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Abstract 

 
This thesis aims to describe the design, implementation and use of a novel 

instrumental set-up which, by providing in situ ultra-rapid synthesis of 

transition metal carbides, is capable of investigating their reaction 

mechanisms, thus developing new procedures to reduce energy demanding 

industrial processes. 

Ultra-rapid synthesis of titanium carbide, TiC - the main binary system 

studied - has been achieved through the development of a reproducible 

experimental technique and an investigation into crucial reaction 

variables, microwave applicators and applied power. Specifically in the 

case of the single mode cavity, this resulted in the completion of the 

majority of reactions within 60 s.  

TiC formation started from its elemental precursors (titanium and 

graphite). An attempt to produce TiC by using a domestic microwave oven 

successfully lead to the synthesis of the product after ca. 15 minutes.  

A further achievement was made by exploiting the linear relationship 

between the expansion of graphite (increase of c parameter) with 

temperature, which allowed for in situ bulk temperature measurements 

crystallographically. This method of measurement represents a more 

reliable alternative to traditional techniques (i.e., pyrometery or use of 

thermocouples). 

The majority of this work was performed on the D20 beam line at the ILL 

neutron source facility, in Grenoble. The choice of this beam line, capable 
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of collecting diffractograms at high speed rate was crucial for revealing 

the reaction pathways of TiC MW-promoted synthesis, for the first time.  

Raman spectroscopy and scanning electron microscopy techniques were 

used in an effort to establish the presence of any amorphous phases in the 

system.  

The same methodology was applied in preliminary experiments to other 

ternary transition metal-carbon systems. In particular, tungsten (W) and 

tantalum (Ta) compounds were investigated, starting from both the 

elements and respective oxides, WO2 and Ta2O5. 
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Chapter 1 

Introduction 

 

1.1 Microwave Radiation 

Microwave (MW) energy is a non-ionizing electromagnetic radiation with 

frequencies between 0.3 and 300 GHz, with wavelengths ranging from 1 

m to 1 mm. This broad frequency region includes three bands: the ultra 

high frequency, UHF, (300 MHz – 3 GHz); the super high frequency, 

SHF, (3 – 30 GHz) and the extremely high frequency, EHF, (30 – 300 

GHz) [1] (Fig 1.1).  

 

Figure 1.1. Location of the MW frequency band in the electromagnetic spectrum and 

band designation. It is generally between 1 – 60 GHz that MWs find their application in a 

variety of areas, while for the MW processing of materials the S-band (between 2 – 4 

GHz) is the most exploited1.  

 

It has been proved that frequencies such as 6, 28, 35, and 94 GHz give 

very uniform electric fields, allowing efficient MW/material coupling, 

thus being preferred for MW processing [2, 3]. However, the US Federal 

                                                           
1 Picture adapted from: http://www.moatel.com/board/faq.html#top 
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Communication Commission (FCC) allocated 915 MHz (896 MHz in the 

UK [4]), 2.45, 5.85, and 20.2-21.2 GHz for Industrial, Scientific, Medical 

and Instrumentation applications (ISMI) [5-7], making other frequencies 

unsuitable. 

Moreover, despite the development in 2003 of a compact-size 5.8 GHz 

magnetron by Kuwahara et al. [8], this frequency is not popular because of 

high costs of devices [5], thus leading to 915 MHz and 2.45 GHz as the 

two most used frequencies at laboratory scale [1, 9, 10]. 

 

1.2 History of Microwave Processing. 

The history of MW processing starts in 1921, when Albert Hull developed 

the first magnetron. At that time, he was studying diodes and the motion 

of electrons in uniform electric and magnetic fields. He devoted particular 

attention to understanding the special case of a system combining a 

uniform and static magnetic field with a radial (i.e. perpendicular to 

magnetic field lines) electric field [11]. Electrons moving in such a system 

and the associated MW production are in fact the working principle of a 

magnetron. Independently, other researchers worked to develop similar 

devices. However, these first prototypes had relatively low efficiency and, 

although this generated academic interest, they did not gain commercial 

success [12]. It was only later, in 1940, that John Randall and Henry Boot, 

at the University of Birmingham, succeeded in developing a more 

powerful - and exploitable – magnetron, called a resonant-cavity 
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magnetron, in which an evacuated multi-cavity was designed, capable of 

generating MWs by exploiting the complex phenomenon of electron 

behavior within a strong magnetic field (Fig 1.2). This device consists of a 

heated cathode, a voltage biased anode, a magnetic field and an antenna: 

electrons are emitted from the cathode and move along a spiral path, 

induced by a magnetic field, to the anode. As the electrons spiral outward, 

they form space charge groups, and the anode shape forms the equivalent 

of a series of high-Q resonant inductive-capacitive circuits. The MW 

frequency generated in the anode is picked up by the antenna and is 

transmitted into the MW cavity [13].  

 

Figure 1.2 Resonant-cavity magnetron. In vacuum tubes, the anode is at a higher 

potential than the cathode: this leads to a strong electric field and the cathode is heated to 

remove the valence electrons. Once removed, electrons are accelerated toward the anode 

by the electric field. An external magnet is used to generate a magnetic field orthogonal 

to the electric one and the magnetic field creates a circumferential force in the electron as 

it is accelerated to the anode. This force causes the electron to travel in a spiral direction, 

creating a swirling cloud of electrons. As electrons pass the resonant cavities, the cavities 

set up oscillations in the electron cloud, and the frequency of the oscillation depends on 

the size of the cavity [5]. 

 

In 1946, interest in MWs was rekindled by the engineer Dr. Otto Spencer, 

who was working on radars at the Raytheon Corporation. He was the first 

person to investigate the possibility of cooking food with MWs. After 

experimenting, he realized that MWs would cook food faster than 
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conventional ovens. Radarange was then the first commercial MW oven, 

built in 1954 by Raytheon: it was large, expensive, and had a power of 

1600 watts. The first more affordable domestic MW oven was produced 

only thirteen years later, in 1967 by Amana, a division of Raytheon, with a 

working frequency of 2.45 GHz. At the end of the 60s, MW ovens started 

to be supplied by Tappan [14] and were well-distributed worldwide. At 

present, the annual sale of home MW ovens in the USA, for example, is 

$1.5 to $2.0 billion [1, 15]. 

Today, the use of MWs is common in several fields, for example: 

communication and information; manufacturing; diagnostics and analysis; 

medical treatment and weapons [16, 17].  

The possibility of ceramic processing via MW heating was first discussed 

in 1954 by Von Hippel in “Dielectric Materials and Applications” [18], 

followed by experimental studies in the 60s by Tinga et al. [19], Levinson 

[20], and Bennett et al [21]. 

However, it is only when choke systems (which prevent MW leakage)
2
 

were developed in 1962, that MWs started to be widely employed in both 

research and industry [9].  

                                                           
2 In DMO, the choke is an integral part of the door structure, going around the full extent of the 

edge of the door. The entrance to the choke is covered by a piece of plastic, called the 'choke 

cover', which prevents steam or food particles entering the choke and changing its characteristics. 

The choke system works because energy entering through the choke cover will travel the length of 

the choke and then is reflected back by the end surface. This reflected energy would be half a 

wavelength (180 degrees) out of phase with the incoming energy. This means that power 

cancellation will occur. In the same way, in a single mode system, a choke is a plate (usually 
metallic) which will reflect back a radiation not absorbed by the load, thus avoiding MW leakage. 

 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/183-3453326-4613335?_encoding=UTF8&field-author=Arthur%20R.%20Von%20Hippel&search-alias=books&sort=relevancerank
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In the early „70s, mainly due to the fact that many laboratories began to be 

equipped with domestic MW ovens (DMSO) [9], due to their affordable 

prices, MW-assisted organic reactions started to be performed [22]. 

Reagents could be dissolved in a polar solvent with good MW absorbing 

properties, thus providing a means for the necessary heat for the reaction. 

The application of MWs in organic synthesis received a further impetus 

following the publications of  Gedye et al. and Giguere et al. [23, 24], in 

1986, in which it was reported how the use of MWs increased the speed of 

organic reactions by several orders of magnitude and, further, that carrying 

out organic reactions in the presence of a MW field would not 

significantly alter the product composition but only the temperature at 

which the reaction occurred - i.e., at higher temperature than conventional 

methods. In the specific case of comparison of esterification of benzoic 

acid with different polar solvents under MW and classical condition (i.e., 

reflux), in fact, MW irradiation reduced the reaction time by between 1.3 

and 96 times and temperatures were increased up to 69 °C in the case of 

methanol (Fig 1.3) [25] - see also Gedye et al.[26]. More generally, 

Baghurst and Mingos established that organic solvents in a MW cavity 

superheat by 13-26 °C above their conventional boiling points at room 

pressure [27]. 

Today the application of MWs in organic synthesis has become a very 

large and active field of research. Just to cite few examples, MW 

irradiation can successfully promote the ring-closure in azetidinones 



21 

 

(which are important building blocks in the construction of antibiotics) 

without using solvents [28] or the reactions of primary and secondary 

amines with aldehydes and ketones can accelerate in presence of a MW 

field, leading to a high yield synthesis [29]. Progresses have been reported 

in many reviews [30-33].  

 

Figure 1.3 A table which shows good MW absorbers solvents (as from ref. [25]): MW 

irradiation can drastically reduce reaction times in organic reactions, by superheating the 

solvents up to 18 – 69 °C. All these reactions were performed at 560W - with the 

exception of the 1-pentanol case, at 630W - in a DMO [25].  

 

MWs reappeared in ceramic processing in the mid „70s – and during the 

following decade - 1980 to 1990 - a steadily growing interest in 

researchers, from all over the world, was observed. A pivotal moment was 

in 1975 when while investigating MW drying of alumina castables, Sutton 

observed that MWs were also heating the ceramic, in addition to removing 

water [9]. Since then, and mainly from the 90s on [17], MWs have been 

employed extensively in solid state chemistry and materials science. A 

variety of materials such as carbides, nitrides, complex oxides (including 

zeolites and apatites) – and silicides - have been synthesized [34-36]. 

Further, heating and sintering of uranium oxide, barium titanites, ferrites, 

aluminas, and glass ceramics were also investigated [6, 37]. Interest was 
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fuelled further by some publications which contradicted the misconception 

between researchers that all metals reflect MWs, leading to large electric 

field gradients within a MW cavity and causing plasma discharge, thus 

being unsuitable for MW-assisted syntheses [38-41]. This is valid only for 

sintered or bulk metals at room temperature, but not for powdered metals 

and/or at high temperatures [41]. 

Several comprehensive reviews and papers give a broad picture of the 

status of MW processing over the last three decades: Katz in 1992 [6], 

Schiffman in 1995 [42], Clark and Sutton in 1996 [9], Rao in 1999 [43] 

and, more recently, Menendez in 2010 [44], among others. All the authors 

agree on the fact that the use of MWs can produce several advantages over 

conventional methods: enhanced diffusion, enhancement of mass 

transport, lower potential processing costs, improved mechanical 

properties of the products, higher resulting density at lower temperatures, 

extremely rapid processing times, high energy efficiency, ecologically 

friendly processes [45] - aspects described in more detail in section 1.2. 

Conversely, the application of MWs in materials processing presents a 

number of challenges as well, which have been well summarized by Clark 

and Sutton [9]. These include: the inability to heat poorly MW-absorbing 

materials, the inefficient transfer of MW energy into the sample, the 

control of accelerated heating, and the high starting costs for MW 

equipment. 
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1.3 Microwave Interactions with Dielectric Materials.  

In the MW S-band range and, in particular, at 2450 MHz, the dominant 

mechanism for dielectric heating is dipolar loss, also known as a re-

orientation loss mechanism: when a material is subject to a varying 

electromagnetic field, heat is generated only if this material contains 

permanent dipoles. The polar molecules in fact try to follow the polarity of 

the MWs at a fast rate and when they are not able to follow the rapid 

reversals in the field, a phase lag takes place, which leads the power to be 

dissipated in the material and heat to be generated [4, 6]. 

This phenomenon makes MW-assisted processing essentially different 

from conventional thermal processing [46]: in the latter, energy is 

transferred to the material through convection, conduction and radiation of 

heat from the surfaces of the material inward, while MW energy is 

delivered directly to materials through molecular interaction with the 

electromagnetic field [5]. 

This gives many differences and advantages when using MWs for 

processing materials, with respect to conventional heating mechanisms: 

- An inverse temperature gradient is observed [37, 41]. In 

conventional processing, the sample is heated from the surface inwards, 

while in MWs, the direction of heating is from inside to outside, thus 

resulting in higher temperature of the sample core than the surface. 
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Figure 1.4 The inverse temperature profile in MW heating. 

 

- Rapid/volumetric heating. MWs directly penetrate materials 

interacting with particulates within the sample, rather than being 

conducted into the bulk from an external heat source. This provides rapid 

volumetric heating which enables the process of both large and small 

samples very rapidly and uniformly [47].  

- Enhanced densification and quality of products [5, 47, 48]. The 

densification rate strongly depends on the diffusion of ions between 

sample particles, and the grain growth rate is mostly determined by the 

grain boundary diffusion. Dube and coworkers, have found that the intense 

MW field concentrates around samples during MW sintering [49]. 

Especially, the power of MW field between sample particles is almost 30 

times larger than the external field, giving rise to ionization at the surface 

of sample particles. As a result, the diffusion of ions between sample 

particles is accelerated and the densification stage is promoted [50]. 

Moreover, surrounding electromagnetic field can intensely couple with 

ions at grain boundaries. Under drive of MW field, the kinetic energy of 



25 

 

ions at grain boundaries increases, which results in decreasing activation 

energy for a forward jump of ions and increasing the barrier height for a 

reverse jump. So the forward diffusion of intergrain ions is promoted and 

thus accelerates the grain growth during sintering. 

- Selective heating of materials and new materials production [51, 

52].  

- MWs selectively couple in different ways with materials showing 

different dielectric properties; therefore, in multiple phase materials, some 

phases may couple more readily with MWs, leading to new or unique 

microstructures. 

- High control of chemical reactions [52]. Reactions can be 

"switched on and off" by simply switching on and off the power supply.  

- Economically viable and ecology friendly [51]. The deposition of 

energy directly in the bulk of the material eliminates wasting energy due 

to the simultaneous heating of furnaces and reactor walls. With MWs, it is 

the sample itself that heats up and in turn acts as the source of heat, thus 

lowering the effective thermal mass and reducing the required power 

input. Hence, MW methods can drastically reduce the energy consumption 

which is experienced in high temperature processes, where heat losses 

increase with increasing process temperature, thus permitting energy-

efficient reactions [41]. 
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The dielectric properties of a sample – together with its shape and size - 

are the main features determining the way in which a material will be 

heated with MWs. They are expressed in terms of the dielectric constant (

' ) – which is the measure of the response to the applied external electric 

field (E) and in particular, it is the measure of the polarizability of a 

material in an E and it determines whether or not a material will heated by 

MWs [53]- and the dielectric loss factor ( ''  - which quantifies the ability 

of the material to convert the absorbed MW power into heat [5].These two 

components are expressed in terms of the complex dielectric permittivity 

( *): 

))(("'* "'

0

effr ii                               Eq.1.1 

(where 0 is the permittivity in free space, 'r  the relative dielectric 

constant, "eff  the effective relative dielectric loss factor, and i=(-1)
1/2

.)  

The dielectric response is also expressed in terms of the energy dissipation 

factor, or loss tangent, tan , which is a measure of the absorption of MWs 

by the material: 

'

"

tan                                             Eq.1.2 

A tan  around 0.01 indicates a low absorption material, a tan  of 0.1 a 

medium absorption material, while a tan  around 1 indicates a high 

absorber of MWs.  

The knowledge of the complex dielectric constant is relevant for 

specification of optimal MW heating strategies and optimal set-up design: 
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it determines the best working frequency, the shape of the applicator 

(where the interaction material/MWs occurs, also referred to as cavity or 

reactor), and the best position of the sample in the applicator. However, it 

is a complex function of temperature, moisture content, density and 

electric field direction, which make its determination not an easy task – as 

is also demonstrated by the presence of over thirty methods for measuring 

it [53]. 

The problem of processing materials which are poor absorbents of MWs 

can be overcome by the so-called “hybrid heating”. This process is 

commonly performed to sinter a material with low dielectric loss at low 

temperature and high dielectric loss at high temperature. MWs are 

absorbed by the component that shows the highest dielectric loss in the 

mixture and passed through the low-loss material with little drop in energy 

[41, 54]. This can be performed by using a material, called susceptor, with 

high loss at low temperature, which will absorb MWs and reaches fast 

high temperatures. Then, the susceptor will transfer heat to the sample via 

conventional heating mechanism and the sample with high dielectric loss 

at high temperature will be now able to absorb MWs alone (Figure 1.4). In 

this thesis, an example of hybrid heating is presented in Chapter 4, given 

by a mixture of titanium (Ti) – "low-lossy" material, with tan  below 0.01 

– and carbon graphite (C) – good MW absorber, tan  of ca. 0.35-0.83 

[44]. Ti has been successfully heated up by means of MW in the presence 

of C, thus allowing fast formation of TiC. 
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1.3.1 The Microwave Effect 

The term “microwave effect” refers to the drastic increase of speed 

observed in reactions promoted by MWs, and it is usually quantified by 

the difference between the temperatures of the two treatments leading to 

the same microstructure:  

MWconv TTT                                        Eq. 1.3 

where Tconv stands for conventional heating and TMW for heating by means 

of MWs. 

Examples of the enhanced speed of reactions promoted by MWs include, 

among many others [52], sintering of ceramics [55-57], MW-driven 

radioactive tracer ion diffusion [3], MW-driven ion-exchange reactions in 

glasses [58], MW joining of ceramics [59], MW decomposition of solid 

solutions [57], synthesis of metal-carbide powders [60], promotion of 

organic imidazation reactions [61]. 

The “microwave effect” is still a controversial issue and over the years 

different theories have been proposed to solve it: lowered activation 

energies [3], enhanced diffusion caused by increased vibrational frequency 

of ions due to the electric field component of the MW radiation [62], 

excitation of a non-thermal phonon distribution in the polycrystalline 

lattice, quasi-static polarization of the lattice near point defects, and the 

ponderomotive action of the high-frequency electric field on charged 

vacancies in the ionic crystal lattice [47, 48, 52]. 
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The first complication in revealing this – sometimes huge - difference in 

reaction behaviour can be addressed mainly to temperature measurements 

experienced in MW processing. When the temperature is obtained by 

means of a thermocouple, for example, only the zone close to the tip of the 

thermocouple is considered (which means no bulk temperature 

measurement). Further, the thermocouple needs to be shielded because it 

can interact with the MW field, giving systematic errors. Another method 

of temperature measurement makes use of optical pyrometery; however, 

where the surface:volume ratio is small, optical methods do not give a 

reliable measure of internal temperature [47], but only surface temperature 

[37, 48], which in the case of MW heating is the coolest part of the sample 

(while in conventional heating is the hottest), thus making the 

measurement problematic and affected by error [48]. 

Over time, these difficulties have misled the knowledge of the real T. In 

1990, Janney et al. reported a T=300-400°C in the processing of oxides, 

in both 2.45 and 28 GHz MW furnaces [3]. Today, a more precise 

determination of the temperature can be obtained. For example, Link and 

co-workers applied Raman spectroscopy as a means of temperature 

measurement of single phases in a multi-phase material [63], from which 

values of T well below those reported in the literature earlier ones - 

typically: ≤ 50°C instead of > 200°C – were obtained.
3
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In the light of these findings, it is crucial to understand if these differences 

between MW-induced and traditional sintering processes are a “simple” 

consequence of the T (i.e., given by a pure thermal effect) or other 

phenomena have to be considered.  

At present, two views regarding the increased reaction rates predominate 

[64]:  

a) Increased reaction rates are given by differences in temperature between 

the two heating methods (MW and conventional), therefore they are 

governed by thermal effects; 

b) MWs enhance reaction speed because of non-thermal effects. 

Many MW-induced reactions in liquid phases exhibiting enhanced 

reaction rates have been exhaustively explained by means of localized 

superheating effects [27, 47, 65], also known as “hot spots”[65]; in such 

cases, reaction rates are determined by thermal effects.  

For solid state case, in 1994, Rybakov and Symenov [66], and 

independently other authors after them [48, 52, 67], proposed a possible 

mechanism of the non-thermal influence of the high frequency (HF) 

                                                                                                                                                 
3 As described in more details in Chapter 2, section 2.3.4, Raman spectroscopy relies on 

inelastic scattering of monochromatic light. In case that part of the photon energy is 

transmitted to the material this is called Stokes scattering. The resulting photon of lower 

energy generates a Stokes line on the red side of the incident light. On the other hand if 

energy from the tested material is transmitted to the photon this is called Anti-Stokes 

scattering. As a consequence, these shifts in photon energy contain information about the 

energy states in the system - comparable to information resulting from infrared 

spectroscopy. Thus Raman spectra reveal information about the phase composition of the 

material. Furthermore, since in general the shift of observed spectral lines is temperature 

dependent, this information can be used to get phase specific temperature information out 

of a measured Raman spectrum [63]. 
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electromagnetic field (typically, 2.45GHz). They considered that the effect 

of MWs is not to increase transport coefficient – which would have lead to 

a multiplicative increase in the transport flux in the presence of a pre-

existing conventional driving force – but rather introduce an additional 

driving force, which should manifested as an additive increase in the 

transport flux. They also found that when considering lattice defects, the 

vacancy mobility was not affected. An enhancement in densification when 

using MWs was consistent with a dependence on the electric field 

experienced by the material. This suggested that the MW field was 

inducing an additional (electric) driving force. 

Whittaker experimentally investigated the effect of the direction of the 

electric field upon the rate of ion transport – rather than on the strength of 

the electric field – by studying the change in the mass transport as a 

function of the angle to the MW electric field. He found that MWs may 

directly influence ion transport in a high temperature sintering process. An 

effect of this intense field is to concentrate the lattice defects and enhance 

ion mobility at the interface. This mechanism may therefore enhance the 

rate of mass transport at a given temperature when a MW field is present 

[47]. 
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1.4 MW-Induced Synthesis of Ceramics: Binary and 

Ternary Carbides. 

 
Microwave technology has been increasingly used for producing ceramic 

materials in recent years. One of the most important reasons is the 

potential of reduction in the manufacturing cost due to short synthesis time 

and energy-efficiency [15, 68]. Standish et al. concluded – based on 

rational assumptions for capital and operating costs – that a MW reduction 

process could save 15% to 50% over a conventional operation [69]. 

 

1.4.1 Titanium Carbide 

Titanium carbide (TiC) is an important nonoxide ceramic material used for 

mechanical, chemical and electronic applications, as it possesses a number 

of desirable properties, such as high melting temperature (3260 °C), high 

hardness (Knoop‟s hardness = 32.4 GPa), high electrical conductivity 

(3×10
6
 S/cm) [70-72], high thermal conductivity (16.7 W mK

-1
), high 

chemical stability, high wear resistance and high solvency for other 

carbides [73] (and ref therein). Therefore, it can be used in cutting tools, 

grinding wheels, wear resistant coatings, high-temperature heat 

exchangers, magnetic recording heads, turbine seals, etc [74]. It is widely 

used as a substitute for tungsten carbide (WC), a common machining 

material, thus reducing manufacturing costs. In fact, currently 10% of the 

world‟s consumed cobalt is employed as a binder material for WC 
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composites, while equivalent TiC materials use nickel as a binder, which 

costs only half as much [75]. 

TiC and titanium carbonitride are also utilized in production of Al2O3-TiC 

and ZrO2-Ti(C,N) composites [74]. In addition, a promising field of 

application comprises plasma and flame spraying processes in air 

atmosphere, where again TiC-based powders show higher phase stability 

than WC-based powders [76]. 

There are a number of different methods for synthesizing TiC, such as the 

reaction of liquid magnesium and vaporized TiCl4+CxCl4(x=1, 2) solution 

[77], combined sol-gel and microwave carbothermal reduction methods 

[78], gas phase reaction of TiCl4 with gaseous hydrocarbons [77] and, 

synthesis by thermal plasma techniques [79]. TiC is traditionally 

produced, however, by carbothermal reduction of titanium dioxide (TiO2) 

in a temperature range between 1700 - 2100 °C for 10 – 20 h [73, 79].  

TiO2 has generally been used as a raw material because of its low costs 

and ease of handling. Further, TiO2 is abundantly available in nature. It 

can be derived in fact from ilmenite (FeTiO3) which represents the main 

matrix of sand found on beaches. Ilmenite contains TiO2 in the range of 

40-60% along with iron oxide – depending on the source [80]. Globally, 

nearly all TiO2 is produced from ilmenite as it naturally occurs in 

accessible high concentrations and in a form which allows the preparation 

of synthetic rutile [81].  
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However, in the production of TiC via the conventional carbothermal 

reduction of TiO2/carbon, high temperatures and long reaction times – and 

consequently high synthesis costs – are required. Moreover, there are 

significant challenges to forming oxygen-free TiC [60, 78, 79].  

A number of attempts have been made to produce TiC in a more energy 

efficient way and the first successful effort in the synthesis of TiC via 

carbothermal reduction assisted by MWs (MICROwave Controlled 

COMbustion Synthesis, MICROCOM) was made by Ahmad and 

coworkers in 1991. They ignite the starting powders, Ti and C graphite, in 

a high power industrial multimode microwave oven (Raytheon 6.4kW 

maximum, 2.45GHz) at 2.4kW and collected the product, TiC, after 

several minutes [82]. 

In 1995, Hassine and co-workers attempted the synthesis of TiC and 

tantalum carbide (TaC), starting from the oxides (TiO2 and Ta2O5, 

respectively), via carbothermal reduction induced by MW power. Despite 

both oxide precursors being relatively poor absorbers of MWs (with low 

loss tangent, tan ), the TiO2/C and Ta2O5/C mixtures showed good 

coupling abilities to MW energy, thanks to the high dielectric loss of the 

carbon black reactant. However, while they succeeded in the formation of 

TaC – which formed a pure phase without evidence of any intermediate 

phases during the reaction - they encountered problems in synthesizing 

TiC. The reaction exclusively yielded a titanium oxycarbide phase, 

Ti(O0.2C0.8). They ascribed this to the experimental conditions: a relatively 
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low reaction temperature was reached (1550 °C instead of 2000 °C) and a 

flux of argon was employed (which could contain oxygen as impurity) 

[60].  

More recently, Winkler et al. performed an in situ observation of TiC 

formation via conventional heating, by using a high temperature furnace, 

starting from Ti (powder, average grain size < 43 m) instead of TiO2 as a 

starting material in combination with C (graphite powder, average grain 

size <16 m), working in vacuum. They observed TiC formation after four 

4 hours at a temperature of 1073K [83], with no formation of intermediate 

phases:  

Ti + C  TiC (-139±6 kJ/mol)                       Eq.1.4 

This reaction represents the first success in the production of TiC starting 

from Ti and C via conventional means at shorter times and at lower 

temperatures than previously observed. They employed powder neutron 

diffraction (PND) to follow this reaction in situ. This study represents a 

good starting point for the comparison of the MW synthesis of TiC 

followed by in situ PND, as performed in this thesis. 

 

1.4.2 Other ternary compounds 

Additional, TiC-based ternary chemical systems have been tested in this 

thesis, by using the same methodology already optimised for the 

preparation of TiC.  
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TiC-based transition metal systems are classified as cermets, materials 

composed of ceramic (cer) and metallic (met) parts, specifically designed 

to have the optimal properties of both elements, namely high temperature 

resistance and hardness of ceramic and the ability to undergo plastic 

deformation, typical of metals. It is known, in fact, that the incorporation 

of a second phase into a ceramic matrix result in improvement in the 

mechanical properties of the composite material; e.g., when TiC particles 

(grain size of 1–1.5 μm) are added to Al2O3, the carbide limits the Al2O3 

grain growth in the matrix during sintering and gives a higher strength, 

higher hardness material, which is resistant to crack propagation [3]. 

Al2O3–TiC composite has been widely used in industry as cutting tools 

and wear resistance coating due to its high hardness, chemical stability, 

good strength and toughness at elevated temperature, and excellent wear 

resistance [74]. 

Also metals such as Ni, Co, and Fe have been incorporated as a ductile 

second phase to improve monolithic TiC toughness at ambient 

temperatures. Liquid phase sintering, and melt infiltration are the two 

common production techniques used in the processing of these materials. 

Nickel is the most commonly used metallic binder phase in TiC based 

composites, which is mainly due to the low wetting angle
4
, 30° under 

                                                           
4 The wetting (or contact) angle is an angle conventionally measured through the liquid, where a 

liquid/vapor interface meets a solid interface. It quantifies the wettability of a solid surface by a 

liquid via the Young equation. A given system of solid, liquid and vapor at a given temperature and 

pressure has a unique wetting angle. However, contact angle hysteresis is observed, ranging from 

the maximal and minimal angle. The equilibrium contact is within these values: it reflects the 

relative strength of the liquid, solid and vapor molecular interaction. 

http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Ceramic
http://en.wikipedia.org/wiki/Metal
http://en.wikipedia.org/wiki/Plastic_deformation
http://en.wikipedia.org/wiki/Plastic_deformation
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vacuum (10
-5

 torr) at 1450° C [84], that liquid Ni forms with solid TiC. 

Addition of molybdenum to nickel reduces the wetting angle with TiC to 

zero [84], and this leads to TiC-based composites with very good 

mechanical properties. In the 1950s considerable effort had been devoted 

to the development of TiC-based composites for high temperature critical 

applications such as turbine blades. The major binder metallic alloys being 

investigated were: Ni-Mo, Ni-Mo-Al, Ni-Cr, and Ni-Co-Cr. These 

systems, however, were not able to meet the high temperature 

requirements, such as high strength, oxidation resistance and ductility, and 

TiC-based composites found use in less critical applications such as 

cutting tools and metal working tools [75]. In the 1980s, ordered 

intermetallic compounds, especially nickel aluminides (Ni3Al, NiAl), 

titanium aluminides (Ti3Al, TiAl, TiAl3), and iron aluminides (Fe3, Al, 

FeAl), have been considered as potential high temperature materials. This 

is mainly due to the properties that these intermetallics possess, such as 

increase in strength with temperature, relatively low density, and good 

oxidation resistance. The research efforts on aluminides were successful, 

and in the 1990s two of these aluminides, Ni3Al and TiAl, are 

commercialized as high temperature materials for critical components 

[85]. Recently, intermetallic aluminides have also been utilized as binder 

phase in the preparation of TiC-based composites [86-89]. Hot pressing 

and presureless melt infiltration techniques were utilized for the 

processing of TiC-Ni3Al [86] and TiC-FeAl [87-89] composites with 
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promising mechanical properties comparable to that of commercially 

available TiC-Ni and WC-Co cermets [87-89]. Of these intermetallic 

composites, TiC-Ni3Al composites might be used for high temperature 

(~1100°C) applications, and TiC-FeAl composites can be used under more 

severe corrosion conditions [87-89]. Intermetallic aluminides have also 

been used as binder phase in the processing of other carbides, oxides, and 

borides, such as WC-Ni3Al and Al2O3-Ni3Al [86], Al2O3-

(Ti,Fe,Nb,Mo,Zr,Ni) aluminides of different stoichiometry [90], WC-

FeAl, TiB2-FeAl and ZrB2-FeAl [91], Al2O3-NbAl3 [92] and Al2O3-FeAl 

[93]. Hot pressing and pressureless infiltration techniques have been used 

in the processing of TiC-Ni3Al and TiC-FeAl composites. An alternative 

processing technique for the production of TiC-based intermetallic 

composites is the reactive sintering technique [75]. 

In past few years, also Ni, Fe, Al, Cu, Mo, W – among other metals - were 

incorporated into reactant mixtures of Ti and C to study their effects on 

the formation of TiC–metal composites. Conventional synthesis routes for 

these compounds included self propagation high temperature synthesis 

(SHS) and combustion synthesis (CS) [94-99]. However, carbide 

preparation in these conventional routes require a huge instrumentation 

regarding melting the metal and graphite under vacuum at a very high 

temperature. Mechanical alloying of powder ingredients at room 

temperature can easily produce nanocrystalline metal carbides, thus 
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representing one of the alternative, cost-effective way of producing these 

compounds. 

In this thesis, tantalum (Ta) and tungsten (W) - and their related oxides, 

Ta2O5 and WO2 respectively - were mixed with Ti and graphite, in 

different stoichiometric ratios.  

To the knowledge of the author, cermets formed by Ta-TiC system are not 

reported in literature, except for an extensive study of TaTiC2 at high 

temperature (from 1500°C upwards) [100].  

The synthesis of these compounds by means of MWs has been performed, 

for the first time, during this thesis and preliminary results are presented in 

Chapter 4.  

 

1.5 Role of in situ Neutron Powder Diffraction in MW 

Processing of Carbides and Aim of the Thesis. 
 

At present, the characterization of products obtained by means of MW 

heating is performed ex situ, but in order to reach a full understanding of 

the interaction of a MW field with solids and to measure and interpret bulk 

temperature, in situ analysis is essential. 

Hence, although ex situ analysis allows the characterization of the 

materials which is obviously important, it provides very little information 

regarding the process of the reaction or why and how the reaction occurs.  

The principal aim of this thesis has been the design of a single mode MW 

reactor capable of inducing the fast synthesis of binary and ternary 
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carbides and in situ powder neutron diffraction (PND) observation, in 

order to reveal the mechanism of formation of the compounds in study and 

the sample/MW interaction. 

In situ PND has been chosen as ideal probe over electrons and X-rays 

methods, because transient intermediate phases – i.e., in the case of TiC 

synthesis, Ti2O3, Ti3O5, Ti4O7, and Ti(Ox, Cy) in different O:C ratios – 

were intended to be observed and neutrons discern C and O better than the 

other techniques. This provides more insight in probing the reaction 

mechanism for the formation of the expected final products.  
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Chapter 2 

Experimental Theory and Methods 

 

2.1 Microwave Radiation and Instrumentation. 

A material can interact with radiation of wavelengths from meter to 

millimeter (microwaves, MWs) if either permanent or induced dipoles are 

present. Such a material is referred to as dielectric. In a dielectric, dipoles 

will generally be in random orientations if no electric field (E) is applied, 

while an applied field E – for example, if the dielectric is placed between 

two charged plates - will polarize the material by orienting the dipole 

moments of polar molecules. This reorientation of dipoles decreases the 

effective electric field (Eeff) between the plates, while increasing the 

capacitance
5
 of the plate structure. The dielectric constant, ’, is the factor 

by which the Eeff is decreased by the polarization of the dielectric: 

0'
onpolarizatieff EEE                                                     Eq.2.1 

Here,  is the charge per unit area and 0 is the permittivity of free space 

(8.854×10
-12

 F m
-1

).  

                                                           
5 In the case of two parallel charged plates, capacitance is equal to the ratio between the 

magnitude of charge stored on each plate, Q [Coulomb], and the voltage applied to the 

plates, V [Volt]. Therefore, C[Farad]=Q/V. 
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The reorientation of dipoles in an applied alternating field E is significant 

in the case of MWs and when the dipolar reorientation is unable to 

respond to the frequency of the alternating field E of the MWs, a phase lag 

happens which gives rise to a polarization current in phase with the 

applied field [1]. As consequence, heating in the material is observed.  

 

 

Figure 2.1. a) Schematic of two charged plates (electrodes) without applying an external 

electric field. b) The polarization of the dielectric produces an electric field opposing the 

field of the charges of the plates. The dielectric acts as a capacitor, allowing charge to be 

stored. As consequence, no conductivity is observed between the two plates [2]. (Picture 

adapted from: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/dielec.html). 

 

Dielectric heating is the process according to which dielectrics absorb 

MW energy [2]. In general, depending on the nature of materials, four 

mechanisms of dielectric heating can occur: 
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1) Dipolar polarization. It is caused by the molecular friction given by the 

reorientation of the dipole moments of the material under the influence of 

a MW field. This happens for liquids. Water represents an example, as 

shown in Fig. 2.2. 

 

               (a)                     (b)                         (c)                                             (d) 

Figure 2.2 (a) H2O molecules showing a permanent dipole. (b) Permanent dipoles are 

usually represented by an arrow. (c) In thermal equilibrium, dipoles are randomly 

arranged. The dipole moments from different molecules cancel out and the net 

polarization is zero. (d) When applying an external electric field, dipoles rotate in order to 

align with the field E and with each other: the net polarization is therefore non-zero. 

(Picture adapted from: 

http://www.doitpoms.ac.uk/tlplib/dielectrics/polarisation_mechanisms.php). 

 

2) Ionic polarization. Permanent dipoles also exist in ionic structures such 

as crystals, and ionic polarization is a mechanism very similar to dipolar 

polarization described above for molecules in liquids. When no field is 

applied ( 0E ), internal dipoles in an ionic solid exactly cancel each 

other and are unable to rotate. The applied external field induces net 

dipoles by slightly displacing the ions from their thermal equilibrium 

position (Fig.2.3). 
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Figure 2.3 Very similar to dipolar polarization, ionic polarization occurs in crystals under 

external field E. (Picture adapted from: 

http://www.doitpoms.ac.uk/tlplib/dielectrics/polarisation_mechanisms.php). 

3) Electronic (or atomic) polarization. It happens because a field E will 

always displace the center of charge of the electrons with respect to the 

nucleus, inducing a dipole moment (Fig. 2.4). This polarization usually 

takes place in the case of atoms with a spherical symmetry, like noble 

gases, in all aggregate forms. 

        

Figure 2.4 In the case of noble gases, dielectric heating occurs when its electron cloud 

has been shifted by the influence of an external charge, and it is not centered on the 

nucleus. (Picture taken from: 

http://www.doitpoms.ac.uk/tlplib/dielectrics/polarisation_mechanisms.php). 

 

4) Interphase polarization mechanism. This occurs especially in metals 

showing surfaces, grain boundaries, interphase boundaries containing 

dipoles, which are charged by the external field E and contribute to the 

overall polarization of the material [2]. This effect often also happens 
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between particles of different phases which may have different electronic 

properties. 

 

The dielectric interaction of materials with MWs is expressed principally 

by two parameters, the power density, P [W/m
3
] - Eq. 2.2 - and the 

penetration depth of MWs, D [m] - Eq. 2.6: 

2

0

2''

0

2
tan'22 EEfEP                 Eq. 2.2 

In Eq. 2.2, E and f are the electric field intensity (V m
-1

) and its frequency 

(Hz), respectively; ε0 is the permittivity of free space (see also Eq. 2.1), ''  

is the dielectric loss, and tan is the loss factor, equal to: 

'
"tan                                      Eq. 2.3 

The dielectric constant ’ - or relative permittivity - is the ratio of the 

permittivity of a substance to that of free space. It is a measure of the 

response of the material to the external field E. The dielectric loss, '' , 

quantifies the ability of the material to convert the absorbed MW power 

into heat. These two components are commonly expressed in terms of the 

complex dielectric permittivity, * [F/m]: 

"'* i                                      Eq. 2.4 

When the absorbed MW power in the material is converted into heat, it 

leads to a temperature increase, according to Eq. 2.5: 

C

Ef

t

T
2''

02
                                  Eq.2.5 

where C (J/kg·K) is the specific heat of the material. The increase T in 

temperature is dependent on the density of the sample: as the density 
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increases (and the corresponding thermal conductivity increases) the 

heating rate decreases [3]. 

The penetration depth, D, determines the depth at which the incident 

power is reduced by one half exhibiting the uniformity of heating 

throughout the material: 

"2

'
D                                          Eq. 2.6 

Materials with higher loss factor ε" (imaginary part of the complex 

permittivity) show faster microwave energy absorption. The power density 

will decrease exponentially from the surface to the core region. Moreover, 

high frequencies and large values of the dielectric properties will result in 

a surface heating, while low frequencies and small values of dielectric 

properties will result in more volumetric heating [4, 5]. D is a very 

important parameter, because it gives an upper limit to the thickness of the 

material that can be heated directly with MWs.  

Materials are classified into three groups with respect to their interaction 

with MWs (Fig. 2.5):  

a) MW transmitters (i.e., quartz, zirconia, several glasses and ceramics 

with no transition metals, Teflon, etc…) which are transparent to MWs. 

These are used as sample holders or containers for MW reactions; 

b) MW reflectors, such as bulk metals and alloys (i.e., brass). They are 

normally used for waveguides; 
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c) MW absorbers (i.e., silicone, urethane, natural rubber) which are able to 

take up the energy from the MW field and get heated up very rapidly, thus 

playing an important role in MW reactions [6].  

 

Figure 2.5 Materials are grouped into three categories (from left to right): MW 

transmitters; MW reflectors, and MW absorbers. 

 

 Summarizing, the polarization of dielectrics and consequent MW 

heating arises from the finite displacement of charges or the rotation of 

dipoles in a field E. It is a different mechanism than that occurring in 

conventional ovens, which results from translational motion of charges. In 

the conventional heating mechanism, heat is transferred through 

conduction, radiation and convection. The surface of the material is heated 

first, followed by the heat moving inward [4]. In the MW case, a heat 

propagation from inside to outside is observed (Fig. 2.6). 
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Figure 2.6 Difference between conventional and MW heating. A wavefront is the surface 

of points of the radio wave having the same phase. 

 

2.1.1 Microwave Instrumentation for Single Mode Cavity (SMC) and 

Multi Mode Cavity (MMC) reactors. 

MW sources. To achieve the high power and frequencies required for MW 

heating, most of MW sources are vacuum tubes – such as magnetron tubes 

and travelling wave tubes (TWTs). Magnetrons are used in domestic 

microwave ovens (DMOs) and in industrial-scale MW devices. They use 

resonant structure to generate the electromagnetic field, therefore they are 

able of generating only fixed frequency electromagnetic fields. 

Magnetrons are made of thermo-ionic diodes with heated cathodes, acting 

as source of electrons [6]. In vacuum tubes, the circular anode is 

concentric and surrounds the cathode (Fig 2.7(a)). The anode is at a high 

potential compared to the cathode (potential difference between the two 

electrodes: 2-20 kV) thus producing a strong electromagnetic field. 

Electromagnetic radiation is generated from the acceleration of electrons; 

these are emitted by the cathode and accelerated radially towards the 
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anode by the electric field. An external magnet is used, at the top and the 

bottom, to create a magnetic field orthogonal to the electric field, so that 

the electrons move circularly - rather than directly - to the anode, creating 

a swirling cloud of electrons.   

     
(a)    

 
b) 

Figure 2.7 a) Schematic diagram of the magnetron tube: top view (left); side view (right), 

as in reference [7]. b) Scheme of a DMO magnetron, as in reference [8]. 
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As the electrons pass the resonant cavities on the anode, the cavities set up 

oscillations in the electron clouds and frequency of the oscillation depends 

on the size of the cavity (Fig. 2.8). The electromagnetic field is then 

extracted by an antenna and channeled to the cavity through a coaxial 

cable or a waveguide (see following section on “Waveguides”). 

                     
                              a)                                                                          b) 

Figure 2.8 a) A DMO magnetron section (Picture taken from 

http://www.microwaves101.com/encyclopedia/magnetron.cfm). b) A Sairem® 2 kW 

magnetron section (this magnetron has been used in the thesis: the ceramic protection of 

the antenna has been broken by an arc, which occurred during experiments).  

 

The output power of the magnetron can be controlled either by adjusting 

the period of operation or adjusting the cathode current or magnetic field 

strength. In DMOs, the magnetron operates at full power and the average 

output power is controlled by cycling the current on and off for segments 

of time. This on/off mechanism is referred to as “duty cycle control”.  

In industrial MWs generators, a continuous, variable power is provided so 

that the output average power can be varied by changing the current 

amplitude of the cathode or by varying the intensity of the magnetic field. 

These magnetrons can display both the generated forward power (FP) and 

the amount of MW energy reflected by the system components (or 
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sample) back to the magnetron, the reflected power (RP). They have a 

circulator, which is a three-port ferrite device allowing transmission of 

energy in one direction only (from magnetron to applicator). In a three-

port circulator, one port is connected to the MW source, another to the 

applicator and a third port goes to a dummy load, which deflects the RP 

energy into a water load, thus preventing the RP to bounce back into the 

magnetron (see, for example, Fig. 2.13).  

 High-power Travelling Wave Tubes (TWTs) are used as MW 

source for variable frequency MWs. While in magnetrons the tube is used 

both to create the frequency of oscillation and to amplify the signal, TWT 

is used as amplifier only. A voltage-controlled oscillator generates the 

MW signal and then the signal is sent to the TWT for amplification (Fig. 

2.9).   

 
Figure 2.9 TWT, as in reference [7], consisting of two main components: an electron gun 

and a helical transmission line. Because there are no resonant structures, TWT can 

amplify a large variation of frequencies (bandwidth) within the same tube. The heated 

cathode emits a stream of electrons that is accelerated toward the anode, and the electron 

stream is focused by an external magnetic field. The purpose of the helix is to slow the 

phase velocity of the MW (the velocity in the axial direction of the helix) to a velocity 

approximately equal to the velocity of the electron beam. For amplification of the signal 

to occur, the velocity of the electron beam should be just faster than the phase velocity of 

the helix. In this case, more electrons are being decelerated than accelerated, and the 

signal is amplified because energy is being transferred from the electron beam to the MW 

field. 
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Transmission lines. Once generated by the magnetrons, MWs are 

transported to the cavity, through transmission lines. While in low power 

devices (such as a DMO) transmission lines are co-axial cables, at higher 

frequencies and higher power transmission sections are often waveguides, 

in order to reduce losses that would occur if using coaxial cables. 

Waveguides are hollow tubes, in which the electromagnetic waves 

propagate. The choice of materials is a compromise between high 

conductivity to minimize losses, corrosion resistance, and ease of 

manufacture. Aluminum is widely used for waveguides transmitting high 

power, and is selected for its high electrical and thermal conductivity. 

In waveguides, two modes
6
 of MW propagation exist (Fig. 2.10(a)):  

- Transverse electric (TE): the electric intensity in the direction of 

propagation is null (Ez=0). A TE mode has been used in this work. 

- Transverse magnetic (TM): the magnetic intensity in the propagation 

direction is null (Hz=0).  

A transverse electromagnetic mode (TEM) also exists, where neither the 

electric nor the magnetic field is in the same direction of signal 

propagation (Fig. 2.10(b)), but the boundary conditions that apply to 

waveguides will not allow a TEM wave to propagate. However, the wave 

in the waveguide will propagate through air or an inert gas dielectric in a 

manner similar to free space propagation. The phenomenon is bounded by 

                                                           
6 A field pattern within a MW applicator is known as a mode. 
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the walls of the waveguide and that implies that certain conditions must be 

met. The boundary conditions for waveguides are: 

1. The electric field must be orthogonal to the conductor in order to 

exist at the surface of that conductor; 

2. The magnetic field must not be orthogonal to the surface of the 

waveguide. 

 

(a) 

 

(b) 

Figure 2.10 a) TE (transverse electric - left) and TM (transverse magnetic - right) mode. 

(Picture from: http://www.allaboutcircuits.com/vol_2/chpt_14/8.html); b) TEM mode 

waveguide: both field planes (electrical and magnetic) are perpendicular (transverse) to 

the direction of signal propagation. 

 

Subscripts (m and n) are used to complete the description of the field 

pattern for both TEmn and TMmn modes. In rectangular waveguides, the 
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first subscript indicates the number of half-wave patterns in the "a" 

dimension, and the second subscript i ndicates the number of half-wave 

patterns in the "b" dimension (Fig.2.11-left). For rectangular waveguides, 

the coordinate system is usually oriented such as a ≥ b (a common 

dimension is 86 43 mm (inner dimensions), as for the WR340-type 

waveguide described in this thesis. An international standard of 

waveguides lists the most common optimum waveguide type for specific 

frequencies [9]. A similar system is used to identify the modes of circular 

waveguides (Fig. 2.11-right); however, in this case, the subscripts have a 

different meaning. The first subscript indicates the number of full-wave 

patterns around the circumference of the waveguide, and the second 

subscript indicates the number of half-wave patterns across the diameter.  

The size of the waveguide determines the mode of MW that are 

propagated – so the optimum size for a specific frequency band is a 

compromise of minimizing power loss and heating, requiring a large 

cross-section and avoiding possible excitation of higher-order modes [10]. 

 

Figure 2.11 Scheme of a rectangular waveguide, in Cartesian coordinate system (left). 

Scheme of a circular (or cylindrical) waveguide of radius a, in cylindrical coordinate 

system. In both cases, the waveguide is positioned with the longitudinal direction along 

the z-axis. 
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The mode equation for a rectangular cavity is shown in Eq. 2.7: 

2
1

222

222

1

a

n

b

m

d
cfnml               Eq. 2.7 

Here fnml is the TEnml or TMnml mode‟s resonant frequency; c is the speed 

of light; n, m, l, are the number of half-sinusoidal variations in the 

standing wave pattern along the x, y, and z-axes, respectively; a, b, and d 

are the dimensions of the cavity in the x, y and z directions.  

 

The cutoff frequency (or corresponding wavelength) of an electromagnetic 

waveguide is the lowest frequency (respectively, the longest wavelength) 

for which a mode will propagate in it. 

In the rectangular case, Eq. 2.8 defines the lower cut-off frequency [in Hz] 

for a particular mode:  
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f nmc                       Eq.2.8 

the lower cut-off wavelength [m] is shown in Eq. 2.9: 

22

2
)(

b

n

a

m
mnc                           Eq. 2.9 

Here a is the internal width (the longer dimension) [in m], b is internal 

height (the shortest dimension) [in m], m and n are, respectively, the 

number of half-wavelength variations of fields in the a direction and the 
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number of half-wavelength variations of fields in the b direction – as 

described above, while is  the permittivity of free space as already 

defined in Eq 2.1, and is the permeability of free space 

(1.2566370614 10
-6

 H/m)
7
. 

The dominant mode of any waveguide is the one of lowest cut-off 

frequency. From Eq. 2.8, it follows that the TE10 mode is the dominant 

mode of a rectangular waveguide with a>b, since it has the lowest 

attenuation of all modes. Either m or n can be zero, but not both. For TM 

guides, TM11 is the dominant mode, as m=0 and n=0 are not possible. 

In the cylindrical case, the lower cut-off wavelength (or frequency) for a 

particular TE mode is determined by the following equation: 

mn

mnc
p

r

'

2
)(                                        Eq. 2.10 

where p'mn is given in Table 2.1 for values of m=0,1,2: 

m p'm1 p'm2 p'm3 

0 3.832 7.016 10.174 

1 1.841 5.331 8.536 

2 3.054 6.706 9.970 

Table 2.1. Values for p'mn for cylindrical waveguides.  

 

It follows that in cylindrical wave, TE11 is the dominant mode. The lower 

cutoff wavelength (or frequency) for a particular TM mode in circular 

waveguide is given by the following Eq. 2.11:  

                                                           
7 Reference:http://www.rfcafe.com/references/electrical/waveguide.htm 
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mn

mnc
p

r2
)(                                  Eq. 2.11 

where pmn is given in Table 2.2, for values of m=0,1,2: 

m pm1 pm2 pm3 

0 2.405 5.520 8.654 

1 3.832 7.016 10.174 

2 5.135 8.417 11.620 

Table 2.2 Values for pmn cylindrical waveguides 

(http://www.rfcafe.com/references/electrical/waveguide.htm). 

 

TM11 is the dominant mode for cylindrical TM guides. 

 

Tuner. Tuners are used to maximize the power absorbed by the load 

(namely, the sample) through impedance matching (i.e., by reducing 

reflection to zero between source and load). They also resize the cavity to 

make it resonant at the working frequency of the source, as the presence of 

the sample perturbs the resonant frequency, so that the level of the desired 

signal at the load is optimized. Several tuners exist, such as irises, three-

stub tuners, and E-H plane tuners. In this thesis, a three-stub tuner has 

been used. Most practical stub tuners make use of transmission line 

segments in which the segments are either open or short circuited [11]. 

In a standard stub tuner, the stubs are brass threaded bolts mounted in a 

flanged waveguide section. By setting the stubs for minimum RP from the 

load/tuner combination, it is possible to generate a reflection of any 

amplitude and phase, thus maximizing the power absorbed by the load. A 

stub tuner can be used at both low and high power.  
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Applicator. Applicators are devices designed to ensure the transfer of 

electromagnetic energy from the transmission line to the load. It is where 

the MW/sample interaction occurs.  

Common types of applicators used in materials processing are: 1) 

multimode (MMC), and 2) single mode cavity (SMC) systems. Travelling 

wave applicators are also employed, but their use is mainly for continuous 

flow system, which is not the case of the work described in this thesis. 

 1) Multi mode applicators are capable of sustaining a number of 

high order modes at the same time, and these are commonly used in 

DMOs. The various modes result in non-uniformity inside the cavity, 

where regions of high and low electric fields are present. As the size of the 

MW cavity increases, the number of possible resonant modes also 

increases. Consequently, MMC are much larger than one wavelength.  

In MMC, the presence of different modes gives multiple hot spots within 

the MW cavity. For cooking in DMOs (operating at 2.45 GHz), for 

example, this difficulty can be overcome by using a turntable that rotates 

during operation so that the food passes through areas of high power and 

therefore is subject to time-averaged, uniform heating. Another technique 

to improve uniformity is to use mode stirrers. These are reflectors similar 

to fans which rotate within the cavity near the waveguide input. These 

mode stirrers reflect waves off the irregularly shaped blades and 

constantly redistribute the magnetic field thus creating time-averaged 

uniformity in a similar way to turntables. But still, the non-uniformity of 
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MW field causes disadvantages when DMOs is used for synthesis and 

processing, such as unpredictable mode patterns, poor reproducibility of 

the synthesis results and the inability to modulate the power output. 

However, MMCs are cheap and readily accessible.  

 2) Unlike MMCs, theoretical analysis can be performed in an 

SMC to describe the response of MWs. An SMC consists of a metallic 

cage in which a MW signal of the correct electromagnetic field 

polarization will undergo multiple reflections. The superposition of the 

reflected and incident waves gives rise to a standing wave pattern, very 

well defined in space. Since the MW power density (Equation 2.2, in 

Section 2.1) is proportional to the electric field strength inside the material 

squared, such cavities offer extremely rapid heating rates and give the 

opportunity to heat materials transparent to MWs in an MMC.  

The present thesis project builds on the results obtained through a 

collaboration between the University of Glasgow and the University of 

Nottingham, in which it was demonstrated that ultrarapid, energy efficient 

processing of materials was possible with MW irradiation [12, 13]. In that 

case, a Sairem® 3-5 kW GMP 150SM microwave-generator was used, 

connected through a WR430 waveguide to an automatic E-H tuner for 

impedance matching. The tuner was connected to an 82 mm internal 

diameter TE10n single mode cavity (Fig. 2.12(a)). A short circuit tuner 

terminated the waveguide. In Fig 2.12(b), a schematic representation of 
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the position of the sample inside the cavity is depicted [13, 14]. Pyrometer 

readings for temperature measurements were performed. 

 

Figure 2.12 a) Photographic and b) schematic representation of the TE10n MW heating 

cavity. 

 

In this thesis, a single mode microwave cavity reactor – operating at a 

frequency of 2.45 GHz - able to promote material processing probed by in 

situ powder neutron diffraction (PND) has been designed and optimized 

(Fig 2.13). A detailed description will be given in Chapter 3.  

    

 

Figure 2.13. Schematic of a SMC MW device, suitable for material processing 

comprising a power supply; magnetron; rectangular waveguide; 3-port ferrite circulator; 

quartz window (for preventing plasma discharge destroying the magnetron); tuner; 

waveguide; applicator - also called cavity - (cylindrical or rectangular); short circuit (or 

metal plate). It is difficult to heat ceramics with a domestic microwave oven (MMC), 

because ” for ceramics is extremely small compared to that, for example, of food. (The 

MMC type is suitable for heating of materials of comparatively large ”, and the SMC 

type is suitable for that of small ”) [15]. 
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The main advantage of a SMC is that through proper design, the MW field 

can be focused at a given location. Further, precise knowledge of the 

electromagnetic field distribution enables materials to be placed in the 

position of highest field strength for optimum coupling. Therefore, these 

cavities have been used for laboratory-scale studies, while MMC are 

typically more versatile for batch operations and processing of large, 

complicated shape objects because of less stringent spatial requirements.  

 

2.1.2 Temperature measurements. 

As already mentioned in Chapter 1, Section 1.3.1, a complicated issue in 

MW processing of materials is the precise measurement of temperature. 

The two most common conventional methods for temperature 

measurement, thermocouples and pyrometers, are both problematic as 

discussed below.  

 

Thermocouples. Thermocouples directly read the temperature when in 

contact with the sample. However, this need for thermocouples to make 

contact with the sample, often gives errors or uncertainties in the 

measurements. Being an electric conductor, in fact, it is probable that the 

thermocouple probe will change the local electromagnetic field pattern 

and therefore heat pattern in the MW [16]. 
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Optical pyrometers (infrared temperature sensors). All materials give off 

infrared (IR) energy depending on their temperature and an infrared sensor 

consists of a lens to focus this IR energy to a detector. The detector then 

converts the energy to an electrical signal that can be displayed in units of 

temperature. IR temperature sensors do not require to be in contact with a 

sample to read temperature and, so they do not need to be located inside the 

cavity. However, field and angle of view (target size and distance), type of 

surface being measured (emissivity considerations) and the temperature 

range under consideration must be taken into account for correct 

measurements. The target being measured should completely fill the field 

of view of the instrument. Since the IR device determines the average 

temperature of all surfaces within the field of view, it tends to average 

local hot and cool spots. Emissivity is defined as the ratio of energy 

radiated by an object at a given temperature to the energy emitted by a 

perfect radiator, or black body, at the same temperature. The emissivity of 

a black body is 1.0. All values of emissivity fall between 0.0 and 1.0. If 

the emissivity of the sample measured is different from that which is 

calibrated in the sensor, an error can occur. For most applications, a 

factory setting is usually sufficient. A schematic of a pyrometer is shown 

in Fig. 2.14.  
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Figure 2.14 Schematic of a pyrometer. An optical system collects the visible and infrared 

energy from an object and focuses it on a detector. The detector converts the collected 

energy into an electrical signal to drive a temperature display or control unit. The detector 

receives the photon energy from the optical system and converts it into an electrical 

signal. Two types of detectors are used: thermal (thermopile) and photon (photomultiplier 

tubes). Photon detectors are much faster than the thermopile type. This enables the user to 

adopt the photon type for measuring the temperature of small objects moving at high 

speed. (Picture taken from: http://www.globalspec.com/reference/10956/179909/chapter-

7-temperature-measurement-radiation-pyrometers). 

 

Temperature measurement during MW reactions is difficult because 

emissivity changes as the chemical composition of the pellet changes and 

emissivity also depends on other factors such as size, shape and granularity of 

the sample. In addition to the issue of emissivity, due to the mechanisms 

involved during microwave heating the surface temperature of the pellet 

measured using the optical pyrometer could be significantly different from 

the bulk temperature. 

To overcome these difficulties and avoiding misleading temperature 

measurements, in the work described in this thesis a crystallographic 

thermometer has been used as temperature probe, taking advantage of the 

presence of carbon graphite in all the samples and the fact that the linear 

thermal expansion of graphite, , is known with a good accuracy for a 

wide range of temperatures in literature – 293 to 1473K [17, 18].  

From Eq. 2.11, the c-axis value at a given temperature T can be calculated: 
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c(T)=cTr +  cTr (T-Tr)                                  Eq. 2.11 

where  is the linear thermal expansion (27.7(±0.6) 10
-6

 K
-1

), c(T) and 

cTr (=6.7079 Å, at 298K) are the c-axis values at the unknown and at the 

reference temperature respectively; T and Tr are the unknown and the 

reference temperature, respectively. The unknown temperature T can be 

then derived from Eq.2.12: 

Tr
r

cTc
TT

)(
                                   Eq.2.12 

where c(T) is calculated by performing sequential refinement against in 

situ data. 

The error on T is given by the root mean square deviation (RMSD). If 

rTTT and rccc , then Eq.12 can be rewritten as: 

c
T                                            Eq.2.13 

and the error on T is given by: 

22

c

c

T

T
                          Eq.2.14 

 

2.2 Synthesis and Processing 

MW synthesis of titanium carbide (TiC) and more complex ternary 

carbides constituted the main target of this thesis. While the synthesis of 
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TiC was conducted in both MMC and SMC, starting from both elemental 

powders (Ti and graphite), and its oxide (TiO2 and graphite), the ternary 

carbides were processed in an SMC only, starting from their elemental 

powders. In all the cases, starting materials were used as purchased.  

Mixtures of powders were ground in an agate mortar to make them 

homogeneous, and then cold pressed using an hydraulic press. Pellets were 

kept under a pressure of 5 tons for about 10 minutes before being 

removed. Pressed pellets (8 or 10 mm diameter; 1 g; 1 cm thickness) were 

embedded in graphite (acting as a MW susceptor) in a 10 or 12 mm 

diameter open silica tube (MW transparent). In the case of TiC synthesis 

in an MMC, the quartz tube was placed in a beaker filled with low 

dielectric loss silica flour. 

A summary of the experimental set-up (both MMC and SMC) is reported 

in the following sections (2.2.1 and 2.2.2, respectively), while more 

detailed description is given in next Chapters 3 and 4. 

 

2.2.1 Synthesis using a multi mode microwave cavity (MMC)  

The synthesis of TiC was conducted in a DMO 800W MMC, operating at 

2.45 GHz (Fig. 2.15(a)). All experiments were performed at ambient 

pressure, in air, using a 12 mm diameter, 1 mm wall thickness quartz tube 

as reaction vessel, closed at the bottom and open to the top. The tube was 

then inserted in a glass beaker filled with ground silica (Fig. 2.15(b)), 
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which provided the mechanical support and the thermal insulation for the 

quartz tube during the reaction. 

 

(a) 

 

b) 

Figure 2.15. a) Picture of the MMC used in the work described in this thesis; a) 

Schematic of silica beaker plus sample holder (quartz tube).  

 

2.2.2 Synthesis using a single mode microwave cavity (SMC)  

Two different SMC systems have been used in the work described in this 

thesis: a Gaerling Applied Engineering magnetron head, 0-1 kW power, 

2.45 GHz frequency, available at the Glasgow University (Fig. 2.16(a),(b) 

and (c)), and a Sairem® GMP20K microwave-generator of 2 kW power 

and 2.45 GHz frequency, available at the ILL (Fig. 2.17).  
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(a) 

 

(b) 
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(c) 

Figure 2.16 a) MW system used at Glasgow University; b) Cylindrical applicator – with 

a choke for pyrometer readings; c) TiC reaction under MW irradiation, in act. 

 

In both cases, after initial preparation of the samples, the sample holder 

(quartz tube, 10 mm diameter, 1 mm wall thickness) was inserted into the 

SMC. Samples were then irradiated with MWs for a set time and power. 

Reflective power (RP) was also monitored on a display in both cases to 

detect anomalies.  

 

2.3 Physical methods to characterize solids  

Basic concepts of crystallography are presented in this section, which 

introduces both powder neutron diffraction (PND) and powder X-ray 

diffraction (XRD). Rietveld refinement is also discussed and a description 
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of the two axis diffractometer D20 is given. Raman spectroscopy and 

Scanning Electron Microscopy (SEM) are also described.  

An experimental technique like PND can probe relatively large sample 

volumes due to the charge neutrality of neutrons. 

           
              a)                                                                    b) 

Figure 2.17 a) Single mode MW device, on two-axis diffractometer D20, at ILL. On the 

power supply display, FP and RP can be read. A MW leakage detector has been installed. 

b) The single mode cylindrical applicator has been designed specifically for D20. Its 

design addresses multiple issues, such as avoiding interference with both the sample and 

the neutron beam, complying with instrument geometry constraints and avoiding 

activation risks. 

 

In situ PND on D20 has been chosen as an ideal probe to investigate the 

formation mechanisms of carbides for several reasons:  

1) To observe intermediate phases in different Mz:Ox:Cy stoichiometric 

ratios (where M stands for transition metals). The ability of neutrons to 

offer very good visibility for C and O, and to discern them more than 
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electrons or other techniques do, can give insight into the reaction 

mechanism of carbide formation;  

2) To probe fast reactions (time range of seconds). D20 is a high intensity 

2-axis diffractometer equipped with a large micro-strip detector gas 

chamber (MSGC) position sensitive detector (PSD). An extremely high 

neutron flux (up to 10
8
 s

−1
 cm

−2
 at the sample position) makes real-time 

experiments on very small samples and/or with very short acquisition 

times possible;  

3) To use powder samples, which makes it possible to observe 

simultaneously a true bulk average over the entire sample volume.  

XRD has been used in some cases as an excellent tool for ex-situ 

experiments as it is able to give information on the long-range order of the 

structures, as PND can do. In addition, they are more easily available at 

laboratory scale, rather that PND, which makes them a very useful 

technique able to provide relatively fast answers. Raman spectroscopy has 

been used in some cases for probing bonding environments in both 

crystalline and amorphous structures, while SEM gave information about 

the morphology of some of the reaction products.  

 

2.3.1 Basic Concepts of Crystallography 

Crystals are characterised by a “building motif” which continuously 

repeats in three dimensions. This repeating block is called the unit cell of 
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the crystal and it is described in three dimensions by the length of its edges 

a, b, and c and the ,  and  angles between them (Fig. 2.18). 

 

Figure 2.18 a, b, and c and the angles between them ( , between axes b and c; , 

between axes a and c and , between axes a and b) describe the unit cell.  

 

The size, shape, symmetry of the unit cell, and the position of the atoms 

within the cell define univocally a crystal. In Fig. 2.19, all the possible 

unit cell shapes that can fill a three dimensional space are showed. These 

are the seven crystal systems. 

 

 

Figure 2.19 The seven crystal systems, listed in order of decreasing symmetry. a) Cubic 

(a=b=c, ; b) Hexagonal (a=b≠c, ; c) Tetragonal (a=b≠c and 

= ; d) Trigonal (a=b≠c, or alternative setting for the special 

case of rhombohedral lattice, a=b=c, ≠ ; d) Orthorhombic (a≠b≠c, ; 

e) Monoclinic (a≠b≠c, ≠ ; f) Triclinic (a≠b≠c, ≠ ≠ ≠ . 

 

Each of the seven crystal systems is governed by the presence or absence 

of symmetry elements in the structure. Table 2.3 summarises the possible 

symmetry elements and their two nomenclatures, the Hermann-Mauguin 

a)                  b)                c)               d)                    e)                  f)                    g) 
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notation – used mostly in crystallography - and the Schӧ nflies notation – 

used mostly in spectroscopy. The essential symmetry for each of the seven 

crystal system is listed in Table 2.4. 

 

 Symmetry element Hermann-

Mauguin 

Schönflies 

Point symmetry Mirror plane m v, h 

 Rotation axis n (=2,3,4,6) Cn(C2, C3, 

etc.) 

 Inversion axis n (= .,2,1 etc ) --- 

 Alternating axis 

(rotoreflection) 

--- Sn(S1, S2, etc.) 

 Centre of 

symmetry 

1  i 

Space symmetry Glide plane n, d, a, b, c ---- 

 Screw axis 21, 31, ect. ---- 

Table 2.3 Symmetry elements. 
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Crystal system Essential symmetry 

Cubic Four threefold axes 

Hexagonal One sixfold axes 

Tetragonal One fourfold axis 

Trigonal (containing the special case of 

rhombohedral) 

One threefold axis 

Orthorhombic 

Three twofold axis or 

mirror planes 

Monoclinic 

One twofold axis or mirror 

plane 

Triclinic None 

Table 2.4 The essential symmetry for the seven crystal systems. 

In three-dimensional space, in order to represent the distribution of atoms 

in a crystal, an array of points is used. This array - called lattice - and its 

points - called lattice points - defines completely the repetition 

characteristics - while there is no reference to the details of the repeated 

unit cell or the chemistry or bonding within the crystal. Fourteen 

distinctive lattices are possible, called Bravais lattices (Fig. 2.20).  
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Figure 2.20 The fourteen Bravais lattice (Picture from: 

http://www.seas.upenn.edu/~chem101/sschem/solidstatechem.html). 

 

These are an infinite array of discrete points generated by a set of discrete 

translation operations (Fig. 2.21).  

 

Figure 2.21 Translational symmetry operations: 41screw axis (a) and c glide plane (b). 

Screw 41is obtained by a 2 /4 rotation around z axis, combined with a c/4 sliding along z 

axis. Glide plane c means a reflection perpendicular to y axis with a c/2 sliding along z 

axis. 
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Within the unit cell, the collection of symmetry elements constitutes a 

point group. Only 32 point groups are possible, which constitute 32 crystal 

classes. In three-dimensional space, all crystals can be assigned to one of 

them. If we combine the 32 crystal classes with the 14 Bravais lattices, we 

get 230 three-dimensional space groups. A space group can be also viewed 

as the combination of the symmetry operations of the point group plus 

translational symmetry operations. Crystal structures can only adopt these 

230 distinctive space-filling arrangements. The International Tables of 

Crystallography reports a list of all of them. 

The periodic arrangement of atoms in a crystal form planes passing 

through the lattice points and oriented in different directions. All of the 

planes oriented in a certain direction are parallel and separated from each 

other by a distance d, which depends on the nature of the material.  

If a line is drawn parallel to the faces such that the intercepts on the unit 

cell edges are a/h, b/k, c/l; where h, k and l are integers, these integers are 

referred to as Miller indices which are used to refer to the faces and the 

planes within a crystal and they uniquely depend on the unit cell.  

Diffraction and Bragg’s law. Techniques to study crystals are based upon 

diffraction phenomena with radiation of wavelength of the order of 0.5-3.0 

Å (roughly the range of interatomic nearest-neighbor distances). The 

following description focuses on X-rays
8
, but same theory and 
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considerations apply to the case of neutrons (or electrons, however this is 

not discussed in this thesis).  

In the Bragg approach to diffraction, crystals are considered to be built up 

in layers or planes where each of them can be regarded as a semi-

transparent mirror. In Fig. 2.22, the array of blue circles represents a 

section through a crystal. They form a set of parallel planes with Miller 

indices hkl and interplanar spacing dhkl. Two X-ray beams (1 and 2) are 

reflected from adjacent planes within the crystal, generating the reflected 

beams 1‟ and 2‟. To see when 1‟ and 2‟ are in phase, we should consider 

that the beam 22‟ has to travel the extra distance xyz as compared to beam 

11‟, and for beam 1‟ and 2‟ to be in phase, the distance xyz must equal a 

whole number of wavelengths. The perpendicular distance between pairs 

of adjacent planes, the d-spacing d and the angle of incidence, or Bragg 

angle , are related to the distance xy as described in Equation 2.15: 

sindyzxy                                 Eq. 2.15 

Thus: 

sin2dxyz                                     Eq. 2.16 

But, from Fig. 2.22: 

nxyz                                         Eq. 2.17 

And therefore, Eq. 2.18 can be derived: 

                                                                                                                                                 
8 This choice is merely due to historical reasons: Bragg father and son derived the 

Bragg‟s law in 1913 and in 1914 the first atomic-resolution structure was determined 

(“rock salt” structure, NaCl), while first neutron experiment on crystals was performed in 

1946 by Shull and Wollan.  
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nd sin2                                Eq. 2.18 

 

Figure 2.22 The Bragg condition for the reflection of X-rays by a crystal. X-ray 

crystallography relies on the fact that the distances between atoms in crystals are of the 

same order of magnitude as the wavelength of X-rays (1 Å). Hence a crystal acts as a 

three-dimensional diffraction grating to a beam of X-rays. The resulting diffraction 

pattern can be interpreted to give an insight into the crystal structure of the sample 

produced.  

 

Equation 2.18 is known as Bragg‟s law and it relates the d-spacing, dhkl, to 

the particular Bragg angle  at which reflections from these planes are 

observed. When n=1, the reflections are called first order, when n=2 the 

reflections are second order and so on. However, the Bragg equation for a 

second order reflection from a set of planes hkl is 

2 = 2 sin hkl d                                      Eq.2.19 

Which can be rewritten as: 

2

sin
2

dhkl                                        Eq. 2.20 
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Equation 2.20 represents a first order reflection from a set of planes with 

interplanar spacing 2h 2k 2l. Therefore, the second order reflection from 

hkl is indistinguishable from the first order reflection from 2h 2k 2l, and 

the Bragg equation can be rewritten simply as 

= 2 sin hkl d                                 Eq.2.21 

 

2.3.2 Neutron Scattering and Powder Neutron Diffraction  

Basic properties of the neutron. The neutron is a subatomic particle with 

the following properties: 

- Zero charge (q=0), which makes it an effective and non-invasive 

probe of bulk samples due to its large penetration power. Therefore, it 

is suitable for “severe” sample environment (for example, in the case 

of sample holder with thick walls). The scattering cross section does 

vary over the periodic table of elements “arbitrarily” without any 

strong correlation to the atomic mass (as being independent of the 

electron shell). For some nuclides, the scattering is large. An 

important example is the lightest element hydrogen which is virtually 

transparent to X-rays but which scatters neutrons strongly;  

- A mass of 1.675 10
-27 

kg, which results in a de Broglie wavelength of 

the order of inter-atomic and inter-molecular distances
9
 ( dB= 

mv
h  

                                                           
9 For example, at T=293 K and since TkmvE Bc

2

2
1 , we have the neutron 

wavelength: 8.1
mv

h
dB Å. 
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where h is the Plank constant equal to 6.626 10
-34

 J s). Therefore, 

neutrons are suitable for studying the atomic structure of condensed 

matter in diffraction studies. And we can also profit of sensitivity 

from the sensitivity of the neutrons to light atoms and isotopic 

substitution;  

- A magnetic dipole moment ( n) equal to -1.913 N (where N is the 

nuclear magneton = 5.051 10
-27

 J T
-1

) , which is used for 

investigating microscopically the magnetic structure and magnetic 

fluctuations in materials;  

- A spin (s) equal to 
2

1  - therefore, the neutron can be used for 

studying the arrangement of the nuclear spin orientation and it is 

suitable for both coherent and incoherent scattering experiments;  

The energies of thermal neutrons are around 25 meV (1 eV=1.6 10
-19

 J), 

which are similar to the energies of many excitations present in solids and 

liquids. Thermal neutrons are usually obtained by slowing down energetic 

neutrons, produced in nuclear reactors, with a moderator. In the high flux 

reactor at the ILL, the heavy water in the moderator-reflector vessel, 

surrounding the fuel element, acts as moderator. After several collisions 

with the deuterium nuclei, the neutrons are in thermal equilibrium with the 

heavy water (slightly above room temperature thanks to a consequent 

pumping rate evacuating the heat of the 50 MW thermal power reactor). 

Heavy water, despite its difficulties (higher price, need of strict sealing, 

transmutation of deuterium to radioactive tritium) has been preferred over 
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light water, as the latter absorbs more neutrons, and as it moderates a little 

bit less quickly, bringing the maximum of thermal neutron flux further 

away from the outside of the fuel element (about 30 cm). The latter has 

two main advantages: it allows a tangential arrangement of evacuated 

aluminum- or zirkalloy-beamtubes (relatively transparent to neutrons) that 

lead in a straight line of sight neutrons to the instruments (i.e., the 

instrument has thus no direct sight on the reactor core with all its gamma 

and fast neutron radiation perturbing measurements and raising safety 

issues), and it allows the installation of so-called “cold” (or “hot) sources 

in the region of maximum flux, which would not be feasible too close to 

the reactor core. A vessel containing 25 liters of liquid deuterium acts as a 

cold moderating source, providing a velocity distribution with T 25 K, 

thus “cold” neutrons of longer wavelength and less energy, and a block of 

hot graphite of about half this volume provides a distribution with a T

2000 K), thus, “hot” neutrons of shorter wavelength and more energy. 

Scattering geometry and definition of scattering cross-section. Consider 

a beam of thermal neutron incident on a target (i.e., the sample), so that 

every neutron has the same energy E0, wavelength 0 and wave-vector 

2k  (Fig.2.23): 
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Figure 2.23 A beam of thermal neutrons incident on a sample. 

Various types of measurement can be made on the neutrons after they 

have interacted with the sample. The result, in each case, can be 

expressed in terms of a quantity known as a scattering cross-section, 

defined as d  in Fig. 2.24. 

 

Figure 2.24 Scattering process of a neutron beam by a sample is described in terms of 

polar coordinates. 
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A neutron counter (detector) able to measure the number of neutrons 

scattered in a given direction as a function of their energy E` is set-up. If 

the distance of the counter from the target is assumed to be large 

compared to the dimensions of the counter and the target, then the small 

angle d  is well defined. To specify the geometry of the scattering 

process, polar coordinates will be used, taking the direction of the incident 

neutrons as the polar axis. The direction of the scattered neutrons will be 

Then the partial differential cross-section, 
'

2

dEd

d
,can be introduced, 

defined by the number of neutrons scattered per seconds into a small solid 

angle d centered around the k` direction in the direction with final 

energy between E` and E`+dE` over Edd (where is the flux of the 

incident neutrons per unit area - area perpendicular to the direction of the 

neutron beam - and per unit time [area
-1

 time
-1

]). The dimension of the 

cross-section is an area, given usually in the unit “barn”: 1 barn = 10
-24

 

cm
2
. 

As the counter cannot perform energy analysis (but only the number of 

neutrons scattered per second into the solid angle d  in the direction 

the cross-section corresponding to these measurements, known as 

the differential scattering cross-section, is defined by the following 

equation: 



89 

 

0

2

Ed
Edd

d

d

d
Eq. 2.22

When all the neutrons scattered per unit time are detected, the total 

scattering cross-section is defined as: 

onsalldirecti

tot d
d

d
                                Eq. 2.23 

The cross-sections are the quantities measured in a scattering experiment 

[19]. 

The energy of thermal neutrons is not high enough to cause any change of 

the internal energy of the nucleus. Nevertheless, the scattering is not only 

elastic, as collective vibration motion modes (i.e., phonons) can be 

triggered. In many cases, though, one considers the scattering as purely 

elastic when it comes to diffraction studies of static (time-averaged) 

crystal structure without this approximation having a significant impact 

on the structural result.  

The scattering length. The diffraction theory assures that when waves of 

any kind are scattered by objects whose linear size is smaller than the 

wavelength , then the scattered waves are spherically symmetric (i.e., 

their amplitude depends only on the modulus r ). 

For a neutron coming along z, a plane wave is obtained: 

ikz

inc Ae                                        Eq. 2.24 

For a scattered neutron we use a spherical wave, such as: 
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rki

SC e
r

b
A                                  Eq.2.25 

The constant b is experimentally determined and it is defined as the 

scattering length. It is dependent on the particular nucleus. It is a length 

and usually given in femto-meters (thus, roughly the “size” of a nucleus): 

1 fm=10
-15

 m. 

In Eq 2.25, the sign „-„ is arbitrary and corresponds to a positive value of b 

for a repulsive potential. Isotopes of the same element can be different in 

sign and value of b: hydrogen atom (to 99.99% the isotope 
1
H, the proton) 

is one of those rare elements for which b is negative (b = -3.7390), while 

for its isotope deuterium (
2
H) it is positive (b = 6.671). 

 

Figure 2.25 A spherical wave is used for describing a scattered neutron. b is the 

scattering length, experimentally determined, characteristic of the nucleus (Picture 

adapted from "Neutron Diffraction and Reflectometry", SISN Summer School 2012 - 

notes). 

 

Two different kinds of nuclei exist: 
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i) Nuclei with complex b and strongly dependent on the incident neutron 

energy. In this case, the scattering is resonant and associated with the 

formation of a compound nucleus (namely, the original one plus the 

neutron) with an energy close to the one of the excited state. 

The imaginary part of the scattering length is caused by absorption: these 

nuclei absorb neutrons strongly (e.g., 
10

B, 
113

Cd, 
155

Gd and 
157

Gd). 

ii) Nuclei with a negligibly small imaginary part of b, and b independent 

on the neutron energy (in the energy range of neutrons used for scattering 

experiments). Most nuclei are of this type. 

The value of b depends on the specific nucleus and on the spin of the 

nucleus-neutron system. 

 

D20 

The 2-axis diffractometer D20 is capable to follow ultrafast reactions over 

second timescales. It is equipped with a 1536 cell linear-curved PSD with 

a definition of 0.1° in 2θ per cell, enabling extremely rapid count rates 

with a neutron flux of up to 10
8
 n/cm

2
sec

-1
, at the sample position [20]. 

Fig. 2.24 shows a schematic representation of D20. 

In the frame of this study we used out of a choice of four different 

monochromators the variably vertically focusing germanium 

monochromator for higher take-off angles and thus higher resolution. It is 

composed of eleven mosaic crystal blades cut in the crystallographic 

orientation (113). In total, the monochromator arrangement is 6 cm wide 
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and 30 cm high. The blades above and below the central one can be 

inclined collectively to provide optimum vertical focusing of the incident 

neutron beam on the height of the 3.2 m distant sample of up to 50 mm 

height. The resulting higher vertical divergence has hardly any impact on 

the resolution of the diffraction pattern and is thus common practice in 

neutron powder diffraction, where one has to face a relatively low 

intensity as compared to modern synchrotron X-ray sources.  Through 

rotation of the monochromator out of the mirror symmetry position, one 

can access further Bragg reflections obeying (hhl) with h and l impair or h 

and l even and the sum of h+h+l being a multiple of 4 (e.g., (224), but not 

(112), (113), but not (226)). In our measurement configuration, the 

monochromator take-off angle was set to 2θ = 90º, providing us a 

wavelength of λ = 1.54 Å when using the reflection (115) with a flux at 

the sample position of about 10
7
 n cm

-2 
s

-1
. 

The precedent on using D20 for reactions of this type has been created by 

the pioneering work of Kisi et al., who demonstrated that self-propagating 

high-temperature synthesis (SHS) could be followed over seconds with 

300-millisecond collection of diffraction profiles suitable for kinetic 

analysis and, potentially, structure refinement [21-25]. 
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Figure 2.26 Schematic of 2-axis diffractometer D20, at the ILL (Picture from: 

http://www.ill.eu/instruments-

support/instrumentsgroups/instruments/d20/description/instrument-layout/). 

 

A sample prepared as described above (Section 2.2, Paragraph 2.2.2), 1 

cm thickness and 10 mm diameter was used for all the samples described 

in this work. The pellet was positioned into an open quartz tube (10mm 

inner diameter). In all the cases, pellets were embedded in graphite, acting 

as MW susceptor. Acquisition times for a single diffractogram were in the 

range eight-twelve seconds, and different take off angles and wavelengths 

were tested. The best working set-up was found to be with a 90° take off 

angle and =1.56Å.    

2.3.3 Powder X-ray Diffraction  

Powder X-ray diffraction (PXD) is a rapid and accurate method to identify 

the crystalline phases – as well as atomic positions precisely - present in a 
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sample with relatively small amount of sample needed (ranging between 5 

- 50 mg). This technique can be very useful in the case of carbides, where 

it is difficult to grow single crystals, due to their high melting point and 

high hardness. 

In a powder X-ray diffractometer, electrons are emitted by a filament, 

usually tungsten, and accelerated by a high potential difference (20 - 50 

kV) to strike the anode (water cooled), which emits sharp and intense X-

ray peaks (K , K ) superimposed to a continuous spectrum of white X-

radiation. K  and K  have frequencies characteristic of the metal used as 

an anode. They depend on the difference of energy between the electron 

ejected from the innermost K shell (n=1) by the bombarding electrons, and 

the electron from outer shells to fill this vacancy. Electrons descending 

from the L shell (n=2) give K  lines and electrons from the M shell (n=3) 

give the K  lines. The target metals most commonly used in X-ray 

crystallography are copper (Cu) and molybdenum (Mo), chosen because 

their wavelengths are close to the interatomic distances of crystals (K  

lines at 1.5418 Å for Cu and K lines at 0.7107 Å for Mo). 

Monochromatic radiation is often used, produced by filtering the K  line 

by using a thin metal foil of the previous element (Z-1) in the Periodic 

Table as filter; (for example, nickel (Ni) filters out the K  line of Cu, while 

niobium (Nb) is used for Mo). Otherwise a single crystal, usually graphite, 
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can be used to select a monochromatic beam of X-rays by reflecting the 

white radiation off a graphitic plane. 

Powder X-ray diffraction sample preparation. Samples were prepared as 

described in Paragraph 2.2. When using a flat plate in Bragg-Brentano 

reflection configuration (see following section), part of the powder was 

then spread uniformly over a glass sample holder (18 mm  0.8 mm), 

assuring a flattened upper surface using a glass slide. This is important for 

preventing displacement errors in the X-ray beam that happen if the 

sample sits above the surface of the slide.  

Powder X-ray diffraction data collection and analysis. In the Bragg-

Brentano geometry, the flat plate sample is irradiated using a stationary 

source and a moving detector to measure the intensity of the diffracted X-

rays (Fig. 2.27). In particular, the detector is mounted on a moving arm, 

activated by a stepper motor, while a second stepper motor – synchronized 

with the first one – moves the sample at a half of the speed of the detector. 

This assures that, when the detector is tilted at an angle 2 the sample is 

tilted at an angle and the perpendicular of the sample is always the 

bisector of the incident and the diffracted beam. In this geometry, the 

lattice planes measured are the ones parallel to the sample surface. The X-

rays penetrate to a certain depth into the sample, where they are diffracted. 

The Bragg-Brentano geometry is a type of reflection configuration where 

the source and detector of X-rays are positioned at the same angle with 

respect to the sample.
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Figure 2.27 Bragg-Brentano geometry. Sample holder is in position “S”. In black, 

collimators (Picture taken from:[5]). 

 

The XRD measurements were performed using an X‟Pert PRO MPD 

diffractometer, configured with Cu K  radiation X-ray source and an 

X‟Celerator solid-state detector. The standard operating power for the X-

ray tube was 40 kV and 40 mA. Collimation of the X-ray beam was made 
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through a 10 mm beam mask, 0.04 rad Soller slits, 1/2° divergence slit and 

a 1/2° anti-scatter slit for a standard run, in order to prevent both 

horizontal and vertical divergence of the X-ray beam. Two types of scan 

were run, a standard 1 h phase identification scan or a 12 h overnight scan 

to have better data that could be used for structural refinement. The 

standard scan was run between 5° and 85° 2 , step size of 0.0167° 2  

whereas the overnight scan was run between 10° and 120° 2 , step size of 

0.0167° 2  and time per step 1120.14 s step
-1

.  

 

2.3.4 Rietveld refinement and Sequential refinement strategy 

Neutron and X-Ray diffraction of powder samples give a pattern 

characterised by reflections (peaks in intensity) at certain positions. The 

Rietveld refinement [26, 27] uses the height, width and position of these 

reflections to extract detailed crystal structure information. This method 

also allows phase fractions in multi-phase mixtures to be determined 

quantitatively, from powder diffraction data. It makes use of fundamental 

analytical profile functions and a least-squares approach to refine a 

theoretical line profile until it matches the experimental scan [28].  

For a Rietveld refinement, it is essential that the powder diffraction data is 

collected appropriately. Geometry of the diffractometer, quality of the 

instrument alignment and calibration, the radiation used (e.g. conventional 

X-ray, synchrotron X-ray or neutron), the wavelength, appropriate sample 

preparation and thickness, slit sizes, and necessary counting time are 



98 

 

factors that must be well known before refinement. Also, if the relative 

intensities and/or the 2  values (and thus the d-spacings) are not correct, 

the structure refinement will be always affected by errors [29].  

Structural refinement starts by using a trial structure as starting model, in 

case the structure to refine is only slightly different. When the structural 

model is very crude, it is advisable to analyse first the pattern with the so-

called profile matching method without structural information in order to 

determine accurately the profile shape function, background and cell 

parameters before running the Rietveld method in a strict sense.  

A powder diffraction profile must be calculated and compared with the 

experimental profile. The starting structure can then be gradually modified 

and refined by simultaneously changing parameters in the model. The 

final target is to achieve the best fit with the entire experimental powder 

diffraction pattern.  

The parameters that the user can refine are divided into two groups:  

I) Structural parameters, which describe the contents of the unit cell, 

including the atomic temperature factors, co-ordinates and occupancies of 

each atom; 

II) profile parameters, which in turn could be divided into two further 

subgroups: 

-  instrumental parameters (resolution function, peak shape, 

wavelength, zero-shift); 

- sample-dependant parameters (peak-broadening, unit cell metrics).  
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The refinement process is a least squares approach, during which the 

function M is minimised: 

2)( calc

i

i

obs

ii yywM                             Eq. 2.26 

Here wi is a weighting factor given by obs

iy
1 , obs

iy are the observed 

intensity at each step/point i, and calc

iy is the calculated intensity at each i
th

 

step. 

The calculated intensities calc

iy  are obtained from the |FK|
2
 values, 

calculated from the structural model, summing the calculated 

contributions from Bragg reflections within a specified range k with the 

background, bi : 

k

bikkiKk

calc

i yAPFLsy )22(
2

               Eq. 2.27 

where s is the scale factor, Lk contains Lorentz polarisation and 

multiplicity factors,  is a reflection profile function, Fk is the structure 

factor for the k
th

 Bragg reflection, Pk is the preferred orientation function, 

A is an absorption factor and ybi is the background intensity at i
th

 step. 

From Equation 2.27, the relationships between the variable parameters and 

the intensities are not linear. This is why the starting model must be as 

close as possible to the correct one, otherwise the non-linear least squares 

procedure will either diverge or lead to a false minimum instead of the 

global minimum. Other considerations from Eq. 2.27: 
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• , the reflection profile function approximates the effects of both 

instrumental features and possible specimen features such as aberrations 

due to absorption, specimen displacement and specimen-caused 

broadening of the reflection profiles. 

• A, the effective absorption factor, differs with instrument geometry. It is 

usually taken to be constant for the Bragg-Brentano geometry, the most 

commonly used. 

• ybi, the background intensity, can be obtained in different ways: from an 

operator supplied table of background intensities; linear interpolation 

between operator selected points in the pattern; or a specific background 

function. (When a background function is used, then ybi is generally a 

cosine Fourier series with a leading constant term: 

N

j

jlbi jPBBy
2

)1(*cos                      Eq. 2.28 

Different packages for Rietveld refinement are available. In this thesis, 

both neutron and X-ray patterns were analysed by using the program 

Fullprof [30]. In particular, in the case of in situ neutron diffraction, 

considering the numerous diffraction patterns collected over the time, the 

program Fullprof can run in so-called sequential mode, which consists in 

using the resulting refined parameters from the preceding pattern as the 

starting parameters for the next [31]. 

In Fullprof, it is advisable to refine parameters in the following sequence:   

1. Scale factor.  
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2. Zero point (2 0) of detector, 1
st
 (constant) background parameter and 

lattice constants. In case of a non-constant background, it may be wise to 

refine at least two (polynomial) background parameters, or fix the 

background using a linear (cubic spline) interpolation between a set of 

fixed points provided by user.  

3. Refinement of atomic positions and (eventually) an overall Debye-

Waller factor
10

, especially for high temperature data.  

4. Peak shape and asymmetry parameters.  

5. Atom occupancies (if vacancies of mixed occupancies are considered).  

6. Turn the overall temperature factor into individual isotropic thermal 

parameters.  

7. Additional background parameters (if background is refined).  

8. Individual anisotropic thermal parameters - if the quality of the data is 

good enough.  

9. In case of constant wavelength neutron data, the parameters Sycos 

and/or Sysin to correct for instrumental or physical aberrations with a 

cosine or sinus angular dependence, i.e., a real – or virtual – displacement 

of the sample parallel or perpendicular to the incident beam (in the case of 

Debye-Scherrer geometry or a 2-axis neutron diffractometer). 

10. Microstructural parameters: coherently scattering domain size and 

microstrain effects.  

                                                           
10 The Debye-Waller factor describes the attenuation of x-ray scattering or coherent 

neutron scattering caused by thermal motion. It has also been called the B factor or the 

temperature factor. 
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The pseudo-Voigt function is normally used to fit the observed peak 

shapes. In contrast to the mathematically more meaningful Voigt function, 

a true correlation of Gaussian (G) and Lorentzian (L) function, is a linear 

combination of a Lorentzian (L) and a Gaussian (G) function, which is far 

easier to evaluate in a computer program, and is described as: 

GL )1(                                        Eq. 2.29 

is the mixing parameter refinable as a linear function of 2 The 

Gaussian (G) and Lorentzian (L) components of the peak are represented 

by the equations 2.30 and 2.31:
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In both Eq. 2.30 and 2.31, k2 is the calculated position for the k
th

 Bragg 

peak corrected for the zero-point and Hk is the full-width-at-half-

maximum (FWHM) of the k
th

 Bragg reflection. Hk varies with the 

scattering angle k2  and is modelled as: 

WVUHk tantan22                            Eq. 2.32 

Eq. 2.32 is known as Caglioti formula [32]. U, V and W are refinable 

parameters and depend mostly on the instrument, which rules the Gaussian 

components of the peak shape, the dominant contribution for medium 

resolution instruments, i.e. neutron diffractometers, where the instrumental 

contribution to half width outweights the Lorenzian contribution mostly 
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due to sample imperfection. One of the Lorenzian peak broadening effects, 

the ones caused by small particle sizes in the sample, can be quantified 

through the Scherrer formula.  

In order to understand if the refinement is proceeding satisfactorily and/or 

has reached completion, reliability factors (R-factors) are reported at the 

end of each least squares iteration. These indices expressed in Eq. 2.33-

2.36: 
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In Eq. 2.34, Rexp is defined from the statistics of the refinement, where N is 

the number of observations, P the number of refinable parameters, C the 

number of constraints and ωi is a weighting factor. From a mathematical 

point of view, Rweighted profile (Rwp) is the most meaningful of the R-factors 

because the numerator is the residual being minimized (see Eq. 2.26), 

making Rwp the most appropriate to reflect the progress of the refinement: 
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Another useful indicator is the RBragg factor: it measures the agreement 

between the intensities calculated from the model ( calc

jI  ) and those 
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measured experimentally ( obs

jI  ) over all Bragg reflections (summation 

index j). Unlike Rprofile, it depends only on the fit of the structural 

parameters (and not on the profile parameters): 

j

obs

j

j

calc

j

obs

j

BBragg
I

II

RR                         Eq. 2.36 

The final measure of the whole fit, minimised during the refinement, is the 

goodness of fit or chi-squared parameter and is defined as: 

2

exp

2

R

R ofileweightedpr
                           Eq. 2.37 

Therefore, for a good fit, the Rweighted profile should approach the statistically 

expected R factor (Rexp). 
2
 should approach one from above but never 

become smaller than one, which would mean a refinement of a model to 

the point to fit the counting errors. If this happens it could mean that the 

counting error bars are overestimated. 

 

2.3.5 Raman Spectroscopy 

Raman spectroscopy is a vibrational spectroscopic technique used to 

observe vibrational and rotational modes in a system (i.e., atom or 

molecule). It is non-destructive, easy to use and precise [33]. Typically, a 

sample is illuminated with a laser beam and when light is scattered from 

the sample, most photons are elastically scattered (Rayleigh scattering), 

which means that the scattered photons have the same energy as the 
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incident photons. Raman scattering is generally very weak and it occurs 

when light impinges upon a sample and polarizes the electric distribution 

around the nuclei, deforming the electron cloud with respect to the 

vibrational coordinate. This creates an unstable state called a “virtual 

state”, a very short lived distortion of the electron cloud and the photon is 

quickly re-radiated. When the system relaxes, it returns to a different 

vibrational state. The difference in energy between the original state (E0) 

and this new state (E1) leads to a shift in the emitted photon‟s frequency 

away from the excitation wavelength. This is a different phenomenon 

from absorption, where the molecule is excited to a discrete energy level 

(for example, see IR absorption in Fig. 2.27). 

If the final vibrational state of the molecule is more energetic than the 

initial state (E1 - E0>0), then the emitted photon will be shifted to a lower 

frequency (Stokes shift). If the final vibrational state is less energetic than 

the initial state (E1 - E0<0), the emitted photon will be shifted to a higher 

frequency (anti-Stokes shift). Since the virtual states are not discrete 

states, but are created when the laser beam causes polarization in the 

system analysed, the energy of these states is determined by the frequency 

of the light source used. Another important thing to consider is that Raman 

scattering does not require matching of the incident radiation to the energy 

difference between the ground and excited states (as it happens in IR 

spectroscopy). 
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Figure 2.28 Spectroscopic transitions underlying several types of vibrational 

spectroscopy. The arrow line thickness is about proportional to the signal strength from 

the different transitions. 

 

The population of each state can be determined using the Boltzmann 

equation. In the simple case at room temperature, the number of molecules 

expected in a vibrational state other than the ground state will be small, 

which means that anti-Stokes scattering will be weak if compared to 

Stokes scattering. Conversely, anti-Stokes scattering will increase relative 

to Stokes scattering as the temperature increases. Therefore, Stokes and 

anti-Stokes Raman peaks are symmetrically positioned about the Rayleigh 

peak, but their intensities are very different depending on the population of 

the various states of the system. The Rayleigh process does not involve 

any energy change and will be the most intense process, while – as said - 

Raman scattering is a weak process. However, modern Raman 
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spectrometers permit very high power densities to be delivered to very 

small samples.  

In Raman spectroscopy, the interest is focused on the interaction between 

radiation (usually characterized by its wavelength (λ)) and the states of the 

molecule being examined. The units are expressed in wavenumbers, k, 

which have units of inverse length (
10

11
k , where 0 is the 

excitation wavelength and 1 is the Raman spectrum wavelength) as these 

values vary linearly with energy (Eqs. 2.38-2.40): 

c                                       Eq. 2.38 

h
E                                      Eq. 2.39 

1
c

k                                   Eq. 2.40 

A Raman spectrum consists of scattered intensity plotted against energy. 

After the sample is illuminated with a laser beam, light from the 

illuminated spot is collected with a lens and sent through a 

monochromator. Wavelengths close to the laser line, due to elastic 

Rayleigh scattering, are filtered out while the rest of the collected light is 

dispersed onto a detector. Given that spontaneous Raman scattering is 

typically very weak compared to the intense Rayleigh scattered laser light, 

instrumentation almost universally employs notch or edge filters for laser 

rejection. On many modern Raman spectrometers, the sample is simply 

presented to a microscope which is an integral part of the spectrometer. 
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Microscopes can be employed when using laser sources emitting in the 

visible region of the spectrum. This means that the scattered Raman 

radiation can pass efficiently through and be focussed by the glass lenses. 

The use of microscope has many advantages. For example, it is possible to 

look at extremely small samples and therefore, overcoming the fact that 

Raman scattering is weak, to detect very small amounts of material. When 

using a microscope on small samples, the beam diameter reduces very 

significantly and is often much smaller than the total size of the sample. 

The focal point will then determine which part of the sample is being 

analysed. This means that to have a reliable analysis of the sample, a 

number of measurements should be taken of different parts of the sample. 

Furthermore, using a microscope can discriminate against fluorescence 

from a sample matrix since only the chosen microscopic feature in the 

sample is irradiated at high power, particularly when the microscope is set 

up confocally. The advantages are that coupling visible laser sources to the 

microscope optics makes the detection system at the sensing points 

extremely efficient [34].  

In the confocal arrangement, the laser is focussed through a pinhole, 

which enables only light focussed on the plane containing the sample to be 

collected efficiently. A plasma filter is also employed to remove any other 

radiation apart from the main exciting line in the laser. The radiation is 

then arranged to hit a notch filter. These interference filters work well 

when the beam is perpendicular to the plane of the filter. When coming 
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into contact with the filter, the laser radiation is entirely reflected into the 

microscope, while the scattered radiation gets transmitted, because it is at 

the ideal angle for the filter. Once transmitted, the scattered radiation then 

passes into the monochromator and onto the CCD detector. 

Raman spectroscopy requires few steps for the preparation of the sample. 

For the analysis of samples described in this thesis, a small amount of 

ground powders from reacted pellets were compacted inside a small O-

ring (0.5 cm in diameter) and sealed on to a glass slide. The glass slide 

(which did not interfere with the measurement as it scatters weakly in 

Raman spectroscopy) was then put under the microscope lens in the 

Raman spectrometer and powders were examined directly by Raman 

spectroscopy at room temperature. A Horiba LabRAM HR confocal 

microscope system with a 532 nm green laser (Laser Quantum Ventus 

532, 150mW) was used. A hole aperture of 50 μm, 600 gr mm
-1

 grating 

and a Synapse CCD detector were used for the experiment. 

Raman spectroscopy is commonly used in materials chemistry, since it 

provides a fingerprint to indentify the sample. Raman-active modes in fact 

can be found for crystals that show symmetry by using the appropriate 

character table for that symmetry group.  

When radiation interacts with the material, it induces vibrations through 

the whole lattice and these can form along the direction of propagation of 

the radiation (longitudinal or L modes) or at right angles to it (transverse 
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or T modes). These bands are called lattice modes and can be used in 

Raman spectroscopy for a vast range of studies.  

In the case of this thesis, only few processed pellets of MW-formed TiC 

were analysed by Raman spectroscopy. Stoichiometric TiC has no Raman-

active vibrational modes and neither does Ti. Carbon graphite gives 

signals at 1320 and 1590 cm
-1

,
 

which are assigned to A1g and E2g 

vibrational modes, respectively
 
[35]. In commercially available TiC, there 

are also 3 peaks at 260, 420 and 605 cm
-1

 (comparable with previous 

publications, [35, 36]). The 420 and 605 peaks are showed in Fig. 2.28(b), 

which are the product of two separate overlapping peaks [35]. The 

presence of these peaks indicates unreacted carbon in commercially 

available TiC.  

 

Figure 2.29 Raman spectra of commercially available TiC (as in ref:[35]). 
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2.3.6 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) is a technique capable of extracting 

information such as composition, particle size, crystal morphology and 

surface defects. It makes use of an electron beam focused on the sample, 

which produces several types of signals:  

- secondary electrons. Their emission is used to give a map of the 

surface topography and they come from a volume near the beam‟s 

impact area; 

- backscattered electrons (BSE). Their signal is related to the atomic 

number Z of the elements in the sample and are capable of providing 

information about the distribution of different elements;  

- Auger electrons (and characteristic X-rays). When an inner shell 

electron from an element contained in a sample is removed by the 

electron beam, a higher energy electron (Auger electron) fills the 

vacancy and gives energy in the form of characteristic X-ray 

radiation. This is used to give both qualitative identification and 

quantitative compositional information and the technique associated 

with this process is known as energy dispersive spectroscopy (EDS) 

or energy dispersive analysis of X-rays (EDAX or EDX).   

- photons with various energies. 

The basic components of a SEM are shown in Fig. 2.29 and comprise a 

lens system, an electron gun, an electron collector and visual and 

recording cathode ray tubes. 
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Figure 2.30 General set-up of a SEM microscope. 

The electron column consists of an electron gun and two or more electron 

lenses, all under vacuum, where the electron gun provides a large, stable 

current in a small electron beam (with energy range of 1 - 40 keV) [4]. 

Since the beam diameter produced directly by the conventional electron 

gun is too large to generate a sharp image at high magnification, electron 

lenses are used to reduce the diameter of the electron beam and focus the 

beam on the specimen (magnification control).  

Different detectors can be found on a SEM, depending on which signal is 

analysed:  

- the secondary electrons, SEs, are collected by an electron detector 

consisting of a scintillator, a light pipe, and a photomultiplier tube, 

located to the side of the specimen, with the specimen usually tilted 

towards it (Fig. 2.29).  
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- Backscattered electrons (BSEs) are most efficiently and selectively 

collected with a detector positioned on top of the sample, which is 

either a semiconductor or a scintillator-photomultiplier detector. 

The three major electron beam parameters define sharpness, contrast and 

depth of field in SEM images [4]: 

• the spot size dp, defined as the diameter of the final beam at the specimen 

(electron probe). This should be as small as possible to achieve the highest 

resolution image; 

• electron-probe current ip, defined as the current in the final probe which 

impinges upon the specimen and generates the various imaging signals. 

This should be as large as possible for the best image quality (and for X-

ray microanalysis); 

• the electron-probe convergence angle αp, defined as the half-angle that 

the cone of electrons at the specimen makes with the centreline of the 

beam. It should be as small as possible in order to have a large range of 

heights (on the specimen) in focus at the same time. 

The actual formation of a contrast image requires a scanning system to 

construct the image point by point across the sample surface. Two pairs of 

electromagnetic deflection coils (scan coils) are used to generate and 

control a rectangular raster of the beam on both the specimen and the 

viewing screen.  

The electron gun is the most fundamental part of the SEM microscope. 

Two types of electron source are generally possible: thermionic and field 
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emission, which vary in the amount and stability of the emitted current, 

the size and the lifetime of the source. When the emitter material (the 

source of electrons) is heated to a high temperature, the small fraction of 

electrons in the highest energy state, the Fermi level, acquires enough 

energy to overcome the work-function energy barrier, Ew, of the material 

and escape into the vacuum. The cathode current density obtained from 

the filament in the thermionic emission is strongly affected by the 

temperature and the work function, Ew. Materials of low Ew are used, since 

it is desirable to operate the electron gun at the lowest possible 

temperature to reduce evaporation of the filament. The triode electron gun 

is the most common electron gun. It consists of a tungsten filament 

serving as the cathode, the grid cap, and the anode. The typical tungsten 

filament is a bent hairpin wire maintained at a high negative potential that 

is heated resistively. At the operating temperature, the tungsten wire emits 

electrons in all directions that are accelerated by the anode potential and a 

grid cap is used to focus electrons inside the gun and control the amount of 

electron emission. A hole in the anode allows a fraction of these electrons 

to continue down the column towards the lenses. Tungsten filaments, 

although characterized by low brightness, are commonly employed as 

cathodes in electron microscopy (SEM and TEM) because of advantages 

such as reliability, well understood properties and relative low cost. In 

particular for SEM applications, where high brightness is not necessary at 

low magnifications or where stable high currents are required, as in EDX, 
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the thermionic tungsten filament represents the best choice [4]. When it is 

essential to improve image resolution and therefore reduce the electron-

probe size without causing a loss of current in the probe, increasing the 

electron gun brightness is required.  

For the characterisation of some of the samples in this work, a 

Philips XL30 ESEM, working in high vacuum mode was used. An 

accelerating voltage of 25 kV was applied. The working distance for 

imaging was set at 5 mm. 
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Chapter 3 

Design and Implementation of the in situ 

Reactor. 

 
3.1 Introduction 

In this chapter, the design and implement of a novel instrumentation that 

permits in situ probing of MW-induced solid-state reactions via time-

resolved PND techniques is described. Even though MW synthesis has 

been observed to reduce reaction times by several orders of magnitude 

compared to traditional high temperature routes [1-9], until now, 

limitations of in situ measurement techniques have meant that it has been 

difficult to reveal the reaction pathways and understand the mechanism of 

activation [10]. 

This part of the project - which represents the main goal of the present 

thesis - took about two years to be realised.  

 

The project primarily focused on the synthesis of TiC in the bespoke 

reactor, extending the methodology to other binary and ternary transition 

metal carbides systems – namely those of the group IV, V and VI 

transition metals (as presented in the following Chapter 4)  

The construction of the reactor consisted of two major steps: 

1) design and development of the MW reactor (Section 3.2);  
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2) optimisation of the remote control system for in situ 

experimentation (Section 3.3).  

 

3.2 Step one. Design of MW set-up and reactor on D20.  

The single mode MW reactor system used in the experiments conducted in 

this thesis is composed of a Sairem GMP20K MW generator, with a 2 kW 

magnetron operating at 2.45 GHz; an isolator; a quartz window; a manual 

variable 3-stub tuner and a power supply; a MW survey meter is added to 

the system to warn the operator in case of MW leakage. 

The MWs are transmitted to the sample via the cylindrical applicator – 

sometimes also referred to as a reactor itself - where the sample is located 

and the interaction between the sample and the MWs occurs (Section 

3.2.1).  

A detailed description on each of these parts of the MW set-up have been 

extensively given in Chapter 2, paragraph 2.1.1. 

For the purpose of this project, commercially available applicators suitable 

for MW-induced reactions showed three major disadvantages: 1) they are 

not implemented for D20 beam line, which has precise geometry 

constraints (i.e., the position of the neutron beam is fixed, as well as the 

detector); 2) their component construction materials could give problems 

in terms of neutron activation (i.e., brass, copper, ...)
11

; 3) their shape, 

                                                           
11 The decay life-time,  of Al is ≈ 2.5 min (therefore, after about 6  (=15 min) the risk 

of contamination is below the threshold. The  of brass and copper is significantly longer 

(larger than few days) which makes these materials dangerous for beam line users.  
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mostly rectangular, could lead to very complex diffraction patterns. In 

order to respond to these points, an aluminum (Al, 4 mm thickness) 

applicator has been designed and built in house. Al is, in fact, a good 

compromise in terms of costs and problems of neutron activation on 

exposure to the beam (addressing both point 1 and 2 above). Moreover, 

1 mm of Al gives an attenuation of neutron beam intensity of only ca. 1% 

[11] (by comparison, 1 m of air gives the same attenuation percentage) 

which is acceptable for the purposes of the present experiments.
12

  

Point 3 has been overcome by using a cylindrical applicator geometry, 

which does not contribute significantly to a neutron diffraction 

background, thus reducing complications in data reduction (Fig. 3.1).  

 

Figure 3.1. Final shape of the applicator (AutoCAD drawing): 80 mm diameter and 352 

mm length. It responds to multiple problems, such as avoiding interference with both the 

sample and the neutron beam, fitting D20 geometry constraints and does not exhibit 

permanent neutron activation on exposure to the beam.  

                                                           
12

 Other possibilities could have been: TiZr, which, while does not absorb neutrons - as it 

is composed of two elements whose averaged scattering length (b) is ≈0 - on the other 

side it is an expensive choice; vanadium - again it does not absorb neutrons, as it is 

composed of two isotopes whose averaged b≈0, however, when heated, it oxides soon; 

and steel, which could be a good choice in terms of ease of manufacturing, but it includes 

cobalt and activated cobalt is a problem.  
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The choice of the length of the applicator (352 mm) was given by the fact 

that originally this applicator was intended to be used in vacuum as well as 

in air. In the vacuum case, it needed to be adapted to a vacuum vessel 

already in use on D20 beam line.  

Regarding the applicator, simulations for predicting the evolution of the 

electromagnetic field inside the reactor have been performed, prior the 

final design of the set-up.
13

  

Fig. 3.2(a) shows a simulated 3D image of the section of the system that 

emerges from the MW generator, isolator and tuner. Only the inner 

dimensions of the system are shown since the MW field does not penetrate 

the walls of the waveguide, so there is no need to include the thickness of 

the walls in the model (similarly, flanges are not explicitly shown). The 

incident MW radiation enters from the left hand side of the system as 

shown in Fig. 3.2(a) (the blue rectangular section) and propagates into the 

vertical section of the waveguide. A choke is also included for additional 

in-situ monitoring, such as optical pyrometry (even if in the present case a 

crystallographic thermometer - as explained in Section 2.1.2 - was chosen 

for temperature measurements, a choke was included in the simulation 

anyway, in case the pyrometry had to be used for quick check during 

optimisation of the experimental set-up). 

                                                           
13 Those simulations have been performed at the School of Engineering, University of 

Glasgow, by Dr. Timothy Drysdale. 
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A standing wave is formed in the applicator - because it is terminated with 

a short circuit, i.e., a metallic plate which closes the applicator at the 

bottom. The first electric field maximum is found ~70.3 mm above the 

short circuit, which is a quarter of the wavelength, ( =281 mm, when 

running at 2.45 GHz frequency). 

 

(a) 

 

(b) 

Figure 3.2 (a) 3D image of the applicator (and 90° bend waveguide); (b) Plot of the 

electric field magnitude. Red spots indicate the position of the maxima of the 

electromagnetic field inside the cylindrical reactor. These are also the positions where the 

maximum MW/sample coupling can be found. 

Choke for pyrometer (for 

temperature reading) 
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Being a standing wave, other maxima will be periodically found in the 

applicator (red spots in Fig. 3.2(b)). This presents the possibility of 

displacing the sample within the cavity to locate another point of 

maximum coupling. 

The guided wavelength ( g) for this applicator is calculated in Eq. 3.1 

(assuming the lowest cutoff mode, which is TE11
14

, with a cutoff 

wavelength, c = 3.41 (radius of the applicator)): 

2

0

0

1
c

g                                Eq. 3.1 

where 0 is freespace wavelength ( 0=c/  mm – in this case

As the radius of the applicator is 40 mm, giving λg = 277 mm, it would be 

predicted to find the first electric field maximum approximately 70 mm 

from the short circuit with further maxima being found periodically. 

Simulations shown in Fig 3.2 were used as a starting point for the MW 

apparatus to be build on D20. Two trials (which are shown in Fig. 3.3 (a) 

and (b)) - tested during several beam times, over two years -  were made 

before finding the working geometry (shown in Fig. 3.4). 

The first attempt started from a bend configuration (Fig. 3.3(a)), in which 

the MWs were immediately turned horizontally through a 90° H bend into 

the isolator and the three-stub tuner and then turned again vertically 

through a 90° E bend into the rectangular-to-cylindrical transition 

                                                           
14 As explained in Chapter 2, section 2.1, paragraph 2.1.1 
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waveguide. This allowed a vertical position for the cylindrical applicator, 

crucial to enabling easy charging the sample from the bottom of the cavity 

(Fig. 3.4). Moreover, such configuration facilitates the vertical motion of 

the sample so as to maximise the MW coupling position. In this regard, 

the positions of the maxima of the electromagnetic field are perturbed 

when a sample is placed into the applicator, depending on the dielectric 

properties of the sample itself. Therefore, once the reaction tube is placed 

into the applicator, it is possible that some MW parameters would need to 

be tuned and optimised until the best working conditions are satisfactorily 

achieved (e.g., maximising forward power transferred into the sample and 

hence maximizing the heating).  

This first configuration did not lead to the expected results, possibly due to 

the presence of the bend waveguides, which complicated the shape of the 

MW field. Therefore, the set-up has been simplified and in a second 

attempt (Fig. 3.3(b)), by removing the H bend waveguide and retaining the 

E bend (in order to leave the applicator in a vertical position). 

However, again this second set-up has lead to less intense E-field strength 

at the sample position. In fact, no reactions were observed. 
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(a) 

 

(b) 
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(c) 

Figure 3.3. (a) First MW set-up used on D20. It shows two bend waveguides (after the 

isolator and before the transition waveguide). (b) Diagram of the first MW set-up. (c) 

Second configuration of the set-up, on D20. The first bend waveguide (after the isolator) 

has been removed. Both solutions were unable to transfer the necessary power into the 

applicator and at the sample position. 

 

A new, straight configuration was then investigated which following 

testing the final working geometry adopted (Fig 3.4).  
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 (b) 

Figure 3.4. (a) Working MW set-up, mounted on D20: (1) MW generator and 

magnetron; (2) isolator (3-port ferrite circulator); (3) quartz window; (4) 3-stub tuner; (5) 

transition waveguide; (6) cylindrical applicator; (7) power supply; (8) MW survey meter. 

(b) Schematic of MW set-up. 

 

All the components of the MW reactor system apart from the applicator 

are connected through a type WR340 waveguide with inner cross sectional 

dimensions of 86  43 mm. The cylindrical aluminum applicator (80 mm 

inner diameter) is connected to the other components via a rectangular-to-

cylindrical transition waveguide. The latter component makes possible to 

easily adapt the rectangular shape of the MW set-up - as commercially 

available - to the in house applicator. 
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It is possible to easily charge the reaction tube (quartz tube+sample) from 

the bottom of the applicator (Fig. 3.5). 

 
                                        (a)                                                                                             (b) 

Figure 3.5. (a) MW-SMC set up mounted on the D20 beam line and a zoom of the 

reaction tube (highlighted in yellow); (b) reaction tube loaded into the applicator. This 

configuration allows manual adjustment of the position of the sample in the cavity, thus 

achieving the best MW/sample coupling position (namely, where the difference between 

FP and RP takes its maximum value). 

 

The sample (1 g, 8 mm diameter pellet and ca. 1 cm thick, embedded in 

graphite powder susceptor) is supported by a small amount of quartz wool 

placed in a quartz reaction tube (12 mm diameter) which is open at the top 

and sealed at the bottom (Fig. 3.6). The position of the reaction tube in the 

applicator can be manually adjusted by the operator, by shifting the tube 

until the desired coupling position is found. The latter can be easily read 

on the display of the power generator; the best MW/sample coupling 
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position, in fact, is found when the difference between the forward (FP) 

and the reflected (RP) power is at its highest value – which corresponds to 

the maximum amount of energy absorbed by the sample, and hence 

maximum heating achieved at the sample position. Both FP and RP are 

shown in the display. By varying the nature of the sample, the first electric 

field maximum can shift from the theoretical value of 70 mm (deriving 

from Eq. 3.1).  

After 1) maximizing the power absorbed by the sample, by using the 3-

stub tuner until the RP is found at its minimum value and 2) centering the 

sample in the beam, the reaction can start. Step 2 is possible by using a 

microcontroller table (Fig. 3.7). 

 

 

Figure 3.6. Schematic of the reaction tube (right), inside the applicator. The quartz wool 

is needed for supporting the pellet in the quartz tube. Quartz wool is inert for both 

neutrons and sample, it does not contribute significantly to the diffraction pattern and it 

does not burn at the temperature reached in the experiments. 

 

8 mm diameter pellet (in black) 

graphite powder (in grey) 

quartz wool  

10 mm diameter quartz tube 

quartz tube open to the top 
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                                      (a)                                                                        (b) 

Figure 3.7. (a) The microcontroller table moves the MW set-up vertically (y-axis – 

maximum run 30 cm), horizontally (x-axis – maximum run 30 cm) and on the detector 

plane (  angle – 180° degrees), in order to allow the best centering position of the sample 

in the neutron beam, after the best coupling position MW/sample has been found; (b) 

Example of microcontroller table shifted on the  plane by 45° in respect to the position 

in figure 3.7(a). 

4.3 Step two. Remote control. 

MW-promoted reactions are very fast, and over the course of a few 

seconds the product is already formed - as shown in Chapter 4 for the Ti-C 

system. In fact, once all the instrumental parameters have been optimised, 

it was observed that TiC appears in only 60 seconds, while intermediate 

phases, such as -Ti emerge in even shorter times (40 s, cf. sample 4 in 

Chapter 4). This gives the operator only a few seconds after manually 

setting up the MW power supply on the beam line and switching on the 

neutron beam to access the PC workstation outside the beam line area and 

starting acquisition. Therefore, it is possible that the reaction is already 

complete when the operator is finally ready to log data at the computer.  

microcontroller table  
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To overcome these difficulties, the function of the MW power supply was 

implemented so that it could be controlled remotely via software for use 

with the NOMAD server (the instrument control software used on D20). 

The MW power can be set up easily via the NOMAD interface and FP and 

RP can be controlled at any time. The powder neutron diffraction data 

collection can start even before MWs are switched on. The capabilities of 

the D20 detector permit diffractogram collection over the order of a few 

seconds, thus enabling the user to perform in situ heating routines (and 

therefore chemical reactions in the neutron beam).  
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Chapter 4 

Microwave Studies in the Ti-C System 

 
4.1 Single and Multi Mode Cavity Synthesis in the Ti-C 

system 

Traditional syntheses as well as alternative routes for TiC production were 

reviewed in Chapter 1 (Section 1.4.1). Methods for producing TiC 

include: 

- reaction of liquid magnesium and vaporized TiCl4+CxCl4 (x=1,2) 

solution [1]; 

- combined sol-gel and MW carbothermal reduction methods [2]; 

- gas phase reaction of TiCl4 with gaseous hydrocarbons [1]; 

- synthesis by thermal plasma technique [3]. 

TiC has also been recently produced by means of the solid state reaction 

from its component elementals (Ti, powder, average grain size < 43 m 

and C, graphite powder, average grain size <16 m) after 4 h at 1073 K, 

by Winkler and co-workers [4]. Their experience represents one of the 

best results obtained for TiC production via conventional furnace and for 

this reason it has been taken as a comparison for the in situ MW 

experiments performed in this thesis. It is, in fact, the first reaction of this 

kind probed by means of in situ PND, and, further, the product was 

obtained in relatively short time and low temperature, if compared with 
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previous reactions performed in conventional furnaces (ca. 12-24 h and 

1900-2300 K).  

Attempts towards MW-promoted synthesis of TiC were originally made 

by Ahmad et al. in 1991, when they processed a stoichiometric mixture of 

Ti and C via “microwave ignition and controlled combustion”, 

MICROCOM (ignition and combustion assisted by MWs). In that 

experience, they used a high power industrial MMC oven (Raytheon 6.4 

kW maximum, 2.45 GHz) used at 2.4 kW power and collected TiC after 

ca. 12 minutes [5]. 

Another attempt to prepare TiC using MWs was made in 1995 by Hassine 

et al [6]. This process involved the MW synthesis of TiC via the 

carbothermal reduction of TiO2. In this case, the reaction produced 

Ti(O0.2C0.8) and TiC itself was not observed, which was possibly due to 

the quality of the Argon atmosphere in the reaction vessel. 

All of these previous MW syntheses were performed without in situ mode 

characterization and therefore, very little information regarding the MW-

induced reaction pathways to TiC exist in the literature.  

 

The experimental set-up (for both MMC and SMC reactors) used in this 

thesis for the synthesis of Ti-C system, starting from elemental powders 

(Ti + C), are described in the following section (4.1.1). MMC reactions 

have been performed at Glasgow University (GU) noting that state of the 

art domestic MW ovens make it impossible to work directly under an X-
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ray (or neutron) beam. SMC experiments have been performed in the 

laboratory (at GU) and in situ on the neutron beam line (D20 at the ILL). 

Section 4.2 (paragraph 4.2.2.3) reports the results of Rietveld refinements 

for ex situ PXD and in situ PND data collected for Ti-C pellets. Further 

characterisation of the samples by means of Raman spectroscopy and 

SEM is reported. 

 

4.1.1. MW synthesis in the Ti-C system and experimental details.  

Ti-C is a challenging system for MW processing. While carbon is a 

relatively good MW absorber (tan  = 0.35-0.83 [7]) able to heat up at 

1000 °C in less than 2 minutes in a typical domestic microwave oven [8], 

titanium, on the other hand, is expected to behave as a low absorber with a 

tan  around 0.01 (Chapter 1, section 1.3).  

In this thesis project, syntheses have been performed in both an MMC 

reactor (at GU, as described in Chapter 2, section 2.2.1), and SMC 

reactors (both at the GU and at the ILL – Chapter 2, section 2.2.2). An 

SMC reactor offers many advantages compared to a MMC. For example, 

while the first permits a good control of the input power - up to 1000 W 

for experiments in this thesis - the latter gives only fixed values of power 

pulsed for certain durations, as defined by the manufacturers (800 W in 

this thesis - see Chapter 2, section 2.1.1). 

In all the cases, graphite was used as a MW susceptor.  
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The majority of the present work focused on the synthesis of the carbide 

starting from the elemental powders. All reactions were performed 

combining a stoichiometric amount of Ti with graphite and, in all cases, 

powders were pressed into cylindrical pellets (the next best geometry after 

a sphere, in terms of heating performance [9]) without using any binder.  

In the MMC case, the pellets - mixture of titanium (-100 mesh (~149 m) 

particle size, Aldrich 99.7 %) and graphite (<45 m particle size, Aldrich 

99%) in 1:1 molar ratios and typical sample total mass 1 g - were ground 

in a agate mortar and then cold pressed uniaxially in an 10 mm pellet die 

(Specac, 5 Tons, 5 min). The pressed pellets were embedded in the 

susceptor in an open, 12 mm silica tube which was surrounded with low 

dielectric loss silica flour (Aldrich, 99.6 %), as described in Chapter 2, 

section 2.2.1 (see also Fig. 2.15). This system was always positioned in 

the same location within the cavity to keep the experimental parameters as 

constant as possible. No impedance matching device was employed due to 

the very small sample to cavity volume ratio. All preparations were 

performed in air. 

Ex situ phase analysis from PXD revealed the formation of the expected 

product, TiC (sample 1, Section 4.2, paragraph 4.2.1.1). 

In the case of the SMC studies performed at GU, the reactor used was a 

Gaerling Applied Engineering magnetron head, 1 kW maximum power, 

2.45 GHz frequency, connected through a WR430 waveguide to an E-H 

tuner for impedance matching purposes, while a Sairem® GMP20K MW 
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generator, 2 kW maximum power, 2.45 GHz frequency, connected 

through a WR340 waveguide to a manual three stub tuner was used at ILL 

(Chapter 2, section 2.2.2).  

In the SMC, the reaction tube (quartz tube plus sample) was positioned 

into the cavity where the difference between the forward (FP) and the 

reflected (RP) power was found at its highest value – which corresponds 

to the maximum amount of energy absorbed by the sample, and hence 

maximum heating achieved at the sample position.  

As in the above MMC case, elemental powders of Ti (-100 mesh particle 

size, Aldrich 99.7 %) and graphite (<45 m particle size, Aldrich 99%) in 

1:1 molar ratios and typical sample total mass 1 g were ground together 

and pressed into 8 mm diameter pellets which were set in powdered 

susceptor in an open, 10 mm diameter quartz tube.  

Characterisation of MMC and SMC experiments performed at GU 

(sample 1 and sample 2, respectively) have been conducted via PXD, 

Raman and SEM, while SMC experiments performed at the ILL (sample 3 

and sample 4) have been characterised, for the first time, by means of in 

situ PND. Further analyses on sample 3 and sample 4 have been carried 

out by means of ex situ Raman and SEM.  

In situ PND analysis was conducted on the D20 beam line at the ILL. In 

our measurement configuration, the monochromator take-off angle was set 

to 2θ = 90º, providing a wavelength, λ, of 1.36 or 1.54 Å, with a flux at the 

sample position of about 10
8
 s

−1
 cm

−2
 (Chapter 2, section 2.3.2). 10 s runs 
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were used, which was a good compromise in terms of diffraction 

resolution and our ability to identify intermediate phases over the course 

of the reaction. 

The PXD measurements were performed using an X‟Pert PRO MPD 

diffractometer, configured with Cu K  radiation X-ray source and the 

X‟Celerator solid-state detector. Two types of scan were run, a standard 

1 h phase identification scan or a 12 h overnight scan to have better data 

that could be used for structural refinement (details in Chapter 2, section 

2.3.3).  

Raman spectroscopy was used to determine whether any amorphous phase 

fraction (e.g. of carbon) was present (Chapter 2, section 2.3.3). Raman 

spectra were collected at room temperature using a Horiba LabRAM HR 

confocal microscope system with a 532 nm green laser (Laser Quantum 

Ventus 532, 150 mW). A hole aperture of 50 μm, a 600 gr mm
-1

 grating 

and a Synapse CCD detector were used for the analyses.  

The morphology and elemental composition of samples were determined 

by SEM. Samples for SEM of sufficient thickness were prepared by 

depositing powder onto a carbon tab (Chapter 2, section 2.3.4).  

 

Gaerling set-up (GU). The reaction tube was placed directly into the 

cylindrical TE10n single mode cavity (Fig. 4.1). Such a cavity allows the 

sample to be placed in the point of highest electric field, which is not 

possible in a traditional MMC. The field pattern is created by the 
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superposition of incident and reflected waves and is achieved through 

careful adjustment of a short circuit beyond the applicator. Impedance 

matching, required to minimize reflected power was performed using a 

Sairem® automatic E-H tuner.  

The cavity was excited using a Gaerling Applied Engineering magnetron 

head, operating at 2.45 GHz adjusted to produce and 1 kW of MW power, 

over the duration of the treatments. 

 

 

(a) 

 

(b) 
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(c) 

Figure 4.1 (a) Gaerling set-up, as used in GU for Ti-C system synthesis experiments. (b) 

Cylindrical TE10n SMC in the Gaerling set-up. The reaction tube is placed vertically in 

this cavity, from the (open) top. The choke (indicated by a black arrow) is used for 

temperature readings (via pyrometer). (c) Schematic of Gaerling set-up. 

 

Sairem® set-up (ILL). The reaction tube was placed into a metallic plate 

(tube holder) and then placed into the cylindrical TE10n single mode 

cavity (as reported in Chapter 3, see Fig. 3.5). Impedance matching was 

performed using a Sairem® manual three stub tuner. In-situ temperature 

measurements were taken by exploiting the thermal expansion of graphite, 

as explained in section 4.2.2.4. 

 

4.2 Results 

Multiple reactions were tested during this thesis project. A large fraction 

of them led to inconclusive results. Indeed, the investigated processes 
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ended up to be very challenging, especially because of their short reaction 

time. 

In the following sections, we will only describe the cases which clearly 

lead to the formation of the expected product, TiC, while, for the sake of 

conciseness, unsuccessful attempts are omitted. 

Reactions 1, 2 and 4 are reproducible in both domestic and single mode 

MW set-up. Sample 3 was instead only partially successful ( -Ti phase 

was present at the end of the reaction together with the expected product 

TiC). This was possibly due to the position of the sample in the cavity. We 

nevertheless include a description of this reaction in order to show how the 

sample position can affect this type of reactions. 

Table 4.1 summarise the experimental conditions for samples 1-4. 

Sample No. Sample 1 Sample 2 Sample 3 Sample 4 

MW 

Instrument 

Domestic MW 

oven 

(Glasgow) 

Gaerling Set-

up 

(single mode - 

Glasgow) 

Sairem set-up 

(ILL, 

Grenoble) 

Sairem set-

up 

(ILL, 

Grenoble) 

Size of the 

pellet 
10 mm 10 mm mm mm 

Mass of the 

pellets 

1 g (Ti = 0.800 

g; 

C = 0.200 g) 

1 g (Ti = 

0.800 g; 

C = 0.200 g) 

1 g (Ti = 

0.800 g; 

C = 0.200 g) 

1 g (Ti = 

0.800 g; 

C = 0.200 g) 

MW power 

0.800 kW 

(multi mode 

oven) 

1 kW (single 

mode; 

Gaerling set-

up) 

0.500 kW 

(single mode; 

Sairem  

set-up) 

0.500 

kW(single 

mode; 

Sairem set-

up) 

Time of 

formation of 

TiC 

10 min (ex 

situ) 

10 min (ex 

situ) 
100 s (in situ) 50 s (in situ) 

Table 4.1 Summary of the experimental conditions for samples 1-4. 
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4.2.1 MMC microwave studies of Ti-C system. 

4.2.1.1 Sample 1. Synthesis of TiC starting from Ti + C. 

MMC synthesis of TiC was analysed by means of ex situ PXD and further 

characterised by means of Raman and SEM. Data for sample 1 show that 

single phase TiC can be synthesised in air, in a domestic MW oven, after 

only 10 minutes. 

The PXD pattern for sample 1 is dominated by five peaks that match with 

the reflections from the (111), (200), (220), (311) and (222) planes of the 

cubic structure of titanium carbide (Fig. 4.2).  

 

Figure 4.2 Sample 1. Single phase TiC after 10 min of MW irradiation in an MMC, in 

air. The graphite (002) peak is also indicated (○). 
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4.2.2 SMC microwave studies of the TiC system. 

 

4.2.2.1 Sample 2. SMC synthesis using the Gaerling reactor. 

Again in this case, the PXD pattern for sample 2 is dominated by five 

peaks that match with the reflections from the (111), (200), (220), (311) 

and (222) planes of the cubic structure of titanium carbide (Fig. 4.3).  

 
 

Figure 4.3 Sample 2. Single phase TiC after 10 min of  MW irradiation in Gaerling SMC 

reactor, in air. The graphite (002) peak is also indicated (○). 
 

4.2.2.2 In situ synthesis in Sairem® reactor. Two cases.  

Sample 3. 

Figs. 4.4 and 4.5 show the first MW synthesis performed in situ, on the 

D20 beam line. In particular, Fig. 4.4 depicts the whole reaction pattern 

for sample 3. Fig. 4.5 shows selected diffractograms collected at different 

times during the same reaction.  
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At the beginning of reaction (t = 0), only reactants ( -Ti and graphite) are 

present. After 10 s of MW irradiation, the temperature starts to increase 

and a shift of C peaks to lower 2  angles is observed. When t = 60 s, -Ti 

peaks (plus -Ti) are detectable. TiC starts to be visible after ca. 100 s of 

reaction and -Ti and -Ti are still present at this point. At t = 120 s, both 

TiC (phase fraction: 73(6) wt%) and -Ti (phase fraction: 27(7) wt%) are 

present.  

Figure 4.4 Full reaction diffraction profile for sample 3. The shift of the carbon peaks to 

lower 2  angles (at ca. 50 s) is a good indicator of a rapid temperature increase. The 

formation of TiC (around 100 s) is revealed by new peaks appearing at ca. 31° and 63° 

2 . In this reaction, TiC is not formed as a pure phase, as -Ti is always detectable and 

present until the end of reaction.  
 

Fig. 4.5 shows selected diffractograms collected in situ on D20 (500 W 

MW; patterns collected every 10 s, 90° take off angle, = 1.36 Å), for 

sample 3. At t = 10 s, C peak shift to lower 2  indicates increasing 

temperature. At t = 60 s, -Ti (*) appears (and it co-exists with -Ti (□)). 

At t = 100 s, TiC (♦) appears, together with -Ti (5.3 wt%) and -Ti (88.7 

wt%). At t = 120 s, TiC and -Ti are the major phases present. 
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Figure 4.5 Sample 3. For clarity, the diffractograms have been normalized at 0, 10, 60, 

100, and 120 s by shifting their intensity and adding a constant of, respectively, 0, 500, 

1000, 1500, 2000.  

 

Sample 4. 

The same experimental conditions as for the previous sample 3 (500 W, -

Ti and graphite as starting reactants) were applied to sample 4, except for 

the position of the sample inside the cavity, which was changed (namely, 

the reaction tube was shifted into the cavity, achieving another position 

where the difference between FP and RP was found at its maximum 

value). The wavelength was also changed from 1.36  Å to 1.54 Å, while 

the take off angle remained at 90 °. The result is shown in Figs. 4.6 and 

4.7. 

 

-Ti (□) 

C (○)  

-Ti (*) 

TiC(♦)  
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Figure 4.6. Full reaction diffraction profile for sample 4. The formation of TiC (~ 50 s) is 

indicated by new peaks appearing at ca. 36 ° and 72 ° 2 .  

 

Fig. 4.7 shows the crucial steps for sample 4 reaction (diffractograms 

collected in situ on D20 (500 W MW; patterns collected every 10 s, 90° 

take off angle, = 1.54 Å)). At t=10 s, peak shifts due to thermal 

expansion (to lower 2 ) are observed; no new phases appear at this step. 

At t = 20 s, -Ti (*) appears, while at t = 50 s TiC (♦) and C (○) are 

present. At t = 90 s, the reaction is complete, the system cools and the 

lattice returns to its initial dimensions (as is observed by the peaks 

migrating back to their original 2 values). 

In sample 4, TiC appears in 50 s. By 90 s the reaction is complete (TiC = 

100(3) wt%). Further, from 90 s onwards, temperature starts to decrease - 

even with MWs still irradiating the sample (cf. Fig. 4.13).
15

 

                                                           
15 Time scales for sample 3 and 4 are different (in Figs. 4.4 and 4.6, respectively). This is 

merely due to the acquisition time used during experiment on the beam line. However, in 

both cases, reactions are over and no changes can be observed by 120 and 90 s, 

respectively. 
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Figure 4.7 Sample 4. As in Fig. 4.7, for clarity, diffractograms have been normalised at 

0, 10, 20, 50, and 90 s by shifting their intensity and adding a constant of, respectively, 0, 

500, 1000, 1500, 2000. Reflections from -Ti (□), C (○), -Ti (*), and TiC (♦) are 

indicated.  

 

4.2.2.3 Rietveld refinement. 

Rietveld refinement has been performed for samples 1-4. In all the cases, 

starting models for refinement were taken from the ICSD data-base (ICSD 

reference for: -Ti [10]; C [11]; -Ti: [12]; and TiC [13]). In sample 1 and 

2, apart from remaining C susceptor, only TiC was present at the end of 

reaction. In both cases, the background was modelled using a polynomial 

of 6
th

 degree (Nba=0, in Fullprof). Scale factor, zero point and cell 

parameters were treated as variables and subsequently refined until 

convergence was achieved. Peak widths and profile coefficients (peak 

-Ti (□) 

C (○) 

-Ti (*) 

TiC (♦)  
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shape was modelled using the Thompson-Cox-Hastings pseudo Voigt
16

  

function, in both cases) were also subsequently refined, until convergence. 

In both sample 3 and 4, at the beginning of the reaction, -Ti and graphite 

were included as starting reactants. In sample 3, the background was 

modelled using a linear interpolation function (four coefficients linear 

interpolation, Nba=4 in Fullprof). Scale factor, zero point and cell 

parameters were treated as variables and subsequently refined all along the 

reaction path. Peak widths and profile coefficients (peak shape was 

modelled using the Thompson-Cox-Hastings pseudo Voigt function) were 

also subsequently refined. 

In sample 4, the background was refined by manually creating a list of all 

the points (Nba=132), while scale factor, zero point, cell parameters and 

peak widths and profile coefficient were treated as for sample 3. 

-Ti and TiC phases were subsequently added in later datasets and refined 

(as for -Ti). 

Crystallographic data from Rietveld refinements performed for the four 

samples are presented in table 4.1. Due to the preferred orientation and 

anisotropic peak broadening of graphite, Rietveld refinement for TiC (both 

against PXD and PND) is very challenging. Indeed, some previous works 

only present a qualitative analysis (e.g., [4]). Nevertheless, an attempt to 

make the Rietveld refinement working in order to perform a quantitative 

                                                           
16 Thompson, P., D. E. Cox, et al. Rietveld refinement of Debye-Scherrer synchrotron X-

ray data from Al2O3, Journal of Applied Crystallography, 1987. 20(2): 79-83. 



150 

 

analysis was made and reported hereafter. However, this has to be taken 

with a grain of salt. Indeed, the uncertainties on the estimated parameters 

remain large, as shown in Table 4.2, which suggests that the refinement 

was not completely successful. 

 

Sample No. Sample 1 Sample 2 Sample 3 Sample 4 

Instrument, 

radiation 

wavelength 

X-ray, Cu 

K 1 

X-ray, Cu 

K 1 

Neutron, 

=1.36Å 

Neutron, 

=1.54Å 

Phases 

present (at 

the end of 

reaction) 

TiC (+C) TiC (+C) 
-Ti 

TiC 

(+C) 

TiC 

(+C) 

Crystal 

system – 

Space 

group 

F m 3 m 

 

F m 3 m 

 

I m 3 m 

(25(7) wt% 

F m 3 m 

(73(6) wt%) 

P 63 / m m c 

F m 3 m 

P63/m m c 

TiC 

a-

parameter 

[Å] 

unit cell 

volume [Å
3
] 

4.26643(1) 

77.66(4) 

4.26865(3) 

77.78(1) 

4.28642(6) 

78.76(2) 

4.30077 (1) 

79.550(4) 

Calculated 

density 

[g/cm
3
] 

5.124 5.140 5.031 5.003 

Rp 40.7 44.6 38.3 52.8 

Rwp 47 54.4 32.7 47.0 
2
 22.9 19.1 2.02 9.96 

 

Table 4.2 Crystallographic data from Rietveld refinement for samples 1, 2, 3 and 4. 

 

Figs 4.8 - 4.11 show selected refinement profile plots for samples 1-4. In 

all cases, the red line shows the experimental data, the upper black line 

shows the calculated profile, the blue line is the difference between the 
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observed and calculated profiles, while (+) symbols show the position of 

Bragg peaks.  

 

 

Figure 4.8 Profile plot for Rietveld refinement against PXD data, for sample 1 (MMC, 

10 min, 800 W). The pattern is dominated by five peaks that match with the reflections 

from the (111), (200), (220), (311) and (222) planes of the cubic structure of TiC.  
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Figure 4.9 Profile plot for Rietveld refinement against PXD data, for sample 2 (SMC, 

Gaerling set up, 10 min, 1 kW). As for Fig. 4.8, the pattern is dominated by five peaks 

that match with the reflections from the (111), (200), (220), (311) and (222) planes of the 

cubic structure of titanium carbide.  

 

 

       (a) 
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         (b) 

 

 
(c) 
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          (d) 

Figure 4.10 (a) Profile plots for Rietveld refinement against neutron data for sample 3, 

(a) at t = 0; (b) at t = 60 s; (c) at t = 100 s; (d) at t = 120 s. Reflections from C (○) are 

indicated.  

 

 

        (a) 
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(b) 

 

 
(c) 

Figure 4.11 (a) Profile plots for Rietveld refinement against neutron data for sample 4, 

(a) at t = 0. (b) at t = 20 s. (c) at t = 90 s (end of reaction).  
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4.2.2.4 Temperature measurement 

As reported in Chapter 1, Section 1.3.1, temperature measurement in MW 

reactions is not a trivial process as, within the sample, inhomogeneous 

heating may occur at the millimeter – or sub-millimeter scale. Further, the 

two most common systems for temperature measurements, thermocouples 

and pyrometers, are unreliable as the first may cause perturbation of the 

MW field and the second only gives surface temperature - which will be 

the coolest part of the sample, due to the nature of inverse temperature 

profile found in MW heating mechanism [14, 15]. 

In this project, to overcome these difficulties and avoiding misleading 

temperature measurements, an in situ “crystallographic thermometer” was 

employed. Taking advantage of both the presence of graphite in all 

samples and that the linear thermal expansion of graphite is well known 

with high accuracy over a wide temperature range – from 293 to 1473 K – 

the thermal expansion coefficient and hence temperature using the refined 

graphite lattice parameters [4, 16] were calculated.  

The c-parameter at a given temperature T is given by Eq. 4.1: 

c(T)=cTr +  cTr (T-Tr)                                 Eq. 4.1 

where is the linear thermal expansion coefficient (27.7(±0.6)  10
-6

 K
-1

) 

[16], c(T) and cTr (=6.7079 Å, at 298 K [4]) are the c-parameter values at 

the unknown (T) and at the reference temperature (Tr) respectively. c(T) is 

calculated at each temperature by performing sequential Rietveld 
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refinements against the PND data collected in situ. Knowing all the 

variables, the unknown temperature T can be then determined by 

rearranging Eq. 4.1 as following: 

Tr
r

cTc
TT

)(
                                  Eq. 4.2 

The error on T is given by the root mean square deviation (RMSD) 

method. If rTTT and TrcTcc , then Eq. 4.2 can be rewritten as: 

c
T                                            Eq. 4.3 

and the error on T is given by the propagation of errors on c and : 

             

2222

1

c

c

T

TT
c

c

T

T
        Eq. 4.4 

The above computation was used to produce Figs. 4.12 and 4.13, which 

show temperature vs time (both against PND data) for sample 3 and 4, 

respectively. Tables 4.2 and 4.3 report temperature (with its uncertainty), 

related to Figs. 4.12 and 4.13, respectively.  
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Figure 4.12 Reaction temperature vs reaction time for sample 3. -Ti appears at higher 

temperature than conventional furnace case (1253 K and 1156 K [4], respectively). The 

experimental T at which the presence of TiC phase is firstly observed in the diffraction 

pattern is 1370 K. After the appearance of TiC, the temperature increases to a maximum 

of 1396 K after ca. 120 s of MW irradiation, and begins to slowly decrease beyond this 

time.  

 
Time (s) Temperature (K) Temperature (°C) T (°C) 

0 312.4 39.3 0.8503 

10 308.5 35.4 0.7659 

20 325.9 52.8 1.144 

30 610.3 337 7.304 

40 878.1 605 13.10 

50 1057 784 16.97 

60 1253 980 21.23 

70 1317 1044 22.62 

80 1337 1064 23.05 

90 1351 1078 23.34 

100 1370 1097 23.76 

110 1393 1119 24.26 

120 1396 1123 24.32 

130 1393 1119 24.26 

140 1389 1115 24.17 
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150 1385 1112 24.08 

160 1374 1100 23.85 

170 1370 1097 23.75 

180 1367 1094 23.69 

190 1360 1087 23.53 

200 1357 1083 23.47 

210 1347 1073 23.26 

220 1339 1065 23.09 

230 1328 1054 22.85 

240 1328 1054 22.85 

250 1330 1056 22.89 

260 1322 1049 22.72 

270 1319 1045 22.64 

Table 4.3 Data for Fig. 4.12 (where reaction temperature vs reaction time is plotted, for 

sample 3). 

 

 

 

Figure 4.13 Reaction temperature vs reaction time for sample 4.The   phase 

transition occurs after ~20 s, at a much lower temperature (648 K) than both sample 3 

and conventional furnace. The experimental T at which the presence of TiC phase is 

firstly observed in the diffraction pattern is 1322 K. After the appearance of TiC, the 

temperature increases up to a maximum of 1603 K (after ca. ~70 s of MW irradiation), 

and slowly decreases thereafter.  
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Time (s) Temperature (K) Temperature (°C) error on T 

0 257 -- 0.355 

10 233 -- 0.880 

20 648 375 8.13 

30 888 615 13.3 

40 1080 807 17.5 

50 1322 1049 22.7 

60 1329 1056 22.9 

70 1603 1329 28.8 

80 1512 1239 26.8 

90 1445 1172 25.4 

100 1348 1075 23.3 

Table 4.4 Data for Fig. 4.13 (reaction temperature vs reaction time for sample 4). 

 

4.2.2.5 SEM 

Although sample 2, 3 and 4 have been all processed in a high power MW 

set-up (Gaerling and Sairem® set-up, respectively) and all have been 

synthesised starting from dry pellets of -Ti and C graphite in 1:1 

stoichiometric ratio, they show differences in SEM pictures. 

Sample 2 (1 kW) shows irregular particles with sizes of up to a few 

microns (Fig. 4.14 (a)). Sample 3 (500 W) shows spherical crystallites of 

10-50 m (Fig. 4.14 (b)). Sample 3 has very different particles shape 

compared to sample 2 - possibly due to only partial conversion of the 

reactants ( -Ti+C) into TiC. 

Sample 3 and sample 4 (Fig. 4.14 (c)) looks similar. The latter also shows 

well-formed spheres.  
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(a)  

 

(b) 
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(c) 

Figure 4.14 (a) SEM picture (20 m resolution) for sample 2 (SMC, Gaerling set-up, 1 

kW, 10 min process); (b) SEM picture (20 m) for sample 3 (Sairem set-up, 0.500 kW); 

(c) SEM picture (20 m) for sample 4 (Sairem set-up, 0.500 kW). 

Fig. 4.15 shows a SEM picture (20 m) for sample 1 (MMC, 0.800 kW). It 

shows irregular particles with sizes of up to a few microns 
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Figure 4.15 SEM images of sample 1 (MMC, 800 W). 

 

4.2.2.6 Raman spectroscopy 

Selected samples (sample 1, 3 and 4) were analysed by Raman 

spectroscopy, in order to determine if any amorphous phases were present 

at the end of the reaction.  

Neither stoichiometric TiC nor Ti have Raman-active vibrational modes.  

The spectrum of graphitic carbon, instead, contains bands signals at 260, 

420, 605, 1320 and 1590 cm
-1

; the last two
 
bands are assigned to A1g and 

E2g vibrational modes, respectively
 

[17, 18]. The Raman spectra of 

commercially available graphite and TiC (from literature data) are shown 

in Fig. 4.18 (a) and (b), respectively. TiC exhibits all the bands of 
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graphite, suggesting that unreacted carbon is present in the TiC powder 

[17]. A possible explanation for the low peak intensities in commercially 

available TiC is that the bulk of the material may be stoichiometric TiC, 

which has no Raman-active vibrational modes.  

 

 

                                      (a)                                                            (b) 

Figure 4.16 (a) Raman spectra (literature data) taken from different particles of 

commercially available graphite [17]. (b) Raman spectra (literature data) of commercially 

available TiC powder (Aldrich, purity of 98%) [17], taken from seven different particles.  

 

Figs. 4.17, 4.18, and 4.19 show Raman spectra for samples 1, 3 and 4, 

respectively. In all cases, two broad peaks are visible around 260, 420, 

605, 1320 and 1590 cm
-1

, which indicates the presence of unreacted 

carbon in the sample, attributed to the graphite used as susceptor.  

A1g 

E2g 

A1g E2g 
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Figure 4.17 Raman spectrum for sample 1(MMC, 800 W). 

 

  

Figure 4.18 Multiplot of Raman spectra for sample 3, collected from different region of 

the same sample (SMC, 500 W). 
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Figure 4.19 Multiplot of Raman spectra for sample 4, collected from different regions of 

the same sample (SMC, 500 W). 

 

4.3 Discussion and Conclusion 

Results from syntheses performed in both MMC and SMC reactors 

demonstrated that it is possible to produce TiC, in air, by using -Ti and 

graphite as a source of carbon, in a time range of minutes (MMC, sample 

1) or even seconds (SMC, sample 3 and 4). 

Primarily focusing on sample 3 and sample 4 (in situ SMC reactions), 

some considerations can be drawn. 

First, in sample 3, the    transition phase, (occurring at 1156 K in 

conventional furnace [4]) was observed at 1253±21 K in the diffraction 

pattern, while in sample 4, it was observed at 648 K (cf. Figs. 4.12 and 

4.13 and related Tables 4.2 and 4.3). Nonetheless, in both samples 3 and 4, 
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the experimental T at which the presence of TiC phase is firstly observed 

in the diffraction patterns is similar: 1370±23.7 K and 1322±22.7 K, 

respectively (and both higher than the conventional case: T~1073 K [4]), 

but the time of formation of TiC is ~100 s in sample 3 and ~50 s in sample 

4. 

This suggests that, in the case of MW induced formation of Ti-C from Ti 

+ C, the   transition acts as a trigger mechanism for this reaction, and 

the lower the temperature for this transition, the quicker the formation of 

TiC. This phase transition occurs at a lower temperature than in the 

conventional case, ca. 1200 K [4], and the reaction is several orders of 

magnitude faster.  

Second, by comparing the temperature at which TiC appears in the 

diffraction pattern in sample 4 (1322 K) - with the conventional furnace 

case (~1073K [4], Fig. 4.22) the former is higher than the latter by ~300K. 

In the MW case, the temperature was calculated by using graphite as an 

“internal thermometer”, (thus basically obtaining the bulk temperature), 

while in the case of conventional furnace, Winkler et al. registered the 

temperature by means of a thermocouple mounted on the sample. 

Consequently, the difference between the two cases could be possibly 

ascribed also to temperature measurement methods (and related errors). 
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Figure 4.20 Time-temperature plot for the conventional solid state reaction of Ti + C, as 

reported by Winkler et al. [4]. 

 

Third, in sample 3, -Ti and graphite are the initial reactants, -Ti is 

visible after 60 s of reaction (at T = 1253±21.23 K), while TiC peaks 

appear after 100 s (T=1370±23.7 K) – compared with 250 min and 

T~1073 K in a conventional furnace [4]. Moreover, even if the -Ti 

concentration slowly decreases (Fig. 4.21), it is always present in the 

reaction mixture, concomitantly with TiC. 

In sample 4, -Ti peaks can be detected in 20 s and the temperature 

continously increases (Fig. 4.13). The -Ti concentration also increases 

(red line, in Fig. 4.22), while -Ti concentration decreases (blue line, in 

Fig. 4.24). TiC appears in 50 s, when T=1322±22.7 K (green line, in Fig. 

4.22). As stated in Eq. 2.2, Chapter 2, in Section 2.1, the power dissipated 

in the material is proportional to the electric field strength inside the  
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Figure 4.21 Phase fraction in sample 3. Although the -Ti concentration slowly 

decreases, it never disappears and always coexists with TiC. 

 

material squared, which in turn is a function of the cavity dimensions and 

design. In both the sample 3 and 4 cases, the dimensions of the cavity and 

the design are exactly the same. However, as the difference between the 

two experiments relies in the position of the sample in the cavity, the 

higher speed of formation of -Ti phase (and consequently of TiC) in 

sample 4 could be ascribed to the creation of higher power density than in 

sample 3, thanks to a better position of the sample in the cavity. Although 

the P (=FP-RP) on MW generator provided the same result in the cases 

(500 W), the difference in MW power absorbed might have been small 

and below the sensitivity of the instrument. Consequently, as the position 

of the sample in the cavity has been shown to be a crucial initial step in the 
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success of the reaction, this aspect requires further investigation and future 

studies. 

 

Figure 4.22 Phase fraction vs reaction time for -Ti (blue), -Ti (red) and TiC (green), in 

the SMC synthesis of sample 4. 

 

Further, by comparing sample 2 (Gaerling SMC) and sample 3 and 4 

(Sairem® SMC), it is interesting to observe that different amount of MW 

power (1000 W and 500 W, respectively) and different irradiation times 

(ca. 10 min and few seconds, respectively) lead to different particle shape 

of the products. Only in sample 3 and 4 spherical particle formation is 

observed, while sample 1 and 2 show mostly irregular particle size. 
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4.4 Preliminary Results on Other Binary and Ternary 

Systems and Future Studies. 
 

This last part of the thesis is devoted to the process of different chemical 

systems in the SMC-MW reactor, by using the same experimental 

conditions and the same set-up (Sairem) already used for TiC. Tantalum 

(Ta) and tungsten (W) - and their related oxides, Ta2O5 and WO2 

respectively - were mixed with Ti and graphite, in different stoichiometric 

ratios (see Table 4.5).  

As said in Chapter 1, the majority of these compounds are classified as 

“cermets”. In particular, in the case of Ti-containing carbide cermets with 

Ni, Fe, Mo, Al, Co, Cu, and W, self propagating high temperature 

synthesis (SHS), combustion synthesis (CS), and mechanical alloying of 

powder mixtures at room temperature are the most common alternatives to 

traditional high temperature ceramic synthesis routes [19-24]. The latter 

still require a huge instrumentation regarding melting the metal and 

graphite under vacuum at a very high temperature.  

MW could represent a time-saving, cost-effective and “green” way of 

producing such materials. Preliminary results of the fast MW synthesis 

probed by means of in situ PND of selected TiC-based cermets is reported 

hereafter. 
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4.4.1 Experimental details 

The chemical systems listed below were prepared by grinding the 

respective elemental or oxide powders in appropriate stoichiometric ratios 

in an agate mortar. Each powder sample was cold pressed uniaxially in an 

8 mm pellet die (Specac, 5 Tons, 5 min). The pressed pellets were 

embedded in the susceptor (graphite) in an open, 10 mm quartz tube. The 

Sairem MW set-up used has been extensively described in the previous 

Chapters 3. 

A list of all the chemical 30 ternary systems processed in situ on D20 - in 

the Sairem SMC set-up, at ILL - is reported in Table 4.5. 

 

System 

number 

Chemical systems and 

specification of reactants 

Stoichiometric 

Ratio 

 Ti-Ta-C (samples 1-9). 

Ta = average particle size −325 mesh, 

Aldrich 99.9% 

Ti = average particle size -100 mesh  

Aldrich 99.7 % 

C = average particle size <45 m, 

Aldrich 99% 

 

1)  Ti – Ta – C (0.1:0.9:2) 

2)  Ti – Ta – C (0.2:0.8:2) 

3)  Ti – Ta – C (0.3:0.7:2) 

4)  Ti – Ta – C (0.4:0.6:2) 

5)  Ti – Ta – C (0.5:0.5:2) 

6)  Ti – Ta – C (0.6:0.4:2) 

7)  Ti – Ta – C (0.7:0.3:2) 

8)  Ti – Ta – C (0.8:0.2:2) 
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9)  Ti – Ta – C (0.9:0.1:2) 

 Ti-W-C (samples 10-19). 

W = average particle size 12 m, 

Aldrich 99.9% 

Ti = average particle size -100 mesh  

Aldrich 99.7 % 

C = average particle size <45 m, Aldrich 

99% 

 

10)  Ti – W – C (1:1:1) 

11)  Ti – W – C (0.1:0.9:1) 

12)  Ti – W – C (0.2:0.8:1) 

13)  Ti – W – C (0.3:0.7:1) 

14)  Ti – W – C (0.4:0.6:1) 

15)  Ti – W – C (0.5:0.5:1) 

16)  Ti – W – C (0.6:0.4:1) 

17)  Ti – W – C (0.7:0.3:1) 

18)  Ti – W - C (0.8:0.2:1) 

19)  Ti - W - C (0.9:0.1:1) 

 Ti-WO2-C (samples 20-26). 

WO2 = average particle size -100 

mesh, 

Aldrich 99.9% 

Ti = average particle size -100 mesh  

Aldrich 99.7 % 

C = average particle size <45 m, Aldrich 

99% 

 

20)  Ti –WO2 – C (0.3:0.7:1) 

21)  Ti –WO2 – C (0.4:0.6:1) 

22)  Ti –WO2 – C (0.5:0.5:1) 

23)  Ti –WO2 – C (0.6:0.4:1) 

24)  Ti –WO2 – C (0.7:0.3:1) 

25)  Ti –WO2 – C (0.8:0.2:1) 
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26)  Ti –WO2 – C (0.9:0.1:1) 

 Ti-Ta2O5-C (samples 27-30). 

Ta2O5 = average particle size <20 m, 

Aldrich 99.9% 

Ti = average particle size -100 mesh  

Aldrich 99.7 % 

C = average particle size <45 m, Aldrich 

99% 

 

27)  Ti –Ta2O5 – C (0.6:0.4:2) 

28)  Ti –Ta2O5 – C (0.7:0.3:2) 

29)  Ti –Ta2O5 – C (0.8:0.2:2) 

30)  Ti –Ta2O5 – C (0.9:0.1:2) 

 

Table 4.5. All the systems processed by means of in situ MWs, in Sairem set-up, at ILL. 

Stoichiometric ratios were chosen in order to observe the role (i.e., on the speed and the 

nature of product formation) of different concentration of Ti in the mixture.  

 

4.4.2 Preliminary Results and Discussion 

4.4.2.1 Ti–Ta–C system. 

Diffractograms for all the Ti(1-x)TaxCy compositions are shown in Fig. 

4.23. Each pattern was collected on D20 with a 5 min acquisition time, 

90° take off angle and wavelength of 1.54 Å. For each stoichiometric 

mixture, only the product of the reaction is reported (and not the entire 

pathway), in order to easily compare all the systems.  
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Figure 4.23. Diffractograms for Ti(1-x)TaxCy system (x=0.1-0.9, x = 0.1 and y=2). From 

the bottom, in black, TaTiC (1:1:2 ratio); in red, Ti0.1Ta0.9C2; in green, Ti0.2Ta0.8C2; in 

blue, Ti0.3Ta0.7C2; in yellow, Ti0.4Ta0.6C2 ; in turquoise Ti0.5Ta0.5C2; in pink, Ti0.6Ta0.4C2; 

in dark green, Ti0.7Ta0.3C2 ; in orange, Ti0.8Ta0.2C2 ; and in violet Ti0.9Ta0.1C2. For 

comparison, MW-processed TiC (in cyan) has been reported (sample 4, as described in 

Chapter 4). For clarity, diffractograms have been normalized at 0, 10000, 20000, 30000, 

40000, 50000, 60000, 70000, …, 100000 by shifting their intensity and adding a constant 

of, respectively, 0, 10000, 20000, 30000, 40000, 50000, 60000, 70000, …, 100000. 

 

By irradiating TiTaC2 pellet by means of MWs (500 W), two new peaks at 

ca. 36 ° and 72 ° 2 (Fig. 4.23 (black line)) appear in the diffractogram.  

In all the cases, with increasing temperature, a shift of C peaks to lower 2  

angles is observed (which return to the original position when the system 

cools down, i.e., when the MWs are switched off). 

 

 

 

TiC 

TiC 

C 

C C C C 

Ta 
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4.4.2.2 Ti-W-C system. 

Fig. 4.24 shows the product of the in situ reaction for each stoichiometric 

ratio, for Ti-W-C system. For comparison, the cyan diffractogram shows 

TiC, as obtained in the same MW reactor (cf. sample 4).  

As in Ti-Ta-C system, also for Ti-W-C mixtures, and, in particular, for the 

nominal Ti0.5W0.5C, Ti0.6W0.4C, Ti0.7W0.3C, Ti0.8W0.2C, and Ti0.9W0.1C 

compounds, characteristic TiC peaks at 31 °2  and 73 °2  are clearly 

visible; however, with different reaction times (150, 100, 200, 200, 300 

and 150 s, respectively). In all the cases, these peaks are broader than the 

reference TiC. 

 
Figure 4.24 Diffractograms for each of the mixture in the Ti(1-x)WxCy system (x=0.1-0.9 

x = 0.1 and y=1). Starting from the bottom, in black, TiWC (1:1:1 ratio). Going 

upwards, Ti0.1W0.9C1 (in red), Ti0.2W0.8C1 (in green), Ti0.3W0.7C1 (in blue), Ti0.4W0.6C1 (in 

maroon), Ti0.5W0.5C1 (in turquoise), Ti0.6W0.4C1 (in pink), Ti0.7W0.3C1 (in dark green), 

Ti0.8W0.2C1 (in orange), Ti0.9W0.1C1 (in violet). Cyan line belongs to the MW-processed 

TiC (as described in Chapter 4, sample 4). 

TiC 

TiC 

C 

C 
C C C 

W 



177 

 

4.4.2.3 Ti-WO2-C system 

Fig. 4.25 shows the product of MW irradiation in the Ti-WO2-C case. 

Again in the Ti-WO2-C case, the characteristic peaks belonging to the 

formation of the carbide structure can be observed in samples having a 

higher concentration of Ti, namely Ti0.9(WO2)0.1C1, Ti0.8(WO2)0.2C1, 

Ti0.7(WO2)0.3C1, Ti0.6(WO2)0.4C1 shifted, in this case, to lower 2  angles of 

26 ° and 51 °2 . 

 
Figure 4.25. Ti(1-x)(WO2)xCy with (x=0.3-0.9 x = 0.1) and (y=1). From the bottom, 

Ti0.3(WO2)0.7C1 (in blue), Ti0.4(WO2)0.6C1 (in maroon), Ti0.5(WO2)0.5C1 (in turquoise), 

Ti0.6(WO2)0.4C1 (in pink), Ti0.7(WO2)0.3C1 (in dark green), Ti0.8(WO2)0.2C1 (in orange), 

Ti0.9(WO2)0.1C1 (in violet).  
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4.4.2.4 Ti–Ta2O5-C system 

More complex than the other systems presented above is the Ti-Ta2O5-C 

case, which did not respond to the presence of the MW electromagnetic 

field. In the four considered stoichiometric mixtures, in fact, no evidence 

of structural changes are visible either the modified TiC-like phases – 

formed in the above cases – are formed. This could be due to different 

issues which require further investigation, from both an instrumental and a 

chemical point of view. For example, it would be interesting repeating the 

same mixtures, in order to understand if the position of the sample in the 

reactor can be optimised and/or considering other stoichiometric ratios 

which could give a better and a faster response to the MW field. 

Fig. 4.26 shows the product of reaction for each stoichiometric ratios 

studied. 



179 

 

 

Figure 4.26. Diffractograms for Ti(1-x)(Ta2O5)xCy system (x=0.6-0.9 x = 0.1 and y=2). 

From the bottom, Ti0.9(Ta2O5)0.1C2 (in pink), Ti0.8(Ta2O5)0.2C2 (in green), Ti0.7(Ta2O5)0.3C2 

(in blue), Ti0.6(Ta2O5)0.4C1 (in yellow), Ti0.5(Ta2O5)0.5C2 (in turquoise), Ti0.4(Ta2O5)0.6C2 

(in pink), and Ti0.3(Ta2O5)0.7C2 (in dark green).  

 

4.4.3 Discussion and Conclusion 

For all the systems described, except in the case of Ta2O5-TiC, it is 

observed that a higher concentration of Ti in the mixture lead to the TiC 

formation in a time range relatively low (around 2-3 minutes, on average). 

When the content of Ti in the mixture is decreased, no response to the 

MW field is observed. 

This could be possible due to the fact that the metal – or also the oxide – 

addition in the TiC-based mixture mainly played a role of a catalyst for the 

reaction, thus making possible the TiC formation [20]. 
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However, further physical-chemical investigations and characterisations of 

all the systems are required, in order to understand: 

1) if the MW set-up plays a role in the systems formation and it is, 

therefore, possible to implement the instrumentation for processing 

systems prepared with a low content of Ti. 

2) if these compounds could be classified as new cermets in terms of their 

observed properties; 

3) if it is possible to implement the methodology for the Ta2O5-TiC 

system. 
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Chapter 5 

Conclusions and Future Studies. 

 
The work described in this thesis focuses on the MW synthesis of a 

ceramic material, TiC. In particular, the development of a general 

experimental procedure to afford the desired material and the study of its 

reaction pathway by means of in situ neutron diffraction are the major 

goals achieved. It has been demonstrated, in fact, that it is possible to 

produce TiC – traditionally synthesised via time demanding processes (24-

48h) and high temperatures (1900-2300 K) – in second timescale, in a 

single mode MW reactor. 

The final experimental procedure consisted of a 10 mm quartz tube (sealed 

at one end), containing the sample pellet (8 mm diameter, 1 g, 1 cm 

thickness) imbedded in graphite powder (acting as a susceptor), in the 

single mode cavity. The susceptor was required after initial investigation 

revealed no heating of the metal and carbon reaction mixture. Graphite, 

capable of absorbing the MW radiation and raising the reaction 

temperature, was used to help initiate carbide formation. However, careful 

use of the susceptor was required; too much would not allow sufficient 

MW energy to penetrate to the sample and too little would not provide 

adequate heat to raise the initial reaction temperature. The reaction was 

performed at ambient pressure.  
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The applied microwave power and the design of the set-up were also very 

important parameters which lead to the success of the reaction.  

In the case of the Sairem cavity (described in Chapter 3) different 

geometries were tested prior the final (and working) configuration. 

This single mode MW system is now available for users and fully 

operational on D20, at ILL. Further, it has been designed in such a way 

that it can easily fit the D20 beam line vessels, thus making possible 

reactions under vacuum, if needed. 

TiC was also successfully obtained in a DMO, in 10 minutes, in air. 

However, as DMOs do not permit the control on several parameters 

(tuning of MW power, position of the sample in the cavity, possibility of 

in situ reactions), single mode MW cavity remains the best choice, despite 

of its higher costs and design difficulties. 

It has been also demonstrated that this SMC-MW reactor is capable of 

processing different systems of higher complexity, such as ternary 

titanium-containing carbides (TixTa(1-x)C, TixW(1-x)C, Tix(WO2)(1-x)C, and 

Tix(Ta2O5)(1-x)C). Preliminary results demonstrated that a higher amount of 

Ti in the mixture can lead to the formation of TiC in a relatively short time 

(2-3 minutes). 

 

In conclusion, much of the work published in this thesis adds knowledge 

to MW apparatus design for solid state materials processes. 

The contributions can be defined as follows: 
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- The development of a reproducible process for the successful MW 

synthesis of transition metal carbides in unprecedented timescales. 

- Design and optimisation of a MW set-up capable of performing in situ 

reactions, thus giving insight in fast MW reactions, for the first time. 

 

Future work could be focused on how incident power, reactor design, 

position of the sample in the cavity, and/or use of water as binder
17

 can 

influence the process. Further, it would interesting to understand how 

these parameters might enhance the physical-chemical properties of 

products. 

                                                           
17 In a precedent PhD project, it has been seen that an important factor in MW-promoted 

reactions is the use of water as binder – used in the pellet making process – which is 

believed to minimise the intergrain void space between particles and to act as a polar 

liquid MW susceptor (Carassiti L., Synthesis of silicon carbide ceramics by novel 

microwave methods, PhD thesis, University of Glasgow, 2011). 

 


