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Abstrakt:  

Intermetalické sloučeniny R2TIn8 (R = vzácná zemina, T = přechodný kov), obecně 

nazývané “218” díky jejich stechiometrii jsou strukturně příbuzné se skupinou 

známých cerových těžkofermionových supravodičů CeCoIn5 a CeRhIn5. Vy smyslu 

dimenzionality se nachází na pomezí plně trojrozměrných intermetalik se strukturou 

CeIn3 a kvazi-dvourozměrných “115” supravodičů. To z nich činí ideální kandidáty 

pro studium vlivu dimenze na jejich vlastnosti. Nedávný výzkum v oblasti „218“ 

sloučenin přinesl nové možnosti a odhalil existenci cerových sloučenin s paladiem a 

platinou na místě přechodného kovu. Díky tomu se jejich studium dostává do popředí 

zájmu, přestože byly dlouho dobu opomíjeny na úkor jejich mnohem známějších 

„115“ příbuzným. 

Soustředili jsme se hlavně na vyhodnocení magnetických struktur a 

krystalovopolních efektů ve sloučeninách R2RhIn8 s R = Nd, Tb, Dy, Ho, Er, Tm, La, 

Lu, Y. V této práci prezentujeme výsledky objemových měření (měrné teplo, 

magnetizace) následované vyhodnocenými magnetickými strukturami z řady 

neutronových experimentů. 
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Abstract:  

Intermetallic compounds R2TIn8 (R = rare earth, T = transition metal), commonly 

called “218” because of stoichiometry, are structurally related to a class of well-

known Ce-based heavy-fermions like CeCoIn5 or CeRhIn5. They are located between 

fully 3D cubic compound (e.g. CeIn3) and quasi-2D “115” superconductors, which 

makes them ideal candidates to study structural dimensionality effects on various 

properties. Recent developments in this field showed that it is possible to grow 

compounds with T = Pd or Pt with “218” stoichiometry. Therefore further study of 

“218” compounds is desired since much less is known about them compared to 

“115” compounds. 

We have focused mainly on the determination of magnetic structures and crystal 

field effects along the series of Rh based “218” compounds for various rare-earth 

elements. The single crystals of compounds with R = Nd, Tb, Dy, Ho, Er, Tm, La, 

Lu, Y were successfully grown. Results of bulk measurements (specific heat, 

susceptibility) together with magnetic structures determined from several neutron 

experiments are presented. 
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Introduction 

The group of heavy-fermion tetragonal compounds based on the CeIn3 

common structural unit became of great importance after the discovery of 

superconducting state in applied pressure in CeRhIn5 [1] and later at ambient 

pressure in CeCoIn5 [2] and CeIrIn5 [3]. This family of structurally related 

compounds is generally written as CenTmIn3n+2m (where T is a transition metal 

element Co, Rh, Ir, Pd or Pt, n and m are integers) and consists of n layers of CeIn3 

alternated along the c-axis with m layers of TIn2. The possibility of changing 

dimensionality in these materials by changing m and n ratio together with changing 

of T element gives scientist a big playground for tuning ground state properties of 

these compounds (e.g. [4]). Since the finding of analogies between heavy-fermion 

superconductivity and 
3
He magnetic superfluid state it is believed that this 

phenomena is mediated by a nearly localized Fermi liquid and so it has magnetic 

origin [5]. Thus a detailed understanding of the magnetic interactions in these 

materials is crucial in pursuing the origin of unconventional superconductivity. 

There are many competing effects in cerium compounds which influences 

formation of a magnetic ground state [4]. This makes the understanding of the 

physics behind more difficult, so there comes an idea of substituting cerium with 

other rare-earth element. By this substitution, we will lose the superconducting 

properties, but the magnetism will be still present. 

Our idea is to look into the series of the non-cerium analogues of a well-known 

heavy fermion superconductor. Study of the evolution of macro- and microscopical 

properties along the rare-earth series will help us to understand influence of different 

effects to the formation of the magnetic ground state. We plan to study magnetic 

structures, so the natural candidates for studying are the compounds with T = Rh, 

because both CeRhIn5 and Ce2RhIn8 give evidence of antiferromagnetic behaviour. 

Relatives of CeRhIn5 are already well studied and there exist a comprehensive thesis 

about that compounds [6]. Therefore our choice was settled to study non-cerium 

analogues of Ce2RhIn8. 

After the brief overlook of theoretical background in chapter 1, we move to the 

description of the used experimental techniques in chapter 2. Both introductory 

chapters contain only the most important information, which will be used later. But 

they are always accompanied by a number of references for further reading. Chapter 
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3 concerns current knowledge of the studied compounds and summarizes previous 

results. 

The principal chapter is the next one, number 4. Here we will go through the 

whole process of condensed matter research. The idea is to start with sample 

preparation and characterization, continue with bulk properties and finally move to 

neutron diffraction study in order to determine detailed magnetic structure. 
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1. Theoretical background 

1.1. Magnetism in 4f electron systems 

At the beginning of this thesis we would like to explain basics of magnetic 

properties of the rare-earth compounds. Rare earth atoms (R) include 17 elements 

consisting of 15 lanthanides in addition to scandium and yttrium. These two are 

included from historical reasons (they were part of the same ore deposits), but their 

electronic configurations are different as they don’t contain 4f electrons. Based on 

the atomic number, we can divide rare earths into light rare earths (lanthanum – 

europium) and heavy rare earths (gadolinium – ytterbium).  

1.1.1. Free ion 

Magnetic properties of rare earths are mainly influenced by the 4f electron 

shell. Boundary compounds of the lanthanide series have this shell empty 

(lanthanum) or fully filled (lutetium) and according to Hund rules they don’t exhibit 

magnetic. Together with yttrium, they are often used as nonmagnetic analogues to 

the others. 

In the majority of atoms, attractive forces between the nucleus and electrons 

are shielded by the electrostatic repulsion among electrons. This is not the case in 

rare earths, where the 4f electrons are very close to nuclei (see Figure 1) and thus do 

not provide such effective shielding. Therefore, the ionic radius is decreasing from 

La to Lu. This effect is called Lanthanide contraction. 

One can now think that if 4f electrons are very close to nuclei, they do not 

influence the electronic properties of this compound. However, as shown in Figure 1, 

you can see that the tail of 4f wave function interferes with closed 5s and 5p orbitals. 

This result in hybridization between 4f and conduction electrons, which is 

responsible for RKKY interaction (see chapter 1.1.2) and also Kondo screening 

effects in cerium compounds.  

Hund rules are very important for magnetism in rare earth compounds. 

Regarding the third rule, light rare earths have low total angular momentum   

|   |, while in heavy rare earths it is larger:   |   |. Here   is total orbital 

momentum and   is the total spin momentum. The electronic configuration and 

fundamental magnetic parameters of rare earths are summarized in Table 1. 
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Figure 1 - Radial wave functions of Gd [7], which is typical in 4f compounds. 

 

 

 

 

Table 1 - Magnetic parameters of rare-earth ions  

 
Z 4fn                      

La3+ 57 4f0 0 0 0 0 0 0 0 

Ce3+ 58 4f1 1/2 3 5/2 6/7 2.14 2.54 0.178 

Pr3+ 59 4f2 1 5 4 4/5 3.2 3.58 0.8 

Nd3+ 60 4f3 3/2 6 9/2 8/11 3.27 3.62 5.11 

Pm3+ 61 4f4 2 6 4 3/5 2.4 2.68 3.2 

Sm3+ 62 4f5 5/2 5 5/2 2/7 0.71 0.85 4.46 

Sm2+ 62 4f6 3 3 0 0 0 0 0 

Eu3+ 63 4f6 3 3 0 0 0 0 0 

Eu2+ 63 4f7 7/2 0 7/2 2 7 7.96 15.75 

Gd3+ 64 4f7 7/2 0 7/2 2 7 7.94 15.75 

Tb3+ 65 4f8 3 3 6 3/2 9 9.72 10.5 

Dy3+ 66 4f9 5/2 5 15/2 4/3 10 10.65 7.08 

Ho3+ 67 4f10 2 6 8 5/4 10 10.61 4.5 

Er3+ 68 4f11 3/2 6 15/2 6/5 9 9.58 2.55 

Tm3+ 69 4f12 1 5 6 7/6 7 7.56 1.17 

Tm2+ 69 4f13 1/2 3 7/2 8/7 4 4.54 0.32 

Yb3+ 70 4f13 1/2 3 7/2 8/7 4 4.54 0.32 

Yb2+ 70 4f14 0 0 0 0 0 0 0 

Lu3+ 71 4f14 0 0 0 0 0 0 0 
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1.1.2. Rare-earth metals 

The described localized properties of partially filled orbital are unique among 

other types of atoms. It also leads to well defined energy levels in the solid, which 

are nearly the same as in the free ion. This localized character has been be confirmed 

experimentally by measuring the effective magnetic moments      (see chapter 

2.2.2). These moments are very close to full values expected from Hunds rules for 

free ion: 

          √ (   ) (1)  

where    is Bohr magneton,    is Landé factor and   is total angular momentum. 

Magnetic ordering in rare earth metals is mainly caused by the RKKY 

interaction. It is an indirect interaction which means that 4f electrons don’t interact 

directly with each other, but locally interact with spin of conduction electrons. This 

interaction can be described by the exchange Hamiltonian    : 

       (   )      (2)  

where   is oscillating function with distance    . These oscillations are called Friedel 

oscillations.      are spins of the interacting electrons. De Gennes suggested that it is 

better to use quantum number   instead of   and replace    with projection of spin 

into the direction of  . The magnetic ordering temperatures will be than proportional 

to the de Gennes factor: 

   (    )  (   ) (3)  

And the ordered moment will be close to: 

          (4)  

The values of all these theoretical magnetic moments and factors are 

summarized in Table 1. 

1.2. Crystalline electric field 

Charge distribution around ions in a crystal lattice produces an electric field, 

called a crystal field (CEF). This field acts on electrons in the 4f shell, giving rise to 

the strong magnetic anisotropy of rare-earth materials. In a view of one atom, the 

crystal field removes directional degeneracy reflecting the symmetry of nearby 

atoms. Splitting of the multiplets depends on the crystal field symmetry. We can 

generally say that the splitting increases with lower symmetry. 
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As written above, 4f electrons are hidden deep inside an ion, so they are not 

much influenced by the crystal field. This implies separation of spin-orbit coupling 

(energies in order of 100 meV) and crystal field splitting. Typical crystal field 

splitting in rare earths correspond to energies of about 10 meV (hundreds of 

Kelvins). See Figure 2 for example of such splitting in Ce
3+

. 

 

Figure 2 - Energy level scheme of 4f electrons in a cerium ion [6]. 

The calculation of the crystal field is possible from first principles. For 

described system with weak crystal field, we can express crystal field Hamiltonian 

with general relationship: 

  ̂   ∑  
  ̂ 

 

  

 (5)  

  
  are crystal field parameters which can be calculated from a point charge model if 

we know the exact structure of the compound, otherwise it can be determined 

experimentally.  ̂ 
  are Steven’s operators representing the whole 4f shell (see [8] 

for details). The number of independent parameters in the   
  matrix depends on the 

symmetry of the crystal field. For example, given a cubic symmetry there are only 

two independent crystal field parameters    and   , while for orthorhombic structure 

there are 9 independent parameters. In our case of tetragonal symmetry, equation (5) 

can be simplified to the form: 

  ̂     
   

    
   

    
   

    
   

    
   

  (6)  
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With the knowledge of the crystal field parameters, it is then straightforward to 

calculate the energy level splitting. The energy difference between ground state and 

 -th excited state is commonly marked as   , see Figure 2 for example. 

If the compound contain odd number of   electrons, its   is half-integer and    

energy levels always contain a so-called Kramers doublet. This degeneracy is based 

on the time reversal symmetry and is independent on crystal symmetry. External 

magnetic field breaks this doublet. For example all cerium compounds always split 

into maximum 3 energy levels (Figure 2). 

1.3. Strongly correlated electron systems 

A lot of magnetic systems can be understood in a very simplified view. We can 

assume that electrons do not interact with each other, but each electron is exposed to 

some effective interactions produced by an electron gas. This approach is called 

molecular field theory or sometimes theory of averaged fields. However in many 

cases, this simple approach is not enough and we have to consider other correlations 

between electrons. We called compounds exhibiting this behaviour strongly 

correlated electron systems because their correlations cannot be neglected. These 

include transition metals and their oxides, high-temperature superconductors and also 

cerium, ytterbium and uranium systems exhibiting Kondo interactions, usually called 

heavy fermion or electron compounds. 

1.3.1. Heavy fermions 

Heavy fermion materials have been a subject of study for nearly 40 years after 

the report of unusual properties of CeAl3 in 1975 [9]. This group of materials is 

characterised by their anomalous specific heat. At low temperatures, the specific heat 

consists mainly from electronic contribution. This contribution is linear with 

temperature through a proportionality constant  , also called Sommerfeld coefficient 

(more about specific heat is written in the chapter 2.2.1). Here for normal conductors, 

  is in order of units of          . In heavy fermions, these values go up to 

1000          . This large value of Sommerfeld coefficient is ascribed to a large 

effective mass of the itinerant electrons – therefore the name Heavy fermions. 

Heavy fermion materials are usually found in tetragonal and hexagonal cerium 

and uranium compounds. A large anisotropy in magnetic susceptibility is observed 
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which indicates large crystal field effects. A simple CEF model is usually adequate 

to describe heavy fermion susceptibility. 

A few years after discovering heavy fermions, the first heavy fermion 

superconductor (HFSC) CeCu2Si2 was reported by Steglich et al. [10]. Several 

uranium based ones were reported, but for over 20 years CeCu2Si2 and related 

compounds were the only cerium based HFSC. This was until 2000 when 

superconductivity in CeIn3 was reported by Hegger et al. [1], producing much 

interest in HFSC. At present, there are over 40 HFSC exhibiting various structures 

and ground state properties. 

In the framework of classical BCS theory, the presence of only a small amount 

of magnetic impurities will destroy superconductivity, because the interaction of two 

electrons in a spin singlet will break the pairing. But local magnetic moments always 

exist in heavy fermions, strongly affecting whole system, so superconductivity in 

these compounds seems unconventional.  

The interplay between magnetism and superconductivity is still not understood. 

An important aspect in all unconventional superconductors is influence of 

dimensionality on the formation of the superconducting condensate. However it is 

not clear if it is driven by magnetic structures, which of course also depends on 

dimensionality. The microscopic coexistence of magnetic and superconducting state 

was observed in e.g. UPd2Al3 [11], and on the other hand large competition between 

those phenomena is reported for CeCu2Si2, where magnetism and superconductivity 

exists separately in domains [12]. Therefore the study of links between magnetism 

and dimensionality can bring important understanding to unconventional 

superconducting phenomena. 

1.4. Magnetic propagation formalism 

There are in general two ways of describing magnetic structure in materials. 

The first is very similar to the description of crystal structures: we define the 

magnetic unit cell and describe the positions, directions and amplitudes of the 

magnetic moments within. In addition to crystal structure, we must think more about 

the chosen coordinate system, because for lot of magnetic structures it is better to use 

polar instead of crystallographic coordinates. The biggest disadvantage of this 

method is that magnetic unit cell can be very big, sometimes thousands of magnetic 

atoms [13]. 
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The second way is to use formalism based on describing atoms only in nuclear 

unit cell and propagation vectors, sometimes also called  -vectors and labelled as  . 

The direction and amplitude of the physical magnetic moment    associated with  th
 

atom in the unit cell is then described as 

    ∑      
     

{ }

  (7)  

where      is so called basis vector associated with propagation vector   and 

position of the atom   in the unit cell and   is lattice translation vector associated 

with the position of the magnetic moment. In general, the summation is done over 

the set of wavevectors { }. Both   and      vectors are in general complex numbers. 

Luckily in the majority of compounds, this description can be simplified. 

Let us now briefly describe the meaning of the term “star of the propagation 

vector”. For each propagation vector within the crystallographic unit cell, symmetry 

operations based on the space group describing the symmetry of the crystal can be 

applied. An application of rotational symmetry elements of the space group to the 

propagation vector will generate a set of unequivalent vectors. The set of these 

vectors is called star of the propagation vector. Each vector from this star is often 

called “arm of the star”. See Figure 3 for example. 

 

 

Figure 3 – The star of the propagation wave vector   (
 

 
    ) in the tetragonal space 

group P4/mmm. The arm of the star are:    (
 

 
    ),    (   

 

 
  ),    ( 

 

 
    ) and 

   (  
 

 
  ). 

Based on the number of arms from the star involved in magnetic structure, we 

can talk about four situations: 

1. One propagation vector is preferred over others; we speak about single-

  structure. It is the most common case and it is usually connected with 

generation of magnetic moments. In different magnetic domains, 

 c* 

b* 

a* 
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different arms of the star are involved in formation of magnetic 

structures. 

2. More arms from the star are involved simultaneously; we speak about 

multi-k structures.  

3. Only one arm of the star is involved, but also with their harmonics. 

Which means that also propagation vectors 
 

 
, 

 

 
 can be involved in 

equation (7). Including higher harmonics to the generation of the 

magnetic structure will result in the squaring of sinusoidal modulation 

of the magnetic moments.  

4. Case 2. and 3. together. We speak about crossed harmonics or 

intermodulated structures. 

Also multiple  -vectors from different stars can be connected with one atom. 

Since    is physical magnetic moment, it cannot be expressed by imaginary 

number. Therefore when      is real, the exponential must be also real or we need 

more propagation vectors to be involved. In simple case of single-  structure, we can 

expand the exponential to only its cosine component: 

    ∑        (      )

{ }

  (8)  

The condition for zero sine component of exponential implies, that the cosine 

amplitude will be still equal to one and the only changing thing along the crystal will 

be sign in the components of the magnetic moment. It also implies that propagation 

must be commensurate (see below). 

The second possibility how to ensure real    when       is real is using more 

propagation vectors. Very often two arms of the star:   and –   are involved. The 

imaginary component is then automatically cancelled out and equation (7) results in 

amplitude modulated magnetic structure. 

The last thing which we mention in this chapter is classification of the 

propagation vectors on the basis of its size. We distinguish structure where: 

1.   (     ) 

There belong all ferromagnetic structures and also other structures 

where magnetic unit cell and crystallographic unit cell are equivalent. 

Magnetic reflections in appears on the same positions as nuclear ones. 
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2.   (     )           

Components of the propagation vector must be rational, but they are 

often equal to simple fraction like 
 

 
. In the case of half-integer 

propagation magnetic reflections will occur in the half-integer 

reciprocal coordinates. We speak about commensurate structures (C). 

3.   (     )   (     )      

When one of the component of the propagation vector is rational, two 

arms of the star   and –   must be involved in the structure. Each 

nuclear peak in diffraction pattern will be surrounded by pair of 

magnetic reflections, called satellites. These magnetic structures are 

called incommensurate (IC). 

For further reading about magnetic structure description and also their 

determination using group theory we recommend excellent summary paper by Wills 

[13]. 
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2. Experimental methods 

This chapter we will give the reader brief description of the techniques used. 

We will describe in detail mainly the neutron scattering techniques, as the neutron 

diffraction experiment represent the major part of the thesis. 

2.1. Sample preparation 

At the beginning of every condensed matter research activity one must prepare 

samples or use samples prepared by someone else. The topic of this thesis brings us 

opportunity to grow samples by ourselves and therefore go through the whole 

process from the beginning. 

2.1.1. Flux growth technique 

Single crystals can be prepared by a large variety of techniques. We can 

classify them accordingly to the main principle: growth from a melt (Czochralski 

method, Bridgman technique, Zone melting technique) and growth from a solution 

(so called flux growth). Our samples grow incongruently and thus flux growth is the 

only way to prepare them, so this brief introduction will focus on this technique. 

The basic principle of solution growth method is following. First the starting 

composition is prepared, which is generally different from the final composition of 

the sample. Usually there is an excess of one element with small melting 

temperature, called flux. In the case of self-flux (sometimes called true flux method) 

growth, this element is also part of the final product. Then the starting composition is 

heated to reasonably high temperature to melt all components. After some time 

(approx. 2 hours) designated to stabilize thermodynamical equilibrium, the cooling 

of the melt begins at a very slow constant rate. When temperature of the solution 

reaches the solid-liquid line in the phase diagram, single crystals start to grow while 

the solution becomes flux richer. This cooling process must be stopped punctually to 

avoid growth of other parasitic phases. The last phase is the centrifugation of the 

remaining flux. 

The size and purity of final single crystals is often extremely sensitive to speed 

of cooling and of course starting composition. While the starting composition can be 

roughly estimated from the binary or ternary phase diagrams of used elements, the 

cooling rate must be determined experimentally. This means especially for new 
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compounds trial-and-error method must be used. Further explanations and also step 

by step description of solution growth process is described, for example, in Klára 

Uhlířová’s thesis [14]. 

2.1.2. Sample characterization 

One of the advantages of the solution growth technique is that grown crystals 

have natural shapes, so we can easily distinguish by eye between hexagonal plates, 

needles, cubes and others. Careful analysis is however still necessary. First the 

crystals were analysed by microprobe and then the lattice parameters were 

determined using single crystal X-ray RIGAKU RAPID II diffractometer. Energy 

dispersive X-ray (EDX) analysis, also called microprobe technique, was done on 

scanning electron microscope Tescan Mira I LMH equipped with EDX detector 

Bruker AXS. 

2.2. Bulk measurement 

Bulk measurement techniques are the first step in determination of physical 

properties of a given compound. In this thesis we will focus on specific heat and 

magnetization measurements since these two techniques are crucial for building 

phase diagrams and also very helpful in case of unveiling magnetic structures. 

2.2.1. Specific heat 

Specific heat (or heat capacity) is tightly bound to the total free energy and to 

amount of order in the sample. Every physical phenomenon, which influences the 

energy states of particles in the material, will contribute to its specific heat. The 

existence of bulk measurement reflecting microscopic changes in sample is very 

useful, but brings also some difficulties. The main problem of the specific heat 

analysis is the difficulty of differentiating between individual contributions. The total 

free energy of system is the sum of the free energies of its components so that the 

total specific heat is the sum of these contributions. 

One method of extracting the individual parts is based on choosing a 

temperature range, where one of these contributions is dominant. A very important 

contribution to overall specific heat   is the lattice vibrations (phonons) -    . The 

contribution of conduction electrons         is always present in conductive 

samples. Influence of CEF to the atoms with non-zero total magnetic moment gives 

rise to additional contribution, the Schottky specific heat. Magnetic ordering, 
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formation of a superconducting state and other phase transitions are connected with a 

change in entropy and thus also contribute to the specific heat as a jump in its 

temperature dependence. 

The phonon contribution,    , depends on the phonon spectrum, which can in 

general, consist of   acoustic and      optic branches. In the pursuit of finding 

suitable expression for    , the Debye model can be applied to the three acoustic 

branches and the Einstein model to the remaining optic ones. To take into account 

effects of anharmonicity which is not included in the models above, an anharmonic 

correction proposed by Martin [15] can be added. It is represented by a single 

parameter   which is   in the case of no anharmonic correction. This approach leads 

to following overall phonon specific heat description: 
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,    and     are the anharmonic coefficients,   is the gas 

constant and    and     are the characteristic Debye and Einstein temperatures, 

respectively. At temperatures well below   , the influence of the optic phonons can 

be neglected and the expression (9) can be reduced to only Debye contribution in the 

   approximation. 

The electronic and phonon low temperature contributions can be written as: 

           (10)  

where   is a constant directly related to   .  

The splitting of degenerate ground states due to CEF brings an increase of 

entropy and thus a related specific heat contribution. This contribution is often called 

Schottky specific heat      which is given by relation: 
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where   is the number of energy levels (      ) and    is energy of the level  .  
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We can simply calculate the total amount of the entropy connected with the 

crystal field splitting as 

          (12)  

 

All specific heat measurements were performed using PPMS instrument on 

single crystalline samples. Samples were attached to the sample holder (puck) by 

apiezon N grease to enhance thermal contact between sample and puck. Instrument 

software uses two-  relaxation method, details of this measurement technique are 

described for in [16] or in simple way in my diploma thesis [17]. To determine the 

exact amount of the grease used for measurement, we always start measurement by 

measuring only empty puck with grease (few points at low temperatures) and then 

we attach our sample to the prepared grease. We can then determine the heat capacity 

of the sample by subtracting empty puck (with grease) from the system sample + 

puck. 

2.2.2. Magnetic susceptibility and magnetization 

Magnetic structures in rare-earth compounds are often formed at very low 

temperatures. Above the transition temperature, the compounds behave as 

paramagnet and net magnetic moment in zero magnetic fields is naturally zero. By 

applying an external magnetic field to the sample, individual magnetic moments flip 

in the direction of the applied magnetic field. This response to magnetic field is 

called the susceptibility,  , and can be described by Curie-Weiss law in the 

paramagnetic region: 
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where    is the paramagnetic Curie temperature,   , and includes the Pauli and Van 

Vlack susceptibility. The experimentally measured effective magnetic moment      

can be compared with theoretical value from equation (1). 

Magnetization and susceptibility measurements were carried out using the 

Quantum design PPMS instrument using the vibration sample magnetometer (VSM) 

technique. Magnetic susceptibility was usually measured under a small field of 0.1 T, 

and magnetization was measured in magnetic fields up to 14 T. 
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2.3. Neutron scattering 

Neutron scattering is one of the very powerful solid state experimental 

techniques due to the neutron’s unique properties. Although the total charge of 

neutron is zero, its internal charge distribution leads to a none-zero magnetic 

moment. In comparison to the Bohr magneton, the nuclear magneton of neutron is 

significantly smaller (1836 times), but this magnitude is still enough to interact with 

magnetic moments in matter. Neutrons can be produced in nuclear reactions, either 

by hitting a target with accelerated charged particles (spallation) or by absorbing 

thermal neutrons in 
235

U nucleus (fission). Neither of these methods can be 

performed in small-laboratory conditions, so large facilities are needed. 

Neutron scattering techniques can be divided into two groups based on the way 

neutron interacts with matter. If the energy of incoming and measured neutron is 

same, we speak about elastic scattering, or diffraction. The other case, when neutron 

gains or losses energy in the sample is called inelastic scattering. This technique is 

used to study dynamics in materials, its energy levels and excitations. Since this 

thesis is devoted to study of magnetic structures, we will focus on neutron diffraction 

as a very important probe to magnetic structure of materials. 

The basics of the diffraction will not be described in this thesis, although very 

good introduction to this technique is given for example in [18]. Neutron diffraction 

is very similar to X-ray diffraction, but has some important differences. For further 

understanding we will introduce following basic relations. The intensities of the 

reflected beam are in general proportional to the square of structure factor     : 

   |    |
  (14)  

where structure factor for neutron nuclear scattering is given by: 

      ∑  

 

           (15)  

Here the summation is calculated over the primitive cell,    is the coherent 

scattering length,   is the momentum transfer vector in reciprocal space related to 

    position,    is position of the  -atom and    is temperature factor. The scattering 

length is the reason why neutron scattering differs from the X-ray one. The structural 

neutron cross-sections are related to strong forces in nuclei and their values do not 

depend on atomic weight (like for X-rays). So it is very tough to distinguish 

neighbourhood atoms in periodic table by classical X-ray scattering, but it is usually 
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much easier with neutrons. The absorption cross-section is in general much lower for 

neutrons. However there exist a few elements (specific isotopes) that are very strong 

neutron absorbents (e.g. 
6
Li, 

10
B, 

157
Gd).  

The most important feature of neutrons is the magnetic contribution to the 

scattering which is often as strong as nuclear one. In recent years, huge increases of 

synchrotron sources brilliance leads to the possibility to measure magnetic structures 

also with X-rays, but neutron diffraction still remains standard way of determining 

magnetic properties of solids. The magnetic scattering leads to additional diffraction 

pattern comparable with nuclear. The magnetic structure factor    is defined as: 

     ∑  ( )   
         

 

 (16)  

The constant                 ,   ( ) is magnetic form factor of     atom, 

   is the magnetic moment. Magnetic form factors are tabulated and unlike nuclear 

scattering length they depend on   and usually decrease faster than X-ray form 

factors. 

The biggest disadvantage of neutrons is the relatively low flux produced by 

neutron sources. Even a normal laboratory X-ray generator produces photon beams 

with much higher intensity than a nuclear reactor. The synchrotron source then 

produces several orders of magnitude higher flux. 

In the next section we will describe in more detail the instruments D10, IN3, 

VIVALDI, CYCLOPS and OrientExpress at Institute Laue Langevin (ILL) and 

instrument E4 in Helmholtz-Zentrum Berlin (HZB) used for performing diffraction 

experiments in this work.. 

2.3.1. Geometry of single crystal diffractometers 

In order to solve the crystallographic structure of a material, we need to 

measure the intensities of many Bragg reflections as possible. The most simple way 

to do this is using 2-axis diffractometer. This precision instrument has two 

independent axes of rotation, commonly called    and  . The first one (rotation of 

detector) is used to satisfy Bragg’s law under the condition of crystal cell parameters 

and incident monochromatic wavelength and the second one (sample rotation) is 

used to determine the intensity dependence on this angle. A basic layout of this setup 

is shown on Figure 4. With this geometry one can measure all reflections in the so 

called scattering plane, because in this setup there is no possibility to rotate crystal 
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out of this plane. 2-axis instruments are often used to measure samples in extreme 

conditions, typically under high magnetic fields, because magnets cannot be tilted. 

Example of instrument with such geometry is E4 in HZB. It is also possible to use 

triple axis spectrometer (like IN3) to measure diffraction in 2-axis geometry (simply 

by setting analyser to see elastic neutrons).  Some instruments have ability to lift the 

detector from the scattering plane to increase the coverage of reciprocal space (like 

on D23 in ILL) or they have big two-dimensional detector in which they can record 

also out-of-scattering-plane peaks (like on E4).  

Because of the needs for accessing nearly full reciprocal space more advanced 

concept of 4-circle diffractometer is used. Two additional angles are used to change 

the scattering plane. See Figure 5 for the details of a typical instrument layout. For 

example D10 diffractometer can work in this geometry. 

 

 

Figure 4 - basic layout of two-axis diffractometer (taken from [18]) 
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Figure 5 - layout of 4-circle diffractometer (edited picture taken from [19]) 

 

2.3.2. Neutron detectors 

The advantages of neutrons were described in the beginning of Chapter 2.3 and 

there it was stated that they can penetrate deeply into matter. This implicates 

complications in the process of detection. In contrast to electrons, there is no method 

for detecting neutrons passing by the detector. In other words – if we want to detect 

neutron, we have to destroy it. 

The most commonly used neutron detectors are 
3
He gas tubes. Here, the 

neutron is absorbed by helium atom and produces charged particles with high 

energies. These particles are then easily detected and because of their high energy, it 

is easy to distinguish them from  -radiation. An advantage of this method is very 

high efficiency; disadvantages are the lack of 
3
He availability in the recent years and 

relatively low spatial resolution (in case of position sensitive detectors). 

Other possible method represents scintillation detectors. Neutrons are absorbed 

in a plastic loaded with 
6
Li or ZnS and the charge reaction creates decay of light 

quanta which goes through a photo-multiplier and are then detected by common 

CCD camera. These detectors are position sensitive, but they are not well suited for 

low flux detection as they are also sensitive to  -radiation, which increases 

background. 

When measuring single crystal diffraction on 1D detector (IN3), results of one 

 -scan is a one-dimensional dependence of intensity on the  -angle. When using 2D 



20 

area detector (also called position sensitive detector - PSD) on D10 or E4, the result 

of this measurement is a 3D set of intensities. 

 

2.3.3. Evaluation of single crystal experiments 

Each experiment starts with sample orientation, centring, adjusting of incoming 

and outgoing slits. In the case of 2-axes layout, orientation of the sample means 

refinement of scattering plane, either by using cradle tilt angles on IN3 or by 

manually tilting the crystal holder on E4. When the scattering plane is correctly set, 

the only remaining parameter is the offset of the    (denoted as A4 on IN3) angle. 

By measuring scans along the main crystallographic directions, we are able to refine 

the cell parameters of the measured sample. Any measured scan that cuts the Ewald 

sphere with reflection can contribute to square of modulus of the structure factor  . 

The  -scan is also this case. This method is called the rotating crystal method. To 

obtain the integrated intensities, one should simply subtract the background and 

integrate the remaining intensity over  . The background subtraction is commonly 

done by fitting measured data with a Gaussian, or Voigt function plus a constant 

background. 

The situation is more complicated on the 4-circle diffractometer D10, where 

the orientation of the sample is defined by 3x3 orientation matrix; a so-called UB-

matrix. Because of the 2D detector on D10, it is possible to orientate in an automatic 

way. First we rough adjust the UB-matrix as in the 2-axes geometry. Then we 

measure approximately 30 of the strongest reflections and integrate them. Program 

RACER [20] is used to integrate measured 3-dimensional data on D10. From the set 

of measured reflections it is possible to refine the UB-matrix and also cell parameters 

of the measured sample. This refinement is done automatically by the program rafd9 

[21]. With refined UB-matrix we are prepared to measure a set of nuclear or 

magnetic reflections. Their intensities are then integrated using program RACER, 

obtaining a list of h, k, l indices and corresponding intensity value. 

The measured set of integrated intensities are corrected to account for various 

effects to obtain square of structure factor  : 

 | |  
 

  
   (17)  

where    is integrated intensity and three reduction factors are described below. 
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1) Lorentz factor,   

If we scan the crystal at constant speed of rotation, different reciprocal 

lattice point pass through the Ewald sphere with different speed. Correction 

for this difference is called the Lorentz factor, or sometimes the angular 

velocity factor. The basic expression is very simple and can be derived for 

all types of scans [22]. For normal beam geometry (four-circle setup on 

D10 or 2-axis diffractometer) a simple expression is used: 

           (18)  

For the D10 diffractometer this correction is automatically calculated in the 

integration program RACER, but if we will integrate measured peaks 

manually, we must apply this correction factor. The expression is not valid 

if the detector is out of the equatorial plane, but this is not the case of our 

measurements. It is also not valid when using collimator before the detector 

[23], but this correction is very small and can often be neglected [24]. 

2) Extinction factor,   

Kinematical diffraction theory assumes that the incident and diffracted 

patterns are not attenuated by the sample. This is obviously not true. The 

size of this effect depends on the size and mosaicity of the domains in the 

sample and because these values are not generally known, the only way to 

treat this correction is by fitting. 

The simplest way to implement this is with the phenomenological 

Zachariasen formula [25, 26]: 
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where   has no physical meaning. More precise modelling of extinction is 

to use same equation but with different   for different crystallographic 

direction. Then parameter   is calculated from equation: 
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(20)  

and all 6 parameters   are used as a fitting parameter. 

If we want to determine some microscopical properties of our sample, we 

must know the absorption weighted path of the incident and diffracted 
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beam for each reflection. These values can be calculated for each reflection 

e.g. using program DATAP [27] (if we know shape of our crystal). With 

knowledge of these parameters, the Becker Coppens algorithm [28] can be 

used: 
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(21)  

where      is the absorption weighted path of the incident and diffracted 

beam within the crystal,   is the domain radius and   is the width of 

mosaic spread of the domains. All these described models can be fitted 

using the program Fullprof [29]. 

3) Absorption factor,   

When neutrons passes through the homogenous matter of a thickness  , 

their intensity is always reduced by: 

       (   ) (22)  

where   is total linear absorption coefficient. This effect is caused by 

nuclear capture process in the nucleus of atoms (so called true absorption) 

and coherent and incoherent scattering. For the single crystal measurement, 

the last two effects are treated as a part of the extinction. The linear 

absorption coefficient depends only on the composition of the sample and 

can be calculated using: 
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 (23)  

where   is number of formula units in unit cell,   is the unit cell volume 

and    is absorption cross section of   atom. Values of the absorption cross 

sections are different for different isotopes, depend linearly on the used 
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wavelength in the region of neutrons used by diffraction experiments and 

are tabulated for all known isotopes [30]. 

Calculation of absorption is not trivial and requires knowledge of the shape 

and the sizes of the sample. It is possible to use the program DATAP [27] 

for such calculations. It uses the method of Gaussian grid integration, see 

more details about this method in [31]. 

Apart from three described reduction factors, there are additional effects that 

are difficult to express analytically, but it is important to know about them: 

Thermal diffuse scattering 

During our experiment we do not detect only elastic Bragg reflections but 

also incoherent scattering and inelastic phonon scattering. We can easily 

get rid of incoherent scattering by subtracting background. Treatment of 

inelastic phonon scattering is much trickier. The easiest way is to use 

energy analysis (as on IN3) and then the measured data contains only 

elastic signal. 

Treating the inelastic phonon signal from a Bragg reflection depends on the 

elastic constants of a material and it is not easy to calculate it. Since this 

effect is small and affects only thermal displacement parameters, thermal 

diffuse scattering is usually ignored. 

Multiple diffraction 

When more than one reciprocal lattice point is very close to Ewald sphere, 

incoming intensity is divided between these reflections. The observed 

intensity is than smaller than expected. Extinction is a special case of 

multiple diffraction, when scattering is related to only one reciprocal lattice 

point. For standard diffraction experiment, where we collect large number 

of reflections, it is possible to neglect multiple diffraction effect. 

The integrated intensities corrected for Lorentz and absorption correction are 

used as an input for the least-square fitting program Fullprof [29]. Using this 

technique it is possible to refine the magnetic structure and size of the magnetic 

moments, structural parameters, changes in occupancy and other microstructural 

data.  

From the temperature dependence of selected magnetic intensity, it is possible 

to determine the zero-field spontaneous magnetization and thus the critical exponent, 

  [32]. Below the Néel transition temperature, the order parameter is connected with 
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staggered magnetic moment, which is proportional to square root of measured 

intensity. Thus we can fit data below transition temperature to expression: 

   (    )   (24)  

From the mean field theory   critical exponent should be equal to   ⁄ , but in 

reality it is significantly lower. For the 3D Ising magnetic lattices        , while 

for Ising 2D model it was exactly calculated that   
 

 
  [33]. The critical exponent   

was also calculated for X-Y (       ) and Heisenberg (       ) model. 

2.3.4. Laue technique 

Laue diffraction is the process of scattering that occurs when a stationary 

crystal is illuminated by a white (polychromatic) beam. This experiment was first 

proposed by Max von Laue which lead to the discovery of X-ray diffraction by 

crystal lattice in 1912 [34]. The experimental arrangement for this method is very 

simple. A stationary crystal is illuminated by a white beam producing a so-called 

Laue pattern on neutron sensitive plates. 

Two types of detectors are used nowadays. The first possibility uses neutron-

sensitive image plates, upon which the diffraction pattern is recorded. These plates 

are read after each exposure by a rotating laser detector. This type of detector is used 

on the very-intense vertical-axis Laue diffractometer (VIVALDI) [35]. This type of 

detector is very efficient and suitable for small samples, but the biggest disadvantage 

is a slow readout and erasure time of 5 minutes together. 

The other possibility is using CCD-based detectors. In this system high-

performance image-intensified CCD cameras view a large-area neutron scintillator 

via close focus lenses. This technique allows capturing Laue diffraction pattern in 

much shorter time (few seconds) than image plate technique. Thanks to this speed it 

is possible to use CCD cameras for orienting the sample, as in instrument 

OrientExpress at ILL [36]. This does not exclude utilization of CCD-based detectors 

to also record a full Laue pattern. This idea was for the first time used in Cylindrical 

CCD Laue Octagonal Photo Scintillator (CYCLOPS) [37]. The CYCLOPS 

instrument is composed of 16 detectors arranged to octagonal geometry. 

Now we will explain basics of Laue method. Contrary to single crystal 

monochromatic diffraction, here a stationary crystal is irradiated by polychromatic 

beam. This results not in a single Ewald sphere, but in a range of such spheres. The 

largest spheres correspond to shortest wavelengths and vice-versa. All of them pass 
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through the origin of the crystal lattice. As you can see from Figure 6, all reciprocal-

lattice points lying between the boundary spheres corresponds to possible reflections. 

This is the reason why stationary crystal can give rise to a large number of 

simultaneously produced reflections. 

 

Figure 6 - Ewald construction for a white beam (from [38]) 

 

2.3.5. Treating Laue data 

The indexing of the Laue patterns is not so simple as for experiments with 

constant wavelength. It was even believed that it is not possible to use Laue data for 

structure determination. However the big improvements in synchrotron sources and 

detectors showed that after very short times, lots of information about the sample can 

be collected and also evaluated. This technique is massively used, especially for 

structure determination of protein crystals. The VIVALDI and CYCLOPS 

instruments are the newest attempts to do the same on the neutron sources with all 

the advantages of neutron radiation (like sensitivity to the magnetic moment). 

The result of a typical neutron Laue experiment is a set of high-resolution 

images taken at defined experimental conditions, as temperature or  -angle 

(sometimes also called spindle angle). In case of the image plate detector on 

VIVALDI, these images are ready for indexation. The CCD cameras exhibit noise 
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and also different cameras have different efficiency, so the CYCLOPS images need 

some pre-processing. First step is to de-noise the image (this is done by floating 

window averaging) and apply alpha-correction to get rid of different detector 

efficiencies. Because standard Laue indexing software works with plane geometry 

(as in OrientExpress) or cylindrical one (as in VIVALDI), octagonal geometry in 

Cyclops must be transformed to the cylindrical. The next optional step is subtraction 

of the background (taken for example from empty cryostat measurement). Finally we 

can proceed to pattern treatment. 

On the following paragraphs the Laue pattern treatment in the software 

Esmeralda Laue Suite [39] will be described, but general principles are the same in 

the other software suites. First we search for experimental reflections in the pattern. 

There are two algorithms to do that, first (automated peak finding) checks the high 

intensity spots and derivative of intensity around them. Second one (threshold) 

divides whole pattern into small blocks, calculates the average intensity in each block 

and marks pixels with intensity above given threshold. The parameters for a peak 

finding should be always adapted to suit the treated image. 

With a set of experimental peaks it is possible to use one of the three automatic 

orientation routines.  

1. Stepwise rotation around nodals: one must set at least one bright spot in 

the pattern which would probably correspond to some main reciprocal 

lattice point (like 1 0 0). The algorithm then tries to rotate crystal 

around these selected “nodal” points (which is only one-dimensional 

problem). The number of selected nodal points linearly increases 

calculation. Because of that reason it is better to start with only one 

nodal point. This method always results in some solution, even if it is 

wrong. Details and advantages of this method are described in [40]. 

2. Angle comparison of Obs-Calc peaks: In this method a small number of 

strongest reflections is chosen for orientation (like 20). Then the 

angular distance for each two spots is calculated and compared with the 

generated angular distances for all reflections up to chosen Miller 

index. This method may not find solution at all, so one must properly 

choose the strongest reflections. It is not suitable for weak, diffuse or 

smeared spots, because in that case the angle between reflections is not 
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calculated properly. See [41] for details and the mathematical 

background. 

3. All possible rotations: Running this algorithm from the scratch means 

totally brute force algorithm, trying all possible orientations (a three-

dimensional problem). Without knowledge of rough orientation it takes 

very long time (up to days) and it is recommended to use another 

method. However if we know approximate orientation, we can try only 

orientations in limit of few degrees around it. 

After proper indexing of the experimental spots, there is time for refining not 

only orienting angles but also the tilts and offsets of the detector, cell parameters and 

other distortions. This is done using least squares refinement. Experimental peaks 

must be indexed before running this routine, which means there are created 

corresponding pairs of experimental and calculated peaks. The distance between 

these pairs of peaks is then minimized during the refinement process. It is usual to re-

index the peaks after the refinement and run the refinement procedure again on the 

larger set of input data. 

Integration of the calculated reflections is the final step. The parameters for 

integration are only the size of circles around each reflection which to integrate and 

the size of the border of these circles. From the intensity in the border, the 

background is calculated and then subtracted. Esmeralda is also able to take into 

account the overlap of close reflections. The second possibility for integration is 

program Argonne-Boxes which integrates peaks in a more sophisticated way (it 

treats them as ellipsis, not circles) but cannot treat overlapping reflections [20]. 
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3. State of the art: “218”, “115” and related compounds 

As was stated in the chapter 1.3.1, CeIn3 compound was the first heavy fermion 

superconductor [42] with different structure than CeCu2Si2. Discovery of 

superconductivity under applied pressure was followed by discovering ambient 

pressure superconductivity in CeCoIn5 [2] and CeIrIn5 [3]. All these compounds 

belong to the family of structurally related compounds which is generally written as 

RnTmX3n+2m, where R is rare earth, T is a transition metal element Co, Rh, Ir, Pd or Pt, 

X is In or Ga and n and m are integers. In this chapter we will describe some 

important aspects why is this group of compounds interesting. We will also 

summarize previous results related to our further study. 

3.1. Crystal structures 

All RnTmX3n+2m compounds are tetragonal (or cubic in the special case of m = 

0) with lattice parameter         and   parameter varying with different layering. 

This layering feature is crucial and makes these systems ideal candidates for studying 

heavy-fermion superconductivity. Every compound consists of n layers of RX3 

alternated along c-axis with m layers of TX2 building blocks. By changing m and n, 

we can change dimensionality of the rare-earth atoms, which are responsible for 

magnetism and, in case of cerium also superconductivity of these systems.  

The simplest case is when     and    : this structure is simple cubic, 

space group    ̅ , and has a AuCu3 structure type (Figure 7a). These compounds 

are fully three-dimensional – each rare-earth atom has six nearest neighbourhood 

rare-earth atoms spread along all three main crystallographic directions. Because of 

the stoichiometric coefficients is this structure called “13” (read as one-three). 

By inserting a layer of transition element atoms between layers of rare-earth 

atoms, one can obtain so called “115” structure (Figure 7c). Here     and    , 

so structure is tetragonal with space group        and HoCoGa5-structure type. It 

is most known because of its superconducting member CeCoIn5 [2]. See next chapter 

for detailed properties of these compounds.  

Compounds with this structure are incongruently growing, so the flux growth 

method is the only possible method for their preparation. This technique requires lot 

of tries with different starting compositions to be able to produce a large sample. 

During some preparation attempts another structure called “218” [4] was discovered.  
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It is also tetragonal with the same space group, but has     and     and it 

has Ho2CoGa8-structure type (Figure 7b). It is often stated, that “218” structure is in 

between “115” and “13” compounds by means of dimensionality [4].  

 

Figure 7 - Evolution of dimensionality in RnTmX3n+2m  systems 

In the year 2008 it was discovered even more two-dimensional system with 

    and     (Figure 7d), so called “127” [43]. It is also tetragonal but it 

crystallizes in body-centred space group       . That is also the reason why its 

unit cell is two times larger in c direction than in case of “218” compounds. The 

latest progress in preparation of heavy-fermion superconductors shows the possibility 

to grow structures with even higher   and   values [44]. 

 

Figure 8 - cubooctahedron arrangement of indium (respectivelly gallium) atoms around 

rare-earth position in “218” structure. 
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A very important crystallographic common property of all these systems is 

existence of cubooctahedron of In/Ge (= ) atoms around a rare-earth atom,  . This 

feature is displayed in the Figure 8. Existence of this shielding gives unique 

properties in these systems [45], as will be described later.  

 

3.2. Cerium compounds overview 

Undoubtedly the most interesting compounds in studied materials are cerium 

based heavy-fermions. The simplest case is CeIn3, where the cerium atoms have fully 

3D character. It orders antiferromagnetically (AF) at         with propagation 

vector   (           ) [46]. With an applied pressure of         it undergoes a 

superconducting transition at very low temperatures            [47]. Shortly after 

unveiling superconductivity in CeIn3, it was found superconductivity in cerium 

“115” materials and this topic remains an active area of research up to the present. 

The reason is that by adding a transition element to the unit cell, one has the 

additional opportunity to change the physical properties of the system. Especially in 

“115” compounds, exchanging cobalt with rhodium or iridium significantly changes 

the ground state properties. 

CeCoIn5 and CeIrIn5 are well known heavy fermion superconductors with 

transition temperatures at           and       respectively [48]. By contrast 

CeRhIn5 orders antiferromagnetically at the Néel temperature          and 

becomes superconducting with applied pressure            at           [1]. It 

is believed, that significant increase of superconducting transition temperature in 

comparison with “13” compounds is caused by quasi two-dimensionality in the 

electronic states, which is related to their tetragonal structure [4].  

The magnetic structure in CeRhIn5 is incommensurate (IC) propagating with a 

wave vector   (             ) and magnetic moments of         lying within ab-

plane [49, 50]. The size of this moment gives a major part of the expected moment in 

the crystal-field doublet ground state (       ), which suggests 4f-localized 

magnetism. Here the influence of neighbouring Ce layers is decreased leading to 

incommensurate propagation along c-axis. The other existing compounds from 

cerium “115” family do not exhibit magnetic order without applied magnetic field. 

By applying external magnetic field along c-axis in CeCoIn5 there appears a so-

called Q-phase with magnetic moments of         aligned along c-axis and 
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propagating with wave-vector   (             ) [51]. It is a question whether this 

magnetic ordering has origin in Fulde–Ferrell–Larkin–Ovchinnikov phase or not, see 

[4] and references therein for discussion. 

Table 2 - Known magnetic structures for compounds from CenTmIn3n+2m family. 

Compound  Propagation  Direction    Size (  )      (K)      

CeIn3 [46]  0.5 0.5 0.5                  0.48    10 
1
 

CeRhIn5 [49, 50]  0.5 0.5 0.297  ab-plane   0.75    3.8       

CeCoIn5 [51] 0.44 0.44 1/2 c-axis 0.15 0.3 
2
 

Ce0.95Nd0.05CoIn5 [52] 0.45 0.45 1/2   0.9  

Ce2RhIn8 [53] 0.5 0.5 0 52° from ab-plane 0.55  2.8  

 

All cerium “115” compounds have “218” relatives exhibiting nearly similar 

behaviour. Ce2CoIn8 undergoes superconducting state at           [54], which is 

significantly lower than its “115” relative. Superconductivity in Ce2IrIn8 has not yet 

been observed and it remains a heavy fermion paramagnet down to       [55]. The 

only magnetic cerium compound with “218” structure is Ce2RhIn8 having AF 

transition at         . It exhibit magnetic order with commensurate propagation 

  (         ) and staggered moment of         pointing     from ab-plane [53]. 

The moment stacking in the ab-plane layers of cerium remains the same as in CeIn3, 

but moments stopped propagating along tetragonal c-axis. The recently discovered 

cerium based “218” compounds are Ce2PdIn8 and Ce2PtIn8 which have no “115” 

relatives. Ce2PdIn8 is a heavy-fermion superconductor in ambient pressure with 

          [56, 57]. The recent studies show a lot of similarities between this 

compound and well CeCoIn5 [58]. Ce2PtIn8 seems to have antiferromagnetic 

behaviour with superconductivity under applied pressure, details will be published 

[59]. 

The recently discovered “127” compound CePt2In7 orders magnetically below 

        , forming AF structure [60] with unknown microscopic details. It 

becomes superconducting under an applied pressure of         and          . Up 

to now this is the only compound from “127” family [60]. 

                                                 
1
 Magnetic moment direction cannot be determined by neutron diffraction. 

2
 In the magnetic field 11 T applied along the [1-10] direction. 
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Cerium compounds don’t exist with X = Ga, while this structure is possible 

only for heavy rare-earth elements with gallium [61]. In summary, magnetic 

structures in cerium based compounds embody complex behaviour originated from a 

mixture of competing effects. The different sizes and directions of magnetic 

moments are summarized in Table 2. 

3.3. Bulk properties 

We will focus only on “13”, “115” and “218” families, as they are investigated 

much more than others and allow us to follow some general trends. Bulk properties 

of all these groups can be summarized as follows: 

La, Lu and Y samples are always non-magnetic because their 4f shells are 

full/empty. This makes them ideal candidates for reference measurement, for 

example of phonon spectra. Pr and Yb compounds generally possess no magnetic 

ordering and remains paramagnetic down to the milikelvin temperature range. The 

Pm compound was never reported and also europium ones seem to not exists. 

However, there exists one study on EuIn3 [62], but the existence of this compound is 

in contradiction with published In-Eu binary phase diagrams. The rest of compounds 

order AF and can be split into three groups based on the direction of the easy 

magnetization axis. Generally compounds with Gd and Sm are nearly isotropic, 

compounds with R = Nd, Tb, Dy, Ho have an easy magnetization axis along the 

tetragonal c-axis, and compounds with Er and Tm have easy magnetization axis lying 

within the ab-plane.  

It is possible to exchange In with Ga in “115” and “218” compounds if the R 

ion belongs to heavy rare-earth elements (Gd-Yb). These intermetallics have similar 

properties as their indium relatives. 

It is interesting to follow evolution of Néel temperature with changing 

dimensionality. The most complete study was done on “13” and rhodium “115” 

compounds (detailed description of rhodium “115” family is given in Hieu’s thesis 

[6]) where all Néel temperatures are known. They are summarized in Table 3. While 

“13” compounds follow de Gennes scaling on    [6], in case of “115” and “218” 

compounds Gd compound deviates from this behaviour. Namely, the Néel 

temperature of the gadolinium compound is smaller than in the terbium one. 
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Table 3 - Néel temperatures for rhodium based “13”, “115” and “218” compounds 

R    ( ) of RIn3    ( ) of RRhIn5    ( ) of R2RhIn8 

Ce 10 [46] 3.8 [49, 50] 2.8 [53] 

Nd 4.9, 5.3, 5.9 [63] 11 [64] 10.7 [65] 

Sm 16 [66] 8, 15.3 [6] 15 [67] 

Gd 44 [68] 39 [69] 40 [67] 

Tb 32 [70] 47.3 [71] 43 [72] 

Dy 7.9 [73] 28.1 [6]  

Ho 11 [70] 15.8 [6]  

Er 4.8 [74] 2.9, 4.2 [6]  

Tm 1.6 [75] 3.6 [6]  

 

Studies of the “218” family are not yet completed as seen from Table 3. As it is 

a main topic of this thesis, let us shortly summarize known results: Pr2RhIn8 remains 

paramagnetic down to low temperatures [76], Nd2RhIn8 orders antiferromagnetically 

below    = 10.7 K [65] and is the only compound from this series in which field-

induced transition to another antiferromagnetic phase was reported [77]. 

Antiferromagnetic order was found also in Sm2RhIn8 (        ) [67], Gd2RhIn8 

(       ) [67] and Tb2RhIn8 (         ) [72].  

 

3.4. Magnetic structures 

Although there exist a lot of compounds with “115” and “218” structures, the 

magnetic structures were microscopically studied only in those with T = Rh, X = In, 

then in T = Co, X = Ga and also in Sm2IrIn8. These non-cerium compounds often 

follow the microscopic RKKY interaction, crystalline electrical field (CEF) effects, 

and the hybridization between 4f-electrons and conduction electrons [78]. All 

presently known magnetic structures with corresponding references are summarized 

in Table 4. 
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Table 4 - Known magnetic structures of non-cerium compounds from RnTmX3n+2m family. 

compound  propagation  direction    Size (  )      (K)      

“13” structures
 

NdIn3 [63] (½, ½, 0)  c-axis         2  5.9    
3
 

GdIn3 [68]  (½, ½, 0)  c-axis                 44    

TbIn3 [70]  (½, ½, 0)  10° from c-axis      8.4     32    

DyIn3 [73]  (½, ½, 0)  27° from c-axis      8.8     24    

HoIn3 [70] (½, ½, 0)  58° from c-axis      9  7.9       

ErIn3 [74]  (½, ½, 0)  [1 1 1]           4.8      

TmIn3 [75]  (½, ½, 0)  [1 1 1]   4.89    1.6   
4
 

“115” structures 

NdRhIn5 [64] (½, 0, ½)  c-axis         2.5     11    

GdRhIn5 [69]  (½, 0, ½)  b-axis                 39    

TbRhIn5 [71]  (½, 0, ½)  c-axis         9.5     47.3      

DyRhIn5 [6] (½, 0, ½)  c-axis                 28.1      

HoRhIn5 [6] (½, 0, ½)  c-axis                 15.8      

TbCoGa5 [79]  (½, 0, ½)  c-axis                 36.2   
5
 

HoCoGa5 [80]        (½, 0, ½)  c-axis                 9.7    
6
 

“218” structures 

Tb2RhIn8 [72]  (½, ½, ½)                         42.8      

Gd2RhIn8 [81] (½, 0, 0)       ab-plane             40.8      

Sm2IrIn8 [82] (½, 0, 0)  ab-plane             14.2   
7
 

Gd2CoGa8 [83] (½,  ½,  ½)  ab-plane     20.0  

Tb2CoGa8 [83] (½,  ½,  ½)  c-axis  28.5  

Dy2CoGa8 [83] (½,  ½,  ½)  c-axis  15.2  

Ho2CoGa8 [78] (½,  ½,  ½)  c-axis               5.1       

Er2CoGa8 [61] (0, ½, 0)  a-axis       4.71    3    

Tm2CoGa8 [61] (½, 0, ½)     a-axis       2.35    2    

                                                 
3
 This C structure is stabilized below 4.7 K. Above this temperature there is a mixture of IC phases. 

4
 Compound also reveals (0, 0, ½) propagation and IC structure. 

5
 Magnetic structure for phase between 5.4 and 36.2 K. 

6
 This C structure is stabilized below 7.4 K. Between this temperature and    exists IC phase with 

  (           ). 

7
 Direction of the moments was determined to be 18° from a-axis. 
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4. Results and discussion 

As stated in the introduction, our experimental work will be focused on the 

non-reported members of 218 family with T = Rh and X = In. We will start with 

sample preparation, bulk properties measurement and finally microscopic magnetic 

structure determination by means of neutron diffraction. 

4.1. Sample preparation 

Single crystals of R2RhIn8 were prepared by the solution growth method from 

an indium flux with starting compositions around 2:1:40 (R:Rh:In). The elements 

were put into alumina crucibles, sealed under high vacuum and heated up to 910-950 

°C. The samples were then slowly cooled (2 °C/h) to 400 °C where the remaining 

indium solution was centrifuged. In this way, plate-shaped cuboid single crystals 

were obtained, always with the c-axis axis oriented perpendicular to the plate and the 

a-axis parallel with the side of the cuboid. All prepared final samples (which were 

used for further measurement) are listed in Table 5. 

Table 5 - Prepared samples of R2RhIn8 

Compound 
Starting 

composition 
Weight (mg)       (mm) 

Y2RhIn8 2:1:40 7         

La2RhIn8 2:1:40 16           

Nd2RhIn8 2:1:40 13.5             

Tb2RhIn8 2:1:30 3.8           

Dy2RhIn8 2:1:30 3.5             

Ho2RhIn8 2:1:30 5.2         

Er2RhIn8 2:1:50 7.2           

Tm2RhIn8 2:1:25 4.4             

Lu2RhIn8 2:1:40 4           

 

The chemical composition and homogeneity were verified by an energy-

dispersive X-ray detector (EDX) Bruker AXS. 
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4.2. Nonmagnetic compounds 

As stated in chapter 2.2.1, phonon contributions are an important part of the 

whole measured specific heat. As our compounds contain a lot of atoms in the unit 

cell (11), the experimental determination of the phonon branches is difficult. This is 

the main reason why we started our bulk measurements with determination of 

specific heat of all possible non-magnetic R2RhIn8 compounds (R = Y, La, Lu), 

where only electronic and phonon contributions are taking effect. 

Lanthanum and Yttrium compounds are already known to crystallize in correct 

tetragonal Ho2CoGa8-type structure, space group P4/mmm [67, 72] and Lu2RhIn8 

was not reported before. The lattice parameters of the investigated single crystals 

were determined from single crystal X-ray RIGAKU RAPID II diffractometer. The 

specific heat was measured using the Quantum Design PPMS in the temperature 

range between 1.8 K and 300 K; in case of Lu2RhIn8 down to 0.4 K. Samples stated 

in Table 5 were used. 

The X-ray analysis revealed all compounds to be single crystals with the 

tetragonal structure and P4/mmm space group. The observed lattice parameters, 

listed in the Table 6, follow the usual lanthanide contraction with parameters of 

Y2RhIn8 placed close to those of Tb2RhIn8 (see chapter 4.3.1). Comparing La2RhIn8 

and Lu2RhIn8, the change of   parameter is larger than the change of   and the     

ratios has thus maximum value for La2RhIn8. 

There are three atomic position parameters which are not fixed by symmetry 

for the Ho2CoGa8-type crystal structure (listed at the bottom of the table). The 

Table 6 - Structural parameters of studied compounds. 

    Y2RhIn8    La2RhIn8   Lu2RhIn8   

    (pm)   460.7   469.8   455.4  

    (pm)   1201.7     1234.4     1185.3    

        2.608   2.628   2.603  

        (   )    0.255   0.272   0.246 

        0.3077     0.3049     0.3090    

           0.3085     0.3069     0.3094    

           0.1230     0.1181     0.1252    
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indium positions are denoted in a usual way, i.e. In1 at 2e, In2 at 2h and In3 at 4i 

crystallographic site. These parameters were calculated by Dr. Diviš using first-

principles calculations based on density-functional theory. 

4.2.1. Specific heat analysis 

The specific heat of the studied compounds, shown in Figure 10, consists only 

from the electronic and the phonon contributions and all are non-magnetic. The 

phonon spectrum of the R2RhIn8 compounds splits in general to 3 acoustic and 30 

optic branches. In pursuit of finding suitable expression for    , we applied the 

Debye model to the three acoustic branches and the Einstein model to the optic 

branches, described by equation (9).  
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Figure 9 - Low temperature specific heat of studied compounds. Dashed lines are results 

of fitting equation (9) and solid lines are results of overall fitting which includes additionally the 

optic phonons as described by equation (10) 
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The measured low-temperature data are shown in Figure 9 in the    ⁄  vs    

representation. The data for Lu2RhIn8 considerably exceeds the specific heat of the 

other two compounds at low temperatures. Therefore, to exclude some experimental 

error, we have performed additional independent measurement of Lu2RhIn8 down to 

0.4 K. The new set of data confirmed this unexpected behaviour as seen in Figure 9. 
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Figure 10 - The experimental specific heat, solid lines represent curves calculated 

using parameters from Table 7. Proportional residues after subtracting calculated values 
(           )

     
        are below each graph. 
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We also observe clear deviation from linearity already at relatively low temperatures 

above 5 K in all three compounds. The non-linear increase of      indicates 

presence of the low energy optic phonons. Therefore, equation (10) should be 

considered with care and applied at the lowest temperatures only. We fit our data by 

the equation (10) considering only the linear part of the    ⁄  vs    plot up to 5 K. In 

this way, the   coefficients and the Debye temperatures were determined and are 

listed in Table 7. The corresponding fit is drawn in Figure 9. We stress that the    

values here characterize just the three acoustic branches of each compound. The 

determined    compare well with the energies of the acoustic phonons found for 

UCoGa5 [84], which crystallize in a related tetragonal structure. 

In the second step, we tried to describe the measured data from the whole 

temperature region using the non-linear fitting of expression (9) with fixed electron 

contribution and fixed Debye temperature describing the three acoustic branches. In 

the case of compounds with 30 optic branches, the number of free parameters is too 

large to get any final unambiguous solution. Therefore, we reduced the number of 

parameters to some acceptable minimum with the aim to describe the main features 

of the phonon spectra and reproduce well the measured data, so that the model could 

serve as an estimation of the non-magnetic contribution in magnetic R2RhIn8 

compounds. To simplify the model, we grouped the optic modes to threefold 

degenerated branches. It is quite a natural assumption and signs of such a scheme can 

be traced out also in results of the first-principles calculations of PuCoGa5 [85]. 

By testing several different degeneracy models, we finally used three 

parameters    ,     and     and one overall anharmonic coefficient   for the 

Yttrium and Lanthanum compound, while for the Lutetium one it is better to add 

another Einstein branch (   ). 

For all compounds the lowest energy level     describes 3 degenerated 

branches. The results are summarized in the Table 7. Please note that the given 

Debye temperatures describes just the three acoustic phonon branches and cannot 

thus be compared e.g. with substantially higher values given for La2RhIn8, Ce2RhIn8 

[86] or Ce2PdIn8 [87] which were derived to describe the whole phonon spectrum of 

33 branches in the whole temperature region up to 300 K. We believe that our 

approach with    describing only the acoustic phonons better reflects the real 

phonon dispersions. 
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We are aware that our overall approach with a given number of    parameters 

is only a model still far from complex reality, but it can be well used for estimation 

of the phonon specific heat for isostructural magnetic compounds. The main feature 

is nevertheless indisputable: the very low energies of lattice vibrations in these 

compounds. To demonstrate quality of the fit the residuals from fitting    ⁄  are 

shown in Figure 10. 

The slightly enhanced relative deviations in the low temperature region below 

6 K are caused mainly due to a relatively small heat capacity of the samples at these 

temperatures and the instrumental accuracy. The difference between the measured 

and calculated values remains below     in the whole temperature region, which is 

comparable with the overall instrumental accuracy [88]. 
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Figure 11 - Graphical representation of determined energy levels of optical (blue) and 

acoustic (red) branches. 

The    and    values depend generally on the atomic masses and interatomic 

distances. The mass dependence can qualitatively account for lower    in Lu 

compound compared to the Y and La counterparts, but comparison of Y2RhIn8 and 

La2RhIn8 contradicts the expected mass dependence. Also the comparison of the 

characteristic energies of the optical branches implies a larger importance of the 

interatomic distances than the atomic masses. Y2RhIn8 and La2RhIn8 show very 

similar overall phonon dispersions which probably reflects opposite effect of atomic 
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masses and interatomic distances. In all compounds, the optic phonon levels lie 

anomalously low and the derived data imply crossing of the optic and acoustic 

branches in their dispersion relation. This behaviour is in accordance with the 

detailed phonon spectra for the related system UCoGa5, as presented in reference 

[84]. The quantitative comparison of our present study with the results reported for 

UCoGa5 [84] and PuCoGa5 [85] indicates that the optic phonon energies are 

probably somewhat lower in R2RhIn8 compounds than in the two mentioned 

compounds. Unfortunately, to the best of our knowledge there is no study of phonon 

spectra for the lanthanide based compounds which could serve for more pertinent 

comparison with our results. 

 

Table 7 - Parameters characterizing the specific heat. The listed Einstein and Debye 

temperatures describe the number of phonon branches given before the value. 

       Y2RhIn8    La2RhIn8   Lu2RhIn8 

  (            )   8.4      9.9     21.1    

   ( )   3x 97    3x 102     3x 83   

    ( )   3x 80    3x 71      3x 78   

    ( )     15x  140    15x 133    6x 110   

    ( )     12x  243    12x 224    18x 158    

    ( )                3x 409    

  (   )                               

 

4.3. Bulk properties of magnetic compounds 

In this chapter, we present detailed analysis of crystal structure and low 

temperature bulk properties of R2RhIn8 compounds for R = Tb, Dy, Ho, Er and Tm. 

Based on the magnetization and the specific heat measurements on single crystals, 

we determined the easy magnetization directions and the magnetic phase diagrams, 

which are prerequisites for further microscopic studies. 

4.3.1. Structure characterization 

The structural lattice parameters of investigated single crystals were 

determined from single crystal X-ray diffraction experiment. The X-ray analysis 

confirmed that all investigated R2RhIn8 compounds maintain the tetragonal 

Ho2CoGa8-type structure. Both the lattice parameters and the cell volume decreases 
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with increasing atomic number of the rare-earth element according to the lanthanide 

contraction (see Figure 12). All the determined structural parameters are summarized 

in Table 8. 
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Figure 12 - Lattice parameters in the R2RhIn8 compounds. Beside our data, we use the 

data published in [89, 90, 65, 67] 

4.3.2. Specific heat 

The specific heat was measured by the relaxation method using the Quantum 

Design PPMS 9 T and 14 T systems in the temperature range between 1.8 K and 300 

K in magnetic fields up to 14 T. 

 

Table 8 - Parameters of compounds along the series 

   ( )   ( )   (  )    ( )      (  ) 

Tb2RhIn8 4.593(3) 12.006(5) 55.144 43.6(3) 15.7(1)
8
 

Dy2RhIn8 4.584(3) 11.955(6) 54.797 25.1(2) 15.7(1) 

Ho2RhIn8 4.577(2) 11.928(9) 54.590 10.9(2) 17.0(1) 

Er2RhIn8 4.563(4) 11.920(5) 54.396 3.8(1) 17.1(2) 

Tm2RhIn8 4.555(2) 11.858(7) 54.007 4.1(2) 12.9(1) 
9
 

 

                                                 
8
      

9
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The temperature dependence of the specific heat of all studied compounds is 

represented in Figure 13 and Figure 14. In zero magnetic field, one anomaly is 

observed for each compound, except for Ho2RhIn8 showing two close anomalies 

which will be discussed later. The shape of the anomalies in all compounds is typical 

for a second-order phase transition, in our case between paramagnetic and 

antiferromagnetic state. The idealization of the specific-heat jump under the 

constraint of entropy conservation yields the Néel temperatures summarized in Table 

8. The Néel temperature of Tb2RhIn8 determined as 43.6 K is roughly in agreement 

with           reported by Serrano [72]. Evolution of the Néel temperature along 

the R2RhIn8 series, including previously published results for R = Nd, Sm and Gd 

[77, 67], follows approximately the de Gennes scaling as shown on Figure 15. The 

biggest difference from theoretical de Gennes values is for Gd compound which    

is below transition temperature of Tb2RhIn8. 
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Figure 13 - The specific heat of the R2RhIn8 compounds with easy magnetization axis 

within ab-plane. The applied magnetic field is along a-axis. 
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Figure 14 - The specific heat of the R2RhIn8 compounds with easy magnetization axis 

along c-axis in the low temperature region. The applied magnetic field is along this direction. 
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Figure 15 – Evolution of Néel temperatures along the R2RhIn8 series. The solid line 

corresponds to De Gennes scaling. 

 

4.3.3. Magnetization 

The magnetization was measured on the PPMS instrument using a Vibrating 

Sample Magnetometer. Magnetization measurements were done between 1.8 K and 

300 K in external magnetic fields up to 14 T applied along different crystallographic 

directions of measured single crystals. The measured magnetization curves were 

corrected for the demagnetization field reflecting the sample shape of each sample. 

Magnetization curves measured with field applied along various 

crystallographic directions are shown on Figure 16 for compounds with easy axis 

along tetragonal c-axis and on Figure 17 for Er and Tm where the easy magnetization 

axis lies within ab-plane. The magnetization curves measured at 2 K (5 K for 

Tb2RhIn8) reveal the largest anisotropy in Tb2RhIn8 with the anisotropy field 

estimated to 60 T, considering further metamagnetic transition for    . To clarify 

this expectation, high field experiment on the terbium compound was performed. 

Data were measured on the same sample at T = 1.5 K in pulsed magnetic fields up to 

60 T (pulse duration 20 ms) at the High-field Laboratory in Dresden-Rossendorf by 

Prof. Andreev. An induction method using a coaxial pick-up coil system was used to 

carry out the measurement. A detailed description of the high-field magnetometer is 

described in [91]. The measured high-field data together with data from PPMS 

system are plotted in the Figure 18. 
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The difference of anisotropy direction in compounds containing different rare-

earth ions is probably governed by the sign of the second order Stevens constant    

which is positive for Er and Tm and negative for Tb, Dy and Ho. Similar relation 

between the easy magnetization direction and the rare-earth element was found in the 

isostructural R2CoGa8 compounds [92] and many other tetragonal systems including 

e.g. RRhIn5 [93]. In analogy to our results on Er2RhIn8, Er2CoGa8 also shows a rather 

weak anisotropy and the determined crystal field parameters indicate that the 

compound is on the border line of a magnetic anisotropy crossover [92]. 

Compounds of the first group (R = Tb, Dy and Ho) exhibit rather similar 

magnetic behaviour. The most remarkable common feature is the existence of two 

metamagnetic transitions when the field is applied along the c-axis. Both transitions 

are seen as sharp steps in the  ( ) curve measured at 2 K for Dy2RhIn8 and 

Ho2RhIn8, or 1.5K in pulsed field for Tb2RhIn8. The first one corresponds to 

transition to some intermediate magnetic phase (AF2) in which the sum of magnetic 

moments equals exactly one half of the total moment in the ferromagnetic state. As 

there are two crystallographic ab-planes containing rare earth atoms in the unit cell 

of the Ho2CoGa8-type structure (see Figure 7), it supports the idea that the moments 

couple antiferromagnetically within one of the planes and ferromagnetically within 

the other one. A similar hypothesis with a sequence of ferromagnetic and 

antiferromagnetic (100) or (110) planes is discussed by Hieu et al. [94] for RRhIn5 

series which exhibit the same two-step magnetization curves. Such magnetic 

coupling, however, seems quite unusual because all the rare earth sites are 

crystallographically equivalent. For further understanding of the microscopic details 

of this field-induced transition, neutron experiment in applied magnetic field is 

desirable. See chapter 4.4.4 for such experiments.  

The second transition in this compounds leads to the ferromagnetic state. 

Certain differences between the value of magnetization measured in 14 T (see Table 

8) and the full R
3+

 free ion moments is presumably due to the crystal field effects. 

A similar effect is observed in related “115” compounds [6]. Both metamagnetic 

transitions become less sharp with increasing the temperature as shown for Ho2RhIn8 

in Figure 16. Pulsed field experiment confirmed similar behaviour also in the Tb 

compound. 
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Figure 16 - Magnetization curves of Tb2RhIn8, Dy2RhIn8 and Ho2RhIn8 compounds 

measured for magnetic field applied along tetragonal c-axis at several representative 

temperatures. 
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Figure 17 - Magnetization curves of Er2RhIn8 and Tm2RhIn8 compounds. 

 

Figure 18 - Magnetization curves measured along the main crystallographic axes of the 

Tb2RhIn8 single crystal. Data obtained from pulsed source (lines) were compared to the data 

measured by PPMS (yellow points). 
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4.3.4. Phase diagrams 

The derivative of the  ( ) curves measured at different temperatures and 

 ( ) dependencies measured in different fields were inspected to construct the 

magnetic phase diagrams for the field applied along the c-axis. The points obtained 

as maxima of these derivatives are represented as circles in Figure 19. The vertical 

and horizontal error bars correspond to the  ( ) and  ( ) dependencies. The 

intermediate magnetic phase is labeled as AF2 in Figure 19, following the notation 

introduced for RRhIn5 compounds [94]. The critical fields of the phase transitions at 

2 K amount to 2.5 T and 5.8 T for Ho2RhIn8, 4.3 T and 9.5 T for Dy2RhIn8 and 

11.7 T and 20.7 T for Tb2RhIn8.  

To reveal more details of the magnetic phase diagrams, the specific heat was 

measured in different magnetic fields applied along the easy magnetization direction, 

i.e. along the c-axis for Tb2RhIn8, Dy2RhIn8 and Ho2RhIn8. The representative data 

are shown in Figure 14. 

First, we observe a gradual shift of the transition temperature with increasing 

field as expected for an antiferromagnetic state. Two clear anomalies can be then 

distinguished for a certain field range, corresponding to    and AF1-AF2 transition. 

Both transitions are well seen e.g. in the 14 T curve of Tb2RhIn8 or the 3 T curve of 

Ho2RhIn8. With further increasing the field, a single anomaly is observed again as 

seen well in the Ho2RhIn8 case. The very broad anomaly observed for Tb2RhIn8 in 

11 T between 10 and 20 K could be related to fact that the measurement is close and 

parallel to the AF1-AF2 magnetic phase borderline. The phase transition 

temperatures obtained from all the measured   ( ) dependencies are in a good 

agreement with the magnetization data and represented as triangles in Figure 19. 

As already mentioned above, Ho2RhIn8 represents certain exception when 

showing two sharp anomalies at        ( )   and        ( )   in the specific 

heat measured in zero field. One can first consider presence of HoIn3 phase grown 

inside the Ho2RhIn8 crystal typical for some R2TX8 compounds [95]. The magnetic 

properties of HoIn3 are somewhat contradictory: the specific heat shows a well 

pronounced anomaly at          [96], whereas the former susceptibility 

measurements indicate          [66]. The result from susceptibility might 

eventually explain the anomaly observed in our data. To fully clarify phase purity of 

this single crystal, Laue diffraction experiment is needed (see Chapter 4.4.1). 
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Figure 19 - Magnetic phase diagrams of Tb2RhIn8, Dy2RhIn8 and Ho2RhIn8 compounds. 

Data were determined from both specific heat and magnetization measurements (pulsed and 

PPMS). The lines are drawn to guide the eye. 

Another explanation is the existence of further magnetic phase AF3 in a very 

narrow temperature region between    and   . Ho2RhIn8 would be then the first 

compound showing this phase among all RTX5 and R2TX8 studied up to now. One can 

consider e.g. some incommensurate propagation along the c-axis in this phase before 

going to simple antiferromagnetic phase below   . Such magnetic structures were 

observed in several tetragonal systems such as e.g. UNi2Si2, UCu2Si2 [97, 98]. 
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The transition to the ferromagnetic state occurs in Er2RhIn8 and Tm2RhIn8 in 

relatively low magnetic fields around 2.5 T and 1.0 T, respectively. The specific heat 

data are consistent with the antiferromagnetic order showing gradual decrease of    

when increasing applied external field. Above the critical field, the specific heat 

anomaly broadens significantly and the magnetic entropy shifts to higher 

temperatures as expected for a field-induced ferromagnetic state (see the 2 T curve 

for Tm2RhIn8). 

Despite the identical moment direction, the magnetic phase diagram of 

Er2RhIn8 and Tm2RhIn8 are different. The behaviour of Tm2RhIn8 is characterized by 

a single antiferromagnetic phase below   , whereas the magnetization curve of 

Er2RhIn8 reveals an additional metamagnetic transition in field around 1.4 T applied 

along the [110] direction. This indicates existence of another magnetic phase that 

exists between 1.4 and 2.5 T at 2 K. This can give us a cue for determination of 

magnetic structures and that the microscopical character of these two compounds 

will be different. 

4.3.5. Comparison with “115” and related “218” compounds 

The magnetic phase diagrams of Tb2RhIn8, Dy2RhIn8 and Ho2RhIn8 for    , 

constructed on the basis of magnetization and specific heat measurements, shown in 

Figure 19, have similar character with two magnetic phases beside the paramagnetic 

and the field-induced ferromagnetic state. The phase boundaries also have an 

analogous shape. The determined phase diagrams are very similar to those of RRhIn5 

compounds [77, 94] which signifies similar magnetic properties. The phase diagram 

of Nd2RhIn8 presented in [77] was rather uncompleted, but latest results on our piece 

of single crystal [99] shows the same shape of the phase diagram as in the other 

compounds. The magnetic phase diagrams of R2CoGa8 compounds show also two 

magnetic phases and somewhat different shape of the phase boundaries [92]. The 

magnetic structure of the field-induced phase in the R2CoGa8 system is unknown 

neither. 

The magnetic moments in Er2RhIn8 and Tm2RhIn8 lie within the ab-plane as 

demonstrated on Figure 17. This is again in analogy to the RRhIn5 or R2CoGa8 series 

[93, 92]. The [100] easy magnetization direction is reported in these two series, 

whereas our magnetization data reveal clearly the [110] direction as the easy 
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magnetization in Er2RhIn8 and Tm2RhIn8. It is not clear, whether the measurement 

along this direction was performed for the two other series mentioned above. 

We want to point out tetragonal system “122” with ThCr2Si2-structure type, 

where the compounds TbCo2Si2, DyCo2Si2, TbCo2Ge2 and DyCo2Ge2 exhibit the 

similar behaviour [100, 101]. It is important to note, that first heavy fermion 

superconductor CeCu2Si2 [10] grows with the same structure type. 

4.4. Magnetic structures 

In order to determine microscopic details of the magnetically ordered phase in 

studied compounds, a series of neutron diffraction experiments were performed. 

Generally, a Laue experiment was first performed to determine the propagation 

vector and then we continued on single crystal diffractometer. All experiments were 

taken on the same samples as bulk measurements, see Table 5.  

 

4.4.1. Determination of the propagation vectors 

Together six experiments on six compounds from the series were done on two 

Laue diffractometers CYCLOPS and VIVALDI at ILL. The Laue patterns for each 

compound were always recorded in the paramagnetic and ordered regions to allow 

magnetic satellites to be easily distinguished. For each sample the crystal was 

mounted with the obvious symmetry axes well away from the vertical axis. This 

orientation allows us to eliminate presence of the reflections only on the detector 

 

Figure 20 - Laue pattern of Nd2RhIn8 taken at 2 K. Yellow squares denote nuclear 

reflections and blue diamonds denote magnetic satellites. 
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boundary and also discover any possible purely magnetic signal. Laue patterns were 

than taken at several   angles. The count of patterns as well as used temperatures for 

each compound is summarized in the Table 9. 

Table 9 - Measured Laue patterns 

Sample Instr. 
Paramagnetic state Ordered state 

Fig. 
                                              

Nd2RhIn8 VIVALDI 30 9 115 10 2 9 115 10 20 

Tb2RhIn8 VIVALDI 60 9 55 10 10 9 55 10 21 

Dy2RhIn8 VIVALDI 40 9 55 10 2 9 55 10 21 

Ho2RhIn8 CYCLOPS 14 2 180 30 1.5 26 15 5 22 

Er2RhIn8 CYCLOPS 8 26 15 5 1.5 26 15 5 22 

Tm2RhIn8 CYCLOPS 6 5 35 30 1.5 5 35 30 27 

 

 

 

Figure 21 - Laute pattern of Tb2RhIn8 (top) and Dy2RhIn8 (bottom) taken at 10 and 2 K, 

respectively. Yellow squares denote nuclear reflections while blue diamonds denote magnetic 

ones. 
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In addition for Ho2RhIn8, series of 50 patterns was taken in the slow 

temperature sweep mode (0.1 K/min) in order to determine temperature dependence 

of the magnetic Bragg peaks and the nature of AF3 phase mention in the Chapter 

4.3.4. Each of these patterns was recorder only for 2 minutes, but with higher gain of 

the cameras. Such a high gain is not ideal for further quantitative refinement of the 

pattern, because of a big increase of the electronic noise. However it is possible to 

use it during temperature sweep, if we just want to follow intensity of selected peaks 

and look for the creation of the new ones. Results of these measurements are 

described in chapter 4.4.4. 

 

 

Figure 22 - Laute pattern of Ho2RhIn8 (top) and Er2RhIn8 (bottom) taken at 1.5 K. 

Yellow squares denote nuclear reflections and blue diamonds denote magnetic ones. 



55 

The CYCLOPS patterns were first transformed from octagonal to cylindrical 

geometry, and also a mathematical filter for decreasing noise was applied. For the 

measurement of Er2RhIn8, an alpha correction for the different sensitivity of different 

cameras can also be applied. But since this kind of treatment of the CYCLOPS data 

is still in commissioning phase, this correction was finally not used. The patterns 

from VIVALDI were used without further changes. All Laue patterns, both from the 

VIVALDI and the CYCLOPS instruments, were indexed and integrated using the 

Esmeralda Laue Suite software [39]. This software was also used for finding 

propagation vectors. 

The overall Laue pattern for Nd2RhIn8 is represented in Figure 20, for 

Tb2RhIn8 and Dy2RhIn8 is in Figure 21 and for Ho2RhIn8 and Er2RhIn8 in Figure 22. 

The diffuse streaks on all patterns correspond to the textured powder pattern due to 

aluminium in the cryostat. All the observed diffraction spots at paramagnetic 

temperature can be indexed assuming the tetragonal structure with the space group 

P4/mmm. At the cryostat base temperature, a large number of new, purely magnetic 

reflections appear. All magnetic reflections in the compounds with R = Nd, Tb, Dy 

 

Figure 23 - Part of the Laue picture of Nd2RhIn8 with diffraction spots marked as in 

Figure 20. Red color denotes area of integration along the reciprocal [hkl]* (with h = −1, k = 

3, and l = n) direction which corresponds to the intensities shown in Figure 24. 



56 

and Er can be described by a single propagation vector     (
 

 
 
 

 
 
 

 
). The 

propagation vector of Ho2RhIn8 is different; there we observed reflections, which can 

be described by propagation vector     (
 

 
    ) and equivalent     (  

 

 
  ). 

This implies existence of the multi-k structure or magnetic domains in the sample. 

To illustrate indexation of the spots belonging to determined propagation 

vectors, we show a smaller cut of the Laue picture of Nd2RhIn8 in Figure 23. The 

intensities along the [001] crystallographic direction, indicated in that picture, are 

then shown in Figure 24. Note that individual positions could correspond 

simultaneously to several reflections that are overlapped with different wavelengths. 

Therefore more than one reflection can contribute to one spot. 
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Figure 24 - Diffraction intensities taken from a cut through a Laue picture of Nd2RhIn8 

as indicated in Figure 23.  
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Figure 25 – Comparison of the selected part of the Laue pattern of Dy2RhIn8 at 

paramagnetic (a) and ordered (b) region. Left part of each picture is raw data, right is overlaid 

with indexed peak positions. 

Another illustration is done in Figure 25 for Dy2RhIn8. You can see number of 

new spots, which appeared when entering magnetically ordered region in the   = 

2 K. All newly appeared peaks are indexed with commensurate propagation vector 

    (
 

 
 
 

 
 
 

 
). Blurred peaks are denoted to be effect of big crystal mosaicity. This 

effect does not influence the determination of the commensurate propagation vector. 

The final compound studied by Laue diffraction is Tm2RhIn8. From its Laue 

patterns it is clear that it orders incommensurately, see Figure 27 for full indexed 

pattern from CYCLOPS instrument. Indexing all the peaks is not very 

straightforward. A large number of reflections can be ascribed to propagation vector 

   (
 

 
       ), however a few clear magnetic peaks were not indexed. The first 

possible solution is to allow existence of higher harmonics and therefore probably 

some square modulated structure along c-axis. Another solution is to use a second 
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propagation vector    (        ). The possible indexation of selected cut through 

the Laue pattern regarding two propagation vectors is depicted on Figure 26. 

 

Figure 27 - Laute pattern of Tm2RhIn8 taken at 2 K. Yellow squares denote nuclear 

reflections while the blue and the green diamonds denote magnetic ones. 
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Figure 26 – Diffracted intensities along the cut from the Laue pattern of Tm2RhIn8. 

Cuts from the pattern are depicted above the intensity chart. 
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We can summarize the results from Laue diffraction measurement as follows: 

only the Tm2RhIn8 compound has an incommensurate magnetic structure, deviating 

from the studied series and also related “218” and “115” compounds. All other 

compounds orders with commensurate antiferromagnetic structures. Determined 

propagation vectors are summarized in Table 10. The knowledge of the propagation 

vector was subsequently used during the further single crystal diffraction 

experiments in the next chapters. 

Table 10 - Determined propagation vectors 

 

 

4.4.2. Representation analysis 

In order to restrict the number of possible magnetic structures, we applied 

symmetry arguments as developed in the representation analysis [102]. The different 

irreducible representations with their associated basis vectors have been calculated 

with the help of the BasIreps program [29] using the previously determined 

propagation vectors. Let us now in details describe the situation in the case of the 

most common propagation vector    (
 

 
 
 

 
 
 

 
).  

The little group (or group of the propagation vector) coincides with the space 

group           (all rotational symmetry operators of P4/mmm leave invariant 

the propagation vector), so the small representations coincides with the full 

irreducible representations of the space group. There are together 10 irreducible 

representations (      ) associated with the   (
 

 
 
 

 
 
 

 
) propagation vector. Two 

Compound Propagation vector   

Nd2RhIn8 ( 
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Ho2RhIn8 ( 
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Er2RhIn8 ( 
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Tm2RhIn8 
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       )  (        ) 
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       )   higher harmonics 

or 
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of them,    and    , are two-dimensional and remaining 8 are one-dimensional. 

However, the global reducible magnetic representation of the R 2g Wyckoff site can 

be decomposed in        as                 . Because there are always two 

magnetic sublattices corresponding to the 2g Wyckoff site within the unit cell, the 

basis vectors have six components each. The first three correspond to the magnetic 

moment components of the R atom at the position with       site symmetry (R1) 

and the other three to those of the atom at the           site (R2). By making 

linear combinations of the basis vectors within the same irreducible representation 

we obtain the vectors representing the components of the magnetic moments of both 

atoms. These combinations are summarized in Table 11. One can see, that in the case 

of the one-dimensional representations    and    there is only a single free parameter 

  describing the magnetic structure. For the two-dimensional representations    and 

   , there are, in general, two parameters   and  . In both cases the difference 

between    and   , or    and    , respectively, resides in the either parallel, or 

antiparallel coupling between the two rare-earth sublattices. As the propagation 

vector is   (
 

 
 
 

 
 
 

 
), the magnetic unit cell is doubled in  ,  ,   direction and the 

direction of the moments in the neighboring (chemical) unit cells have to be 

opposite. 

Table 11 - Direction of magnetic moments for all possible irreducible representations 

corresponding to the propagation wave vector   (
 

 
 
 

 
 
 

 
) and the magnetic 2g site in the 

P4/mmm space group. 

site              

R1                                       

R2                                       

 

The similar analysis has been done also for other possible propagation vectors, 

  (
 

 
    ) found in Ho2RhIn8 and Er2CoGa8 and   (

 

 
   

 

 
) found in 

Tm2CoGa8. For a detailed analysis of these cases see work of Johnson et al. [61]. 

Summary of all possible magnetic structures regarding theory of representations is in 

Table 12. Note that within one unit cell are two positions of R atom, which means 

that for example stacking      along c-axis is stacking over two unit cells. 
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Table 12 - Possible magnetic structures regarding theory of representations. 

 moment direction  -axis stacking 
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a      

a      

b      

b      

c      

c      

  (
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a      

a      

b      

b      

c      

c      

  (
 

 
 
 

 
 
 

 
) 

c      

c      

in ab-plane      

in ab-plane      

  

4.4.3. Single crystal diffraction experiments in zero-field 

The four-circle neutron diffraction experiments were performed for the 

Nd2RhIn8, Dy2RhIn8 and Ho2RhIn8 samples on the D10 diffractometer at ILL, with a 

wavelength          using pyrolytic graphite monochromator and filter before the 

sample. The sample was installed into a C-shaped Eulerian cradle equipped with a 

special helium-flow cryostat allowing cooling up to 1.5 K. After cooling the samples 

to 2 K, cell parameters and orientation were refined on the basis of several strong 

nuclear reflections using the program RAFD9 [21]. The number of reflections used 

for initial refinement is written in Table 13. Then a set of reflections at 2 K and 

temperature dependencies of selected magnetic and nuclear reflections were taken 

for Nd2RhIn8 and Dy2RhIn8. For Ho2RhIn8 only nuclear reflections were measured, 

in order to refine extinction parameters and use them in the refinement of further 

field experiment on E4. Refer next chapter 4.4.4 for details. All reflections were 
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measured as  -scans. They were integrated and corrected for Lorentz factor using 

the program RACER [20]. 

In the case of Er2RhIn8, we have used the triple axis spectrometer IN3 at ILL. 

The sample was mounted with the [110] and the [001] lattice vectors in the scattering 

plane into the standard ILL helium-flow “orange” cryostat. After cooling to 1.5 K, 

the tilt of the sample was adjusted by a goniometer and the lattice parameters were 

refined. Contrary to D10, IN3 has only 
3
He detector tube, so measured data are only 

1D scans. We measured the reflections in the elastic condition at          using 

 -scans as well. All measured datasets from IN3 were fitted with Gaussian profiles 

using Python script and the integrated intensities were corrected for the Lorentz 

factor (see Appendix 1. for the used script).  

Table 13 - Summary of performed single crystal diffraction experiments in zero-field 

 Nd2RhIn8  Dy2RhIn8 Ho2RhIn8 Er2RhIn8 

Instrument D10 D10 D10 IN3 

absorption coefficient (cm−1) 9.018 19.134  9.738 10.707 

number of measured reflections (nonequivalent) 

for orienting 41 20 19 - 

nuclear    364 (70) 350 (68) 345 (68) 60 (21) 

magnetic    461 (50) 383 (38) - 57 (15) 

 

All measured compounds contain large amounts of indium, which is medium 

absorbing material for neutrons and moreover dysprosium is very absorbing element. 

Therefore all integrated intensities were corrected for absorption correction. Their 

absorption coefficients were calculated based on equation (23) and are tabulated in 

Table 13. The program DATAP [27] was used for the correction of the integrated 

intensities. As an input for the routine, we used sample sizes from Table 5 and 

calculated absorption coefficients. 

The obtained set of data contained many equivalent reflections. All these were 

reduced together using the program DataRed [29]. Obtained number of measured 

equivalent and non-equivalent reflections is listed in Table 13. The program FullProf 

[29] was used for the refinement of the nuclear and magnetic structures. The 

extinction correction for Nd2RhIn8, Dy2RhIn8 and Er2RhIn8 was refined using the 

Zachariasen formula with anisotropic correction (Ext-Model=4 in FullProf). The 
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isotropic variant of this correction (Ext-Model=1) was used for Ho2RhIn8. The 

reason for this was an idea of using refined extinction parameter from D10 as fixed 

input for the measurement on the E4 diffractometer in field. This is possible to do 

because both instruments use the similar wavelength and both measurements were 

performed on the same single crystal. See next chapter 4.4.4 for E4 experiment. 

We have tried to use also Becker Coppens algorithm for extinction refinement 

in order to obtain domain radius and mosaic spread in these compounds. Application 

of such correction should be possible, since program DATAP calculated absorption 

weighted path of the incident and diffracted beam within the crystal for each 

measured reflection. However application of such model did not lead to stable least-

square fit. After the discussion with the author of FullProf, Juan Rodriguez-Carvajal, 

it was concluded, that this fitting model is in FullProf not yet fully working. 

The determined structural parameters at the lowest temperature are 

summarized in Table 14. To illustrate the quality of the fit, the observed vs. 

calculated integrated nuclear intensities are depicted in Figure 28 and the reliability 

factors from the FullProf refinement are in listed in Table 13. The worse fit for the 

Ho2RhIn8 is caused by the fact, that we used an isotropic fit for the extinction. Fitting 

with anisotropic parameters causes big improvements for the fit, especially for the 

Table 14 - Structural parameters of R2RhIn8 at         determined from neutron 

diffraction. 

R  Nd Dy Ho Er 

lattice parameters 

  ( )  4.6213(9) 4.572(2) 4.5648(16) 4.552(2) 

  ( )  12.113(3) 11.96(1) 11.953(12) 11.980(2) 

atomic positions along the c-axis 

R 0.3083(3) 0.3095(2) 0.3098(3) 0.311(1) 

In(2) 0.3059(6) 0.3078(7) 0.3086(6) 0.311(1) 

In(3) 0.1212(4) 0.1226(5) 0.1245(4) 0.125(2) 

reliability factors 

RF2 6.70 5.58 11.5 11.80 

RF 5.34 4.40 10.1 9.94 

χ2 3.14 2.58 5.67 3.57 
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strong reflections where the extinction is important. The worse fit for the Er2RhIn8 is 

caused by using only 2-circle geometry. A consequence of this is a smaller amount of 

the reachable reflections and also additional error cause by misalignment of the 

scattering plane. In total all nuclear structure measurements are in agreement with 

expected space group P4/mmm and Ho2CoGa8 structure type. 

The temperature dependence of the selected nuclear intensities of Nd2RhIn8 

and Dy2RhIn8 is shown in Figure 29. We observed no change in intensity above and 

below the transition temperature, indicating that there is no contribution with 

  (     ) propagation vector. Similar conclusion can be deduced from the 

temperature dependence of Laue patterns from CYCLOPS for Er2RhIn8 and 

Ho2RhIn8, where no change in nuclear intensities is observed as well. 

As the whole next chapter is devoted to magnetic structure of Ho2RhIn8, we 

will skip it for now and we will focus on compounds with Nd, Dy and Er on the 

position of rare earth element. All have same commensurate propagation vector 

  (
 

 
 
 

 
 
 

 
) and thus the results from the previous chapter give us only several 

possibilities of magnetic moment arrangements. All four possible magnetic structures 
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Figure 28 – Observed and calculated integrated nuclear intensities. The calculated 

intensities correspond to the parameters given in Table 14. 
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(listed in Table 12) were refined in FullProf software. The best agreement between 

observed and calculated intensities of Nd2RhIn8 and Dy2RhIn8 is obtained for 

magnetic moments pointing along the c-axis with their parallel alignment within one 

unit cell and corresponding to   . 
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Figure 29 – Temperature dependence of intensities of selected reflections.  

For Er2RhIn8 the fitting procedure showed that the best agreement is obtained 

with the model     where the magnetic moments in the unit cell lie in the ab-plane 

pointing the same direction (     stacking along the c-axis). As Er2RhIn8 was 

measured in IN3, only reflections within the (-110) scattering plane could be 

measured. Taken set of reflection is then not sufficient to determine the exact 

direction of the moments within the ab-plane. 
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The refined amplitudes of the magnetic moments are summarized in Table 15 

and the obtained magnetic structures are depicted in Figure 30. The comparison of 

observed and calculated intensities for all compounds is shown in Figure 31. 

Table 15 - Magnetic structure parameters of Nd2RhIn8, Dy2RhIn8 and Er2RhIn8. 

R  Nd Dy Er 

magnetic structure 

   
(
 

 
 
 

 
 
 

 
) 

  (  )  2.53(9) 6.9(3) 6.4(1.4) 

direction of the moment c-axis c-axis ab-plane 

c-stacking                

   ( )  10.63(4) 24.24(8) 3.70(6) 

   0.22(3) 0.20(1) 0.16(2) 

reliability factors 

magnetic RF2 15.5 9.46 20.2 

magnetic RF 9.83 6.95 13.2 

magnetic χ2 6.01 2.65 8.29 

 

 

Figure 30 – Magnetic structure of Nd2RhIn8, Dy2RhIn8 (left) and Er2RhIn8 (right) 

compounds. Note that magnetic moments of Er2RhIn8 can point anywhere within the ab-plane, 

but are all parallel to each other. 



67 

Observed intensity (arb. units)

0 2 4 6 8 10 12 14 16 18

C
a

lc
u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

0

2

4

6

8

10

12

14

16

18

Nd
2
RhIn

8

Observed intensity (arb. units)

0 1 2 3 4

C
a

lc
u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

0

1

2

3

4

Dy
2
RhIn

8

Observed intensity (arb. units)

0 5 10 15 20 25 30

C
a

lc
u
la

te
d
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

0

5

10

15

20

25

30

Er
2
RhIn

8

 

Figure 31 – Observed and calculated integrated magnetic intensities. The calculated 

intensities correspond to the parameters given in Table 15. 

For completion of the magnetic refinement, the rare-earth moments were 

allowed to lie in a general direction by combining two representations in order to 

check a lowering of symmetry. We did not observe any noticeable improvement of 

the fits and the local minima were always found within 1 - 2 degrees out of the 

previously determined direction using a single representation. We can therefore 
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conclude that the magnetic moments of Nd2RhIn8 and Dy2RhIn8 lie along the 

tetragonal c-axis, while they lie within the ab-plane in the case of Er2RhIn8, lowering 

the symmetry at least to orthorhombic (remember that for experimental limitations 

we could not determine the directions of the moment within the ab-plane). 

4.4.4. Magnetic structures of Ho2RhIn8 in its rich phase diagram 

In chapter 4.3.2 was revealed, that Ho2RhIn8 is special among the other studied 

compound, because it has most complex phase diagram (Figure 19). In addition to 

zero-field phase AF1 and field induced phase AF2, which exists also in other 

compounds with easy magnetization axis along c-axis, there exists another small 

zero-field region near transition temperature. It was speculated, that reason for this is 

either impurities, or existence of an incommensurate phase AF3. Because of this 

exceptional character, Ho2RhIn8 was chosen for most detailed study. 

Magnetic phase AF1 as well as the behaviour in applied magnetic field was 

measured using the two-axis neutron diffractometer E4 at Helmholtz-Zentrum 

Berlin, Germany. Focusing monochromator with vertically bent PG crystals was 

used to select the wavelength          . Scattered intensities were observed using 

a 200x200 mm two-dimensional position-sensitive detector (PSD) in distance 

            from the sample. The experiment was performed using a He flow 

cryostat at the temperature range 1.6 - 15 K. First the sample was loaded into a 

horizontal-field magnet HM-2 and aligned with its reciprocal (h, 0, l) plane in the 

horizontal scattering plane of the instrument. Magnetic field was then applied along 

easy c-axis. In order to extend number of observable reflections, sample was 

realigned and mounted to the vertical-field magnet VM-2 to have (h, k, 0) plane 

aligned with scattering plane of the instrument. 10° opening angle of the magnet 

allows us to reach reflections with index (h, k, 0.5) on the PSD detector. 

In addition we have used the triple axis spectrometer IN3 at ILL to measure 

few missing information, as zero-field temperature dependence of magnetic Bragg 

reflections. See chapter 4.4.3 for instrument setup. 

Treatment of the E4 data is little bit more complicated than treatment of data 

from D10, because there is no software for automatic integration of 2D detector data 

(as RACER in ILL). The whole integration process was therefore done by Python 

script (see appendix 2. for details). At first, background detector data were cut out to 

the rectangular shape around observed reflection. Then fitting of the Gaussian profile 



69 

function along the  -scan. This technique allows us to reduce the background and 

also to distinguish out-of-plane and in-plane reflections.  

We will illustrate process of the data treatment on the reflection 0.5 0.5 0.5 

which was measured in the vertical magnet. As the sample was oriented with (h, k, 0) 

scattering plane, this reflection appeared out of the plane. It appeared at  

         ,          and in applied field      . See raw measured data 

visualized on Figure 32. We have measured simultaneously reflection 0.5 0.5 0.5 and 

a part of equivalent reflection 0.5 0.5 -0.5. Since bottom reflection did not appeared 

fully, we have treated only the top reflection.  

 

Figure 32 – measured reflection 0.5 0.5 0.5 in vertical magnetic field 3T. 

Let us clarify, that measured spot really belongs to 0.5 0.5 0.5 reflection. 

Considering that lattice constant c is much bigger than a and measured reflection is 

close to the scattering plane, it is possible to derive following relation from Bragg 

law and simple geometrical constrains: 

   
     

    

 

 
   (25)  

where   is reciprocal coordinate of measured spot,       is vertical distance of the 

measured spot from the middle of the detector and      is distance between sample 

and detector. As            , resulting   0.51, which confirms that observed 

peak is the 0.5 0.5 0.5 reflection. 
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The next step in treatment of the peak is its trimming, which leads to area 

shown in Figure 33. These data were summed along   and   direction of the detector 

producing intensity vs.   dependence, which was fitted with background + Gaussian 

profile. Resulting integrated intensity was corrected for Lorentz factor, equation (18). 

All measured peaks on E4 were treated in this way. 

 

Figure 33 – Trimmed raw intensity data of the reflection 0.5 0.5 0.5 

 

Figure 34 –  -scan over 0.5 0.5 0.5 reflection. Solid line is Gaussian fit to the measured 

data. 

Data from IN3 were just fitted with Gaussian profile, as this instrument has 

only 1D detector. All integrated intensities were corrected for the Lorentz factor. 

The obtained raw data were reduced using the program DataRed and the 

program FullProf was used for the refinement of the structures. 
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4.4.4.1 Zero field commensurate structure AF1 

We have measured two sets of nuclear and magnetic reflections – from 

horizontal and from vertical magnet. Due to the small window of the high field 

magnets, only a limited number of reflections was observed. To decrease error of the 

fitting routine, only strong reflections were used for refinement. Also simulations in 

FullProf were done in order to see if measured strongest reflections agree with 

simulated ones. 

Data from horizontal and vertical magnet was treated separately because of 

different background and observed intensities. Extinction correction determined from 

D10 nuclear measurement was used for all treatments. Number of measured non-

equivalent reflections in the different magnets is summarized in Table 16.  

The important fact for magnetic structure treatment is that all 16 magnetic 

reflections measured in vertical magnet was clearly zero. From the 6 possible 

magnetic structures listed in Table 12, there is only one in which all reflections with 

    0 indices are cancelled out due to the magnetic moment arrangement. It is 

structure with magnetic moments along c-axis with stacking     . The 

reflections     0 were the only one with propagation   (
 

 
     ) which we were 

able to measure in vertical magnet, so it was not possible to use data from vertical 

magnet for refinement. The predicted structure was confirmed by refining data from 

horizontal magnet. Results of FullProf treatments are listed in Table 16. 

 

Table 16 - Summary of FullProf refinement of reflections measured in zero magnetic field 

on E4 

Type of magnet Horizontal Vertical 

Type of reflections Nuclear Magnetic Nuclear Magnetic 

Number of measured reflections 7 7 4 16 

Scale 65(3) fixed 29(2) fixed 

      - 6.9(2)    - ?? 

     13.7 17.0 13.7 - 

    10.6 7.91 6.37 - 

   2.14 0.53 3.81 - 
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Because of the propagation vector   (
 

 
     ), there exists two k-domains or 

multi-k structure in Ho2RhIn8. The second domain is connected with the arm 

  (  
 

 
  ). For the treatment in FullProf, only reflections from one domain were 

used. Considering that both domains are equally populated, we have measured only 

half of the volume of the sample. The volume of the sample is proportional to the 

measured intensity, which is proportional to the square of the magnetic moment. 

Therefore we need to multiply fitted magnetic moment with √ . Value in Table 16 is 

already corrected with this factor. 

On the basis of a neutron diffraction experiment it is not possible to distinguish 

between multi-k structure and the existence of magnetic domains. But the multi-k 

structure will imply existence of the holmium atoms with the zero magnetic moment. 

But this case is unlikely because of magnetization measurements and therefore we 

conclude that there exist two magnetic k-domains, corresponding to the propagation 

vectors   (
 

 
     ) and   (  

 

 
  ). These domains are equally populated, and 

application of the external magnetic field along the c-axis did not influence this 

population. Resulting magnetic structure is depicted in Figure 35. 

 

Figure 35 - Magnetic structure of Ho2RhIn8 in the AF1 phase. Two magnetic domains are 

shown. 

 



73 

4.4.4.2 Field induced structure AF2 

In order to determine the magnetic structure in the field induced magnetic 

phase AF2, Bragg reflections were measured in the field of 4 T. The thorough search 

in the reciprocal space leads to observation of 6 propagation vectors:    (     ), 

   (
 

 
    ),   

  (  
 

 
  ),    (

 

 
   

 

 
),   

  (  
 

 
 
 

 
) and    (

 

 
 
 

 
 
 

 
), 

where      and     
  correspond to the different magnetic domains. Reciprocal space 

positions 0.5 0.5   and     0.5 were measured for a longer time and no magnetic 

reflections were found there. The magnetic unit cell size is thus         . 

The sum of the magnetic moments associated with    -    within magnetic 

unit cell is always zero, as they are always propagating within ab-plane canceling out 

moments at the 2g Wyckoff site. The magnetization measurements clearly show that 

the overall magnetic moment in the AF2 phase amounts to the half of the magnetic 

moment of purely ferromagnetic phase in field above    . This moment must be thus 

associated with the ferromagnetic component    as this is the only one which is not 

cancelled out. 

Results of the theory of representations analysis in chapter 4.4.2 are valid also 

for the magnetic structures in field. For structures with    and    there exists always 

6 allowed 1D irreducible representations. In case of   , there is a possibility for the 

moment to lie in any direction within ab-plane. Taking into account the fact that all 

moments in AF1 points along c-axis and a clear field induced spin flip behaviour is 

observed, we can consider that magnetic moments associated with all wave vectors 

in AF2 points also along the c-axis. Therefore we have two possibilities for each  -

vector, each with different stacking of the magnetic moments within the nuclear unit 

cell. 

We will now focus on the possible magnetic spin arrangement within (00zHo) 

plane. There are four magnetic positions within this plane in the magnetic unit cell, 

all corresponding to one atom site in the nuclear unit cell. Let’s mark them as on 

Figure 36. 
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Figure 36 – Schematic view on Ho atoms in ab-plane of magnetic unit cell. Each atom 

position is marked with a letter. 

Neglecting out of plane component, there can exist 4 propagation vectors for    x    

magnetic unit cell in maximum:  

         (   ), 

         (
 

 
  ),  

         (  
 

 
) and  

         (
 

 
 
 

 
).  

If we neglect the change of the magnitude of the magnetic moment (i.e. imaginary 

component of basis vector) and assume that the magnetic moments are along c-axis, 

magnitude of the magnetic moments can be calculated by equation (8). Total 

magnetic moments on individual magnetic atom sites will be: 

 

      
    

    
    

  

      
    

    
    

  

      
    

    
    

  

      
    

    
    

  

(26)  

where      
 are magnetic moments associated with relevant propagation vectors. 

Considering only spin flip scenario, it is required that total magnetic moments 

     on all 4 sites must have the same amplitude. That results in the only possible 

solution: 

    
     

       
    

  (27)  

                  
 (28)  

which means that one of the four moments in plane is flipped. Magnetic moments 

arrangement in ab-plane is depicted on Figure 37. 

 

B A 

C D 

𝑎 

𝑏 
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Figure 37 – Magnetic structure in ab-plane of Ho2RhIn8. Magnetic moments are pointing 

along c-axis. 

 

Extending from the 2D case to the real Ho2RhIn8 structure brings more options 

by different stacking along c-axis. Taking into account fact, that total moment at one 

site cannot exceed theoretical moment of holmium (     ), only two independent 

models summarized in Table 17 and depicted in Figure 38 are possible. 

    

    

 

Figure 38 – possible magnetic structures in AF2 phase of Ho2RhIn8 

𝑎 

𝑏 
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Table 17 - Possible magnetic stacking in AF2 phase 

 stacking of site A along c-axis 

 model 1 model 2 

    (     )           

     (
 

 
    )           

   (  
 

 
 
 

 
)           

   (
 

 
 
 

 
 
 

 
)           

Overall stacking           

 

These models are distinguishable on the same principle as for AF1 phase - on 

the basis of the existence of the reflections (hk0) for propagation vector   . These 

reflections are forbidden in the model 2. As we did not observed any of these 

reflections, the correct model describing the magnetic structure of Ho2RhIn8 in the 

applied magnetic field (AF2 phase) is the model 2. As well as in AF1, there will exist 

two magnetic k-domains. The corresponding magnetic structure is depicted in  

Figure 39. 

Quantitative refinement using the FullProf software confirmed results and 

leads to the magnetic moments listed in Table 18. Treatment was not possible for 

reflections with propagation    in vertical magnet, since all measured reflections 

were zero (but this helps to distinguish that model 2 is correct). Treatment was also 

not possible for the propagation vector   , since we have reached only 1 magnetic 

reflection associated with this propagation (due to the construction of magnets).  

Table 18 - Summary of FullProf treatment of the measured reflections in AF2 phase of 

Ho2RhIn8 

Type of magnet Horizontal Vertical 

Propagation vector                   

Number of measured reflections 7 7 3 16 16 1 

Magnetic moment    (  ) 3.5(3) 3.7(2) 3.8(6) ? 4.0(2) ? 

     81.7 9.37   40.4 - 22.8 - 

    44.0 5.26 21.6 - 11.9 - 

   2.09 0.138 2.86 - 1.06 - 
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Figure 39 - Magnetic structure of Ho2RhIn8 in the AF2 phase. Domain 1 corresponds to 

   (  
 

 
  )     (

 

 
   

 

 
) and domain 2 corresponds to    (

 

 
    )     (  

 

 
 
 

 
). Both 

magnetic domains are equally populated. 

All four determined amplitudes of magnetic moments satisfy equation (27) 

within the error. Therefore we can assume that our considerations were correct. 

Overall amplitude of magnetic moments is therefore         ( )  , which is 

calculated from equation (28) taking    
 as mean of all four refined amplitudes of 

magnetic moments in Table 18. The value of      is slightly bigger than     . This 

increase is due to the impact of the 4 T external magnetic field and is in agreement 

with the measured magnetization curves (Figure 16). 

To clarify the location of the phase boundaries and verify the consistency of 

the data from the vertical and horizontal magnet, several reflections were followed 
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with the changing magnetic field (Figure 40). We have observed increase of the 

intensity of the nuclear peaks together with decrease of the peaks associated with  

   (
 

 
    ) propagation. Temperature dependence of         reflection in the 

fields of 0, 2 and 3 T is depicted in Figure 45. The shape of the curve in 0 T and 2 T 

corresponds to each other showing the same ordering mechanism as both are entering 

the AF1 phase. The crossing of the AF1 phase by the temperature scan in the 

constant field of 3 T, predicted by magnetic phase diagram (Figure 19) was not 

observed. This can be explained by the existence of no long-range order in the AF1 

phase region at 3 T. Points from the measured temperature and the field 

dependencies are depicted to the newly constructed phase diagram in Figure 42. 
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Figure 40 - Field dependence of selected Bragg reflections in horizontal and vertical 

magnet on E4. Dotted line marks phase transition from magnetization measurements. 
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Figure 41 - Temperature dependence of integrated intensity of 1/2 0 1 reflections in 

different fields. Lines are only to guide the eye. 

 

 

Figure 42 – Magnetic phase diagram of Ho2RhIn8 with points from neutron experiments 

 

4.4.4.3 Incommensurate structure AF3 

For the determination of the nature of possible AF3 phase, Laue diffractometer 

CYCLOPS was used. See chapter 4.4.1 for the technical details of the experiment. 

Ordering in AF3 phase is illustrated in Figure 43, which shows the same small 

portion of Laue diagrams taken at the same crystal orientation but different 

temperatures. 



80 

At 10.9 K, above the Néel temperature, there is no significant intensity 

observed. At 10.4 K two satellites appear at incommensurate positions together with 

a very weak trace of the further commensurate peak. Its intensity starts to grow and 

at 9.9 K there are clearly both commensurate and incommensurate reflections visible. 

At 9.4 K is AF3 phase completely vanished. Integrated cut along the curve going 

through all three reflections are shown in Figure 44. The same behavior was 

observed also around other strong magnetic reflections and the magnetic peaks on 

the incommensurate positions were indexed with the propagation vector      

(
 

 
    ), where        ( ) and is temperature independent. 

A very small value of the   parameter of the propagation vector implies a 

modulation period involving 27 holmium atoms. Such a long modulation can be 

explained by formation of a spin density wave phase. 

 

Figure 43 - Detail of the region around 0.5 0 1 reflection in the taken Laue pattern at 

different temperatures. 
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Figure 44 – Laue cuts along the 0h0 crystallographic direction in different temperatures. 

 

4.4.5. Critical behaviour 

The temperature dependence of the intensity of the (
 

 
 
 

 
 
 

 
) magnetic reflection 

for each compound with   (
 

 
 
 

 
 
 

 
) and temperature dependence of the intensity 

(
 

 
    ) for Ho2RhIn8 is shown in Figure 45. The data were fitted to the power law 

(24). The determined transition temperatures    as well as the critical exponents   

are listed in Table 19. These experimental results are incompatible neither with Ising 

prediction for the two-dimensional and the three-dimensional systems nor with the 

X-Y or Heisenberg models. However, all four compounds reveal qualitatively similar 

critical behavior pointing to the similar ordering mechanism with the value of 

     . We are aware, that the determined critical exponents are fitted from the 

temperature ranges down to 0.8 of the reduced temperature 
 

  
, which could also 

explain the deviation from the theoretical values.  

Table 19 - Coefficients determined from the critical behavior 

R  Nd Dy Ho Er 

   ( )  10.63(4) 24.24(8) 10.4(2) 3.70(6) 

   0.22(3) 0.20(1) 0.19(4) 0.16(2) 
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Figure 45 – Temperature dependences of the intensities of selected magnetic reflections. 

The full lines are fits to the equation (24). 

4.4.6. Comparison to the related compounds 

Let us now compare our results with the magnetic structures in related 

compounds. As mentioned in the introduction, the "218" compounds can be seen as 

transition from the nearly two-dimensional "115" towards the three-dimensional "13" 

compounds.  

4.4.6.1 Nd2RhIn8 

In the neodymium compounds the different "13" and "115" magnetic structures 

were ascribed to competing (NdIn3) or matching (NdRhIn5) crystal-field and 

exchange anisotropies [64]. The magnetic moments in both Nd2RhIn8 and NdRhIn5 

point along the c-axis, driven by the crystal-field anisotropy. The coupling between 

the neighbouring Nd moments is antiferromagnetic within the basal planes, although 

the moments propagate differently:           (
 

 
 
 

 
) in Nd2RhIn8 and           

(
 

 
  ) in NdRhIn5.  
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The NdIn3 layer (in NdRhIn5) or bilayer (in Nd2RhIn8) is then separated by a 

RhIn2 layer. The Nd-Nd coupling along the c-axis across this non-magnetic layer is 

in both cases also antiferromagnetic. The coupling along the c-axis within the cubic 

NdIn3 blocks in Nd2RhIn8 is ferromagnetic, i.e. these cubic blocks form the same 

magnetic structure occurring in the ground state of NdIn3. The magnetic structure can 

be viewed also in the following way: among the two nearest Nd layers it acts exactly 

as in NdIn3 (diagonal propagation in the plane perpendicular to the moments) while 

another Nd bilayer, separated by RhIn2 layer, is coupled antiferromagnetically 

creating the overall propagation vector   (
 

 
 
 

 
 
 

 
). 

4.4.6.2 Dy2RhIn8 

Similar conclusions are valid for dysprosium compound, except the fact that in 

the cubic DyIn3 the magnetic moments point out of the main crystallographic 

directions. The recently studied gallium analogue of the dysprosium compound, 

Dy2CoGa8, shows the same magnetic structure and stacking along the c-axis [83]. 

Stacking of moments along the c-axis      in Dy2RhIn8 is different from the 

stacking      revealed for Tb2RhIn8 [72]. This is then reflected in the 

qualitatively different magnetization curves in magnetic fields above 10 T applied 

along the a-axis [99]. 

4.4.6.3 Ho2RhIn8 

Ho2RhIn8 is a first member of "218" compound with magnetic domains. Others 

have propagation   (
 

 
 
 

 
  

 

 
), which excludes existence of magnetic moments. Its 

structure is much more similar to "115" compounds, having same stacking along  

c-axis and also same propagation within ab-plane. As this is the first solved AF2 

structure in this family of compounds, we cannot compare results to the related ones. 

We suppose, that due to the similar phase diagrams, related compounds from 

"218" family will perform the same flipping mechanism during metamagnetic 

transition from AF1 to AF2, consisting of the flip of 1/4 of the magnetic moments. 

Same could be applied with a small modification to "115" compounds, as the AF1 

structure in Ho2RhIn8 is very similar to the known "115" magnetic structures. 

Magnetic structure suggested for AF2 phase in "115" compounds mentioned in 

Hieu's thesis [6], see Figure 46(c), corresponds to the model determined for the AF2 

phase in Ho2RhIn8. 
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Figure 46 - Three types of magnetic structure in AF2 for RRhIn5, figure taken from [6], 

where it is Fig. 5.69. 

Formation of the incommensurate zero-field phase is also unique within "218" 

and "115" compounds, but can be found in other tetragonal compounds as UCu2Si2 

[98].  

4.4.6.4 Er2RhIn8 

No magnetic structure is reported for any of the erbium 115 compounds. We 

can compare our results to the gallium analogue Er2CoGa8, which has  (  
 

 
  ), 

i.e. it propagates only along the direction of the magnetic moments with      

stacking along the c-axis. This qualitative change of stacking within the unit cell as 

well as different propagation vector is probably caused by the smaller distance 

between Er atoms in the gallium compound (         in Er2CoGa8 [61] compared to 

         in Er2RhIn8). The determined amplitude of the magnetic moment in the 

gallium compound        is also significantly reduced in comparison with        for 

its indium relative. 

The small value of        for Er2RhIn8 is rather different from the value 

       determined for isostructural Er2CoGa8 [61]. We observe a significantly 

steeper increase of the spontaneous magnetization compared to the gallium-based 

compound, although both materials share a similar magnetic structure. To illustrate 

this discrepancy, we have plotted temperature dependencies for both related 

compounds do the Figure 47. To allow compare compound with different intensities 

and transition temperatures, both axis were normalized to the same values. 
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Figure 47 –Comparison of the critical behavior of gallium and indium compound. Data 

for Er2CoGa8 are taken from [61]. 

4.4.6.5 Tm2RhIn8 

The incommensurate behavior is unique among non-cerium compounds and 

the only compound with incommensurate magnetic structure is CeRhIn5 (see Table 2 

and Table 4 for list of existing magnetic structures in the related compounds). It 

orders with propagation vector   (
 

 
 
 

 
      ) producing a magnetic structure 

with moments lying within an ab-plane, where they form a simple nearest-neighbor 

antiferromagnetic on a square lattice. Magnetic moments then spiral transversely 

along the c-axis with an incommensurate pitch   = 0.297 [49]. See Figure 48 for 

detailed picture of this magnetic structure. 

 

Figure 48 - Magnetic structure of CeRhIn5. The disk denotes the moment rotating plane. 

The dashed line traces the spiral. Image taken from [49]. 
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Tm2RhIn8 can adopt the similar magnetic structure as CeRhIn5 with the 

incommensurate propagation along the c-axis, only with different propagation within 

ab-plane. The incommensurate character of CeRhIn5 is ascribed to Fermi-surface 

nesting [103], which could be also possible in Tm2RhIn8. To continue with this 

discussion, further neutron experiments are needed to clarify exact propagation and 

also the details of the magnetic structure in Tm2RhIn8. Our experiment on the single 

crystal diffractometer on this compound was cancelled due to problems with cooling, 

so a detailed magnetic structure of Tm2RhIn8 remains unknown. 

4.4.6.6 Overall comparison 

In all four compounds where the amplitude of the magnetic moment was 

determined, this value is reduced from the expected values of the free ion. It is in 

agreement with other compounds from related series [61, 83, 6]. This is typical for 

tetragonal CEF driven magnetic structures [104], for example DyCo2Si2 [100]. 

Interpolating the measured magnetization curves along the c-axis to zero magnetic 

field for Nd2RhIn8, Dy2RhIn8 and Ho2RhIn8 gives the values of 2.2, 7.2 and        

per R atom (see [99] and Figure 16), respectively, which are in good agreement with 

our experimental values. 

Doing the same for Er2RhIn8 leads to the value of        per Er for the 

magnetic field applied along the [110] direction and to the value of        per Er for 

the magnetic field applied along the [100] direction (see Figure 17). From the 

representation analysis it is clear that           is always connected with lowering of 

the symmetry and creation of the magnetic domains. That is the reason, why the 

values from bulk magnetization measurements are bigger than the value of        

obtained from the neutron diffraction. 

The magnetic structures in the corresponding cerium compounds are more 

complex. An incommensurate spiral structure, with Ce moments within the ab-

planes, is observed in CeRhIn5 [49]. The magnetic structure of Ce2RhIn8 is described 

by the propagation vector   (
 

 
 
 

 
  ) and Ce moments pointing     out of the 

tetragonal c-axis. The coupling within the basal planes is the same as in Nd2RhIn8, 

but the coupling along the c-axis is different: it is antiferromagnetic across the non-

magnetic RhIn2 layer as well as within the cubic CeIn3 blocks. The main difference is 

however the moment direction. Thus, the resulting structure lowers the symmetry by 

mixing two representations within the same exchange multiplet [105]. We assume 
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that this is the consequence of stronger isotropic exchange interactions with respect 

to the anisotropy in the Ce compound. 
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Conclusion 

We have measured the specific heat, magnetization and neutron diffraction in 

R2RhIn8 compounds. Based on these results we have constructed phase diagrams and 

we have determined their magnetic structures. We summarize our research as 

follows: 

1. We have grown single crystals of R2RhIn8 (R = Nd, Tb, Dy, Ho, Er, 

Tm, La, Lu, Y) with good purity and without additional phases. Single 

crystal X-Ray diffraction experiments shown, that all crystallize in the 

tetragonal structure with Ho2CoGa8-structure type and space group 

P4/mmm. In view of that fact, they are isostructural relatives to Ce2TIn8 

group of heavy fermion superconductors (T is transition metal). 

2. We have confirmed predictions from related groups of compounds, that 

magnetism in these materials is driven by crystal field effects, which 

strongly influences easy magnetization axis in these materials. The 

compounds with Nd, Tb, Dy and Ho have negative second order 

Stevens constant    and reveal easy magnetization axis along tetragonal 

c direction. On the other hand, Tm and Er compounds have this 

coefficient positive and their easy magnetization axis lies within ab-

plane. 

3. We have constructed field vs. temperature phase diagrams of 

compounds with easy magnetization axis along tetragonal c-axis. 

Generally, these compounds reveal one zero-field commensurate 

antiferromagnetic phase, AF1. By applying magnetic field along c-axis, 

they pass sharp metamagnetic transition to commensurate ferrimagnetic 

phase AF2. During this transition, half of the ordered spins of AF1 is 

flipped into the direction of the magnetic field, forming additional 

propagations. With higher magnetic field, compounds undergo second 

metamagnetic transition to field-induced ferromagnetically ordered 

phase. Overall bulk magnetic moment in AF2 is always exactly half of 

the full ferromagnetic moment, confirming the spin flip scenario with 

the half of the spins flipped. Constructed phase diagrams are 

qualitatively similar as in related “115” and “218” compounds and also 

in compounds with the structure of CeCu2Si2. 
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4. In addition, Ho2RhIn8 reveals small region of zero field 

incommensurate spin density wave structure before forming 

commensurate ferromagnetic ground state. This behaviour is unique 

among the related compounds. 

5. We have determined details of the magnetic structure of Nd2RhIn8, 

Dy2RhIn8, Ho2RhIn8, Er2RhIn8 and partially Tm2RhIn8. Nd, Dy and Er 

compounds have commensurate structure, with   (
 

 
 
 

 
 
 

 
) and size 

of the magnetic moments     ( ),    ( ) and    (   )    respectively, 

in agreement with related “218” compounds. Ho2RhIn8 reveals 

magnetic structure with propagation vector   (
 

 
    ) and the 

ordered moments with amplitude of    ( )   . 

Tm2RhIn8 is unique from the series with incommensurate propagation 

along tetragonal axis,   (
 

 
       ). Its magnetic structure could be 

similar to the structure found in CeRhIn5. 

6. We have determined magnetic structure in the field induced phase of 

Ho2RhIn8 with the ordered moment of    ( )   . Because of many 

similarities with related compounds, we predict that similar field 

induced magnetic structure will be also present in related compounds. 

In conclusion, we summarize that detailed systematic study of the R2RhIn8 

group of compounds showed important similarities with the related “115” and “218” 

compounds, but we even found the similar behaviours in “122” compounds related to 

CeCu2Si2. We hope that our research will help in revealing basic principles of heavy 

fermion superconductivity. 
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Appendices 

1. Python script for refinement of Er2RhIn8 compound 

# -*- coding: utf-8 -*- 
""" 
Created on Tue Nov 12 16:10:08 2013 
 
@author: Petr Cermak 
""" 
 
from ufit.lab import * 
import matplotlib.pyplot as plt 
from ufit.gui import start_fitter 
from ufit.plotting import DataPlotter 
#input datafiles 
numors_nuclear = '71139-71200' 
hklList_nuclear = [ 
['-2 -2 -4', -174.719, ''], 
['-2 -2 -3', -163.24, ''], 
#... 
] 
 
numors_magnetic = '71082-71138' 
hklList_magnetic = [ 
['-1.5 -1.5 -4.5', -174.051, ''], 
['-1.5 -1.5 -3.5', -162.736, ''], 
#... 
] 
 
set_datatemplate('..\data\%06d') 
 
def fitPeaks(nazev, d, hklList, intIndexes = False, offset = 0, ident='peak'):   
    # fit the model, then print and plot all the results 
    print nazev 
    print "h\tk\tl\tstt\tint\tcorint\tTemp" 
    i = 0 
    results = [] 
    for dset in d:   
        ax = subplot(1,1,1) 
        #parse reflection list 
        ok = False 
        if isinstance(hklList[i], basestring): 
            center_peak = float(dset.meta['info'].split()[2].strip(',')) 
            stt = - dset.meta['A4'] 
            Q = hklList[i].split(' ') 
            option = '' 
        else: 
            Q = hklList[i][0].split(' ') 
            center_peak = float(dset.meta['info'].split()[2]) 
            stt =- dset.meta['A4'] 
            option = hklList[i][2]      
            try: 
                ok = hklList[i][2] == 'ok' 
            except:  
                pass 
             
        #set starting fitting values   
        mainampl = max(dset['y']) 
        model = Background(bkgd=0) 
        all_fwhm = limited(0.2, 0.5, 0.3) #0.3 
        if option == 'p': 
            model = Parabola(x0=0, y0=0, stretch=1) 
        if option == 'l': 
            model = SlopingBackground(bkgd=0, slope=0) 
        if option == 'low':  #low intensity 
            all_fwhm = limited(0.2, 0.4, 0.3) 
        model += \ 
            Gauss('peak1', pos=limited(center_peak-2,center_peak+1.5,center_peak+offset),     
ampl=mainampl, fwhm=all_fwhm) 
        #fit 
        result = model.fit(dset) 
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        intensity = 0 
        e = 0 
        for peak in ['peak1']: 
            intnow = result.paramvalues[peak + '_ampl'] * result.paramvalues[peak + '_fwhm'] 
            e1 = result.paramerrors[peak + '_ampl'] / result.paramvalues[peak + '_ampl'] 
            e2 = result.paramerrors[peak + '_fwhm'] / result.paramvalues[peak + '_fwhm'] 
            e += intnow * sqrt(e1**2 + e2**2) 
            intensity += intnow 
 
        while '' in Q: 
            Q.remove('') 
        #Lorentz correction 
        icor = intensity * sin(radians(stt)) * 100000 
        e *= 100000 
        avgtemp = average(dset.meta['col_TRT']) 
        #save results         
        results.append([Q[0],Q[1],Q[2], stt,intensity,icor,e,avgtemp]) 
        i+=1 
    return np.array(results) 
 
#datared format 
drformat = ['%6.2f','%6.2f','%6.2f','%10.4f','%10.4f'] 
 
#nuclear  
res = fitPeaks('NUCLEAR REFLECTIONS',  
         read_numors(numors_nuclear,0.05,ncol='M1'), 
         hklList_nuclear,ident='nuc') 
np.savetxt('datared/nuclear.col', res[:, [0,1,2,5,6]],  
         fmt=drformat)           
##magnetic 
res = fitPeaks('MAGNETIC REFLECTIONS',  
         read_numors(numors_magnetic,0.05,ncol='M1'), 
         hklList_magnetic,ident='mag') 
np.savetxt('datared/magnetic.col', res[:, [0,1,2,5,6]],  
         fmt=drformat)      

 

2. Python script for refinement of Ho2RhIn8 compound 

from h5py import h5f 
import h5py 
print('Ho2RhIn8 evaluation start') 
 
import os 
import numpy as np 
import matplotlib as ml 
import matplotlib.pyplot as plt 
import collections 
 
from ufit.lab import * 
from ufit.gui import start_fitter 
from ufit.plotting import DataPlotter 
 
dir = os.path.join(os.path.dirname(__file__), '..\..\data') 
from nexpy.api import nexus 
 
#datared format 
drformat = ['%6.2f','%6.2f','%6.2f','%10.4f','%10.4f'] 
 
#read peaklist 
pl = np.loadtxt(os.path.join(dir, "peaklist.txt")) 
peaklist = {}  
for p in pl: 
    peaklist[p[0]] = [p[1], p[2], p[3]] 
 
opt = { 65244: 's', 65255: 's', 65266: 's'} 
 
def LoadFile(numor, subdir = "horizontal"): 
    path = os.path.join(dir, subdir, '%06d.nxs' % numor) 
    a=nexus.load(path) 
    #print a.tree 
    d = E4Data() 
    d.params = a.entry1.data1.PARAMETERS.nxdata 
    d.data     = a.entry1.data1.DATA.nxdata 
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    if a.entry1.data1.Z.nxdata.ndim > 1: 
        d.MON      = a.entry1.data1.Z.nxdata[:,2] 
        d.OMEGA    = a.entry1.data1.Z.nxdata[:,3] 
        d.TT       = a.entry1.data1.Z.nxdata[:,4] 
        d.T_REG    = a.entry1.data1.Z.nxdata[:,5] 
        d.T_SAMPLE = a.entry1.data1.Z.nxdata[:,6] 
        d.TIME     = a.entry1.data1.Z.nxdata[:,10] 
        d.CTS      = a.entry1.data1.Z.nxdata[:,11] 
    else: 
        zdata = np.loadtxt(os.path.join(dir, subdir, '%06d.as_' % numor)) 
        d.MON      = zdata[:,2] 
        d.OMEGA    = zdata[:,1] 
        d.TT       = zdata[:,3] 
        d.T_REG    = zdata[:,4] 
        d.T_SAMPLE = zdata[:,5] 
        d.TIME     = zdata[:,10] 
        d.CTS      = zdata[:,11] 
    return d 
 
def ShowMap(plotdata,title = 'test',fname = 'tmp.png'): 
    fig = plt.figure(figsize=(6, 3.2)) 
    ax = fig.add_subplot(111) 
    ax.set_title(title) 
    plt.imshow(plotdata) 
    ax.set_aspect('equal') 
    cax = fig.add_axes([0.12, 0.1, 0.78, 0.8]) 
    cax.get_xaxis().set_visible(False) 
    cax.get_yaxis().set_visible(False) 
    cax.patch.set_alpha(0) 
    cax.set_frame_on(False) 
    plt.colorbar(orientation='vertical') 
    fig1 = plt.gcf() 
    if showplots: 
        plt.show() 
    if savefigs: 
        fig1.savefig(fname, dpi=300) 
    plt.close() 
 
def SimplyShowMyPlot(plotdata, xaxis = '', yaxis = '', title = 'test', fname = 'tmp.png', xmin = 0, 
xmax = None): 
    if xmax == None: 
        xmax = len(plotdata) - 1 
    plt.plot(plotdata) 
    plt.ylabel(yaxis) 
    plt.xlabel(xaxis) 
    plt.title(title) 
    plt.axis([xmin,xmax,0,np.max(plotdata)]) 
    fig1 = plt.gcf() 
    if showplots: 
        plt.show() 
    if savefigs: 
        fig1.savefig(fname) 
    plt.close() 
 
def FitPeak(numor, ydata, xdata, yerr = None, stt = None, t_sample = 0, intIndexes = False, pre = '', 
center_peak = None): 
    print "fitting #%06d with pre = %s" % (numor, pre) 
    warning = 0 
    if stt == None: 
        assert("two theta must be passed") 
    if yerr == None: 
        yerr = sqrt(ydata) 
    try: 
        Q = peaklist[numor] 
    except: 
        print "WARNING, Q values for numor %06d not found" % numor 
        Q = [0,0,0] 
    try: 
        option = opt[numor] 
    except: 
        option = '' 
    if center_peak == None: 
        center_peak = np.average(xdata) 
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    dset = as_data(xdata,ydata,yerr) 
     
    mainampl = max(dset['y']) 
    model = Background('bg', bkgd=0) 
    all_fwhm = limited(0.2, 1.5, 0.3) #0.3 
    if option == 'p': 
        model = Parabola(x0=0, y0=0, stretch=1) 
    if option == 's': 
        model = SlopingBackground('bg',bkgd=0, slope=0) 
    if option == 'low':  #low intensity 
        all_fwhm = limited(0.2, 0.4, 0.3) 
    ppos = limited(center_peak-2.5,center_peak+2.5,center_peak) 
    #all_fwhm = 0.2 
    #ppos = center_peak 
    model += \ 
        Gauss('peak1', pos=ppos, 
             ampl=mainampl, fwhm=all_fwhm) 
    result = model.fit(dset)   
    if any(result.paramerrors.values()) == 0: 
        model = Background('bg', bkgd=0) 
        all_fwhm = 0.2 
        ppos = center_peak 
        model += \ 
            Gauss('peak1', pos=ppos, 
                 ampl=mainampl, fwhm=all_fwhm) 
        result = model.fit(dset)   
        print "fitting again # %06d without limits" % numor 
        warning += 1 
    intensity = 0 
    e = 0 
    for peak in ['peak1']: 
        intnow = result.paramvalues[peak + '_ampl'] * result.paramvalues[peak + '_fwhm'] 
        e1 = result.paramerrors[peak + '_ampl'] / result.paramvalues[peak + '_ampl'] 
        e2 = result.paramerrors[peak + '_fwhm'] / result.paramvalues[peak + '_fwhm'] 
        e += intnow * sqrt(e1**2 + e2**2) 
        intensity += intnow 
 
    coeff = 1 # coefficient to multiply intensity to have nice numbers 
    # lorent factor correction 
    icor = intensity * sin(radians(stt)) * coeff 
    e *= coeff 
    avgtemp = t_sample 
 
    #print out fit     
    if intIndexes: 
        Q = [ int(x) for x in Q ] 
    else: 
        Q = [ float(x) for x in Q ] 
     
    if showplots or savefigs: 
        ax = subplot(1,1,1) 
        ax.set_title(Q) 
        result.plotfull(ax) 
        fig1 = plt.gcf() 
        if showplots: 
            plt.show() 
        if savefigs: 
            fig1.savefig('fits/%s%06d.png' % (pre, i), dpi=300) 
        plt.close() 
             
    return [numor,Q[0],Q[1],Q[2], stt,intensity,icor,e,avgtemp, 
            result.paramvalues['peak1_ampl'], result.paramerrors['peak1_ampl'], 
            result.paramvalues['peak1_fwhm'], result.paramerrors['peak1_fwhm'], 
            center_peak - result.paramvalues['peak1_pos'], result.paramerrors['peak1_pos'], 
            result.paramvalues['bg_bkgd'],result.paramerrors['bg_bkgd'],warning] 
 
def doSumation(myrange, typeext = "all", typdir = "HOR", mydirection = 'horizontal', xfromto = None, 
yfromto = None): 
    summed = np.zeros([256,256]) 
    for i in myrange: 
        d = LoadFile(i, subdir = mydirection) 
        print "%06d summed" % i 
        summed += np.sum(d.data,0) 
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    if xfromto != None: 
        summed = summed[:,xfromto[0]:xfromto[1]] 
    if yfromto != None: 
        summed = summed[yfromto[0]:yfromto[1],:] 
    datashow1 = np.sum(summed,0) 
    datashow2 = np.sum(summed,1) 
 
    np.savetxt("B-%s-%s-detectors-summed.dat" % (typdir, typeext), summed) 
    np.savetxt("B-%s-%s-detectors-summed-xmerge.dat" % (typdir, typeext), datashow1) 
    np.savetxt("B-%s-%s-detectors-summed-ymerge.dat" % (typdir, typeext), datashow2) 
 
class E4Data: 
    params = "" 
    data = [] 
 
    OMEGA = [] 
    TT = [] 
    MON = [] 
    TIME = [] 
    CTS = [] 
    T_REG = [] 
    T_SAMPLE = [] 
 
 
first_sum = True 
fit_horizontal = True 
 
#            xfrom,xt,yfrom,yto 
hor_r =           ( 90,166, 80,166) 
ver_r_sp =        ( 90,180, 80,160) 
ver_r_sp_magdep = (110,156, 80,150) 
ver_r_out =       (110,156,180,250) 
 
horizontal_range = [65156] + range(65158, 65195) + range(65198, 65351) + range(65355, 65413) 
if first_sum: 
    doSumation(horizontal_range) 
 
if fit_horizontal: 
    results = [] 
    for i in horizontal_range: 
        d = LoadFile(i) 
        toplot = d.data[:,hor_r[2]:hor_r[3],hor_r[0]:hor_r[1]] 
        #show projection of the peak for summation 
        ShowMap(np.sum(toplot,0),'test','fits\\HOR\\PREV-%d06.png' % i) 
        if np.max(d.TT) != np.min(d.TT): 
            assert("different two theta during scan!") 
     
        res = FitPeak(i, np.sum(np.sum(toplot,1),1), d.OMEGA, stt = np.max(d.TT), t_sample = 
np.average(d.T_SAMPLE), pre="HOR\\") 
        results.append(res) 
 
    results = np.array(results) 
    #save all info 
    np.savetxt('fitting_output_horizontal.txt', results, 
header="numor\th\tk\tl\tstt\tint\tcorint\tdint\ttemp\tampl\tdampl\tfwhm\tdfwhm\toffset\tdoffset\tbg\tdb
g\tremark", delimiter="\t", comments = "")    
    #export for datared 
    aa = results[:, [1,2,3,6,7]] 
    np.savetxt('datared/test.col', aa, fmt=drformat)      
 
nucrange_nofield = range(67850, 67853) + [67854, 
    67855,67857,67858,67860,67862,67863,67866,67867,67871, 
    67873,67875,67876,67878,67880,67882] 
magrange_nofield = range(67886, 67947) 
magrange_field = range(67947, 67965) 
nucrange_field = [67965,67966,67967,67969, 
    67970,67972,67973,67975,67977,67978,67981,67982, 
    67986,67988,67990,67991,67993,67995,67997] 
magdeprange = range(68001,68043) 
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