation function of spins Ŝi and

Ŝj at sites i and j, nij is the multiplicity of Jij, the exchange constant associated

to the bond vector dij. This equation assumes symmetric-only exchange as we

anticipate is dominant for 3d magnetic transition metal ions in the absence of

spin-orbit coupling. Anisotropic terms in the magnetic Hamiltonian appear as

constants to this equation for the first moment, however, given the lack of an

orbital degree of freedom in Mn2+ in an octahedra, we expect such terms to be

small in comparison to the symmetric Heisenberg exchange and therefore neglect

them here.

Knowing the crystal and magnetic structure of a compound gives the bond vectors

dij and the correlators ⟨Ŝi ·Ŝj⟩. Then, measuring the first moment for different Q

values allows to fit the exchange constants, which correspond to the amplitudes

of the sinusoidal oscillations. We note that Eqn. IV.15 only depends on the

relative orientation of neighboring spins which has been modelled previously using
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neutron diffraction. For the following, in terms of notation, the spin component

S(S+1) will be included in the exchange constants instead of the correlators and

the exchange constants are in units of meV.

In MnSb2O6, seven nearest neighbors exchange interactions are considered and

expected to be relevant, as shown in Fig. III.4, related to a total of 30 Mn-Mn

bonds per unit cell. The first thing to evaluate is the ground-state correlation

functions ⟨Ŝi · Ŝj⟩ for each of the bonds. The magnetic ground state of MnSb2O6

is unclear, rather reported as a pure cycloid in Ref. [57] or tilted from the c-axis

in Ref. [58]. But in both cases, the spin structure is helicoidal with the spins

co-rotating in the same plane as described in Section III.3.3. Thus, the scalar

product can be simply evaluated by cos∆θij, with ∆θij, the angle difference

between the spins in the same rotation plane. The exchange interactions are

listed in Table IV.2 with their associated multiplicities, bond distances, and

ground-state correlators, with k = 0.182 the propagation vector component

along the c-axis. We emphasize that this method only depends on relative

orientation of neighboring spins and not on details for the tilted and non tilted

helicoidal structures. Indeed, the ⟨Ŝi · Ŝj⟩ correlators are the same in both

models. Therefore, this method allows us an independent means of measuring

the exchange constants without details of the long-range magnetic structure that

is relevant for spin-wave calculations. We discuss this point later in the context of

stability of the long-wavelength excitations once we have obtained the exchange

constants from the first moment analysis.

Furthermore, we note that the correlators for diagonal paths actually depend

on the sense of rotations of the spins, and thus on the magnetic parameters ηC

and ηT. From the energy invariant, these magnetic parameters are related to

the structural chirality by σ = ηCηT [Eq. (III.9)]. Thus the correlators for the

diagonal exchange paths are cos(2π(ηCk ± ηT/3)) = cos(2π(k ± σ/3)) for left- J5,

J7 (+) and right-handed J3, J6 (−) exchange interactions. The diagonal exchange

interactions are interchanged by inversion symmetry, which corresponds to an

inversion of σ. Thus, ground-state correlators are invariant for a given exchange

constant. Thus the analysis holds independently of the structural and magnetic

domains populations. This is convenient as a mixture of structural and magnetic

domains was previously measured in a single crystal of MnSb2O6 as shown in

Chapter III.

For a fixed scattering vector Q, the cosine frequency will only depend on the

bond distances. We can therefore define the parameters γ associated to each of
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Ji ni di (Å) ∆θij cij = ⟨Ŝi · Ŝj⟩ = cos∆θij
J1 3 d1 = 5.5961

2π/3 c1 = −0.5
J2 6 d2 = 4.8445

J3 3 di = 7.3235 2π(k + ϵT/3) cR = −0.995

J4 3 d4 = 4.7241 2πk c4 = 0.414

J5 3 di = 7.3235 2π(k − ϵT/3) cL = 0.58

J6 6
de = 6.7666

2π(k + ϵT/3) cR = −0.995

J7 6 2π(k − ϵT/3) cL = 0.58

Table IV.2 Summary of the exchange interactions Ji, with their multiplicity
in the unit cell ni, the related bond distance di, the spin
angle difference ∆θij and the associated ground-state correlation
functions cij . Subindices i and e refer to the diagonal bond distances
internal and external to the triangle of Mn interconnected by J1.
Subindices L and R refer to left- and right-handed correlation
functions.

the five distinct bond lengths, which are functions of the exchange constants and

ground-state correlation functions:



γ1 = J1c1

γ2 = J2c1

γ4 = J4c4

γi = J3cR + J5cL

γe = J6cR + J7cL,

(IV.16a)

(IV.16b)

(IV.16c)

(IV.16d)

(IV.16e)

where the ci are calculated from the co-rotating helicoidal magnetic structure[1]

and displayed in Table IV.2.

IV.3.4.2 Single-crystal data

Having discussed the equations and theory for the first moment sum rule applied

to MnSb2O6, we now apply this to our single crystal sample aligned in the (HHL)

scattering plane. We can simplify the calculation of the first moment by fixing

H = H0 and varying L (L-scan), or fixing L = L0 and varying H (H-scan).

This leads to two different analyses. The L-scan analysis will be detailed in the

following section, while the H-scan analysis is presented in Appendix E.2.

The data is extracted along an L-scan, considering Q = (H0, H0, L) with L
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Figure IV.8 MACS single crystal inelastic neutron scattering spectrum: spin-
wave dispersion along (0.2, 0.2, L). The red dashed lines indicate
constant-Q scans shown in Fig. IV.9(a)-(c).

varying and a given H0. In the following we will consider the Ef = 2.4meV

dataset, as an example, we take H0 = 0.2. The spin-wave dispersion along

(0.2, 0.2, L) is shown in Fig. IV.8. For each interaction indexed by spins i and

j, the corresponding term in the first moment cosine from Eq. (IV.15) can be

written as

Q · dij = 2πH0(dij,x + dij,y) + 2πLdij,z, (IV.17)

where the distances dij are expressed in lattice units, and the scattering vector in

reciprocal lattice units. Using trigonometric identities to expand the cosine term,

and summing Eq. (IV.15) over the 30 bonds in the unit cell, a general formula

for the first moment is derived, for a fixed H0:

⟨E⟩(H0, L) = A(H0) cos(2πL) + C(H0), (IV.18)

where A and C are two H0-dependent functions of the γ parameters, given by

A(H0) =
2

3
[(1 + 2c(H0))γi + 3γ4 + 2Σc(H0)γe]

C(H0) = −2

3
[2(1− c(H0))γ1 + ...

2(3− Σc(H0))γ2 + 3γi + 3γ4 + 6γe],

(IV.19)

(IV.20)

where,
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Figure IV.9 (a)-(c) Constant-Q scans for different Q = (0.2, 0.2, L), indicated
with dashed red lines in Fig. IV.8. A fit to a double gaussian is
shown in red, and the first moment is calculated from trapezoidal
integration where the background is removed from the gaussian
fit. (d) First moment as a function of L for H0 = 0.2, fitted
to its theoretical expression (red curve). The red data points
corresponds to the first moments calculated in the cuts plotted in
(a)-(c). (e)-(f) First moment as a function of L for (e) H0 = −0.4
and (f) H0 = −0.8, fitted to theoretical expression in red.
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Figure IV.10 (a) Measured first moments versus fitted first moments for L-scan
analysis, for the Ef = 2.4meV dataset. A total of 969 ⟨E⟩(Q)
were taken into account. (b)-(c) Fitting of coefficients (b) A and
(c) C giving the γ parameters. The red data points show the
values calculated in Fig. IV.9(d)-(f).

c(H0) = cos(2πH0δ1)

Σc(H0) = cos(2πH0δ2) + cos(2πH0δ3) + cos(2πH0δ4)

are H0-dependent harmonic oscillations, and

δ1 = 3(1− rx)

δ2 = 1

δ3 = 2− 3rx

δ4 = 3rx − 1

are Mn-Mn interatomic distances (in r.l.u.) projected in the (ab)-plane. rx =

0.6329 is the a-axis coordinate of the Mn atom at Wyckoff site 3e, taken from

the single-crystal neutron diffraction refinement at T = 2K from Table III.1.

From Eq. (IV.18), for a specificH0, we can compute the first moment as a function

of L, and fit the coefficients A(H0) and C(H0) for a scan along (H0, H0, L). The

next step is to repeat the same process for several H0, and fit the γ parameters

in coefficients A and C with Eq. (IV.19) and Eq. (IV.20).

Examples of calculations of the first moment for different L, for Q = (0.2, 0.2, L)
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are shown in Fig. IV.9(a)-(c). These constant-Q scans are indicated in red dashed

lines in Fig. IV.8. Most of the S(Q, E) are well fitted by two Gaussians, shown

in red in the figures, but to take into account any deviation from a two-mode

spectrum, the numerical integration of the first moment from Eq. (IV.15) was

performed using a trapezoidal integration, with the background removed from

these two-Gaussian fits. The calculation is performed above 0.2 meV to get rid

of any contribution from elastic scattering, and below 1.6 meV to only capture

contribution from one-magnon scattering. This criterion is arbitrary, and low-

energy scattering can be miscalculated. Actually, due to Eq. (IV.15), lowest

energy points contribute less to the first moment (given a low magnetic intensity

at low energy), so the differences are not significant within uncertainties. More

information concerning the numerical integration and the differences between the

methods of integration are given in Appendix E.1.

These first moments are calculated for a range of L, as shown in Fig. IV.9(d)

where first moments computed in Fig. IV.9(a)-(c) are highlighted in red. For this

specific H0 = 0.2, the A and C parameters are obtained from the fit (red curve)

to Eq. (IV.15). The H0-dependence of A and C is then obtained by repeating the

same procedure for different H0, as illustrated in Fig. IV.9(e)-(f) for H0 = −0.4

and H0 = −0.8.

Finally, a total of 969 first moments ⟨E⟩(Q) were calculated from the MACS Ef =

2.4meV dataset for this analysis and are shown as a function of the fitted first

moment in Fig. IV.10(a). Finally the γ parameters are obtained by fitting A and

C to Eq. (IV.19) and Eq. (IV.20) as shown in Fig. IV.10(b)-(c), where the red data

points are the coefficients calculated in Fig. IV.9(d)-(f). We note from Eq. (IV.18)

that some remaining background can be included in the computation of C, as well

as small contributions from anisotropic terms in the magnetic Hamiltonian, as

discussed above. For this reason, the H0-independent part of Eq. (IV.20) is not

fitted to get the parameters γ4, γi and γe, which are rather fitted with Eq. (IV.19),

where A represents the amplitude of the first moment cosine variation.

A similar analysis can be performed by considering a fixed L0 and varying alongH

and is detailed in Appendix E.2, giving another set of fitted γ parameters. Then,

these two analyses were performed again with the second single crystal dataset,

with Ef = 3.7meV, giving two other sets of γ parameters. This is detailed in

Appendix E.3. These fitted γ parameters are shown in Fig. IV.11, where they

have been normalized to γe obtained from the L-scan analysis for each dataset, in

order to get rid of any scale issue coming from the absolute normalization process
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Figure IV.11 Fitted parameters for the different analysis and dataset,
normalized to γe obtained in the L-scan analysis from the
Ef = 2.4meV dataset. Mean values (green bars) are calculated
averaging over the four analysis.
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and to directly compare the fitted parameters. We discuss below how we obtain

the overall scaling factor to obtain units of meV.

IV.3.4.3 Powder data

As described in Section IV.3.1.2, powder inelastic neutron scattering was also

performed on MACS and first moment sum rule can also be applied to these

data.

For polycrystalline samples, the intensity measured is related to the powder

averaged S(|Q|, E) =
∫
dΩQ S(Q, E)/4π of the dynamic structure factor. This

gives the powder averaged first moment sum rule [190, 192]:

⟨E⟩(|Q|) =
∫

dE ES(|Q|, E)

= −2

3

∑
i,j

nijJij⟨Ŝi · Ŝj⟩
{
1− sin(|Q||dij|)

|Q||dij|

}
.

(IV.21)

As for the single crystal analysis, for a fixed Q = |Q|, the sine frequency only

depends on the bond lengths, which are the same for diagonal exchange paths

as listed in Table IV.2, resulting in five distinct bond distances. We can further

simplify the first moment by summing over these distinct bond distances:

⟨E⟩(Q) = −2

3

∑
i

niγi

{
1− sin(Q|di|)

Q|di|

}
, (IV.22)

where i ∈ [1, 5] is related to the i-th bond length and the γi are defined in

Eq. (IV.16). Due to the very close bond distances (especially d2 = 4.8445 Å

and d4 = 4.7241 Å), and the relatively small Q-range probed in the experiment

(from 0.3 to 2.05 Å−1), we were not able to conveniently fit the γ parameters,

because of high correlations in the fitting process. However, we can compare

the first moment extracted from the powder inelastic neutron scattering with the

theoretical one calculated using the γ parameters obtained from the single crystal

analysis described above.

The first step for extracting the first moment from the experimental data is to

define the region of integration for the energy. For the powder, the first moment

was integrated for E ∈ [0.3, 1.6] meV to get rid of the elastic and two-magnon
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scattering. This is justified by the spectral weight calculated in the total moment

sum rule analysis described in Section IV.3.3. Due to gapless modes in the one-

magnon spectrum, around 0.8 Å
−1

and 1.4 Å
−1
, as shown in Fig. IV.3(a), the

contribution from elastic scattering and one-magnon can be mixed. However, this

mixture happens at low energies and low intensities, so that deviations from the

actual first moment are small. As for the single crystal analysis, the data were

integrated numerically using a trapezoid integration, and the background was

removed by fitting with two Gaussians. The theoretical γ parameters calculated

from the single crystal first moment sum rule analysis were rescaled to match the

scale of the first moment observed in the powder experiment, as we know the

powder data have been fairly normalized as it captures all the magnetic spectral

weight as detailed in Section IV.3.3. The magnetic form factor is also taken into

account during this rescaling process.

The theoretical first moment calculated from the γ parameters obtained from the

single crystal sum rules analysis is shown in red in Fig. IV.12, and matches well

the first moment computed from the powder experiment. The contribution from

each exchange constant associated to their bond distance is shown in thin lines

(normalized to the powder computed first moment). From this, we can see how

the contributions from J2 and J4 to the first moment are close, which makes the

fit difficult within this small wavevector range probed during this experiment.

Figure IV.12 (Data points) First moment computed from the powder data,
as a function of the scattering vector amplitude. (red thick
curve) First moment calculated from the γ parameters fitted in
the single crystal first moment sum rule analysis. (thin curves)
Contributions to the first moment from the different exchange
paths, normalized to the powder computed first moment.
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IV.3.5 Determination of exchange constants

In the first moment sum rules analysis, we have used the five γ parameters which

are related to the seven exchange constants. γ1, γ2 and γ4 are uniquely related to

J1, J2 and J4, and can be deduced from Eqs. (IV.16a) to (IV.16c), leaving J3, J5,

J6 and J7. γi and γe are related in Eqs. (IV.16d) and (IV.16e) to these four chiral

exchange constants. Considering the energy minimization using the experimental

propagation vector from diffraction [1], these four unknown exchange constants

can be written into three linearly independent equations,


tan 2πk =

√
3

J3 − J5 + 2(J6 − J7)

J3 + J5 + 2(J6 + J7 − J4)

γi = J3cR + J5cL

γe = J6cR + J7cL.

(IV.23a)

(IV.23b)

(IV.23c)

This analysis presents an ambiguity given the presence of three equations and four

unknown exchange constants. This ambiguity is intrinsic originating from many

of the exchange parameters corresponding to the same bond distances which is

the the basis of the first moment sum rule analysis discussed above. In particular,

the exchange constants J3 (J6) and J5 (J7) correspond to the same bond distance

and only differ by the SSE pathway defined by the crystal chirality. We therefore

need further information to close this set of equations and seek this through a

comparison between calculated and measured single crystal excitation spectra,

focusing on the overall bandwidth and excitations near the zone boundary.

By calculating the excitation spectra using linear spin-wave theory software

SpinW [198] with an simulated instrumental resolution ∆E ≈ 0.1meV, we can

see that the upper magnon branch along (H,H, 0) is largely affected by a change

of the J3 exchange parameter. We note that the calculation was done assuming

an untilted structure [cycloidal ground state shown in Fig. III.3(a)], however, the

scattering near the top of the single magnon branch was found not to be sensitive

to the tilting of the magnetic moments. Analyzing the scattering near the top of

the single magnon branch near the magnetic zone boundary therefore provides

an independent means of fixing J3. The experimental spectrum from MACS

Ef = 2.4meV dataset is shown in Fig. IV.13(a), and compared to calculated

spectra for different values of J3 in Fig. IV.13(b)-(d), where we can observe a

significant change of the position and structure of the upper mode. In particular,
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Figure IV.13 Spin-wave dispersion along (H,H, 0) for: (a) MACS single crystal
inelastic neutron scattering spectrum. (b)-(d) Inelastic neutron
scattering spectrum calculated from linear spin-wave theory by
fixing different J3 values. The other parameters for these
calculations are listed in Table E.1.

tuning J3 affects the maximum energy of the one-magnon band and also the

splitting of multiple bands at the maximum energy of the single magnon bands

as observed in the H-scans. Given our experimental data [Fig. IV.13(a)] and to

close off the set of Eqns. IV.23, we assume no observable splitting of bands in the

H-scans and a maximum single-magnon energy excitation given by experiment.

These two observations fix both the absolute value of J3 and also an overall

scaling factor taking the data to absolute units of meV. For these calculations,

J5, J6 and J7 are obtained by fixing J3 in Eq. (IV.23) resulting in a system of

three equations and three unknowns with γi and γe the mean values obtained

in the single crystal sum rules analysis shown in Fig. IV.11. We have chosen to

fix J3 as it has the lesser influence on the ordering wavevector which is seen by

partially differentiating Eq. (IV.23a). Finally, the exchange constants obtained

by fixing J3 with the best agreement are listed in Table IV.3. The uncertainty

associated to J3 is an estimation based on the instrumental resolution of how

far from J3 = 0.25meV we can observe the band splitting. From this estimated

error, and the least-square refinement of γi and γe, we subsequently compute the

uncertainties associated to J5,6,7. The obtained exchange constants are compared

with the values calculated from DFT from Ref. [57]. First we can see that the

interactions are overall lower in energy than expected from the DFT calculations.
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J1 J2 J3 J4 J5 J6 J7
DFT [57] 0.77 1.47 2.2 1.16 0.4 1.94 0.4

Sum rules 0.10(4) 0.29(2) 0.25(2) 0.35(5) 0.07(8) 0.97(3) 0.03(5)

Refined 0.10 0.29 0.25 0.25 0.07 0.97 -0.023

Table IV.3 Symmetric J exchange constants obtained by DFT calculations [57]
and the mean values from the four single crystal sum rules analyses
(normalized to γe and then rescaled to experimental data, in meV,
note that all values of J in the table are multiplied by S(S+1) with
S = 5/2). The refined parameters using Green’s function approach
are highlighted in red.

Then, the left-handed interactions J3 and J6 are dominant in comparison to right-

handed J5 and J7, as expected to impose the structural chirality of MnSb2O6.

From mean field theory, the Curie-Weiss temperature can be estimated by

summing the exchange constants over the nearest neighbors of a Mn2+ ion [199]

ΘCW = −S(S + 1)

3kB
[2(J1 + J3 + J4 + J5)+

4(J2 + J6 + J7)] . (IV.24)

We note that this equation is not linearly independent from the system in

Eq. (IV.23), and thus cannot be used to uniquely determine the four chiral

exchange constants J3, J5, J6, and J7. Furthermore, the Curie-Weiss temperature

obtained from magnetic susceptibility on MnSb2O6 powder, ΘCW = −19.6K

in Ref. [57] and ΘCW = −23K in Ref. [152] have a difference ∆T = 3.4K

corresponding to an energy difference of ∆E ≈ 0.3meV, which is significant given

the low energy scale of the exchange constants in MnSb2O6 (see Table IV.2).

This variation in experimentally reported results is justifiable given the choice

of the linear regime when fitting mean-field Curie Weiss law and reflects the

experimental uncertainty. For these reasons, we have not used the experimental

Curie-Weiss temperatures as a hard constraint for the exchange constants. On

the contrary, we can compute afterwards ΘCW = −26(1)K, which reasonably

agrees with the measured ones, given the experimental variations.
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IV.3.6 Comparison to spin-wave theory

This section was composed by H. Lane and C. Stock, and partially reproduced

from Ref. [2] in this thesis to maintain the completeness of the study.

In the previous sections we have applied the first moment sum rule to extract

the complex series of Heisenberg exchange constants in MnSb2O6. In this section

we compare these results to a mean-field linear spin-wave theory to compare

results and also to test for stability of the ground state magnetic structure. We

use the Green’s function formalism for this. While this technique for calculating

magnetic excitations is more versatile in cases where the low-energy response

is determined by a series of single-ion states (such as the case in rare earths

or in the presence of spin-orbit coupling like in, for example, Co2+ [200] or

V3+ [201] based compounds), it is also useful to test for stability of harmonic long-

wavelength magnetic excitations with changes in the local magnetic environment.

In this section we first briefly outline the use of the Green’s function technique

and then we apply it to calculate the spin excitation spectrum, comparing sum

rule results presented above to experiment, then refining results. We then test

stability of the proposed magnetic structure and interactions based on the series of

exchange constants extracted with the first moment sum rule and refined values.

In particular, we discuss the stability of long-wavelength magnetic fluctuations

for tilted helicoidal structures.

IV.3.6.1 Green’s functions on a rotating frame

The basic technique for applying the Green’s function approach has been outlined

in several previous papers. The technique was applied to collinear systems

CoO [200] in the presence of spin-orbit coupling with Co2+ (S = 3
2
, leff=1) ions,

and CaFe2O4 [202] based on a spin-only ground state of Fe3+ (S = 5
2
) ions.

This methodology was recently extended to the noncollinear magnetic structure

of RbFe2+Fe3+F6 which involved coupled spin-only Fe3+ (S = 5
2
) and orbitally

degenerate Fe2+ (S = 2, leff=1) ions. In terms of MnSb2O6 where only a spin-

degree of freedom exists (Mn2+ with S = 5
2
), we quote only the key results here.

Further details can be found in Refs. [203] and [2]. The methodology here is to

use the Green’s functions results from the collinear cases and transform to a local

rotating frame of reference for use in incommensurate magnets like MnSb2O6.

We now apply this theory to MnSb2O6, which comprises a triangular motif of
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Figure IV.14 The theoretical dispersive neutron scattering results based on
our theoretical calculations using Green’s functions taking an
untilted magnetic ground state [see Fig. III.3(a)]. (a)-(b) display
calculations with the exchange parameters fixed from those
derived using the first-moment sum rule described in the main
text. (c)-(d) show calculations but refining J4 to give agreement
with experiment at the zone boundary and J7 refined to keep the
ordering wavevector consistent with experiment.

coupled Mn2+ (3d5) ions. In an intermediate octahedral field, the single-ion

ground state of Mn2+ is 6S (S = 5/2, L ≈ 0) and the orbital moment is quenched.

As a result, the effect of spin-orbit coupling and crystallographic distortions are

small and may be neglected. The single-ion Hamiltonian is thus remarkably

simple and consists solely of the molecular mean field created by the magnetic

coupling to neighboring ions, which breaks time reversal symmetry, HSI = hMFŜz.

This “Zeeman-like” term acts to split the 6-fold degenerate |S = 5/2,m⟩ states.
At low temperatures (as illustrated in Fig. 7 of Ref. [202]) when only the ground

state is populated, only one transition is allowed under the constraints of dipole

selection rules of neutron scattering. We note that this approach is equivalent to

semi-classical linear spin-wave theory.
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IV.3.6.2 Comparison to Experiment

Inputting the symmetric exchange constants derived from the first moment sum

rule into the Green’s function calculation with an untilted magnetic structure,

we derive the predicted neutron scattering excitation spectrum in Fig. IV.14(a)-

(b). This calculation is done with no anisotropic terms. Symmetric exchange is

expected to be dominant here owing to the lack of an orbital degree of freedom for

Mn2+. The general results are in good qualitative agreement with experiment,

however the calculated zone-boundary excitations are clearly in disagreement

with experiment with the calculation predicting lower energy excitations than

observed in experiment at the zone boundary.

To address this, there are two noteworthy points of our first moment sum rule

analysis. First, on inspection of Fig. IV.11, the values of γ4, which fixes J4

maybe dominated by the H-scan experiment performed with Ef = 3.7meV. In

comparison to iron based langasite, this value for J4 is also considerably larger in

MnSb2O6 [146]. We therefore consider a case when this value is lowered in Fig.

IV.14(c)-(d). To ensure the same ordering wavevector we correspondingly tune J7

given the relatively large error bar in our analysis and also the large sensitivity

of the magnetic ordering wavevector to this exchange constant (Eqn. IV.23a).

After refining J4,7 (to within one-two sigma of the calculated error bar from the

first moment sum rule analysis) we obtain a good description of the data (both

along the L and H directions) with sum rule and refined exchange parameters

illustrated in Table IV.3 (refined values from this step highlighted in red).

IV.3.6.3 Stability analysis

Having derived a set of symmetric exchange constants from the first moment sum

rule and written down a response function theory for the spin waves in terms of

Green’s functions, we discuss stability of the ground state fixed by the magnetic

structure. As presented in Chapter III, there have been two magnetic structures

proposed in the literature involving a tilting of the plane of the helicoid at an angle

away from the c-axis [Ref. [58] and Fig. III.6] and one without tilting [Ref. [57]

and Fig. III.3(a)]. While initially it was proposed that the observed polar domain

switching in MnSb2O6 requires a tilted structure, other work based on neutron

diffraction has suggested that it is not a requirement. While in Chapter III we

have argued for the existence of an untilted structure, the goodness of fit to the
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diffraction data was not markedly worse for the tilted case making the results

arguably ambiguous (Section III.4.2). Here we evaluate the stability of the long-

wavelength magnetic excitations as a function of tilting the vertical axis of the

spin rotation plane given our exchange constants derived from the first moment

rule. We emphasize that the exchange constants derived above from the first

moment sum rule depend only on the relative orientation of neighboring spins

and is independent of the static magnetic structure being tilted or not. Given

the good description of the data to a symmetric-only exchange model, we test here

how stable these excitations are when the static magnetic structure is gradually

tilted.

The Green’s function calculation predicts the energy and momentum values

of stable harmonic excitations through the imaginary part of the response,

given a magnetic ground state and a set of symmetric exchange constants. In

the first moment analysis presented above, the exchange constants are derived

based on relative orientation of the magnetic moments, and does not depend

on global details like tilting of the overall magnetic structure. Our Green’s

function analysis, however, does require this tilting as the magnetic ground state

determines the local molecular field on each site.

Given that the Green’s function approach predicts stable harmonic excitations

as a function of momentum and energy, in this section we search for stable long-

wavelength excitations as a function of tilting of the spin rotation plane given

our derived exchange parameters based on the first moment rule. We focus on

L-scans as calculations of the excitation spectrum along H were found to not

noticeably change with tilting the spin rotation plane away from the c-axis over

the range of 0-15◦. We note that such H-scans were used above to fix one of

the exchange parameters and the overall calibration constant to take the data to

absolute units of meV. The two assumptions behind that step, namely the energy

value of the top of the single-magnon band and the splitting, are not found to

observably change with tilting in our calculations.

In Fig. IV.15, we search for long-wavelength excitations given our sum rule

exchange constants as a function of tilting of the vertical main axis of the

spin rotation plane away from the c-axis at an angle θ. The long-wavelength

excitations (q → 0) are calculated for several tilt angles and shown in

Fig. IV.15(a)-(c), based on the set of parameters derived from the sum rule

analysis. Given that the sum rules and the fixing of the value of J3 described

above is independent of the tilting of the static magnetic moments, in our stability
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Figure IV.15 Calculations investigating the stability of long-wavelength spin-
waves as a function of tilting the spin rotation plane away from
the c-axis. Calculations of the neutron response for tilts of θ =
15◦ (a), 10◦ (b), and 0◦ (c) are displayed with low-energy, long-
wavelength excitations only stable for tilts of θ ∼ 0◦. This is
further illustrated in panels (d)-(e) that display the response at
low energies as a function of tilt-angle of the spin rotation plane
away from the c-axis. We emphasize that these calculations are
done for a magnetic Hamiltonian with symmetric-only exchange
constants. No anisotropic terms are included in the magnetic
Hamiltonian as discussed in the main text.
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calculations described here we fix the exchange constants to these determined

values and vary the long-range static magnetic structure. On increased tilting,

the exchange parameters derived from sum rules show no stable long-wavelength

excitations, indicative that the derived exchange parameters combined with a

tilted helicoid is unstable. This is further displayed in Fig. IV.15(d)-(e) which

plot calculated constant energy cuts (integrating calculated data below 0.02 meV)

as a function of tilting of the cycloid away from the c-axis for both the cases of

exchange constants derived from sum rules, and refined values discussed above.

In both cases, increased tilting of the helicoid results in unstable long-wavelength

excitations. Based on this analysis, we suggest that the derived exchange

constants are consistent with an untilted (θ = 0) magnetic structure. However,

we emphasize that this analysis is based only a Hamiltonian with symmetric-only

exchange constants as expected based on the high-spin value of Mn2+. We cannot

rule out the possibility of small anisotropic or more complex magnetic exchange

terms that may arise from the distorted framework surrounding the magnetic

ions (see Appendix D.3). In Section III.4.3 we have shown with diffraction under

magnetic field the possibility to manipulate the spin structure in MnSb2O6 and

that the appearance of electric polarization does not require a tilted structure

as raised in Ref. [58]. Therefore, the stability analysis above is consistent with

our neutron diffraction analysis. The elastic scattering outlined in our previous

paper and the spin excitations can be modeled and understood in terms of a

symmetric-only exchange model on an untilted structure.

IV.4 Conclusions

In this chapter, we have studied structurally chiral polar magnet MnSb2O6, with

magnetic interactions being described by seven symmetric Heisenberg exchanges

in the magnetic Hamiltonian. We have presented a method using the first

moment sum rule, and have applied this to extract the exchange constants from

multiplexed neutron data. This method only depends on the correlators (angles)

between neighboring spins and not the tilting of the overall spin rotation plane.

Using Green’s functions on a rotating frame, we have reproduced the spin-wave

spectra, which are in good agreement with the measured ones and discussed

refined values. Finally, we investigated the stability of the magnetic structure in

terms of long-wavelength magnetic excitations present at low energies and suggest

that the pure cycloid is favored in terms of stability given the derived exchange
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constants from the first moment sum rule.
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Chapter V

Diffraction studies of 2D van der

Waals magnetic materials

This chapter is dedicated to the diffraction studies of 2D van der Waals (vdW)

magnetic materials which were introduced in Section I.3. This chapter includes

the studies of three different materials: Fe3–xGeTe2, Fe1+xTe and VI3. The

determination of the crystal and magnetic structures of Fe3–xGeTe2 by single-

crystal neutron diffraction is presented in Section V.1. In Section V.2, we

discuss the Spherical Neutron Polarimetry (SNP) results of Fe1+xTe to track the

temperature dependence of its magnetic structure. Finally, we investigate the

structural transitions in VI3 as a function of temperature, probed using X-ray

powder diffraction and the results are presented in Section V.3.

V.1 Fe3–xGeTe2

V.1.1 Introduction

Fe3–xGeTe2 was initially found to have a high Curie temperature TC = 230K

[86]. This itinerant ferromagnetic material has been intensively studied during

these last years for its interesting magnetic properties, such as large anomalous

Hall effect [204–206] or large magnetic anisotropic energy, which is promising for

high-density storage applications [207–209]. Additionally, it was predicted to be

stable down to a monolayer [208] which was later proved experimentally [210]
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with a Curie temperature being tunable above room temperature by ionic gating

[206], making it a potential candidate for spintronics applications based on vdW

heterostructures [211].

Fe3–xGeTe2 crystallizes in the P63/mmc space group (No. 194), and is composed

of substructures of Fe3–xGe sandwiched between two Te layers (covalent bonds),

which are separated by a vdW gap as shown in Fig. V.1(a). The Fe atoms

lie on two inequivalent sites Fe1 at (0, 0, z) (Wyckoff position 4e) and Fe2 at

(2
3
, 1
3
, 3
4
) (Wyckoff position 2c) and form a multilayer honeycomb network shown

in Fig. V.1(b). The iron deficiency x was only found on the Fe2 site and

significantly impacts the structural and magnetic properties of Fe3–xGeTe2. Both

the magnetic anisotropy and the Curie temperature decrease on decreasing the

Fe2 site occupancy, due to the variation of magnetic interactions induced by

changes in the lattice constants. The ordering temperatures are reported between

140 K and 230 K for varying Fe stoichiometric values from 3 − x = 2.75 (Fe-

deficient) to 3− x = 3.1 (Fe-doped) compounds [212].

Fe
Ge
Te

(a) (b)

Fe1
Fe2 Fe1

Fe2

Figure V.1 Crystal structure of Fe3–xGeTe2: (a) Fe3–xGe slabs sandwiched
between Te layers, (b) noncoplanar honeycomb network formed by
Fe atoms in inequivalent Fe1 and Fe2 sites. Vacancies are only
found on the Fe2 site. Only the Fe1-Fe2 bonds are shown for clarity.
Figure made using VESTA [149].

The origin of magnetism in Fe3–xGeTe2 is still unclear. A ferromagnetic order

along the c-axis was commonly observed by magnetization measurements [207] or

neutron diffraction [212–214]. An additional antiferromagnetic (AFM) transition

was found at 152 K below the ferromagnetic (FM) transition at 214 K [215].

It was later shown theoretically that the Fe3–xGeTe2 low temperature ground

state should be FM only for 0.11 < x < 0.36 [216]. The magnetic moments
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were found to be different between Fe1 and Fe2 sites for Fe-rich Fe2.9GeTe2

samples [212, 213], indicating a mixed valence Fe3+ and Fe2+ between the two

sites [86, 206]. However, for Fe-deficient Fe2.75GeTe2 samples, the refinement

is not giving significantly different magnetic moments [212]. Furthermore, the

reduced moments obtained with neutron diffraction [212, 213] agree with the

itinerant character of magnetism in Fe3–xGeTe2, while the importance of localized

magnetic moments was pointed out by examining its electronic band structure

[217].

The iron concentration highly depends on the choice of sample synthesis. While

flux-grown samples have typically higher occupancies 3−x ≈ 2.75 [212, 214, 218,

219] and thus lower TC, the samples grown by chemical vapor transport (CVT)

are rather Fe-rich 3− x > 2.8 with higher TC [207, 212, 213, 215]. But the main

drawback here is that the CVT-grown samples are smaller than the flux-grown

ones [212, 219]. For this reason only flux-grown Fe3–xGeTe2 were studied in earlier

inelastic neutron scattering experiments [218, 219].

This section is dedicated to the neutron diffraction study of a CVT-grown

Fe3–xGeTe2 single crystal. Inelastic neutron scattering was previously performed

on coaligned samples from the same batch. The experiment was carried out

on MACS [141], at NIST by H. Lane, C. Stock and J. A. Rodriguez-Rivera.

Scanning tunnelling microscopy (STM) was later performed on another single

crystal from the same batch by C. Trainer, O. Armitage and I. Benedičič at

the University of St. Andrews. Fluctuations of the Fe concentration hugely

influence the underlying magnetism, hence its prior knowledge is essential for the

correct interpretation and comparison with the literature. This is the aim of this

single-crystal neutron diffraction study which in addition allows us to confirm

the crystal and magnetic structures of our CVT-grown samples. The combined

STM imaging and inelastic neutron scattering investigations were published in

Ref. [3] and the diffraction results shown in this section are adapted from the

Supplemental Material of Ref. [3]
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V.1.2 Single-crystal neutron diffraction

Experimental details

The single-crystal neutron diffraction experiment was performed on the hot

neutron four-circle diffractometer D9, at ILL [220]. Incoming neutron wavelength

λ = 0.836 Å was selected by the Cu(220) monochromator, allowing to observe

the Bragg peaks up to high momentum transfers. A single crystal of Fe3GeTe2

of approximate dimensions 3 × 3 × 2 mm3 was characterized at four different

temperatures: 300 K (paramagnetic phase), 98 K, 60 K and 30 K (ferromagnetic

phase).

Structure refinement

Fe1
Fe2
Ge
Te

(a) Interlayer FM (b) Intralayer AFM (c) Interlayer AFM

Figure V.2 Magnetic models for Fe3–xGeTe2 (a) Interlayer FM, (b) Intralayer
AFM (magnetic moments in opposite directions between Fe1 and
Fe2 sites), (c) Interlayer AFM (magnetic moments in opposite
directions between adjacent layers). Figure made using Mag2Pol
[134].

Both crystal and magnetic structures were refined using Fullprof [133]. The

crystal structure was refined in the P63/mmc space group (No. 194). Scale,

extinction parameters, atomic positions and individual isotropic displacements

were refined at each temperature, except at 30 K where the scale and extinction

parameters were fixed from the 60 K refinement, given the lower number of
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reflections measured.1 The occupancy of interstitial Fe2 (Wyckoff position 2c)

was refined, and an iron concentration 3 − x = 2.86(3) was found at T = 60K

in agreement with the three other datasets. Ni3–xGeTe2 is structurally analog

to Fe3–xGeTe2. In this non-magnetic compound, Ni atoms were also found in

the vdW gap (0, 0, 1
2
) (Wyckoff position 2a) with an occupancy of 0.25(1), in

addition to a full occupancy at Wyckoff position 4e and an occupancy of 0.70(1)

at Wyckoff position 2a, leading to a total Ni stoichiometry 3− x = 2.95(1) [86].

Refinement considering an interlayer Fe atom at this position was not successful,

suggesting the absence of occupation in the vdW gap contrary to Ni3–xGeTe2.

The best magnetic refinement was obtained using magnetic space group P63/mm′c′

(No. 194.270) with FM order along the c-axis as shown in Fig. V.2(a). The

magnetic moments for Fe1 and Fe2 were constrained to be the same, leading

to µ = 1.6(2)µB at 30K. The refined parameters for these crystal and

magnetic structure refinements are listed in Tab. V.1, and the associated observed

intensities versus calculated ones are shown in Fig. V.3. Selected bond distances

and angles are presented in Table V.2.

The interlayer AFM model [Fig. V.2(c)] proposed in Ref. [215] was tested using

P6′3/mm′c space group (No. 194.266) but the refinement was not successful.

Another magnetic model allowed in P63/mm′c′ space group is the intralayer

AFM model [Fig. V.2(b)], with the moments for Fe1 and Fe2 sites constrained

to be opposite in sign. The agreement factors for this refinement are comparable

with the ones from the interlayer FM model. However, the magnetic moment

was highly correlated to other parameters such as the Fe2 occupancy and the

iron anisotropic displacement parameters. Finally, the refinement with different

magnetic moments for Fe1 and Fe2 (lifting the FM constraint) in P63/mm′c′

space group did not reach convergence. Therefore, the interlayer FM model with

the same magnetic moments for Fe1 and Fe2 sites yields the best agreement in

this study. The reduced magnetic moment µ = 1.6(2)µB at 30K, leading to an

effective spin S ≈ 0.8 instead of S = 5/2 or S = 2 for localized Fe2+ and Fe3+,

confirms the itinerant nature of ferromagnetism in Fe3–xGeTe2 [207, 212, 213]

The iron stoichiometry, 3− x = 2.86(3) is consistent with larger a and smaller c

lattice parameters compared to Fe-deficient samples from Ref. [212]. It also agrees

with a high TC = 215(2)K previously measured on BT4 (NIST) by tracking the

intensity of the magnetic Bragg peak (1 0 0) as a function of temperature shown

1The least-squares optimization converged with a higher scale factor [1344(38) at 30 K vs.
1248(44) at 60 K] and with an unphysical negative diagonal extinction parameter in the Becker-
Coppens model.
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Table V.1 Parameters of a Fe3–xGeTe2 single-crystal refined with Fullprof
within nuclear space group P63/mmc (No. 194) and magnetic space
group P63/mm′c′ (No. 194.270).

T = 300K Measured reflections, unique, observed (I > 2σ): 480, 159, 154

Rint = 1.95% RF = 6.93% RBragg = 6.10% χ2 = 4.53

a = b = 3.9920(2) Å c = 16.343(3) Å

Atoms Wyckoff x y z Biso (Å2) Occ. Mz

Fe1 4e 0.000 0.000 0.6715(3) 0.67(3) 1 /

Fe2 2c 0.667 0.333 0.750 0.83(7) 0.86(2) /

Ge 2d 0.333 0.667 0.750 1.91(8) 1 /

Te 4f 0.667 0.333 0.5900(7) 0.82(4) 1 /

T = 98K Measured reflections, unique, observed (I > 2σ): 382, 128, 126

Rint = 1.6% RF = 6.42% RBragg = 6.22% χ2 = 7.72

a = b = 3.9794(5) Å c = 16.304(3) Å

Atoms Wyckoff x y z Biso (Å2) Occ. Mz

Fe1 4e 0.000 0.000 0.6718(2) 0.31(3) 1 1.4(3)

Fe2 2c 0.667 0.333 0.750 0.63(9) 0.87(3) 1.4(3)

Ge 2d 0.333 0.667 0.750 1.7(1) 1 /

Te 4f 0.667 0.333 0.5894(3) 0.35(4) 1 /

T = 60K Measured reflections, unique, observed (I > 2σ): 645, 189, 188

Rint = 1.52% RF = 9.03% RBragg = 8.25% χ2 = 13.7

a = b = 3.9785(5) Å c = 16.286(4) Å

Atoms Wyckoff x y z Biso (Å2) Occ. Mz

Fe1 4e 0.000 0.000 0.6718(3) 0.24(2) 1 1.5(4)

Fe2 2c 0.667 0.333 0.750 0.51(7) 0.86(3) 1.5(4)

Ge 2d 0.333 0.667 0.750 1.57(9) 1 /

Te 4f 0.667 0.333 0.5896(7) 0.25(3) 1 /

T = 30K Measured reflections, unique, observed (I > 2σ): 200, 76, 76

Rint = 1.44% RF = 5.21% RBragg = 4.44% χ2 = 4.04

a = b = 3.9779(1) Å c = 16.281(2) Å

Atoms Wyckoff x y z Biso (Å2) Occ. Mz

Fe1 4e 0.000 0.000 0.6720(3) 0.23(3) 1 1.6(2)

Fe2 2c 0.667 0.333 0.750 0.4(1) 0.86(2) 1.6(2)

Ge 2d 0.333 0.667 0.750 1.73(9) 1 /

Te 4f 0.667 0.333 0.5891(3) 0.24(4) 1 /
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Figure V.3 Observed versus calculated intensities for: (a) nuclear reflections
measured at 300 K, (b)-(d) both nuclear and magnetic reflections
measured at (b) 98 K, (c) 60 K and (d) 30 K, corresponding to
Table V.1, with interlayer FM model shown in Fig. V.2(a).
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Table V.2 Selected bond distances and angles calculated from the refinements
presented in Table V.1.

Bond distance (Å) 300 K 98 K 60 K 30 K

Fe1-Fe1 2.563(7) 2.558(7) 2.562(7) 2.555(7)

Fe1-Fe2 2.637(2) 2.611(2) 2.612(2) 2.610(2)

Fe1-Ge1 2.637(2) 2.611(2) 2.612(2) 2.610(2)

Fe1-Te1 2.663(6) 2.644(6) 2.643(6) 2.650(6)

Fe2-Te1 2.62(1) 2.63(1) 2.62(1) 2.64(1)

Angle (◦) 300 K 98 K 60 K 30 K

Fe1-Fe1-Fe2 60.9(2) 60.7(2) 60.6(2) 60.7(2)

Fe1-Fe2-Fe1 58.1(2) 58.7(2) 58.7(2) 58.6(2)

Fe2-Fe1-Fe2 98.4(1) 98.0(1) 98.0(1) 98.1(1)

Fe1-Fe2-Fe2 40.8(1) 41.0(1) 41.0(1) 41.0(1)

in Fig. V.4, and TC = 218K from magnetization measurements on a single crystal

from the same batch [3].

Figure V.4 Intensity of (1 0 0) peak as a function of temperature measured on
BT4. The data over 100 K (dashed line) is fitted to a power law
(red line), giving TC = 215(2)K. Adapted from [3].

V.1.3 Relating spin-polarized STM imaging and inelastic

neutron scattering

The low-Q magnon dispersion measured on MACS was well-modeled by a 2D

ferromagnetic spin wave model with a large exchange constant J = 43(10)meV
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and a small single-ion anisotropy K = 0.6(1)meV [221]. However, the dynamics

are quite different from those observed in flux-grown Fe3–xGeTe2 samples

[218, 219]. In particular, the magnetic excitations presented a 3D character

in Ref. [218] with a higher single-ion anisotropy in iron-deficient Fe2.75GeTe2

compounds. Ferromagnetic domain walls at the surface layer of our Fe2.86(3)GeTe2

sample were investigated by spin-polarized STM. The width of these domain walls

is directly related to the magnetic exchange interaction J and to the anisotropy

K. Since anisotropy increases at the surface where symmetry is reduced [222]

and exchange coupling reduces due to the lack of atoms in the surface layer, the

ratio K/J is expected to be greater at the surface than in the bulk material. Yet,

calculations from the values found by inelastic neutron scattering show a ratio

K/J of the same magnitude at both the surface and the bulk of Fe3–xGeTe2 [3].

This indicates that magnetic properties in 2D materials are only slightly and not

tremendously changed at the surface layers [3].

The neutron scattering experiments confirm the importance of iron concentration

in the magnetic properties of Fe3–xGeTe2. In addition, the surface measurements

provide information on how these properties are altered by increased anisotropy,

which is also expected while studying lower layers Fe3–xGeTe2 compounds.

V.2 Fe1+xTe

V.2.1 Introduction

The discovery of high-temperature superconductivity in a family of materials

based on iron in 2008 [223] paved the way for even more intense research in uncon-

ventional superconductivity [224–228]. The chalcogenide system Fe1+xTe1–yMy

(where M = S, Se) is particularly interesting due to the simplicity of its layered

crystal structure, becoming superconducting by anion substitution on the Te site

[229–231]. Electronic and magnetic properties can be chemically tuned by the

amount x of interstitial iron between the FeTe layers and the amount y of anion

substitution. It was shown that both variables are important for the appearance

of superconducting phases [232–235]. Given the interplay between structural,

electronic and magnetic properties, the understanding of the non-superconducting

parent phase Fe1+xTe is essential.

Fe1+xTe crystallizes at room temperature in the tetragonal P4/nmm space group
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Fe

Te

Figure V.5 High temperature crystal structure of Fe1+xTe: interstitial iron (in
white and brown) located between weakly bonded layers of FeTe4
tetrahedra. Figure made using VESTA [149].

(No. 129). The amount x of interstitial iron is located between vdW layers of

edge-sharing FeTe4 tetrahedra as shown in Fig. V.5. This material exhibits a rich

magnetic-crystallographic phase diagram as shown in Fig. V.6 depending on both

temperature and iron occupancy [236–239]

• For x < 0.12, a bicollinear AFM structure orders along the b-axis (TN =

67K for x = 0.068 [229]) at the same temperature as a structural transition

from tetragonal P4/nmm to monoclinic P21/m (No. 11) space group. This

magnetic ground state consists of stripes of moments with a FM coupling

within the stripes, and an AFM coupling between the stripes, with a

commensurate propagation vector k = (1
2
, 0, 1

2
), illustrated in Fig. V.7(a).

• For x > 0.12, the crystal symmetry is lowered from tetragonal P4/nmm

to orthorhombic Pmmn (No. 59) space group. The structural transition

temperature coincides with an incommensurate helical ordering with prop-

agation vector k = (δ, 0, 1
2
) (where δ ≈ 0.38 for x = 0.141 [240]) as shown

in Fig. V.7(c).

• For critical x ≈ 0.12, the magnetic ground state is an incommensurate

collinear spin-density wave (SDW) shown in Fig. V.7(d), with a mixture of

the reported crystallographic phases [232, 241].

In addition, STM measurements performed on the surface layers of Fe1+xTe
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(a) (b)

Figure V.6 Phase diagrams of Fe1+xTe. (a) δ component of the propagation
vector k = (δ, 0, 12) for low temperature ground state, as a function
of the iron occupancy. (b) Néel temperature as a function of the
iron occupancy. Figures taken from [236] and [242].

(x ≈ 0.1) samples revealed a canting θ = 29.8(13.7)◦ of the spins in the (bc)-

plane [Fig. V.7(b)] in comparison to the original bicollinear AFM structure

[Fig. V.7(a)] [243, 244]. However, spherical neutron polarimetry (SNP) performed

on Fe1.09Te shows no canting [θ = 0(5)◦] in the bulk material. This evidences

slightly different properties between bulk and surface magnetism due to out of

plane magnetocrystalline anisotropy [244], as pointed out in Section V.1.3 for

Fe3–xGeTe2.

In a Fe1.09(1)Te single crystal, an incommensurate propagation vector k = (δ, 0, 1
2
)

corresponding to the SDW order [Fig. V.7(d)] was previously observed in vicinity

of the Néel temperature [232]. At 57K, δ = 0.421(1) and the value moves towards

the bicollinear AFM value δ = 1
2
around 46K below which it is locked. This

competition between incommensurate and commensurate collinear order was also

evidenced by inelastic neutron scattering using polarization analysis, performed

on single crystals of Fe1.057(7)Te [239]. Anisotropic fluctuations along the b-axis

(parallel to the low-temperature ordered magnetic moment) were measured at

70K close to TN. Contrary to the low-temperature fluctuations which are located

at commensurate Q = (0.5 0 0.5), the high-temperature fluctuations were found

at incommensurate Q = (0.45 0 0.5), indicating the presence of the SDW phase

near the Néel temperature. In the previous SNP experiment conducted in [244],

the measurements were only performed at base temperature (2K). Given the
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Figure V.7 Reported magnetic ground states for Fe1+xTe: (a) bicollinear AFM
found in low x < 0.12 compounds, (b) canted AFM (in the (bc)-
plane) measured on the surface layer of Fe1.1Te samples, (c) helical
incommensurate order found in high x > 0.12 compounds, (d)
collinear spin-density wave order at intermediate x ≈ 0.12 iron
concentration. Only moments near z = 0 are shown for clarity.
Figures made using Mag2Pol [134].

complex phase diagram in Fe1+xTe and the observations in Refs. [232] and [239], it

is also important to study the temperature dependence of the magnetic structure.

In this section, we will present the investigation on the magnetic structure of

a single crystal of Fe1.057(7)Te (from the same batch as in Ref. [239]) with a

focus close to the Néel temperature. We have used SNP to be sensitive to chiral

scattering (see Section II.4.2) due to the possibility of a helical order.
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V.2.2 Polarized neutron diffraction

Experimental details

The SNP experiment was performed using CRYOPAD on the hot neutron

diffractometer D3, at ILL [245] using a wavelength λ = 0.85 Å selected by

the (111) reflection of a Cu2MnAl Heusler monochromator. The sample is

a cylindrical single crystal of approximate height 4mm and diameter 7mm,

mounted in the (H0L) scattering plane. The b-axis is the vertical axis in the local

coordinates (see Section II.4.2). As shown in Fig. V.8, magnetic scattering is only

sensitive to the component of the magnetic structure factor perpendicular to the

scattering vector. In the case of collinear magnetic structures like the bicollinear

commensurate AFM [Fig. V.7(a)] or the incommensurate AFM [Fig. V.7(d)],

the magnetic structure factor lies on the z-axis, so that |FM⊥| = |FM⊥z|. Any

presence of magnetic moments apart from the b-axis would result in a non-

zero FM⊥y component (depending on the measured magnetic reflection), giving

|FM⊥z| < |FM⊥ |. This could be a sign of helical ordering [Fig. V.7(c)] or canted

AFM [Fig. V.7(b)].

Figure V.8 Polarimetry local coordinates for Fe1+xTe. The scattering vector Q

lies in the (H0L) scattering plane, and the vertical axis is along b̂.

Temperature dependence of the propagation vector

In order to determine whether the magnetic order is commensurate or incom-

mensurate close to the Néel temperature, scans along (H 0 0.5) were measured

as a function of temperature, as shown in Fig. V.9(a). The Néel temperature

was found around 70K [Fig. V.9(b)] and the propagation vector does not

change as a function of temperature [Fig. V.9(c)], contrary to the evolution
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from incommensurate k = (δ, 0, 1
2
) to commensurate k = (1

2
, 0, 1

2
) reported in

Refs. [236] (δ = 0.421(1) at 57K) and [239] (δ = 0.45 at 70K). Moreover, the

sample was aligned in the paramagnetic phase in the tetragonal unit cell. The

monoclinic distortion at TN leads to a misalignment resulting in a difference from

the exact AFM order for which δ = 0.5.

Figure V.9 (a) H-scans along (H 0 0.5) for different temperatures, fitted to
Gaussians (continuous lines). Temperature dependence of (b) the
integrated intensities, (c) the center of the magnetic reflection.
TN ≈ 70K is indicated in dashed gray lines. The reported values
δ = 0.421(1) at 57K [236] and δ = 0.45 at 70K [239] are shown in
yellow and green in (a) dashed lines, (c) crosses.

Having established the commensurability of the magnetic structure in our

Fe1.057(7)Te single crystal, which rules out both the SDW order and the helical

order, we looked at the temperature dependence of the polarization matrices to

investigate on the possibility of a canted AFM structure [Fig. V.7(c)].

Polarization matrices

For a pure elastic magnetic reflection, in absence of any chiral terms,2 the

polarization matrix for a fully polarized incident beam is given by:

2A helical magnetic ground state would have necessitated k ̸= ( 12 0 1
2 ), and if so, we would

have observed chiral terms in addition to the reduction of the amplitude of the diagonal elements
of the polarization matrix from 1.
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Pif =


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0 −
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{
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∗
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}
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2

|FM⊥z| 2 − |FM⊥y| 2

|FM⊥ |
2


. (V.1)

As illustrated in Fig. V.8, magnetic moments fully aligned along the b-axis would

only give a FM⊥z component. Any canting from the b-axis would result in a non-

zero FM⊥y component, and the reduction of the amplitude of the diagonal elements

Pyy = −Pzz from 1. In addition, the structural transition from tetragonal to

monoclinic symmetry in Fe1+xTe would lead to four structural domains. In the

case of equi-populated domains, the off-diagonal elements Pyz and Pzy would

average to zero [244], leading to the diagonal polarization matrix

Pif =


−1 0 0

0 −x 0

0 0 x

 , (V.2)

where x = 1 if the moments are along b̂ and x < 1 if they are canted. The

polarization matrices for three magnetic reflections (1
2
0 1

2
), (3

2
0 1

2
) and (1

2
0 3

2
)

were measured at five different temperatures. They were corrected to the initial

polarization on D3 p0 = 0.935. The decay of the 3He spin filter efficiency was

tracked by measuring at regular time intervals the Pzz matrix element of the

nuclear Bragg peak (2 0 0).3 This is taken into account in the polarization

matrices shown in Table V.3.

Finally, all the polarization matrices fairly correspond to Eq. (V.2), where x =

1. We note that some off-diagonal terms are non-zero within the calculated

statistical uncertainties. This is particularly true for Pxz which should vanish

for a pure magnetic reflection. The presence of an nuclear-magnetic interference

contribution (due to an eventual structural modulation with the same propagation

vector) to Pxz can be discarded as this would lead to Pxz = −Pzx [see Eq. (II.75)].

Non-zero values for Pzx are also found, but they do not correspond to a chiral term

which would necessitate Pyx = Pzx. Actually, as mentionned above, the single

crystal was aligned in its tetragonal phase. Below the monoclinic distortion, there

3Pzz = 1 for a nuclear peak and perfect initial and final neutron beam polarization.
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Table V.3 Polarization matrices for different reflections at different tempera-
tures.

Q T = 2K T = 30K

(1
2
0 1

2
)

−0.985(4) 0.036(7) 0.099(7)

−0.002(7) −0.983(4) 0.093(7)

0.111(7) 0.070(7) 0.981(4)

 −0.993(5) 0.029(8) 0.080(8)

0.004(8) −0.980(5) 0.090(8)

0.117(8) 0.069(8) 0.983(5)


(3
2
0 1

2
)

−0.97(2) 0.02(3) 0.10(3)

0.02(3) −0.93(2) 0.02(3)

0.13(3) 0.03(3) 1.01(2)

 −1.01(2) 0.04(3) 0.13(3)

−0.00(3) −1.00(3) 0.05(3)

0.14(3) 0.07(3) 1.03(3)


(3
2
0 3

2
)

−0.97(3) 0.06(4) 0.14(4)

0.02(4) −0.96(3) 0.13(4)

0.12(4) 0.04(4) 0.98(3)

 −0.99(3) 0.06(4) 0.00(4)

0.02(4) −1.06(4) 0.16(4)

0.03(4) 0.05(4) 0.97(3)


Q T = 60K T = 65K

(1
2
0 1

2
)

−0.976(7) 0.02(1) 0.10(1)

0.00(1) −0.983(7) 0.07(1)

0.10(1) 0.09(1) 0.979(7)

 −0.973(7) 0.045(9) 0.097(9)

0.004(9) −0.976(7) 0.092(9)

0.122(9) 0.095(9) 0.984(7)


(3
2
0 1

2
)

−0.98(3) 0.06(4) 0.08(4)

0.06(4) −1.00(3) 0.03(3)

0.16(4) 0.11(4) 0.97(3)

 −0.97(3) 0.02(3) 0.11(3)

0.03(3) −0.96(3) −0.00(3)

0.11(4) 0.08(3) 0.96(3)


(3
2
0 3

2
)

−1.06(5) −0.08(5) 0.04(5)

0.05(5) −0.92(5) 0.11(5)

0.08(6) 0.25(6) 0.90(5)

 −0.98(3) 0.03(4) 0.12(4)

0.01(4) −0.98(4) 0.06(4)

0.11(4) 0.04(4) 0.93(4)


Q T = 68K

(1
2
0 1

2
)

−0.93(2) 0.04(2) 0.11(2)

0.01(2) −0.93(2) 0.09(2)

0.10(2) 0.08(2) 0.98(2)


(3
2
0 1

2
)

−1.00(5) 0.01(6) 0.15(5)

0.05(5) −0.80(6) −0.06(6)

0.09(6) 0.05(5) 0.93(6)


(2 0 0)

 0.994(6) −0.006(6) −0.030(7)

−0.044(7) 0.999(6) −0.005(7)

−0.007(7) 0.032(7) 0.999(5)


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could be a disalignment leading to a deviation from x ∥ Q, and the appearance

of non-zero diagonal terms. Another reason could be the underestimation of the

experimental errors. Indeed, only statistical uncertainties were computed but

additional systematic errors could come from the incomplete polarization of the

incoming neutron beam and small misalignments of the polarization direction

with respect to the sample (typical precision of 2◦ [122]). A full error analysis is

detailed in the Appendix of Ref. [119], and is not taken into account in our study.

As a conclusion, contrary to the SDW phase in vicinity to the Néel temperature

reported in Fe1.09(1)Te in Ref. [236], and indicated in Fe1.057(7)Te in Ref. [239],

or the canted AFM structure reported in Ref. [244] at the surface layers of

Fe1+xTe samples, the magnetic structure in our Fe1.057(7)Te single crystal seems

to be uniquely commensurate bicollinear AFM below TN ≈ 70K. As shown in

the phase diagram in Fig. V.6, this is consistent with the fact that Fe1.057(7)Te

compound is deep in the bicollinear phase in terms of interstitial iron. X-ray

powder diffraction was performed by G. Kaur and C. Stock on Rigaku SmartLab

at the University of Edinburgh to study the structural transitions as a function

of temperature. Acoustic phonons were studied by inelastic neutron scattering

performed by C. Stock and U. Stuhr on EIGER at PSI [246], using Fe1.057(7)Te

samples from the same batch. These datasets are currently being analyzed in

order to provide detailed information on the crystal structure of our compound

and a proper understanding of our observations on the magnetic structure.

V.3 VI3

V.3.1 Introduction

Finding materials exhibiting ferromagnetism down to monolayers is essential

for engineering functional spintronic devices based on vdW heterostructures.

Transition metal trihalides MX3 (where M is a metal cation and X a halide)

crystallizing in honeycomb layers are potential candidates [84, 247]. Among them

CrI3 has been widely studied these last years in comparison to its vanadium analog

VI3 [248–254].

VI3 was first studied in the 1960s and its crystallographic structure was found

to be BiI3 type in the rhombohedral R3̄ space group (No. 148) [255, 256]. More

detailed studies were carried out in the recent years after the prediction of a FM
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order and the stability of monolayers of VI3 with DFT calculations [257]. However

the crystal structure of VI3 is still controversial. Son et al. [258] first found VI3 to

crystallizes at room temperature in the trigonal P 3̄1c space group (No. 163) with a

structural transition at T1 = 79.0(5)K into monoclinic C2/c space group (No. 17).

Tian et al. [259] proposed a monoclinic C2/m space group (No. 15) at high

temperature, followed by a structural transition at T1 = 79K into rhombohedral

R3̄ space group (like CrI3). On the contrary, Kong et al. [260] determined a

rhombohedral R3̄ at room temperature, and noticed a “subtle” phase transition at

T1 = 78K. However, they all had measured a ferromagnetic transition TC ≈ 50K

by magnetization measurements and agreed on the semiconductor character of

VI3. Later Doležal et al. [261] and Marchandier et al. [262] corroborated the

rhombohedral R3̄ symmetry for high temperature. In addition to this T1 = 78K

structural transition and the TC ≈ 50K ferromagnetic transition they have also

observed a second structural transition at T2 = 32K. This low-temperature phase

was well refined in the triclinic P 1̄ space group in Ref. [262], but is is unclear

whether this structural transition comes with a second ferromagnetic transition

as reported in Ref. [263]. A summary of the crystal structures reported for the

different structural phases of VI3 is presented in Table V.4.

In all the different reported structures, VI3 is based on edge-sharing VI6

octohedra forming a honeycomb network in a layer in the (ab)-plane, as shown

in Fig. V.10(a), with the vanadium atoms occupying two-thirds of the octahedral

positions [262]. However the stacking of these vdW layers differs between the

models with an exact ABC stacking for the rhombohedral R3̄ model, shown in

Fig. V.10(b), and a quasi-ABC stacking for the monoclinic C2/m model [259].

Furthermore, magnetism in VI3 is also complex and ambiguous. V3+ magnetic

ions have two valence electrons in the three-degenerate t2g orbitals, leading to

(S = 1, leff = 1) [201, 260]. Different values for the magnetic moments were found

by magnetization measurements in VI3 [258–260, 264–266], sometimes suggesting

the canting of the easy-axis anisotropy away from the c-axis [260, 265, 266]. This

is supported by the reduced magnetic moments of V3+ µ ≈ 1.3(1)µB at T =

6K determined by powder and single-crystal neutron diffraction [266]. Contrary

to CrI3, where the Cr3+ orbital moment is quenched in the octahedral crystal

field, orbital ordering and strong spin-orbit coupling is expected in VI3 [267,

268]. However the nature of orbital ordering is discussed, as the orbital moment

4Refinement in P 3̄m1 space group for the high temperature phase, and in monoclinic C2/m
space group for the intermediate phase were attempted, but they did not match the peaks
accounted from the vanadium honeycomb superstructure.
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Table V.4 Summary of the reported crystal structures of VI3. Space group
and lattice parameters are given along with the temperature of the
measurements, and the phase transition temperatures.

Paper High temperature First transition Second transition

Son et al. [258]

Powder XRD

P 3̄1c (No. 163)

300K

a = 6.8987(10) Å

c = 13.2897(1) Å

T
1
=

79
.0
(5
)
K

C2/c (No. 15)

40K

a = 6.9354(3) Å

b = 11.9069(5) Å

c = 13.1865(1) Å

β = 90.403(2)◦ T
C
=

50
.0
(1
)
K

Tian et al. [259]

Single crystal XRD

C2/m (No. 12)

100K

a = 6.8416(3) Å

b = 11.8387(6) Å

c = 6.9502(4) Å

T
1
≈

79
K R3̄ (No. 148)

60K

a = 6.8325(6) Å

c = 19.6776(2) Å T
C
≈

50
K R3̄ (No. 148)

40K

a = 6.8351(7) Å

c = 19.696(2) Å

Kong et al. [260]

Single crystal XRD

R3̄ (No. 148)

100K

a = 6.8879(3) Å

c = 19.8139(9) Å T
1
≈

78
K Subtle phase

transition seen

in specific heat

measurements T
C
≈

49
K

Doležal et al. [261]

Single crystal XRD

R3̄ (No. 148)

250K

a = 6.9257(3) Å

c = 19.9185(13) Å T
1
≈

79
K

Monoclinic

(peak splitting)

T
2
≈

32
K

Triclinic

(peak splitting)

Marchandier et al.

Synchrotron

Powder XRD [262]

R3̄ (No. 148)4

250K

a = 6.9277(2) Å

c = 19.9389(2) Å T
1
≈

76
K

P 1̄ (No. 2)

60K

a = 7.7359(2) Å

b = 7.6886(2) Å

c = 7.6968(2) Å

α = 53.1933(5)◦

β = 53.0168(7)◦

γ = 53.4732(7)◦

T
2
≈

32
K

P 1̄ (No. 2)

9K

a = 7.7268(2) Å

b = 7.6808(2) Å

c = 7.6985(2) Å

α = 53.1280(2)◦

β = 53.0863(3)◦

γ = 53.5022(3)◦
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I

(a) (b)

Figure V.10 Crystal structure of VI3 in the R3̄ space group: (a) layer of edge-
sharing VI6 octohedra in a honeycomb network, (b) ABC stacking
of the VI6 honeycomb layers, where iodine atoms are omitted for
clarity. Figures made using VESTA [149].

was predicted to be anti-parallel [267, 268] or parallel to the spin moment [269].

Moreover, the presence of two magnetically non-equivalent V sites was suggested

by nuclear magnetic resonance measurements [263] and theoretically [270]. Using

inelastic neutron scattering, H. Lane et al. have modeled the observed magnetic

excitations with multi-spin-orbit levels calculations considering two sites with

oppositely distorted octahedra of VI6 [201]. This was later supported by X-ray

magnetic circular dichroism measurements [271].

As the magnetic properties are highly correlated to the crystal structure in VI3,

a detailed study is necessary to characterize the samples measured in Ref. [201].

This is the aim of the X-ray diffraction experiment presented in this section, using

powder ground from single crystals synthesized the same way as in Ref. [201].

V.3.2 X-ray powder diffraction

Experimental details

The sample growth and preparation were carried by G. Kaur and C. Stock. Single

crystals of VI3 were grown using CVT method [256]. Due to the air-sensitivity5

of the samples, they were ground in an inert atmosphere provided by a nitrogen

5A study of the stability of a single crystal of VI3 under air exposure is presented in the
Supplemental Material of Ref. [261].
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gas filled glovebox. The powder was purified using a sublimation apparatus on

a hotplate around 40 ◦C overnight to get rid of excess iodine precursor. This

step is important given that these crystals were grown using CVT method and

the transport agent is iodine. Powders of VI3 were then uniformly spread on a

sample holder made out of aluminium and chromium alloy. The sample holder was

mounted on a Oxford PheniX cryostat, using copper grease to ensure high thermal

conductivity. The measurements were performed on the Rigaku SmartLab X-ray

powder diffractometer, at the University of Edinburgh, in the Bragg-Brentano

geometry, using a Cu K-α1 radiation with a wavelength λ = 1.5406 Å. Note that,

this experiment is a part of the commissioning project of the X-ray diffractometer

with the cryostat setup.

Full diffraction patterns with a 2θ-range [5, 120]◦ were measured at 12, 28, 60 and

100 K. A temperature dependence from 20 K to 150 K of the 2θ-range [42.5, 57]◦

was measured, to track the peak splittings due to the structural transitions. The

raw datasets are presented in Appendix F.

Temperature dependence

Three diffraction peaks in the [42.5, 57]◦ 2θ-range were fitted on Matlab to a

single- or a double-Lorentzian for different temperatures. This is illustrated for

four different temperatures in Fig. V.11, where the 2θ-axis has been transformed

into Q-axis. A peak splitting occurs around 80 K for (3 0 0)h [Fig. V.11(a)]

and (3 0 6)h [Fig. V.11(b)], where the subscript indicates the Miller indices

in the hexagonal cell. This evidences the first structural transition, from

rhombohedral to monoclinic space group. However, no more splitting was

observed at lower temperature, within our instrumental resolution, contrary to

the reported structural transition reported at T2 = 32K [261, 262]. The (0 0 12)

peak is simply shifted as a function of the temperature, as shown in Fig. V.11(c).

These diffraction peaks are fitted to a single- or a double-Lorentzian as shown in

Fig. V.11(d)-(f). For the double-Lorentzian fits, the width were fixed from the

low temperature fitted parameters. The temperature dependence of the centers

of the fitted peaks is shown in Fig. V.12.

From the peak centers of (3 0 0)h and (0 0 12) reflections, we can deduce the lattice

parameters in the monoclinic unit cell [261]. This is presented in Fig. V.13. The

first structural transition is clearly seen in Fig. V.13(a) as probed by the peak
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Figure V.11 Stacked plots of diffraction peaks for several temperatures
corresponding to: (a) (3 0 0)h, (b) (3 0 6)h, where the subscripts
indicate the hexagonal unit cell, and (c) (0 0 12). Corresponding
single- and double-Lorentzian fit for (d) (3 0 0)h, (e) (3 0 6)h, and
(f) (0 0 12).
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Figure V.12 Temperature dependence of the centers of the diffraction peaks
(some fits are shown in Fig. V.11) corresponding to: (a) (3 0 0)h,
(b) (3 0 6)h, where the subscripts indicate the hexagonal unit cell,
and (c) (0 0 12).

splitting with different monoclinic lattice parameters am and bm (bm =
√
3am if

the monoclinic unit cell is congruent with the hexagonal cell). It is also indicated

by an inflection in the lattice parameter c (corresponding to the stacking of three

vdW layers) shown in Fig. V.13(b). The ferromagnetic transition can also be

observed at TC = 50K by an inflection in all three of the lattice parameters,

probing the magnetoelastic coupling coming along with the magnetic ordering.

But as mentioned above, there is no evidence in our data of an other transition

around T2 = 32K. Ongoing work shows that VI2 has a structural transition at

this temperature, and previous observations could be related to VI2 impurities in

the measured VI3 samples.

With this study, we have successfully observed the first structural transition

in VI3, corresponding to the temperatures reported in the literature ensuring
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Figure V.13 Lattice parameters as a function of temperature in VI3: (a) a and
b, ah = bh correspond to the hexagonal unit cell above T1 = 80K
(dashed lines) while am and bm correspond to the monoclinic unit
cell, (b) c in the hexagonal unit cell, corresponding to the stacking
of three vdW layers. The reported TC = 50K and the lower
structural transition temperature T1 = 32K are also indicated in
dashed lines.

a correct temperature calibration of the cryostat in the measurement presented

in the thesis.6 Rietveld refinements of the full diffraction patterns are in progress,

with the ultimate objective to track down the octahedral distortions modeled in

Ref. [201], as the main point of this diffraction study was to motivate the presence

of the two sites from neutron spectroscopy.

V.4 Conclusions

In this chapter, we have presented results of diffraction studies on three 2D van

der Waals magnetic materials which show strong interplay between structural,

electronic and magnetic properties. In both Fe3–xGeTe2 and Fe1+xTe the magnetic

properties are highly correlated to the iron deficiency x. Single-crystal diffraction

6In a previous measurement under the same conditions, we have observed the peak splitting
around 30K (sample temperature indicated by the software). However the temperature of the
cryostat shield was higher than usual. By stopping the cryostat and purging it before cooling
back to 12K, we observed the same peak splitting at 80K in agreement with the literature.
This indicates an offset of ∼ 50K between the two measurements. Greatest care and further
tests are therefore needed to ensure the stability of this new experimental setup.
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on Fe3–xGeTe2 determined both crystal and magnetic structures of Fe3–xGeTe2

allowing to characterize the Fe-rich samples measured during inelastic neutron

scattering and scanning tunnelling microscopy experiments. Spherical neutron

polarimetry on Fe1+xTe showed no temperature-dependence of the magnetic

structure in our compound, contrary to the competition between commensurate

and incommensurate antiferromagnetic order reported earlier. X-ray powder

diffraction successfully captured the higher temperature structural transition in

VI3 but was not sensitive to the lower temperature transition reported in the

literature.
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Chapter VI

Conclusions and outlook

In this thesis, we have studied two types of novel magnetic materials: multiferroic

MnSb2O6, and 2D magnetic Fe3–xGeTe2, Fe1+xTe and VI3 using complementary

neutron scattering techniques and X-ray diffraction.

Chapter III was dedicated to the crystal and magnetic structure determination

of multiferroic MnSb2O6. We have observed no evidence for the breaking of

the paramagnetic P321 space group as derived by single-crystal and powder

neutron diffraction. Previous studies were not considering the possible presence of

structural twins in their single crystals. We have used polarized neutrons to mea-

sure Schwinger scattering and have unambiguously determined the population

of chiral structural domains. The magnetic ground state, exhaustively studied

by unpolarized single-crystal diffraction, and spherical neutron polarimetry,

remained ambiguous, due to the mixture of threefold domains, and polar domains.

Yet, we have performed diffraction experiments under an external magnetic field,

and shown that the magnetic structure can be tuned by low magnetic fields. This

led us to consider that a uniform Dzyaloshinskii-Moriya interaction, combined

with the underlying coupling between structural and magnetic chiralities, favors a

polar domain in the presence of a magnetic field which tilts the spin rotation plane.

This alternative explanation of the previously measured electric polarization is

valid for both proposed ground states.

Given the possibility to manipulate the magnetic structure with low magnetic

fields, and therefore to reduce the number of magnetic domains, the next step

would be the detailed study of the magnetic structure by pinning the polar

domains (with magnetic or electric field) [51–54]. This was actually attempted
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during the thesis on TASP (PSI), where we have perfomed spherical neutron

polarimetry under an electric field. However, we have not observed any switching

of the chiral (polar) domains. The single crystal of MnSb2O6 was mounted on a

high voltage sample stick [272], and connected to an electrode by fixing a wire with

silver paint, but we have repeatedly stated that the connection was lost when we

removed the stick from the cryostat (without knowing if the wire went off before

the measurements, during, or when we removed the stick). This was partially

due to the non-sticky surface of the sample, and a more elaborated sample

mounting would be necessary for future experiments. Pinning the magnetic

domains would help determining the actual magnetic ground state in MnSb2O6.

Furthermore, this would provide a microscopic proof of the multiferroic character

of the compound, supporting the pyroelectric current measurements performed

previously.

In Chapter IV, we have studied the dynamics of MnSb2O6. We have developed

an analysis based on the first moment sum rule to evaluate the seven Heisenberg

exchange constants in MnSb2O6, taking advantage of the multiplexed inelastic

neutron scattering data collected on MACS. This analysis is independent from

the tilt of the spin rotation plane, as the first moment sum rule considers

the correlators between neighboring spins. Based on the extracted exchange

constants, we have reproduced the spin excitations, using Green’s functions on a

rotating frame, which are in good agreement with the measured spectra. Finally,

we have shown that the pure cycloidal order is favored in terms of stability of the

magnetic excitations given the extracted exchange constants.

The advantage of the first moment sum rule analysis is that no assumption on

the strength of the exchange constants is necessary. Therefore, it is very useful

to study the magnetic interactions in magnetic materials well described by a

Heisenberg model, and having a complex magnetic network. The analysis being

based on the correlators and the distances between neighboring spins, it would

be particularly powerful for systems presenting lower symmetry and therefore

different distances between the spins. In this case, inelastic neutron scattering

on a powder sample could be used to obtain the exchange constants. For closer

distances between the spins, as in MnSb2O6, larger datasets should be collected on

single crystals (using for example multiplexed neutron instrumentation), in order

to decorrelate the sinusoidal variations of the first moment in all the directions

of the reciprocal space.

Research on the dynamical magnetoelectric effects led to the observation, in the
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THz range, of novel hybrid excitations, the so-called electromagnons [273]. These

are magnons that can be driven by an electric field. The dual phenomenon,

atomic vibrations having both an electric and magnetic character have been

observed in iron langasite Ba3NbFe3Si2O14 [274]. This is due to its peculiar chiral

crystallographic structure, and no other experimental signature has been observed

so far in other materials. Given the structural similarity of MnSb2O6, it is a good

candidate to sustain such excitations. A first experiment on the AILES beamline

(Synchrotron SOLEIL, Saclay, France) has been performed during this thesis

work, and more investigations are ongoing to explore these novel excitations.

Chapter V was dedicated to the structural and magnetic studies of three 2D van

der Waals magnetic materials using neutron and X-ray diffraction.

In Section V.1, single-crystal neutron diffraction allowed to determine the iron

occupancy of the investigated Fe2.86(2)GeT2 sample. The refinement of both

crystal and magnetic structures was found to be consistent with the literature.

Given the important role of the iron occupancy in the magnetic properties

of this material, this characterization was essential to relate with the neutron

spectroscopy and the scanning tunnel microscopy experiments perfomed on the

same batch of single crystals, which results were published in Ref. [3].

In Section V.2, we have studied the non-superconducting parent phase Fe1+xTe,

which also has a rich phase diagram depending on the iron deficiency x, using

spherical neutron polarimetry. The magnetic structure was found temperature-

independent below the Néel temperature in the studied Fe1.057(7)Te single crystal,

showing the absence of competition between commensurate and incommensurate

antiferromagnetic order for low iron occupancy compounds, staying in their

bicollinear antiferromagnetic phase. These results fix our sample of Fe1+xTe in the

phase diagram, and will be combined with the study of the monoclinic distortion

using X-ray powder diffraction, and of acoustic phonons using inelastic neutron

scattering. In particular, a soft acoustic branch which slope is sensitive to an

elastic constant related to the breaking of the fourfold structural symmetry was

observed in Fe1+xTe.

In Section V.3, we have tracked several nuclear peaks of VI3 as a function of

temperature, using X-ray powder diffraction, showing clear splittings, proof of the

first structural transition observed in the literature. This structural transition,

as well as the ferromagnetic transition are also indicated in the temperature

evolution of the lattice parameters. Further Rietveld refinements are in process
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in order to validate the model based on the presence of two vanadium sites, to

explain the spectra observed in previous inelastic neutron scattering experiments

[201].
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Appendix A

Properties of Pauli matrices

For spin 1/2 particles, spin operator are usually represented by the 2×2 Hermitian

Pauli matrices. The Pauli spin operator σ̂ is

σ̂ = (σ̂x, σ̂y, σ̂z), (A.1)

where the Pauli matrices are

σ̂x =

0 1

1 0


σ̂y =

0 −i

i 0


σ̂z =

1 0

0 −1

 .

(A.2)

(A.3)

(A.4)

Product of two Pauli matrices:

σ̂ασ̂β = δαβ + iϵαβγσ̂γ. (A.5)

Dot product for any vector a and b:
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(a · σ̂)(b · σ̂) = (a · b)1 + i(a× b) · σ̂. (A.6)

Trace relations:

Tr(σα) = 0

Tr(σαβ) = 2δαβ

Tr(σαβγ) = 2iϵαβγ

Tr(σαβγδ) = 2(δαβδγδ − δαγδβδ + δαδδβγ).

(A.7)

(A.8)

(A.9)

(A.10)

152 Appendix A. Properties of Pauli matrices



Appendix B

Description of magnetic

structures

The magnetic moment for the j-th atom in the unit cell indexed by the lattice

vector Rl is given in Fourier decomposition as

µj(Rl) =
1

2

∑
k

(Skje
−ik·Rl + S−kje

ik·Rl), (B.1)

where S−kj = S∗
kj so that the magnetic moment is real. In the case of a single

propagation vector, the sum over k and the related indexes can be removed:

µj(Rl) =
1

2
(Sje

−ik·Rl + S∗
j e

ik·Rl). (B.2)

Assuming a helicoidal magnetic structure where the spins lie in the plane formed

by orthogonal unit vectors û and v̂ the Fourier coefficient of atom j is Sj =

(Sujuj + Svjivj)e
−i2πϕj , where ϕj is the phase of the magnetic moment of atom

j. From this, the magnetic moment can be written as

µj(Rl) =
1

2
[(Sujuj + iSvjvj)e

−ik·Rle−i2πϕj + (Sujuj − iSvjvj)e
ik·Rlei2πϕj ], (B.3)

and regrouping the exponential factors allows to write the cosine and sine
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decomposition

µj(Rl) = Sujuj cos (k ·Rl + 2πϕj) + Svjvj sin (k ·Rl + 2πϕj). (B.4)

We note that Eq. (B.1) is defined using the same convention as in Fullprof,

for example. In Mag2Pol the definition of the magnetic moment is

µj(Rl) =
1

2

∑
k

(Skje
ik·Rl + S−kje

−ik·Rl), (B.5)

in which case the Fourier coefficient is rather Sj = (Sujuj +Svjivj)e
i2πϕj and the

magnetic moment is given by:

µj(Rl) = Sujuj cos (k ·Rl + 2πϕj)− Svjvj sin (k ·Rl + 2πϕj). (B.6)
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Appendix C

Magnetic moments in MnSb2O6

As described in Section III.3.3 the magnetic moment of an Mn atom at site

j = (1, 2, 3), in a layer α (along the c-axis), and with an angle ϕαj can be described

by

µαj = Mu cosϕαjû+Mv sinϕαjv̂

ϕαj = 2πηCkzα + ηT(j − 1)
2π

3
.

(C.1)

û and v̂ are orthogonal unit vectors which describe the main axes of the spin

rotation plane (which is an ellipse).

We can introduce an orthonormal basis R = (x̂, ŷ, ẑ) where x̂ lies along the a-

axis, ẑ along the c-axis and ŷ completes the right-handed set. For the magnetic

model proposed in Ref. [57] and pictured in Fig. III.3(a), û = x̂ and v̂ = ẑ. In

order to describe a tilted cycloid structure and to allow any direction û in the

(ab)-plane, we can introduce two rotation matrices. The first one is a rotation

around x̂ to describe the vertical tilt of the cycloid by an angle θ as illustrated

in Fig. C.1(a):

Rθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 . (C.2)

And the second one is a rotation around ẑ to describe the rotation of the in-plane
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main axis by an angle χ as illustrated in Fig. C.1(b):

Rχ =


cosχ − sinχ 0

sinχ cos θ 0

0 0 1

 . (C.3)

From starting û0 = x̂ and v̂0 = ẑ we can describe all kind of tilted structures.

n̂ = û× v̂ completes the orthonormal set and normal to the spin rotation plane.

Applying first Rθ and then Rχ, the general expression of these basis vectors are

given by

û =


cosχ

sinχ

0

 , v̂ =


sinχ sin θ

− cosχ sin θ

cos θ

 , n̂ =


sinχ cos θ

− cosχ cos θ

− sin θ

 . (C.4)

(b)(a)

Figure C.1 (a) Here, û = x̂ , θ is the rotation angle around x̂. (b) Here, v̂ = ẑ,
χ is the rotation angle around ẑ.

With this general formalism the spin chirality vector associated to the propagation

of the magnetic order along the c-axis is given by

VC = µαj × µα+1j = MuMv(û× v̂) sin(ϕα+1j − ϕαj) = MuMv sin(2πkz)ηCn̂.

(C.5)

Similarly the triangular spin chirality vector is given by

VT = µαj × µαj+1 = MuMv(û× v̂) sin(ϕαj+1 − ϕαj) = MuMv

√
3/2ηTn̂. (C.6)

Thus ηC and ηT are well describing the senses of rotation of the spins around the
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n̂ axis as they change sign according to the senses of rotation.

In the refinement softwares used for modeling and refining magnetic structure

(Mag2Pol [134] and Fullprof [133]), the sign of the first term of ϕαj is

determined by the dot product with the lattice vector k · RL and cannot be

refined, so we need to rewrite Eq. (C.1) into

µαj = Mu cosϕ
′
αjû+ ηCMv sinϕ

′
αjv̂

ϕ′
αj = ηCϕαj = 2πkzα + ηCηT(j − 1)

2π

3
.

(C.7)

In this case the magnetic parameters can be encoded in the signs of the Fourier

coefficients and of the magnetic phases. Also, the magnetic moments are often

expressed in the direct space Rabc of the crystal lattice. In the case of MnSb2O6 or

in general for a trigonal unit cell, we have to convert to â = x̂, b̂ =
√
3/2ŷ−1/2x̂

and ĉ = ẑ. For a vectorM its conversion from the direct space to the orthonormal

basis R is given by:


Mx

My

Mz


R

=


1 −1/2 0

0
√
3/2 0

0 0 1



Ma

Mb

Mc


Rabc

. (C.8)

Inversely,


Ma

Mb

Mc


Rabc

=


1 1/

√
3 0

0 2/
√
3 0

0 0 1



Mx

My

Mz


R

. (C.9)

Thus for the tilted model from Ref. [58] with û ∥ [11̄0], i.e. for χ = −30◦ and

letting θ as a free parameter. From Eq. (C.4) and Eq. (C.9).
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û =


√
3/2

−1/2

0


R

=
1√
3


1

−1

0


Rabc

, v̂ =


− sin θ/2

−
√
3/2 sin θ

cos θ


R

=


− sin θ

− sin θ

cos θ


Rabc

.

(C.10)

Working with the basis vectors:

B1 =


1

−1

0


Rabc

,B2 = i


1

1

0


Rabc

,B3 = i


0

0

1


Rabc

. (C.11)

Associated to the coefficients C1, C2, C3 (refinable during the data analysis).

Along with the magnetic phase ϕj = ηCηT(j − 1)2π
3
, and constraining Mv > 0,

this gives 4 refinable parameters for 5 physical quantitiesMu, Mv, θ, ηC, ηT. With

the relations:



Mu = C1

√
3, dMu = dC1

√
3

Mv =
√

(C2
2 + C2

3), dMv =

√
C2

Mv

2

dC2
2 +

C2

Mv

2

dC2
3

θ = atan[−C2/C3].

(C.12)
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Appendix D

Powder neutron diffraction on

MnSb2O6

This appendix supplies more information on the powder neutron diffraction

experiment on MnSb2O6 performed on D20, presented in Chapter III.

D.1 Datasets

The datasets were measured between 2.6 K and 89.4 K, with fine temperature

steps below 15 K (85 temperatures between 2.6 K and 15.1 K) and coarse steps

above (26 temperatures between 17.7 K and 89.4 K). Raw diffraction patterns

are shown in Fig. D.1 for selected temperatures. Magnetic peaks appear below

TN ≈ 12K.

D.2 Refinement results

The data were refined sequentially using Fullprof [133]. Zero shift, scale,

asymmetry, UVW and shape parameters were refined at 2.6 K, and then fixed

during the sequential refinement. Background parameters, lattice constants,

atomic positions (within the P321 space group) and overall displacement factor

were refined at each temperature. A magnetic phase was also considered,

where the magnetic moment magnitude M of the Mn2+ ions is refined following
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Figure D.1 Stacked plots of the D20 diffraction patterns for selected
temperatures.
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Eq. (III.6) considering a circular spin rotation envelop of the cycloids M =

Mu = Mv. In the process of the sequential refinement, this second phase is also

refined above the actual Néel temperature (giving M = 0 within uncertainties

above TN = 12K). Examples of the refinement are shown in Fig. D.2, with the

corresponding results listed in Table D.1.

Refining separately Mu and Mv (elliptical envelop) did not improve the fit. Also,

for this refinement, û was taken along the a-axis, and v̂ along the c-axis, as

powder diffraction is not sensitive to the in-plane direction of the spin rotation

plane.

Table D.1 Refined parameters from powder neutron diffraction performed on
D20 for selected temperatures.

T = 2.6K

RBragg(nuc) = 2.06% RBragg(mag) = 5.93% χ2 = 104

a = b = 8.7901(2) Å c = 4.7171(2) Å Biso = 0.08(2) Å2

Atoms Wyckoff x y z M (µB) Occ.

Mn 3e 0.6318(7) 0.0000 0.0000 4.57(2) 1

Sb1 1a 0.0000 0.0000 0.0000 / 1

Sb2 2d 0.3333 0.6667 0.487(3) / 1

Sb3 3f 0.3039(5) 0.0000 0.5000 / 1

O1 6g 0.105(1) 0.8943(6) 0.7595(5) / 1

O2 6g 0.469(1) 0.5859(5) 0.7267(7) / 1

O3 6g 0.2287(7) 0.781(1) 0.2803(7) / 1

T = 49.4K

RBragg(nuc) = 2.23% RBragg(mag) = 143% χ2 = 83.4

a = b = 8.7904(2) Å c = 4.7175(1) Å Biso = 0.11(1) Å2

Atoms Wyckoff x y z M (µB) Occ.

Mn 3e 0.6322(6) 0.0000 0.0000 0.1(3) 1

Sb1 1a 0.0000 0.0000 0.0000 / 1

Sb2 2d 0.3333 0.6667 0.491(3) / 1

Sb3 3f 0.3046(5) 0.0000 0.5000 / 1

O1 6g 0.105(1) 0.8918(5) 0.7605(5) / 1

O2 6g 0.469(1) 0.5867(4) 0.7273(7) / 1

O3 6g 0.2305(6) 0.780(1) 0.2799(6) / 1

D.3 MnO6 octahedral distortion

Each MnO6 octahedron is composed of a Mn atom surrounded by six O atoms

with three inequivalent Wyckoff positions as shown in Fig. D.3. The distances

(calculated from the refinement) between the Mn atom and the O atoms within

an octahedron are shown in Fig. D.4 as a function of the temperature, showing

a sharper evolution below TN ≈ 12K, indicating magnetostructural effects and
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Figure D.2 Rietveld refinement (black lines), neutron powder diffraction data
(red points) and measured at (a) T = 2.6K and (b) T = 49.4K.
Top and bottom ticks indicate respectively the MnSb2O6 nuclear
and magnetic peaks. T = 2.6K. The difference curve (observed-
calculated) is shown in blue lines.
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the octahedral distortion. The corresponding angles are shown in Fig. D.4 as a

function of the temperature. We note that the calculations on Fullprof are

performed until the first digit of the angles.

Mn
O1
O2
O3

Figure D.3 MnO6 octahedra are composed of a Mn atom (purple) surrounded
by six O atoms with three inequivalent Wyckoff positions (in red,
green and blue).

D.3. MnO6 octahedral distortion 163



Figure D.4 Temperature dependence of the bond distances within a MnO6

octahedron between Mn and (a) O1, (b) O3, and (c) O2.
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Figure D.5 Temperature dependence of the angles within a MnO6 octahedron
for (a) O1-Mn-O2, (b) O2-Mn-O3, and (c) O1-Mn-O3.
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Appendix E

Single crystal sum rules analysis

E.1 Integration methods for first moment

As the first moments are computed by a numerical integration, it is important to

make sure that the integration methods do not have a significant impact on the

results of the analysis. This section outlines five integration methods, and the

resulting γ parameters are compared in Fig. E.1, following a L-scan analysis on

the Ef = 2.4meV dataset.

In Section IV.3.4.2, the constant-Q scans are fitted to two Gaussians as shown in

Fig. IV.9, and then the first moments were calculated by numerically integrating

with a trapezoidal rule with the background removed from the fit to a two-

Gaussian model. The results are shown with bars (C). Of course, the first

moments can also be computed without removing the background, resulting with

bars (B). Then, they can be computed analytically using the fit parameters of

the two-Gaussian model, shown with the bars (A) in Fig. E.1. In order to avoid

the mixture of elastic scattering and one-magnon scattering, the elastic line can

be fitted to a third Gaussian, while the actual data above E = 0.2meV are fitted

to two Gaussians. Then, the first moments can be again calculated analytically

with the fitted parameters of these two Gaussians in the good energy range.

This is shown in bars (D). Finally, the trapezoidal integration can be performed,

removing the background from this three-Gaussian model, as shown in bars (E).

Finally, it can be seen that all the fitted parameters agree within uncertainties.

We have rather chosen to adopt trapezoidal integration, removing the background
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Figure E.1 Fitted parameters for different integrations methods to compute the
first moments, from the Ef = 2.4meV dataset.

from the two-Gaussian fit, to deal with any deviation from a two-mode spin-wave

spectrum.

E.2 H-scan

In Section IV.3.4.2, we have described the first moment sum rule analysis of

the single crystal data, by fixing some H0 and calculating the first moment as

a function of L. We can perform the same analysis considering Q = (H,H,L0)

with H varying for a chosen L0 (H-scan). For each interaction indexed by spins

i and j, the corresponding term in the cosine in Eq. (IV.15) can be written now:

Q · dij = 2πH(dij,x + dij,y) + 2πL0dij,z, (E.1)

where the distances are expressed in lattice units, and the scattering vector in

reciprocal lattice units. Similarly as in Eq. (IV.18), a general formula for the first

moment can be derived for a fixed L0, using trigonometric identities:
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⟨E⟩(H,L0) = Ai(L0) cos(2πδ1H) + ...

Ae(L0)[cos(2πδ2H) + ...

cos(2πδ3H) + cos(2πδ4H)] + C(L0),

(E.2)

where we have now three functions Ai, Ae and C which are L0-dependent,

expressed by:

Ai(L0) =
4

3
[γ1 + γi cos(2πL0)]

Ae(L0) =
4

3
[γ2 + γe cos(2πL0)]

C(L0) = −2

3
[2γ1 + 6γ2 + 3γi + 3γ4 + 6γe] + ...

2

3
cos(2πL0)(γi + 3γ4).

(E.3)

(E.4)

(E.5)

Fig. E.2(a)-(c) shows some constant-Q cuts for (H,H,L0 = 0.4) and their fit

to two gaussians. The first moments are again calculated numerically using

trapezoidal integration and the background is removed from the two-gaussian

fit. These computed first moments are the red data points in Fig. E.2(d), along

with the H-dependence of the computed first moment, and the fit to Eq. (E.2),

to extract Ai, Ae and C. This operation is repeated for several L0, as shown in

Fig. E.2(e)-(f).

Finally, a total of 999 first moments ⟨E⟩(Q) are computed for this analysis on this

Ef = 2.4meV dataset, and plotted against the fitted first moments in Fig. E.3(a).

The γ parameters are then obtained by fitting the measured Ai, Ae and C to

their theoretical values, as shown in Fig. E.3(b)-(d), where the red data points

are the coefficients calculated in Fig. E.2(d)-(f). As for the L-scan analysis, some

remaining background can be included in the computation of C. For this reason,

the L0-independent part of Eq. (E.5), which corresponds to an overall constant

to the first moment sum rule, is not used to get the γ parameters and hence the

exchange constants Ji.
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Figure E.2 (a)-(c) Constant-Q scans for different Q = (H,H,L0 = 0.4). A
fit to a double gaussian is shown in red, and the first moment is
calculated from trapezoidal integration where the background is
removed from the gaussian fit. (d) First moment as a function
of H for L0 = 0.4, fitted to its theoretical expression (red curve).
The red data points correspond to the first moments calculated in
the cuts plotted in (a)-(c). (e)-(f) First moment as a function of H
for (e) L0 = 0 and (f) L0 = −1, fit to theoretical expression in red.
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Figure E.3 (a) Measured first moments versus fitted first moments for H-scan
analysis, for the Ef = 2.4meV dataset. A total of 999 ⟨E⟩(Q) were
taken into account. (b)-(d) Fitting of coefficients (b) Ai, (c) Ae and
(d) C giving the γ parameters. The red data points show the values
calculated in Fig. E.2(d)-(f).

J1 J2 J3 J4 J5 J6 J7
Fig. 14 (b) 0.0988 0.2859 0.1500 0.3491 -0.1011 1.0222 0.1161

Fig. 14 (c) 0.0988 0.2859 0.2000 0.3491 -0.0155 0.9972 0.0732

Fig. 14 (d) 0.0988 0.2859 0.2500 0.3491 0.0702 0.9722 0.0304

Table E.1 The parameters for the calculations performed in SpinW displayed
in Fig. IV.13(b)-(d). Parameters varied for the three calculations are
highlighted in blue.

E.3 Second dataset results

The single crystal first moment sum rule analysis was repeated on the second

dataset measured on MACS with Ef = 3.7meV. The results of the L-scan (469

computed first moments) and H-scan (487 computed first moments) analyses are

respectively shown in Fig. E.4 and Fig. E.5.

E.4 Parameters for Figure 14

The sum rule analysis had an ambiguity in the set of equations resulting from

the fact that several exchange constants corresponded to the same bond distance.
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Figure E.4 (a) Measured first moments versus fitted first moments for L-scan
analysis, for the Ef = 3.7meV dataset. A total of 469 ⟨E⟩(Q) were
taken into account. (b)-(c) Fitting of coefficients (b) A and (c) C
giving the γ parameters.

Figure E.5 (a) Measured first moments versus fitted first moments for H-scan
analysis, for the Ef = 3.7meV dataset. A total of 487 ⟨E⟩(Q) were
taken into account. (b)-(d) Fitting of coefficients (b) Ai, (c) Ae and
(d) C giving the γ parameters.
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We therefore needed to fix one exchange constant through a comparison to the

single crystal dispersion as discussed in the main text. This qualitative analysis

is described in Fig. IV.13. The parameters for the calculations are listed in Table

E.1.
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Appendix F

VI3 diffraction patterns
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Figure F.1 Stacked plots of the X-ray powder diffraction patterns for four
temperatures.
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Full diffraction patterns with a 2θ-range [5, 120]◦ were measured at 12, 28, 60 and

100 K, as shown in Fig. F.1. Smaller 2θ-range [42.5, 57]◦ datasets were measured

between 20 K and 150 K (36 temperatures). Raw diffraction patterns are shown

in Fig. F.2 for selected temperatures. Some peak splittings are observed below

80 K, evidencing a structural transition in VI3.
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Figure F.2 Stacked plots of the X-ray powder diffraction patterns for selected
temperatures.
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J. A. Rodriguez-Rivera, O. Fabelo, C. Stock, and P. Wahl, Phys. Rev. B
106, L081405 (2022).
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A. Barthélémy, and A. Fert, Nat. Mater. 6, 296 (2007).

[21] N. A. Spaldin, S.-W. Cheong, and R. Ramesh, Phys. Today 63, 38 (2010).

[22] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).

[23] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

[24] M. Fiebig, J. Phys. D: App. Phys. 38, R123 (2005).

[25] N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).

[26] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).

[27] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu,
D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A.
Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

[28] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
Nature 426, 55 (2003).

[29] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong,
Nature 429, 392 (2004).

[30] R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).

[31] K. Wang, J.-M. Liu, and Z. Ren, Adv. Phys. 58, 321 (2009).

[32] Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).

[33] R. D. Johnson and P. G. Radaelli, Annu. Rev. Mater. Res. 44, 269 (2014).

[34] S. Dong, J.-M. Liu, S.-W. Cheong, and Z. Ren, Adv. Phys. 64, 519 (2015).

[35] M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater. 1,
16046 (2016).

[36] N. A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019).

[37] D. Khomskii, Phys. 2, 20 (2009).

178 Bibliography

http://www.jetp.ras.ru/cgi-bin/dn/e_011_03_0708.pdf
https://doi.org/10.1103/PhysRevLett.6.607
https://doi.org/10.1063/1.1708493
https://doi.org/10.1063/1.1708493
https://doi.org/10.1080/00150199408245120
https://doi.org/10.1103/PhysRevB.2.754
https://doi.org/10.1038/nmat1868
https://doi.org/10.1038/nmat1860
https://doi.org/10.1063/1.3502547
https://doi.org/10.1021/jp000114x
https://doi.org/10.1038/nature05023
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1126/science.1113357
https://doi.org/10.1038/nmat1804
https://doi.org/10.1126/science.1080615
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02572
https://doi.org/10.1038/nmat1805
https://doi.org/10.1080/00018730902920554
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1146/annurev-matsci-070813-113524
https://doi.org/10.1080/00018732.2015.1114338
https://doi.org/10.1038/natrevmats.2016.46
https://doi.org/10.1038/natrevmats.2016.46
https://doi.org/10.1038/s41563-018-0275-2
https://doi.org/10.1103/Physics.2.20


[38] G. Catalan and J. F. Scott, Adv. Mat. 21, 2463 (2009).

[39] D. Lebeugle, D. Colson, A. Forget, and M. Viret, App. Phys. Lett. 91,
022907 (2007).

[40] R. D. Johnson, L. C. Chapon, D. D. Khalyavin, P. Manuel, P. G. Radaelli,
and C. Martin, Phys. Rev. Lett. 108, 067201 (2012).

[41] T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).

[42] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
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[133] J. Rodŕıguez-Carvajal, Phys. B 192, 55 (1993).

[134] N. Qureshi, J. Appl. Crystallogr. 52, 175 (2019).

[135] B. H. Toby, Powder Diff. 21, 67 (2006).

[136] N. Qureshi, EPJ Web of Conferences 155, 00002 (2017).

[137] W. Heil, J. Dreyer, D. Hofmann, H. Humblot, E. Lelievre-Berna, and
F. Tasset, Phys. B: Condens. Matter 267–268, 328 (1999).

[138] M. Janoschek, S. Klimko, R. Gähler, B. Roessli, and P. Böni, Phys. B:
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[170] N. Qureshi, M. Zbiri, J. Rodŕıguez-Carvajal, A. Stunault, E. Ressouche,
T. C. Hansen, M. T. Fernández-Dı́az, M. R. Johnson, H. Fuess,
H. Ehrenberg, Y. Sakurai, M. Itou, B. Gillon, T. Wolf, J. A. Rodŕıguez-
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