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Abstract
Ferrocene is an organometallic molecular sandwich complex with an iron atom coordinated be-
tween two cyclopentadienyl rings. The reorientation of these rings in a process of rotational
jump diffusion between multiple equilibrium sites on a circle is investigated using quasielas-
tic neutron time of flight and backscattering spectroscopy experiments. Existing results on the
ring rotation in bulk, crystalline ferrocene are extended, and the study is widened to oxidized
ferrocenium cations in the triiodide complex FcI3, and to ferrocene containing polymers like
poly(vinylferrocene) PVFc. Emphasis is put on a robust data analysis of neutron scattering data,
including corrections for multiple scattering and simultaneous analysis of many data sets taken
on different spectrometers. It is shown that the 5-fold rotational jump diffusion model needs
to be extended to a non-equivalent sites model to account for rotational disorder in the mono-
clinic room temperature phase of ferrocene which is metastable down to 164 K. In the triclinic
phase below 164 K, the combination of time of flight and backscattering spectroscopy enables
to separate two dynamical processes due to crystallographically different molecules in the unit
cell. In the triiodide complex of ferrocenium cations, FcI3, the barrier to rotation is found to
be significantly lower than in bulk ferrocene. Moreover, a hitherto unknown phase transition
is found at 85 K which causes a discontinuity in the temperature dependence of the correlation
time of the ring rotation in FcI3, very similar to the triclinic-monoclinic transition in ferrocene.
The ring rotation above 85 K is closer to continuous rotation due to its low barrier, while 5-fold
jumps are favored below 85 K. In the polymer PVFc, where ferrocene units are laterally attached
to a polymer chain, it is shown that the ring rotation is still active, but the correlation times are
broadly distributed. The neutron scattering data can be described very well by a rotation rate
distribution model over the large temperature range from 80 K to 350 K. The average activation
energy of the motion is 9.61(2) kJ mol−1, with a distribution having circa one third of this value
as second moment. Moreover, a vibrational study has been performed on ferrocene, FcI3, and
various ferrocene containing polymers. It turns out that the vibrational fingerprint modes of the
molecule are mildly affected when the ferrocene unit is laterally attached to a polymer chain,
but more severely if it is incorporated into the polymer backbone. Finally, measurements under
external magnetic fields did not reveal any field dependence of the ring rotation dynamics in
oxidized PVFc, where the oxidation leads to magnetic moments on the ferrocene units. Even
though unrelated to the main topic of ring rotation, these experiments nicely demonstrated in-
elastic magnetic neutron scattering on Zeeman split levels of the electronic ground state, and
high resolution measurements allowed to directly observe nuclear hyperfine splitting in external
magnetic fields.

i





Zusammenfassung
Ferrocen (Fc) ist ein organometallischer Sandwichkomplex und besteht aus einem Eisen-
atom, welches zwischen zwei Cyclopentadienyl-Ringen koordiniert ist. In dieser Arbeit wird
der Sprungdiffusionsprozess der Ringrotation zwischen mehreren Gleichgewichtspositionen
auf einem Kreis mittels quasielastischer Neutronenstreuung in Experimenten der Flugzeit-
und Neutronenrückstreuspektroskopie untersucht. Die bekannten Resultate zur Ringrotation
in kristallinem Fc werden vertieft und erweitert auf oxidierte Ferrocenium-Kationen in Fer-
roceniumtriiodid FcI3, sowie auf ferrocen-haltige Polymere wie das Poly(vinylferrocen) PVFc.
Eine wichtige Rolle spielt hierbei eine robuste Analyse der Neutronenstreudaten, die Korrektu-
ren für Mehrfachstreuprozesse beinhaltet sowie die gleichzeitige Analyse vieler Datensätze von
verschiedenen Spektrometern ermöglicht. Es wird gezeigt, dass das 5-fach Rotationssprungdif-
fusionsmodell auf ein Modell mit nicht äquivalenten Gleichgewichtspositionen erweitert werden
muss, um die Orientierungsunordnung in der über 164 K existierenden monoklinen Kristallpha-
se zu berücksichtigen. Unterhalb von 164 K, in der triklinen Phase, können zwei dynamische
Prozesse mittels kombinierter Flugzeit- und Neutronenrückstreuspektroskopie separiert wer-
den. Diese entstehen aufgrund kristallographisch unterschiedlicher Moleküle in der Einheitszel-
le. Es stellt sich weiterhin heraus, dass die Energiebarriere der Sprungbewegung in FcI3 deutlich
kleiner ist als in reinem Fc. Ein bisher unbekannter und dem monoklin-triklinen Übergang in
kristallinem Fc sehr ähnlicher Phasenübergang wurde in FcI3 bei 85 K entdeckt, bei dem die
Temperaturabhängigkeit der Korrelationszeit der Rotationssprungdiffusion eine Diskontinuität
aufweist. Aufgrund der niedrigen Energiebarriere ähnelt die Ringrotation über 85 K einer freien,
kontinuierlichen Rotation, während bevorzugt 5-fach Sprünge in der Phase unterhalb von 85 K
aufzutreten scheinen. Des Weiteren wird gezeigt, dass Ringrotationsprozesse auch in dem Poly-
mer PVFc mit lateral an die Kette gebundenen Ferroceneinheiten noch aktiv sind, sich allerdings
nur mit einer breiten Verteilung von Korrelationszeiten beschreiben lassen. Für die Analyse der
Neutronenstreudaten wurde ein Rotationsratenverteilungsmodell angewandt (‘rotation rate dis-
tribution model’), welches eine sehr gute Beschreibung der Dynamik über den großen Tempe-
raturbereich von 80 K bis 350 K liefert. Die sich ergebende mittlere Aktivierungsenergie beträgt
9.61(2) kJ mol−1, mit einem zweiten Moment der Verteilung welches circa ein Drittel dieses
Wertes erreicht. Es wurde außerdem eine Studie der Vibrationsspektren an Ferrocen, an FcI3
und an verschiedenen ferrocen-haltigen Polymeren durchgeführt. Es zeigt sich, dass die cha-
rakteristischen Moden des Moleküls nur wenig beeinflusst werden, wenn dieses lateral an eine
Polymerkette gebunden wird, wohingegen ein vollständiges Einbauen in die Hauptkette einen
deutlichen Einfluss zeigt. Abschließend wurden Experimente unter äußeren Magnetfeldern an
oxidiertem PVFc durchgeführt, bei welchem durch Oxidation ein magnetisches Moment in den
Ferroceneinheiten ensteht. In diesen Messungen konnte kein Einfluss des äußeren magnetischen
Feldes auf die Rotationsdynamik festgestellt werden. Andererseits wurde die Aufspaltung des
elektronischen Grundzustands im äußeren Feld über magnetische Neutronenstreuprozesse im
Spektrum sichtbar, wobei sich mit hochauflösender Neutronenrückstreuspektroskopie sogar die
Hyperfeinaufspaltung der Kernspins im äußeren Feld direkt nachmessen ließ.
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1 Introduction

Figure 1.1:
Ferrocene

Ferrocene (Fc) is probably the most prominent organometallic complex
molecule. It has the full name ‘bis(η5-cyclopentadienyl)iron’, and its chem-
ical structure consists of an iron atom sandwiched between two cyclopenta-
dienyl (Cp) rings as depicted in Figure 1.1. It was discovered in the early
1950s independently by Kealy and Pauson[1] and Miller et al.,[2] but nei-
ther group recognized the correct, unusual molecular structure of the ob-
tained yellow crystalline compound. The sandwich structure was proposed
shortly after, by Fischer and Pfab[3] and Wilkinson et al.,[4] and confirmed
by Dunitz and Orgel[5] and Eiland and Pepinsky[6] using X-ray scattering in
1953. What followed was the opening of a new field of chemistry, described
as ‘renaissance of inorganic chemistry’.[7] The Nobel Prize in chemistry was
awarded in 1973 to Fischer and Wilkinson ‘for their pioneering work, per-
formed independently, on the chemistry of the organometallic, so called
sandwich compounds’.

Figure 1.2:
Poly(vinylferrocene)

One of the fields related to organometallic and macromolecu-
lar chemistry presently of strong interest is the synthesis and
applications of ferrocene containing polymers. One such poly-
mer, poly(vinylferrocene) (PVFc), is depicted in Figure 1.2. The
ferrocene unit is laterally attached to a hydrocarbon backbone.
The interest in applications using such polymers is thanks to the
electron donator properties of Fc: it can be easily oxidized and
reduced, with high stability over many cycles. This makes PVFc
and other ferrocene containing polymers suitable candidates
for stimuli-responsive materials, which, under the influence of
external triggers, are in general able to change their properties
like solubility or conformation, or can form and break covalent
bonds.[8] In case of PVFc, use can be made of a redox-stimulus.
The redox-responsiveness of various ferrocene containing poly-
mers has been used, amongst other examples, in self-healing
materials,[9] for switching surface wettability using grafted thin
films,[10] or ion-selective membrane gating.[11]

The electronic structure of the ferrocene molecule shows a so-called η5 complex coordination
bond involving 18 valence electrons. This bond allows for rotational reorientation of the Cp
rings around the vertical 5-fold symmetry axis of the molecule. The main topic of this work
is less related to immediate applications of the above mentioned systems, but pursues more
fundamental questions to shed light on the molecular ring rotation dynamics in the ferrocene
molecule. How is this dynamics changed through oxidation in the ferrocenium ion? Does
ring rotation persist in ferrocene containing polymers like PVFc? Such questions are ideal for
being studied by means of quasielastic neutron scattering (QENS), for example by using time of
flight (ToF) and backscattering (BS) spectroscopy. These techniques access correlation times of
the dynamics on a time scale from picoseconds to several nanoseconds. Moreover, they allow
for a detailed study of the geometry of the motion, for example its spatial extent and the number
of equilibrium sites.
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(a) (b) (c)

Figure 1.3: Ball-and-stick model of the ferrocene molecule in (a) eclipsed D5h and (b) staggered
D5d conformation. (c) Unit cell of the metastable low temperature triclinic structure at 101 K.[12]

(Images rendered with VESTA[13])

1.1 Ring rotation and polymorphism: bulk ferrocene

The first obvious step in studying ring rotation dynamics of the ferrocene complex is to start with
the supposedly simplest system: bulk ferrocene. But already the question of how the rings of
the molecule are oriented with respect to each other does not have a simple answer. They could
be in ‘eclipsed’ conformation, where the rings are congruent when projected along the vertical
symmetry axis as shown in Figure 1.3a. This corresponds to D5h point group symmetry. Or the
rings could be ‘staggered’, with an inversion center on the central iron atom as in Figure 1.3b
(D5d symmetry). The latter is the form usually drawn in the chemical structure (see Figure 1.1).

This question has been dealt with in several studies of the crystal structure of ferrocene.
It was found that ferrocene shows a unique polymorphism, which is different from similar
organometallic complexes like ruthenocene or nickelocene.[14–16] At room temperature, fer-
rocene crystallizes in a monoclinic structure, where the Cp rings are rotationally disordered and
the conformation is staggered (D5d) only on average.[17–20] As shown in the enthalpy diagram
in Figure 1.4, the monoclinic phase becomes metastable upon cooling. Below 242 K, the stable
phase is orthorhombic with Cp rings fully ordered in molecular eclipsed conformation (D5h).
However, the stable phase can only be obtained under certain experimental conditions and was
discovered only in the late 1970s.[21–23] Ferrocene usually stays in its monoclinic metastable
phase when cooled and transforms to a triclinic phase below 164 K.[12,17,24] The rings are or-
dered in the triclinic phase, but a single molecule is neither in fully eclipsed nor staggered
conformation: the rings are twisted by 9° from the eclipsed conformation (D5).[12] As an exam-
ple, the packing of the triclinic structure is shown in Figure 1.3c, where the unit cell contains
2 independent molecules and 2 symmetry related molecules. Cooling single crystals below the
monoclinic-triclinic phase transition leads to ‘crystal disintegration with explosive violence.’[25]

If the fragments are subsequently annealed at 190 K, recrystallization to the orthorhombic phase
can be obtained on a time scale of days. The orthorhombic phase is then easily overheated and
starts to transform back to the monoclinic one above 242 K,[22,26] as indicated by the arrows in
Figure 1.4.

Likewise the rotation dynamics of the Cp rings in ferrocene was attributed a considerable
amount of attention and has been subject to numerous investigations using different techniques.
In the gas phase, the equilibrium conformation was found to be eclipsed, and the intramolecular
potential barrier to ring rotation was estimated by electron diffraction to (3.8± 1.3) kJ mol−1 by
Haaland and Nilsson.[27] The different conformations in the different crystalline phases already
indicate that the potential barrier to ring reorientation is significantly influenced by the local
environment of the molecule, and by the packing of the crystal structure. Nuclear magnetic
resonance (NMR) studies have indeed shown that the molecular reorientation rate is different

2



triclinic

monoclinic

orthorhombic

annealing

0

10

20

30

0 50 100 150 200 250 300
T /K

en
th

al
py

(H
−

H
0
)/

kJ
m

ol
−

1

Figure 1.4: Enthalpy diagram, showing different phases of crystalline ferrocene. Data taken from
Ogasahara et al.[26]

in all three crystalline phases, with different activation energies.[28–30] As expected, the dense,
ordered orthorhombic phase shows the largest energy barrier while the disordered monoclinic
high temperature phase has the smallest barrier. Later, energy barriers were also calculated
from atomic displacement parameters extracted from diffraction measurements.[31] The lattice
energy governed by non-bonding forces has been calculated, and conclusions have been drawn
concerning the disorder of the rings in the monoclinic room temperature phase.[31,32] The rota-
tional disorder has also been investigated by vibrational Raman and infrared spectroscopy.[33]

Many aspects on Fc have been studied in the past and only a fraction of the work already
done can be mentioned in this introduction. For a more comprehensive overview, numerous
review articles can be consulted, e.g., by Braga[15] or Dunitz.[14] Most of the work and interest
in crystalline Fc dates back to more than 30 years from today. But, as quoted from Dunitz in
his review, ‘the ferrocene story is full of unexpected complications, and many aspects are still
debatable.’[14]

QENS has been applied once before to determine correlation times, activation energies and
the geometry of the rotational motion of Fc in the monoclinic phase by Gardner et al. in the early
1980s.[34] A rotational jump diffusion model with 5 equilibrium sites has been favored over
10 equilibrium sites, and Fc has become a prominent example for reorientational jump motion
in molecular crystals.[35] Gardner et al. also studied the triclinic phase, but their neutron ToF
experiments did not provide the energy resolution necessary to achieve a detailed analysis of
the Cp ring rotation dynamics in the low temperature phase. The activation energies present in
literature are based on NMR experiments,[28–30] potential energy calculations,[16,32] or extracted
from atomic displacement parameters.[31]

In the course of this thesis, it turned out that the 5-fold jump rotation model for the ring
rotation dynamics is a debatable aspect. The extension of data to a wider temperature and
momentum transfer range necessitates to extend the present picture of rotational dynamics of
the Cp rings in crystalline Fc. It will be shown that the rotational disorder in the monoclinic
phase needs to be accounted for in modeling the dynamics in a consistent way, and the combi-
nation of neutron ToF and BS spectroscopy enables a study of the Cp ring rotation dynamics in
the triclinic phase to an unprecedented extent. A key aspect here is a sophisticated approach
to data analysis, including multiple scattering corrections and simultaneous model refinement
using data from different instruments, temperatures, energy transfers and momentum transfers.
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1.2 Outline of this thesis

The principle aim of this thesis is the study of ring rotation dynamics in the Fc molecule using
QENS. The present picture and models of ring rotation dynamics in bulk Fc is extended, with
the main focus on the triclinic and monoclinic crystalline phases. Subsequently, ring rotation in
the salt FcI3 with ferrocenium ions, and ring rotation in the polymer PVFc will be investigated.

This thesis is structured in two parts. In Part I, the basics of neutron scattering, the used mod-
els and the approach to data analysis will be discussed. The relevant parts of neutron scattering
theory will be summarized in chapter 2, with focus on the aspects relevant for the experiments.
This comprises incoherent scattering, van Hove correlation functions, the influence of lattice
vibrations on the measured spectra, and polarized neutron scattering. Magnetic neutron scat-
tering will be briefly summarized as well. The model functions for rotational jump diffusion
describing the molecular motion of the Cp rings as seen in incoherent neutron scattering are
introduced in chapter 3. The starting point is a model for equivalent sites on a circle, which will
be extended to non-equivalent sites in order to account for the rotational disorder in the mon-
oclinic phase of bulk Fc. Details on the neutron scattering experiments to study such dynamics
and related aspects are given in chapter 4. A key aspect of the QENS studies presented in this
thesis is the approach to data analysis. In chapter 5 the fitting routines will be discussed, which
include iterative corrections for multiple scattering and allow for a global analysis of many data
sets from different instruments.

Thereafter, the results of the experiments will be presented in Part II. Starting with bulk Fc,
chapter 6 contains results and discussion of QENS experiments on all three crystalline phases.
The study of ring rotation is then widened to oxidized ferrocene in the salt ferrocenium triiodide
(FcI3) in chapter 7. To the best of knowledge, there is no previous study of the ring rotation
dynamics in FcI3. Moreover, a hitherto unknown phase transition is found at 85 K, showing
similarities to the monoclinic-triclinic transition in Fc regarding ring rotation dynamics.

Subsequently, the focus is shifted to ferrocene containing polymers. In chapter 8 it will be
seen that ring rotation is still active in PVFc, but shows a large dynamical heterogeneity. This
demands the use of a relaxation rate distribution model (RRDM), taking into account the dif-
ferences in local environment of the Fc units in the glassy polymer structure of PVFc.

Complementary to the study of comparably slow ring reorientation dynamics, the spectrum
of vibrational modes of Fc, FcI3 and various ferrocene containing polymers will be determined
in chapter 9. The influence of oxidation and/or incorporation into a polymer structure on the
vibrational spectrum of the Fc molecule will be discussed.

Finally, chapter 10 will present measurements on oxidized PVFc under external magnetic
fields. Oxidation of the ferrocene complex causes one unpaired electron leading to a mag-
netic moment on the ferrocene complex. While bulk ferrocene itself is diamagnetic, paramag-
netic and even small ferromagnetic susceptibilities have been reported for ferrocene containing
polymers.[36,37] In the experiments that will be presented, the quasielastic scattering originating
from the ring rotation dynamics proved to be insensitive to the external magnetic field up to
2.5 T. On the other hand, an inelastic excitation was observed in oxidized PVFc which will be in-
terpreted as Zeeman splitting of the electronic magnetic moment. Moreover, in high resolution
BS spectroscopy the splitting of nuclear magnetic moments becomes visible in incoherent scat-
tering on hydrogen. The results obtained in this chapter are for the most part not related to the
main topic of molecular ring rotation dynamics. However, they do bear unique and novel results
of fundamental physical effects, which can be obtained from a concise analysis of experimental
data with little effort.
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Part I
Theory, models & methods
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2 Neutron scattering
Scattering experiments are versatile and often used in different disciplines of experimental
physics. In general, they provide information about nano-, micro- and mesoscopic proper-
ties of a sample by analyzing the characteristics of scattered radiation. Scattering experiments
can be performed with different kinds of radiation – and thanks to the particle-wave duality, the
basic description in terms of wave properties holds for matter waves as well as for electromag-
netic waves. In condensed matter physics, common experimental methods involve scattering of
light, electrons, X-rays – or neutrons. Although the general theory of scattering is alike indepen-
dent of the type of radiation used, the following sections focus on neutron scattering in view of
the experiments presented in Part II.

Moreover, neutron scattering has some peculiarities due to the spin of the neutron, the
neutron-nuclei strong interaction, and the interaction with magnetic moments by electromag-
netic forces. The rigorous treatment of neutron scattering in all details easily fills multiple
textbooks, and a comprehensive introduction cannot be given here. The following brief re-
capitulation of neutron scattering theory is mostly along the lines of the textbook Theory of
Neutron Scattering from Condensed Matter, Volumes 1 and 2, by Lovesey,[38,39] which is one of
several textbooks giving a more detailed and comprehensive treatment of the topic. After a very
short general introduction to the basics of scattering experiments, the focus is quickly turned to
aspects relevant to the analysis and the understanding of experiments in Part II.

2.1 Basic definitions in neutron scattering experiments

The general description of a scattering experiment is usually given by considering each Fourier
component of the incident radiation separately. The initial neutron state is thus a plane wave
with wave vector ki and wavelength λinc = 2πk−1

i , denoted by the quantum mechanical state
vector |ki〉 and the wave function

ψki
(r)∝ exp(iki · r) . (2.1)

The energy of an incident neutron is accordingly

Ei =
ħh2k2

i

2mn
(2.2)

with the neutron mass mn = 1.674927× 10−27 kg.[40]

In a scattering experiment, the intensity scattered from the sample in a given direction is
measured by a detector, within a differential solid angle element dΩ. Moreover, in certain
experiments, the energy of scattered neutrons is analyzed, allowing detection of neutrons only
in a differential energy interval [Ef, Ef + dEf]. The unit of measured intensity is ‘neutron counts
per unit time’.

The sketch in Figure 2.1 shows the relationship between incident wave vector ki, the wave
vector of the observed scattered radiation kf, and the scattering vector Q which is defined as

Q= ki − kf . (2.3)
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Q= ki− kf

sample

detector
[Ef, Ef + dEf]

incident beam

dΩ

2ϑ

Figure 2.1: Wave vector relations in a general scattering experiment, showing wave vectors of
incident and scattered waves ki and kf, scattering vector Q, scattering angle 2ϑ and the solid
angle element dΩ observed with a detector.

Applying momentum and energy conservation laws, the momentum transfer from the neutron
on the sample results to ħhQ, and the energy transfer to

E = Ei − Ef . (2.4)

In this definition, a positive value of E corresponds to neutron energy loss – it is thus always
E ≤ Ei, and E < 0 for events where the neutron gained energy during the scattering process.

The magnitude of the scattering vector can be expressed by using the scattering angle 2ϑ
between incident and scattered wave vector:

Q2 = k2
f + k2

i − 2kikf cos 2ϑ

=
2mn

ħh2

�

Ef + Ei − 2
p

EiEf cos2ϑ
�

=
2mn

ħh2

�

2Ei − E − 2
Æ

Ei(Ei − E) cos2ϑ
�

(2.5)

where eq. (2.2) was used to introduce the initial and final neutron energies. For elastic scat-
tering with E = 0 or scattering processes where energy transfer is sufficiently small (|E| � Ei),
eq. (2.5) can be simplified to the well known form

Qel =
4π
λinc

sinϑ . (2.6)

While eq. (2.6) can be sufficient in some cases to relate scattering angle to scattering vector,
eq. (2.5) must generally be used in inelastic scattering experiments. This will be further dis-
cussed in the context of data analysis in chapter 5.

2.2 The scattering cross section for elastic scattering

In order to normalize the scattered intensity in an experiment, one usually quantifies the scatter-
ing power using the scattering cross sectionσ. We first consider only the directional dependency
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of scattered neutrons, disregarding their energy for now. In this case, the differential cross sec-
tion

dσ
dΩ
=

Is

Φ0
(2.7)

defines the scattering characteristics of a sample, where Φ0 is the incident flux, i.e., neutrons
per unit time and area, and Is the number of neutrons per unit time detected in the solid angle
element dΩ. The total scattered intensity from the sample in any direction characterized by the
total cross section σ can be obtained by integration of the differential cross section over the unit
sphere:

σ =

∮

dΩ
dσ
dΩ

(2.8)

The scattering cross section can be understood as an equivalent surface perpendicular to the
incident beam which receives an amount of intensity equal to the scattered intensity. Neutron
scattering cross sections for elements are usually given in barn (1 barn = 10−24 cm2). If one
considers for example a single 12C atom in an incoming homogeneous flux of thermal neu-
trons, the total scattered intensity is equivalent to the impinging integrated flux on a surface of
5.559(3) barn.[41]

In order to calculate the scattering from a given arrangement of atoms in the sample, as-
sumptions must be made for the scattering potential. In contrast to X-rays, which are scattered
on the comparably large electron cloud of atoms, neutrons are scattered from the small nuclei.
They can also interact with magnetic moments, which is very useful for the study of magnetic
structures or spin dynamics. But we will first focus here on the nuclear scattering only, while a
short introduction to magnetic scattering will be given in section 2.6. Thermal neutron wave-
lengths are by orders of magnitude larger than the dimensions of nuclei, and the scattering from
a single nucleus is thus isotropic (so-called s-wave scattering). The scattering potential V̂ (r) can
be modeled in very good approximation by the δ-shaped Fermi pseudo-potential:[38]

V̂ (r) =
2πħh2

mn
b δ(r−R) (2.9)

where R is the position of the nucleus, and b the scattering length which is related to the single
nucleus cross section σ by

σ = 4π|b|2 . (2.10)

The scattering length b can be negative and/or complex, where the imaginary part models
absorption of neutrons by radiative capture. In contrast to X-ray scattering, where the scattering
length is proportional to the number of electrons and thus proportional to the atomic number,
the neutron scattering length varies seemingly randomly from element to element. Moreover,
it can show large differences for different isotopes of the same element, and ultimately depend
on the relative spin orientation of neutron and nuclear spin.

The Hamilton operator for the neutron including the scattering potential is

Ĥ =
ħh2k2

2mn
+ V̂ (r) . (2.11)

Given that the scattering potential is only a small perturbation of the free neutron state, the
cross section for the transition between initial state |ki〉 and final state |kf〉 can be expressed in
terms of the first Born approximation, that is, first order perturbation theory:

dσ
dΩ
=
�

� 〈ki|V̂ |kf〉
�

�

2
(2.12)
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In a rigorous treatment, the initial and final neutron states must be properly normalized as
discussed by Lovesey.[38]

For further considerations, we will consider the cross section for a given monoatomic, static
sample structure. One has to keep in mind that the scattering length of a given atom still de-
pends on the specific isotope and nuclear spin state. The scattering potential of a monoatomic
sample structure consists thus of scattering centers with different scattering lengths bk at posi-
tions Rk, and the potential from eq. (2.9) is extended to

V̂ (r) =
2πħh2

mn

∑

k

bk δ(r−Rk) . (2.13)

The calculated cross section from eq. (2.12) is accordingly

dσ
dΩ
=
∑

k,l

b∗k bl exp
�

iQ · (Rl −Rk)
�

(2.14)

where the asterisk stands for complex conjugation, and the horizontal bar in b∗k bl stands for
averaging over random spin orientation and isotope distribution of the nuclei. The derivation
using the appropriate formalism of calculation of the matrix element in eq. (2.12) is discussed
in ref. [38]. This form of the scattering cross section can be further simplified by splitting
eq. (2.14) into coherent and incoherent parts as discussed in the following.

2.3 Coherent and incoherent scattering

As already stated above, the neutron scattering length b for a given element is dependent on
the isotope number and the spin orientation between nucleus and neutron. This gives rise to
so-called coherent and incoherent scattering. If one considers, for the monoatomic sample from
section 2.2, the distribution of isotopes and spin states to be fully random and uncorrelated to
the atomic positions, the averaging of scattering lengths in eq. (2.14) can be expressed as

b∗k bl =







|bk|2 = |b|2 for k = l

b∗k bl =
�

�b
�

�

2
for k 6= l

(2.15)

or, using the Kronecker delta,

b∗k bl =
�

�b
�

�

2
+δkl

�

|b|2 −
�

�b
�

�

2
�

. (2.16)

Inserting this into eq. (2.14) allows to split the sum and rewrite the differential scattering cross
section in the general form

dσ
dΩ
= Nt

σcoh

4π
S(Q) + Nt

σinc

4π
(2.17)

with the total number of atoms Nt, the cross sections

σcoh = 4π
�

�b
�

�

2
, (2.18a)

σinc = 4π
�

|b|2 −
�

�b
�

�

2
�

(2.18b)
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and

S(Q) =
1
Nt

∑

k,l

exp
�

iQ · (Rl −Rk)
�

. (2.19)

The quantity σcoh is called coherent scattering cross section and calculated from the average
scattering lengths of isotopes and spin states of a given element. It gives the part of scattering
containing information about the structure of the sample characterized by the structure factor
S(Q), leading, e.g., to the well known Bragg peaks for crystalline samples. The variance of the
scattering length densities relates to the incoherent scattering cross section σinc. It describes the
part of the scattering from different scattering centers which cannot interfere due to the random
arrangement of isotopes and spin states, thus leading to Q independent, isotropic scattering. A
list of cross sections for some elements and compounds relevant to this work is given in Table 2.1
on page 17 at the end of this chapter.

The incoherent part of the scattering is often considered spurious background in experiments
focusing on structure determination, but it plays the central role in all inelastic neutron scat-
tering experiments performed in this work, where the coherent part takes the role of spurious
scattering. The significance of the incoherent scattering in inelastic neutron scattering experi-
ments will be discussed in the following.

2.4 Inelastic neutron scattering and correlation functions

There are multiple techniques in neutron scattering that allow to determine the kinetic energy
of scattered neutrons. These inelastic scattering experiments allow to investigate not only the
structure of a sample, but also its microscopic dynamics on different time scales.

Corresponding to the differential cross section in eq. (2.7), the double differential scattering
cross section

d2σ

dΩdEf
=

Is

Φ0
(2.20)

is used in inelastic scattering experiments. While Φ0 is still the incident neutron flux, Is now
stands for the scattered intensity in the differential solid angle element dΩ and energy interval
[Ef, Ef + dEf]. To describe inelastic scattering, one can consider a scattering potential similar
to eq. (2.13), but with time dependent positions of the scattering centers. However, a rigorous
treatment necessitates to take the full quantum mechanical state of the sample into consider-
ation together with the neutron state, as the scattering process can exchange energy between
neutron and sample. The resulting differential scattering cross section is similar to eq. (2.17):

d2σ

dΩdEf
= Nt

kf

ki

�

σcoh

4π
Scoh(Q,ω) +

σinc

4π
Sinc(Q,ω)

�

. (2.21)

When comparing eq. (2.17) and eq. (2.21), two things are noticed for inelastic scattering:
Firstly, the term kf/ki appears which arises from the ratio of density of states for incident
and scattered neutrons. Secondly, and more importantly, both the coherent and incoherent
part now include Q and ω dependent terms Scoh(Q,ω) and Sinc(Q,ω), which are called co-
herent and incoherent dynamic structure factor respectively. Both quantities are related to the
structure and dynamical processes in the sample, and have a very useful relationship to the cor-
relation functions of scattering centers, usually referred to as van Hove correlation functions.
Equation (2.19) shows for the static case that the structure factor relates to the Fourier trans-
form of pair correlations. This formalism involving Fourier transforms can be generalized for
inelastic scattering (see ref. [38] for a detailed discussion). Figure 2.2 gives a visualization of
the resulting relationships, which will be discussed in the following.
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Figure 2.2: Relationship diagram for different quantities used in inelastic neutron scattering
experiments and their accessibility by different methods. All quantities are related by Fourier
Transformation (FT) with respect to space and/or time.

For a sound definition of the correlation functions, a quantum mechanical treatment is indis-
pensable and it has to be taken into account that the time dependent position operators R̂l(t) of
the scattering centers in the sample do not commute in general. The pair correlation function
of the particles in a monoatomic sample is defined as

G(r, t) =
1
Nt

∑

k,l

∫

d3r ′


δ
¦

r−
�

r′ − R̂k(0)
�

©

δ
¦

r′ − R̂l(t)
©

·

(2.22a)

cl.
=
∑

k

¬

δ
¦

r−
�

Rk(t)−R0(0)
�

©¶

(2.22b)

where the second equality only holds in a classical systems when all position operators com-
mute and all particles are equivalent. The pair correlation function G(r, t) essentially gives the
probability of observing any particle at distance r after time t relative to the position of a given
particle at t = 0. In contrast to this, the self correlation function Gs(r, t) gives the corresponding
probability of finding exactly the same particle at distance r after time t:

Gs(r, t) =
1
Nt

∑

k

∫

d3r ′


δ
¦

r−
�

r′ − R̂k(0)
�

©

δ
¦

r′ − R̂k(t)
©

·

(2.23a)

cl.
=
¬

δ
¦

r−
�

R0(t)−R0(0)
�

©¶

. (2.23b)

Note that the self correlation Gs(r, t) is also contained in G(r, t). These correlation functions
are usually what is calculable from models or simulations, e.g., from particle trajectories. The
spatial Fourier transform of the correlation function is called intermediate scattering function.
It turns out that the pair correlation function describing particle correlations causes coherent
scattering:

Icoh(Q, t) =

∫

d3r exp(iQ · r) G(r, t) , (2.24)

and the self correlation function causes incoherent scattering accordingly:

Iinc(Q, t) =

∫

d3r exp(iQ · r) Gs(r, t) . (2.25)
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The intermediate scattering functions are already directly accessible by experimental meth-
ods, for example neutron spin echo spectroscopy. A temporal Fourier transform relates both
functions to the dynamic structure factors in eq. (2.21):

Scoh(Q,ω) =
1

2πħh

∫

dt exp(iωt) Icoh(Q, t) (2.26a)

Sinc(Q,ω) =
1

2πħh

∫

dt exp(iωt) Iinc(Q, t) . (2.26b)

The dynamic structure factors are quantities that can directly be measured by inelastic neutron
scattering techniques like time of flight or backscattering spectroscopy (see chapter 4). In the
description of the jump rotation models in chapter 3, the self correlation function Gs(r, t) will
be calculated from a model, and subsequently transformed via the incoherent intermediate
scattering function to the incoherent dynamic structure factor which can be used to analyze
experimental data.

In this context, another important remark is to be made: From commutator relationships it
can be shown in general that, in a quantum mechanical treatment, the dynamic structure factors
fulfill the condition of detailed balance, i.e.

S(Q,ω) = exp
�

ħhω
kBT

�

S(−Q,−ω) (2.27)

where kB is the Boltzmann constant. This condition reflects the thermal population asymmetry
of energetically different states in the sample according to the Boltzmann factor. If a classical
treatment is chosen in eq. (2.22), then the resulting dynamic structure factor is even in ω and
does not fulfill the condition of detailed balance. From eq. (2.27), an even function can be
obtained by defining

S̃(Q,ω) = exp
�

−
ħhω

2kBT

�

S(Q,ω) . (2.28)

It is a common approach to introduce detailed balance in the end of a classical model calculation
by replacing S̃(Q,ω) in eq. (2.28) with the dynamic structure factor obtained from a Fourier
transformed classical correlation function.[35,38] Therefore, in this work, the tilde on S̃(Q,ω)
generally signifies that detailed balance has not yet been included in the dynamic structure
factor.

2.4.1 Lattice vibrations and the Debye Waller factor

In principle, the van Hove formalism summarized above contains everything that is needed to
obtain the dynamic structure factors, given the correlation functions of a sample. On the other
hand, simple models like the rotational jump diffusion model do not aim to entirely describe the
dynamics in a sample down to the last bit. It is therefore useful to be aware of the influence of
other important dynamical processes not immediately included in the simplified models of that
kind, with probably the most important one being lattice vibrations. Lattice vibrations displace
the atoms around their equilibrium positions which leads to decreased scattered intensity due to
the Debye Waller factor. Moreover, excitations can be seen in the inelastic spectrum by processes
that create or annihilate phonons.
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The Debye Waller factor
In a solid sample that is not static and shows lattice vibrations, the average positions of the

individual particles are smeared around their equilibrium positions. In a simplified approach,
one can imagine that the particle density is convoluted with a narrow Gaussian smearing factor,
such that the structure factor resulting from a Fourier transformation will be multiplied with a
broad Gaussian according to the convolution theorem. If treated in more detail, it is found for
elastic scattering that the cross section corresponding to eq. (2.17) is modified to

�

dσ
dΩ

�

el
=
�

Nt
σcoh

4π
S(Q) + Nt

σinc

4π

�

exp(−2W ) . (2.29)

The additional exponential factor is the Debye Waller factor, and W can be expressed as

2W =
1
3

Q2



u2
�

(2.30)

where 〈u2〉 is the mean square displacement of the atoms from their equilibrium position. Tech-
nically, eq. (2.30) holds only for cubic crystals where displacements are isotropic, but is gener-
ally considered a good approximation.[35,38] Thus, lattice vibrations indeed lead to a Gaussian
decrease of intensity with increasing Q, related to the inverse mean square displacement. Given
the phonon density of states (DOS) Z(ω), the mean square displacement in eq. (2.30) can be
replaced:

W =
ħhQ2

4M

∫ ωm

0

dω
Z(ω)
ω

coth
�

ħhω
2kBT

� Debye
≈

T�θD

1
6

Q2u2
0T (2.31)

where M is the mass of the nuclei and ωm is the maximum phonon frequency. In the second
step, the integral in eq. (2.31) was approximated by assuming a Debye DOS for Z(ω):

Z(ω) 7→ ZD(ω) =
3ω2

ω3
D

(2.32)

with the Debye frequency ωD = ωm. The Debye temperature θD is related to the Debye fre-
quency by ħhωD = kBθD. At temperatures above the Debye temperature, a linear temperature
dependence of the mean square displacement with a proportionality factor u2

0 is a viable ap-
proximation as can be seen from eq. (2.31).

It can be shown that the Debye Waller factor also appears as additional term in inelastic
phonon scattering (see next paragraph), or can be added in quasielastic models like the rota-
tional jump diffusion model as side effect of lattice vibrations.[42] As such it will take the place of
a general prefactor in the overall model for the dynamic structure factor used for data analysis.
Usually, a linear temperature dependence of the mean square displacement will be used with
u2

0 as free parameter, although a more elaborate approach has been tested in one case for low
temperatures by numerical integration of a measured density of phonon states in Appendix C.

Phonon creation and annihilation
While the Debye Waller factor discussed above causes only a decrease of scattering intensity

due to lattice vibrations, neutrons can also create and annihilate phonons by exchanging energy
with the sample. As all samples in this work are strong incoherent scatterers, we will only
consider the incoherent cross section of inelastic one-phonon scattering. It can be calculated
using the correlation functions from section 2.4 as discussed in ref. [38] and takes the form

Svib
inc(Q,ω) =

1
2M

Q2 exp
�

−2W
� Z(ω)
ω

�

n(ω) + 1
�

(2.33)
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where M is the mass of the nuclei, Z(ω) the density of phonon states, and n(ω) the Bose-
Einstein factor

n(ω) =

�

exp
�

ħhω
kBT

�

− 1

�−1

. (2.34)

It can be seen that eq. (2.33) contains the Debye-Waller factor discussed above, and that it
relates directly to the density of phonon states Z(ω). With the definition Z(−ω) = Z(ω), the
above scattering law holds for phonon creation and annihilation, and the condition of detailed
balance postulated in eq. (2.27) is also fulfilled. In chapter 9, inelastic neutron spectroscopy
experiments will be used to access the phonon density of states up to energies of molecular
vibrational modes by transforming the measured scattering law into a density of states similar
to eq. (2.33).

2.5 Separation of coherent and incoherent scattering

In most neutron scattering experiments, the sum of coherent and incoherent parts of the scat-
tering cross section in eq. (2.21) are measured. In the interpretation of the results, it is then
in general not possible to determine which part of the observed intensity is due to coherent or
incoherent scattering. As the models for rotational jump diffusion presented in the next chapter
will describe the incoherent scattering only, the coherent part of the scattering must be sepa-
rated to allow for a detailed data analysis. This can be done easily for crystalline sample when
the coherent scattering is localized in Bragg peaks, but for amorphous polymer samples another
approach needs to be taken as they show diffuse coherent scattering.

Fortunately, the spin of the neutron can be used in polarized scattering experiments to sep-
arate overlaying coherent from incoherent scattering. The term ‘polarization’ signifies a pre-
ferred spin orientation of neutrons in the beam with respect to a given quantization axis. A
coherent scattering process does not change the spin polarization of scattered neutrons, while
the spin-incoherent process flips the spin of the neutron with a probability of 2/3. The term
‘spin-incoherent’ means the part of incoherent scattering that is caused by random spin orienta-
tions of the target nuclei. The part that is caused by random distribution of different isotopes,
the so-called ‘isotope-incoherent’ fraction, does not flip the spin during scattering and thus re-
mains indistinguishable from coherent scattering in polarized neutron experiments. However,
in practice, virtually all incoherent scattering in the samples considered in this work is caused
by hydrogen in spin-incoherent scattering processes and can thus be nicely separated.

An overview and derivation of the equations describing the scattering cross sections for polar-
ized neutrons can be found, e.g., in a paper by Schärpf and Capellmann.[43] The relevant part
of the resulting formalism used here is the measurement of the two cross sections

d2σ↑↓

dΩdEf
=

Nt

4π
kf

ki

�

2
3
σinc Sinc(Q,ω)

�

(2.35a)

d2σ↑↑

dΩdEf
=

Nt

4π
kf

ki

�

1
3
σinc Sinc(Q,ω) +σcoh Scoh(Q,ω)

�

(2.35b)

where contributions from magnetic and isotope-incoherent scattering have been omitted and
the indices correspond to spinflip (↑↓) and non-spinflip (↑↑) processes respectively. Thus, by
measuring spinflip and non-spinflip scattering separately, the coherent and incoherent contri-
butions to the total cross section can be calculated by an appropriate linear combination of
eq. (2.35). Although the above method can be used in principle for elastic and inelastic scat-
tering, polarized neutron experiments presented in chapter 8 have only been performed as

15



diffraction experiments without energy analysis of the scattered neutrons. In these experi-
ments, the goal was only to determine the static structure factor S(Q) of predominantly elastic
coherent scattering.

2.6 Magnetic neutron scattering

Up to now, only the nuclear scattering of neutrons by the strong interaction has been considered.
An entire subfield of neutron scattering is based on the magnetic moment of neutrons, which
allows neutrons to interact with magnetic moments and scatter on magnetic structures like
(anti-)ferromagnetic lattices, to create or annihilate spin waves, or to map the spin density in
crystalline structures – to name a few examples.

A detailed introduction to magnetic scattering lies beyond the scope of this chapter, and can
be found, e.g., in volume 2 of the monograph by Lovesey.[39] The most important practical
differences between nuclear and magnetic scattering are summarized in the following:

• In magnetic scattering, neutrons interact with the electronic spin density around the
atoms, a cloud that has a much larger extent in space than the small nucleus. The scat-
tering potential is therefore not δ-shaped like the Fermi pseudo-potential in eq. (2.9), and
the scattering from a single particle is no longer isotropic. It shows a strong dependence
on Q known as magnetic form factor F(Q).

• Due to the nature of the magnetic interaction, only the component of the magnetization
perpendicular to the scattering vector Q contributes to the scattering.

• The basic measure of the magnetic scattering cross section appearing as prefactor in most
equations is

r2
0 =

�

γne2

mec2

�2

= 0.29 barn (2.36)

with gyromagnetic ratio of the neutron γn, charge e and mass me of an electron, and
the speed of light c. The resulting value of 0.29 barn gives an idea about the magnitude
of magnetic scattering. It is small, but nevertheless lies in the range of nuclear cross
sections such that it is experimentally feasible to observe magnetic scattering and nuclear
scattering at the same time.

Magnetic neutron scattering will only be relevant in chapter 10, where transitions between
Zeeman split levels of a spin-1/2 system in an external magnetic field are observed. The magnetic
scattering cross section for this process is calculated in Appendix D.
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Table 2.1: Nuclear scattering cross sections for neutrons on some elements and all sample com-
pounds used in this work.[41] For polymers, all values are given per monomer unit. The list
contains atomic/molecular weight M , incoherent and coherent scattering cross sections σinc
and σcoh as well as absorption cross sections σabs.

element/compound composition M /u σinc /barn σcoh /barn σabs /barna

Hydrogen H 1.008 80.26 1.76 1.15
Deuterium D 2.01 2.04 5.6 0
Carbon C 12.01 0.001 5.55 0.01
Oxygen O 16 0.01 4.23 0
Aluminum Al 26.98 0.01 1.49 0.8
Silicon Si 28.09 0.02 2.16 0.59
Vanadium V 50.94 5.19 0.02 17.73
Iron Fe 55.85 0.39 11.44 8.92
Cadmium Cd 112.4 0 3.3 8788
Iodine I 126.9 0.31 3.5 21.42

Ferrocene C10H10Fe 186.04 803 84.54 20.53
FcI3

b [C10H10Fe]+ I−3 566.74 803.93 95.04 84.79
PVFcc [C12H12Fe]n 212.08 963.52 99.16 22.85
PFDMSd [C10H8Fe Si (CH3)2]n 242.18 1124.06 104.84 25.74
PFMSe [C10H8Fe SiH CH3]n 228.15 963.54 95.77 23.43

a The absorption cross section is calculated for 6.27 Å neutrons, whereas values in literature are usually given
for 1.8 Å. b Ferrocenium Triiodide c Poly(vinylferrocene) d Poly(ferrocenyldimethylsilane)
e Poly(ferrocenylmethylsilane)
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3 Model functions for molecular ring
rotation

In this chapter, the basic models for describing rotational jump diffusion motions in inelas-
tic neutron scattering will be presented. When looking at the ferrocene molecules shown in
Figure 1.3 on page 2, it is clear that the rotation of a cyclopentadienyl ring by 2π/5 does not
change the potential energy of the molecule – the rotational potential must be (at least) of
5-fold symmetry, and there must be (at least) five equivalent equilibrium positions. Moreover,
the molecule would look exactly the same before and after the jump if atoms were indistinguish-
able. A reorientation has only the effect that all carbon and hydrogen atoms move to another
equivalent position, which leads to loss of self correlation. As discussed in the previous chapter,
incoherent scattering allows to access the self correlation function, which contains valuable in-
formation about the jump motion of the cyclopentadienyl rings. Fortunately the scattering cross
section for neutrons in either sample in this work is largely dominated by incoherent scattering
on hydrogen. To develop a model for analysis of scattering data, it is thus sufficient to calculate
the self correlation function of the hydrogen atoms. Moreover, thanks to the nature of inco-
herent scattering, it is even sufficient to model the dynamics of a single hydrogen performing
jumps between its possible equilibrium positions. The fact that all five hydrogen atoms in a ring
are fully correlated has no influence in this case, and the cross section of Nt atoms will simply
be Nt times the cross section of a single atom.

Therefore, models for rotational jump diffusion of a single particle will be discussed in the
following sections. The aim is to determine their incoherent dynamic structure factor, hereafter
simply referred to as S(Q,ω). The first model that will be discussed is the rotational jump
diffusion model for N equivalent sites on a circle. It is the starting point for extensions to a
two-ring model, and to a non-equivalent sites model. The latter includes the effects of dynam-
ical disorder by introducing multiple equilibrium positions which will be needed for scattering
experiments on monoclinic ferrocene in chapter 6.

3.1 Equivalent sites rotational jump diffusion model

A general model for the description of molecular rotational jump diffusion between a given
number of equivalent sites arranged on a circle was given by Barnes.[42] In the following, his
derivation of the resulting incoherent scattering law for this type of motion will be presented in
more detail, as it will serve as the basis for the non-equivalent sites model later on.

The aim of the model is to calculate the incoherent inelastic scattering from a particle that
jumps between N equilibrium sites equally distributed on a circle with radius r. Figure 3.1
shows a sketch for N = 5, but the following calculation holds for arbitrary N > 2. Jumps are
only possible between neighboring sites and occur on average at a rate of γ/2. The probability
of finding the particle at a certain site i at time t is pi(t) where i = 1 . . . N . The time evolution
of pi(t) is then given by the master equations

ṗi(t) =
γ

2

�

pi−1(t) + pi+1(t)− 2pi(t)
�

(3.1)

with periodic boundary conditions pi(t) = pi+N (t). Equation (3.1) can be written more com-
pactly in vectorized form:

ṗ(t) =M · p(t) (3.2)
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γ/2
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γ/2

p2

p3p4

p5

Figure 3.1: Sketch of the jump diffusion model for N = 5 equivalent sites equally distributed on a
circle with radius r and occupation probability pi . Jumps can occur between nearest neighbors
at rate γ/2.

with the transition matrix

M=

















−γ γ/2 0 . . . 0 γ/2
γ/2 −γ γ/2 . . . 0 0
0 γ/2 −γ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −γ γ/2
γ/2 0 0 . . . γ/2 −γ

















. (3.3)

The solution of eq. (3.2), which is a system of linear differential equations of first order, is

p(t) = P(t) · p0 (3.4)

with p0 being the initial state at t = 0. The time dependent matrix P(t) can be calculated from
the eigendecomposition of M= −BΛB−1 with the diagonal matrix Λ of negated eigenvalues λl .
The negation of the eigenvalues is chosen for convenience such that λl will take non-negative
values. The matrix B contains the normalized eigenvectors of M in its columns, and

P(t) = B · exp (−Λt) ·B−1 . (3.5)

Because the matrix M is real and symmetric, the matrix B will be orthogonal and B−1 = B>. The
negated eigenvalues of M are

λl = 2γ sin2
�

πl
N

�

(3.6)

and the elements of B

Bkl =

√

√ 2
N

cos
�

2πkl
N
+
π

4

�

. (3.7)

Now, the elements of P(t) from eq. (3.5) can be calculated:

Pk j(t) =
N
∑

l=1

Bkl exp(−λl t) B jl =
1
N

N
∑

l=1

exp(−λl t) cos
�

2πl(k− j)
N

�

. (3.8)
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Figure 3.2: Correlation functions Pk j(t) for the equivalent sites jump rotation model with N = 5.

The values of Pk j(t) have a very illustrative meaning: Given that the particle is at site k, then
Pk j(t) corresponds to the probability of finding the particle at site j after the time t has passed.
Figure 3.2 shows Pk j(t) for N = 5, where every possible combination of k and j refers either to
the same site (k = j), nearest neighbors, or second nearest neighbors. In the long time limit, the
probability of finding the particle on any site is equally distributed, hence Pk j(t →∞) = N−1

(dashed line).
As the powder average over all orientations will be calculated in a later step and all sites are

equivalent, we can assume without the loss of generality that k = 1, that means, we will assume
the particle to be on site 1 at t = 0. The self correlation function can then be easily constructed
from P1 j(t):

Gs(r, t) =
N
∑

j=1

P1 j(t) δ
�

r− (r1 − r j)
�

, (3.9)

where r j is the position vector of site j.
The incoherent dynamic structure factor S(Q,ω) can now be calculated by applying the

Fourier transformations discussed in section 2.4. First, the spatial Fourier transform is ap-
plied to obtain the intermediate scattering law1

I(Q, t) =

∫

d3r Gs(r, t) exp(iQ · r) =
N
∑

j=1

P1 j(t) exp
�

iQ · (r1 − r j)
�

. (3.10)

Now, the powder average of the exponential term over all orientations of Q can be calculated.
The details of the averaging can be found in the paper by Barnes,[42] and the result is

I(Q, t) = 2π
N
∑

j=1

P1 j(t) j0

�

2Qr sin
�α1 j

2

��

(3.11)

with the spherical Bessel function of zeroth order j0(x) = sin(x)/x and the angle α1 j between
site 1 and site j measured from the center of the circle: α1 j = 2π( j − 1)/N . The expression for
P1 j(t) from eq. (3.8) is inserted and the obtained form of the intermediate scattering function
can be rewritten as

I(Q, t) = 2π
N−1
∑

l=0

Al(Q) exp(−λl t) (3.12)

1 The corresponding equation in ref. [42] seems to contain an additional N−1 by mistake.
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Figure 3.3: Incoherent structure factors for the equivalent sites rotational jump diffusion model
with radius r = 2.33 Å. (a) Elastic and quasielastic structure factors Al(Q) for N = 5. (b) Elastic
structure factor A0(Q) for different N .

where

Al(Q) =
1
N

N−1
∑

j=0

j0

�

2Qr sin
�

π j
N

��

cos
�

2πl j
N

�

(3.13)

with
N−1
∑

l=0

Al(Q) = 1 . (3.14)

The summation index in eq. (3.12) has been shifted to start from l = 0. Note that λ0 ≡ λN = 0
from eq. (3.6), meaning that the first term of the sum in eq. (3.12) is the time independent
constant A0(Q). This has to be taken into account for the temporal Fourier transform, which is
the last step of obtaining the incoherent dynamic structure factor:2

S̃(Q,ω) =
1

2π

∫

dt I(Q, t) exp(iωt) = A0(Q)δ(ω) +
N−1
∑

l=1

Al(Q) L (ω,λl) (3.15)

where the constant term of the intermediate scattering function for l = 0 is transformed into
A0(Q)δ(ω), and the exponential decay terms become Lorentzians of the form

L (ω,λl) =
1
π

λl

λ2
l +ω

2
. (3.16)

The tilde in S̃(Q,ω) is a reminder that this dynamic structure factor does not fulfill the condition
of detailed balance (see section 2.4). From eq. (3.15) the significance of Al(Q) as incoherent
structure factors (ISFs) is evident: A0(Q) is the Q-dependent strength of elastic scattering, and
Al(Q) for l ≥ 1 are Q-dependent intensities of Lorentzian quasielastic components of the spectra.
Closer inspection of eq. (3.6) and eq. (3.13) reveal a degeneracy of eigenvalues, such that λl and
Al(Q) are identical when substituting l 7→ (N − l). Hence, the sum in eq. (3.15) can be grouped
into only two Lorentzian terms for N = 5, five Lorentzian terms for N = 10, et cetera.

Figure 3.3a shows the shape of Al(Q) for N = 5 and radius r = 2.33 Å of the hydrogen atoms
in cyclopentadienyl rings.[44,45] The incoherent structure factors Al(Q) are characteristic for the

2 For brevity and consistency with literature, the factor ħh−1 in the Fourier transform is omitted from here on.
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Figure 3.4: Schematics of the non-equivalent sites jump model showing two possible equilibrium
positions of a single ring as configuration 1 (red) and configuration 2 (blue) as well as a subset
of the allowed jumps between the 10 different sites.

geometry of the motion, i.e., the number of sites N and the spatial extent of the motion. The
elastic incoherent structure factor (EISF) A0(Q) for different values of N is shown in Figure 3.3b.
With increasing N , differences in the curves are only seen at larger Q. For N →∞, the jump
diffusion model converges to a continuous diffusion model.[35] In chapter 7, where the analysis
of the ring rotation in FcI3 is performed in terms of a 15-fold model, it must be taken into
account that the 10-fold, 15-fold and continuous rotation model are not distinguishable in the
experimentally observed Q-range below 3 Å−1.

3.2 Multiple rings per unit cell: Two-ring rotational jump diffusion model

The equivalent sites jump diffusion model presented in the previous section 3.1 assumes that all
scattering particles in the sample move according to the model, with the same jump rate γ/2.
In crystalline environments like the triclinic phase of Fc which will be discussed in chapter 6,
the barrier to ring reorientation can easily differ between crystallographically different sites.
This leads to different jump rates, and the scattering from the macroscopic sample will be a
superposition of multiple contributions. Assuming two different kinds of rings in the sample,
where a fraction f rotates with rate γ1/2 and the remaining fraction (1 − f ) with γ2/2, the
resulting incoherent dynamic structure factor S̃(Q,ω) is simply a weighted superposition of two
1-ring models:

S̃(Q,ω) = A0(Q)δ(ω) +
2
π

2
∑

l=1

Al(Q)
�

f
λ1,l

λ2
1,l +ω

2
+ (1− f )

λ2,l

λ2
2,l +ω

2

�

(3.17)

where λi,l is defined similar to eq. (3.6) using γ1/2 and γ2/2 as jump rates between nearest
neighbors in ring 1 and ring 2 respectively.

3.3 Non-equivalent sites rotational jump diffusion model

The analysis of scattering data in chapter 6 on monoclinic Fc will show that the equivalent sites
model is not able to describe the data in an overall consistent way. As will be discussed in that
chapter, the rings in monoclinic Fc are dynamically disordered. The dynamical disorder is pro-
jected here onto a non-equivalent sites rotational jump diffusion model, referred to as 2×5-fold
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model in the following. The reasoning behind this is that the disorder introduces a changing
local environment, which leads to two nonequivalent rotational orientations for a single ring,
hereafter called ‘configurations’. Within each configuration, the ring can undergo 5-fold jumps
according to its D5 symmetry. The transition from configuration 1 to configuration 2 will be
modeled with a simple transition rate.

A detailed schematics of the extended model is shown in Figure 3.4. It consists of N =
2× 5 sites distributed on a circle, where the sites are arranged on the corners of two pentagons
which are twisted by an angle α. Those represent the two possible configurations for each
ring, shown in red and blue. The 5-fold symmetry jumps occur with a rate of γ1/2 between
odd (ring configuration 1, red) and γ2/2 between even (ring configuration 2, blue) numbered
sites. The transitions between the two configurations (magenta colored in Figure 3.4) follow a
slightly more complicated pattern, as they have to be self-consistent with a possible population
asymmetry of both configurations. If we define f as the probability of the ring being in config-
uration 1, then the clockwise transition from configuration 1 to 2 occurs at rate (1− f )γa while
the reverse, counterclockwise transition from configuration 2 to 1 occurs at rate f γa. Accord-
ingly, the rate for counterclockwise transition from configuration 1 to 2 is (1− f )γb and f γb for
the reverse direction.

In order to obtain the incoherent scattering law for this model, the same calculation as for
the equivalent sites model presented in section 3.1 can be used. The transition matrix can be
constructed with the help of Figure 3.4, and the result is

M=











































M11 (1− f )γa γ1/2 0 0 0 0 0 γ1/2 (1− f )γb

f γa M22 f γb γ2/2 0 0 0 0 0 γ2/2

γ1/2 (1− f )γb M11 (1− f )γa γ1/2 0 0 0 0 0

0 γ2/2 f γa M22 f γb γ2/2 0 0 0 0

0 0 γ1/2 (1− f )γb M11 (1− f )γa γ1/2 0 0 0

0 0 0 γ2/2 f γa M22 f γb γ2/2 0 0

0 0 0 0 γ1/2 (1− f )γb M11 (1− f )γa γ1/2 0

0 0 0 0 0 γ2/2 f γa M22 f γb γ2/2

γ1/2 0 0 0 0 0 γ1/2 (1− f )γb M11 (1− f )γa

f γb γ2/2 0 0 0 0 0 γ2/2 f γa M22











































(3.18)

where M11 = −γ1 − (1− f )(γa + γb) and M22 = −γ2 − f (γa + γb) .
Unfortunately, an analytical expression for the eigendecomposition of the matrix M= −BΛB−1

could not be obtained in contrast to the case of the equivalent sites N-fold jump diffusion model.
Therefore the eigenvectors and eigenvalues will be computed numerically for specific values of
the transition rates. Moreover, M is not symmetric any more, such that B is not necessarily
orthogonal and is numerically inverted to obtain B−1. The values of the correlation function
Pk j(t) are then calculated from

Pk j(t) =
N
∑

l=1

Bkl exp(−λl t)
�

B−1
�

l j . (3.19)

Figure 3.5 shows the correlation function Pk j(t) for a typical set of parameters assuming the
particle is at site k = 1 in configuration 1 at time t = 0. As expected, the long time limit reflects
the population asymmetry of f = 0.3 in this example. The dashed lines in the figure indicate
that, in the long time limit, the fraction f is distributed equally over all 5 sites of configuration 1,
and the remaining fraction (1− f ) over the 5 sites of configuration 2, such that

P1 j(t →∞) =

¨

f /5 if j ∈ configuration 1 (red),

(1− f )/5 if j ∈ configuration 2 (blue).
(3.20)
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Figure 3.5: Correlation functions Pk j(t) for the non-equivalent sites 2×5-fold jump rotation
model assuming the particle starts at site k = 1 at t = 0. The jump rates shown here are
γ1 = γ2 = γ and γa = 3γ and γb = 0, and the population of configuration 1 is f = 0.3.

The non-equivalence of the sites means that it is not sufficient to consider the particle being
at site 1 at t = 0 in the following, as it was the case in the equivalent sites model in section 3.1.
Instead, the form of the intermediate scattering function in powder average corresponding to
eq. (3.11) is

I(Q, t) = 2π

� N
∑

j=1

j0

�

2Qr sin
�αk j

2
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where αk j is the angle between the vectors from the ring center to site k and j respectively, and
the outer average is carried out over all sites k. In the next step the expression for the matrix
elements Pi j(t) is inserted into eq. (3.21) and the result is rewritten as

I(Q, t) = 2π
N
∑

l=1

exp(−λl t)
¬
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k
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where
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The averaging over non-equivalent sites leads to the sum in eq. (3.23a) with f and (1 − f )
being the fractional population of the configuration 1 and 2 respectively. Due to the 5-fold
symmetry, Ã1l(Q) is representative for the structure factor originating from sites belonging to
configuration 1 and Ã2l(Q) to that from configuration 2.

As in case of the equivalent sites model, the symmetries of the model lead to some degen-
eracy in the eigenvalues of the matrix M. In the numerical implementation of the model, the
computed eigenvalues and eigenvectors are therefore sorted and paired appropriately. The
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eigenvalue corresponding to the elastic part is defined as λ0 = 0, and the remaining 9 eigenval-
ues are further grouped into 4 pairs and one non-degenerate value. The order of eigenvalues is
then chosen such that λ0 . . .λ5 are all different,3 and the definition

Al(Q) = ml

¬

Ãkl(Q)
¶

k
(3.24)

where ml is the multiplicity of the l-th eigenvalue allows to restrict the summation over l to
the first five different nonzero eigenvalues. The resulting incoherent dynamic structure factor
is then

S̃(Q,ω) = A0(Q)δ(ω) +
5
∑

l=1

Al(Q) L (ω,λl) (3.25)

and takes a form very similar to the equivalent sites model in eq. (3.15) with an elastic contri-
bution of strength A0(Q) and several Lorentzian quasielastic components. The details of motion
over nonequivalent sites described by the model are now fully contained in the structure fac-
tors Al(Q) and the linewidths λl .

In summary, the incoherent dynamic structure factor S̃(Q,ω) for the non-equivalent
2×5-fold model as shown in Figure 3.4 is calculated numerically from its parameter set
{γ1,γ2,γa,γb,α, f } as follows: Firstly, the matrix M is constructed and its decomposition in
negated eigenvalues λl and eigenvectors in the matrix B is calculated. The eigenvalues are
then rearranged as described above. Subsequently, the structure factors A0(Q) to A5(Q) are
calculated from B and α according to eq. (3.23) and eq. (3.24). Finally, the incoherent dynamic
structure factor S̃(Q,ω) is obtained from eq. (3.25). This calculation was implemented and used
as model function in the analysis of inelastic neutron scattering data on monoclinic ferrocene.

3 Depending on the exact numerical values of the jump rates, a higher multiplicity and degeneracy of eigenval-
ues can occur, but the implementation of the model is able to handle them in a well defined manner.
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4 Experimental methods
This chapter aims to give an overview and introduction of the experimental methods used in
this work. All are variants of neutron scattering, including polarized diffraction, inelastic high
resolution spectroscopy, and vibrational spectroscopy. In contrast to electron, X-ray or light
scattering, which are frequently used in many laboratories, neutrons stand out already due to
practical reasons: A beam of free neutrons suitable for scattering experiments can be obtained
nowadays only in large scale research centers running a nuclear reactor or a particle accelerator
with a spallation target. The corresponding instrumentation is thus mostly unique, complex and
highly specialized, providing limited access for experiments to a large user community.

In the following, a short section is dedicated to neutron sources which provide a suitable
beam of neutrons for the instruments that will be presented thereafter. The techniques that
will be discussed comprise neutron time of flight spectroscopy, high resolution backscattering
spectroscopy, vibrational spectroscopy, and polarized diffraction. All experiments presented in
this work have been carried out on different instruments at the high flux research reactor of the
Institut Laue-Langevin (ILL) in Grenoble, France.

4.1 Neutron sources

Neutrons are spin-½ elementary particles without charge and are usually tightly bound in the
nuclei of atoms by the strong force. Free neutrons are unstable and decay with a halflife of ap-
proximately 10 min into a proton, electron and an electron antineutrino. In order to obtain free
neutrons which are suitable for scattering experiments, nuclear reactions of heavier nuclei are
used in either nuclear fission or spallation. There are only several research facilities worldwide
providing neutron beams for scientific experiments. They either run a particle accelerator, bom-
barding a target (e.g., mercury or tungsten) with high energy protons to ‘spall’ neutrons from
nuclei, or a nuclear reactor, where neutrons are produced as a by-product of nuclear fission
(e.g., of 235U).

Some examples for spallation sources are ISIS at the Rutherford Appleton Laboratory (Oxford,
UK), SNS at the Oak Ridge National Laboratory (Oak Ridge, USA), or MLF at J-PARC (Tokai,
Japan). Nuclear research reactors providing neutron beams for condensed matter experiments
are for example the ILL (Grenoble, France), at NIST (Gaithersburg, USA), OPAL at ANSTO
(Lucas Heights, Australia), or the FRM2 (Garching, Germany).

Whatever method is chosen to free neutrons from nuclei, they usually have kinetic energies
of several MeV and need to be moderated before being of use for the condensed matter physics
scattering experiments described here. The moderation proceeds by multiple collisions and
thermalization of neutrons with the nuclei of an appropriate moderator material. The modera-
tor is kept at a given temperature, such that the energy distribution of the moderated neutrons
results in an approximately Maxwellian spectrum corresponding to the moderator temperature.
The average kinetic energy of neutron beams is classified according to the moderator temper-
atures into cold neutrons (liquid deuterium, T ≈ 25 K, 0.5 meV to 10 meV), thermal neutrons
(liquid D2O, T ≈ 300 K, 10 meV to 150 meV) and hot neutrons (graphite, T ≈ 2000 K, 10 meV
to 1000 meV).[35]

Neutrons in these energy ranges have wavelengths of roughly 0.3 Å to 12 Å and thus match
inter-atomic length scales in condensed matter. Moreover, the energies of cold, thermal and hot
neutrons also match the energy range of excitations and dynamics, e.g., phonons, magnons,
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Figure 4.1: Schematics of a direct geometry multi disk chopper neutron time of flight spectrom-
eter (e.g., IN5 at ILL, Grenoble).

molecular reorientations and vibrations, making them an excellent probe for these processes on
the femto- to nanoseconds time scale.

After free neutrons are produced in the source and thermalized in the moderator, they are
guided in beam tubes usually consisting of multilayer coated glass substrates (supermirrors)
over distances of about 5 m to 150 m to different instruments. Each neutron source supplies
multiple instruments which are specialized for certain purposes, but covering a variety of appli-
cations and disciplines altogether. In the following sections, the experimental techniques used
in this work will be introduced.

4.2 Time of flight spectroscopy

The relatively slow thermal neutron velocity of typically several hundreds to a few thousands of
meters per second offers a simple way of determining neutron energies by measuring the time
of flight (ToF) over the distance of a few meters. The schematics of a multi disk chopper ToF
spectrometer exploiting this method is shown in Figure 4.1. The neutrons first pass a chopper
system which monochromatizes the beam to define the incident energy Ei and chops it into very
short pulses of low repetition rate for the ToF measurement. These short pulses scatter on the
sample, and the scattered neutrons are counted in a multidetector covering a large solid angle.
From the measured time of flight between chopper and detector, the final energy Ef of each
scattered neutron event can be calculated. A radial collimator helps to avoid neutrons scattered
from the sample environment to reach the multidetector.

Time of flight spectrometers offer great flexibility of choosing energy resolution, energy and
momentum transfer range in order to adapt to many different experimental needs. In this work,
two different ToF spectrometers at the ILL were used:

IN5
The IN5 ToF spectrometer[46] is a multi disk chopper spectrometer as shown in Figure 4.1.

The incident beam comes from a cold neutron source. Experiments have been carried out
using three different instrumental configurations: Depending on the speed and relative phase
of the choppers, different incident neutron wavelengths λinc and energy resolutions ∆E can be
selected. The incident wavelength also defines the accessible range of scattering vector Q. An
overview of the respective values is given in Table 4.1. Typical for ToF instruments is the fact
that longer incident wavelengths λinc lead to better energy resolution, but restrict the available
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Table 4.1: Characteristics of the different configurations on time of flight (ToF) and backscatter-
ing (BS) spectrometers used in this work: Incident neutron wavelength λinc, energy resolution
FWHM∆E, and covered ranges of scattering vector Q and energy transfer E.

method instrument λinc /Å ∆E /µeV Q /Å−1 E /meV

from to from to

ToF IN5 12.0 8 0.07 0.95 −∞ 0.2
IN5 6.3 40 0.14 1.76 −∞ 1
IN6 5.12 80 0.3 2.0 −∞ 1.5
IN5 3.6 170 0.24 3.0 −∞ 3

BS IN16 6.271 0.8 0.2 1.9 −0.015 0.015
IN16B 6.271 0.8 0.2 1.9 −0.031 0.031

Q-range. The maximum neutron energy loss in the sample is limited by the incident neutron
energy, while the neutron energy gain is a priori unlimited.

IN6
The IN6 ToF spectrometer[47] uses a Bragg reflex on pyrolitic graphite crystal monochro-

mators instead of disk choppers to select an incident wavelength λinc. For the time of flight
measurement, the monochromatized beam is then also chopped into very short pulses by a so-
called Fermi chopper, consisting of a rotating collimator. The characteristics of the configuration
used on the IN6 spectrometer is given in Table 4.1.

4.3 Backscattering spectroscopy

Complementary to time of flight spectroscopy, the method of neutron backscattering (BS) spec-
troscopy allows to improve energy resolution by one to two orders of magnitude and study
slower processes on a different time scale, typically from several tens of picoseconds up to some
nanoseconds. In the following, the instrumental technique will be briefly summarized. It has
been proposed by Maier-Leibnitz, and a first spectrometer was build at the FRMI in Garching in
the 1960s by Alefeld, Heidemann and Birr.[48,49] A more detailed introduction is given, e.g., in
Neutron Backscattering Spectroscopy by Frick.[50]

In a BS spectrometer, monochromatization of the incoming beam and energy analysis of
scattered neutrons are performed by single crystals. The term ‘backscattering’ is not related to
the scattering of neutrons on the sample, but refers to the fact that the crystal monochromator
and analyzers are used in backscattering geometry. The reflection of the neutron beam from
a single crystal in backscattering, i.e., with scattering angle 2ϑ = 180°, is key to achieve the
high energy resolution. This can be deduced from the well known Bragg law for diffraction on
crystals, where a wave with wavelength λ is diffracted according to

λ= 2d sinϑ (4.1)

where 2ϑ is the angle between incoming and reflected beam and d the distance between the
diffracting crystal lattice planes, usually characterized by Miller indices (hkl). To estimate the
sensitivity of the reflected neutron wavelength on crystal and beam parameters, eq. (4.1) can
be differentiated to

∆λ

λ
=
∆d
d
+∆ϑ cotϑ . (4.2)
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Figure 4.2: Schematics of a neutron backscattering spectrometer (e.g., IN16B at ILL, Grenoble)

Here, ∆ϑ is a measure for the beam divergence. In backscattering geometry with ϑ = 90°
and thus cotϑ = 0, the second term is zero and the width of the reflected wavelength band is
independent of the beam divergence in this first order approximation. The achievable energy
resolution is now dominated by the term ∆d/d, which accounts for factors like crystal quality,
lattice strains, and includes extinction in the crystal. The latter effects of extinction can and
have to be estimated in the context of dynamical diffraction theory, which does not rely on
the first Born approximation, as the concept of first Born approximation holds only for weak
perturbations of the initial state which is certainly not the case for a Bragg reflection. Typical
values of∆d/d that can be achieved with high quality single crystals are in the order of 10−5. A
common monochromator material is silicon, using the Si (111) reflex in backscattering. The fact
that incident and reflected beam follow the same path in backscattering geometry complicates
the construction of such a spectrometer. Figure 4.2 shows the schematics of a third generation
neutron backscattering spectrometer like IN16B (ILL).[51] The experimental setup is described
in the following:

The beam from a cold neutron source coming from the left is pre-monochromatized by a
velocity selector which consists of a rotating drum with twisted blades, selecting a wavelength
band of 10 % to 15 % (FWHM) in ∆λ/λ. The continuous beam is then chopped into pulses of
about 50 % duty cycle by a background chopper and continues to the phase space transforming
(PST) deflector chopper.

From the deflector chopper the beam is sent directly towards the monochromator, where
the neutron energy is selected with high precision in exact backscattering as explained above.
During reflection on the moving graphite crystals mounted on the PST deflector chopper, the
phase space of the neutron beam is deformed and optimized to the acceptance region of the
monochromator, leading to a significant increase in intensity. The pulsed beam structure al-
lows the neutrons reflected from the monochromator to pass through an open window in the
deflector chopper and reach the sample, where they are scattered in all directions. The scat-
tered neutrons reach the crystal analyzers which cover a large solid angle, are analyzed with
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Figure 4.3: Illustration of different modes of measurement on the IN16B backscattering spec-
trometer using the example of triclinic ferrocene: Elastic fixed window scan (EFWS), inelastic
fixed window scans (IFWS) and full energy spectra (QENS).

the same precision as on the monochromator in perfect backscattering and focused back on the
sample. They may pass through the sample a second time before reaching the detectors located
closely behind the sample environment. The second passage does not pose a problem, as sample
transmission is usually high and the energy analysis has already been performed.

The monochromator is mounted on a Doppler drive which allows to move it forwards and
backwards with different velocities. Assuming that Ei is the neutron energy that would be
reflected from the resting monochromator in backscattering, then the energy of neutrons after
reflection from a moving monochromator is Ei +∆E where

∆E = 2
vD

vn
Ei (4.3)

with vn being the neutron velocity and vD the Doppler monochromator velocity. Equation (4.3)
is a first order approximation for vD � vn. Depending on if and how the monochromator is
moved, different types of measurements can be performed. Figure 4.3 gives an overview and
illustration of the different measurements using the example of the triclinic low temperature
phase of ferrocene which will be discussed in detail in chapter 6. The figure shows the scattered
intensity as function of temperature and energy transfer. With increasing temperature, the
jumps between equilibrium sites of the cyclopentadienyl rings become more and more frequent,
leading to broadening of the elastic line in energy spectra. The different types of measurements
shown in Figure 4.3 are:

Elastic fixed window scans (EFWS): When the monochromator is resting, all events reaching
the detector must have been scattered elastically on the sample, or at least with an energy
transfer within the instrumental resolution. The elastically scattered intensity at E = 0 can be
recorded as a function of sample temperature and gives a quick overview of the dynamics in the
sample. When dynamical processes accelerate with increasing temperature and become faster
than the time defined by the instrumental energy resolution, the observed intensity decreases.
The black line in Figure 4.3 shows this decrease between 120 and 160 K.

31



detector

top view

monochromator

sample environment

crystal analyzers

side view
secondary spectrometer

absorber

Figure 4.4: Schematics of the IN1-Lagrange vibrational spectrometer at ILL, Grenoble.

Inelastic fixed window scans (IFWS): This mode is an extension of the elastic fixed win-
dow scan presently only available on the IN16B spectrometer in the form described here. The
monochromator is moved following a quasi-rectangular velocity profile with plateau velocities
±v0, probing the scattering in a given inelastic fixed energy transfer window. While the sample
temperature follows a continuously increasing ramp, different inelastic energy transfer windows
can be repeatedly cycled in order to measure all the blue lines in Figure 4.3 at once. When the
dynamical ring rotation process accelerates with increasing temperature, a peak as function of
temperature is observed in the IFWS between 120 and 160 K. The sudden decrease of intensity
in the high temperature flank of the peak at 164 K is due to the phase transition of ferrocene to
the monoclinic crystal phase (see section 1.1). The advantage of the EFWS/IFWS technique is
that the temperature dependence can quickly be measured with good statistics. The counting
time for each point along the EFWS/IFWS curves in Figure 4.3 was between 30 seconds and
1 minute, such that the entire set of elastic and inelastic fixed window temperature scans could
be obtained in under 5 hours.

Energy transfer spectra (QENS): Full energy transfer spectra can be recorded at fixed sample
temperature by using a sinusoidal velocity profile for the Doppler monochromator movement.
The incident energy is thus periodically modulated, and neutron counts from the detectors are
sorted by a multichannel analyzer into a spectrum as function of energy transfer. This ‘classical’
mode of measurement is shown in red in Figure 4.3 and allows to analyze the line shape of the
scattering at fixed temperatures. The measurement time on IN16B was between one and two
hours per temperature.

The measurements presented in Part II were carried out on two backscattering spectrom-
eters at the ILL, namely IN16B and its predecessor IN16. Their characteristics are given in
Table 4.1. Typical for backscattering spectrometers is the extremely good energy resolution in
a comparably large Q-range, the downside being the relatively small maximum energy transfer.
As predecessor of the IN16B spectrometer, the older IN16 spectrometer[52] offered a smaller
maximum energy transfer of ±15µeV and less flux than its successor. It possessed a deflector
chopper without phase space optimization, and the flight paths in the secondary spectrometer
were in air. The IN16 spectrometer was decommissioned and dismantled in fall 2013.
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Figure 4.5: Schematics of a polarized neutron diffractometer (e.g., D7 at ILL, Grenoble).

4.4 Vibrational spectroscopy

Additionally to the time of flight and backscattering experiments focusing on slow reorienta-
tional dynamics of the ferrocene molecule, vibrational spectroscopy has been performed. The
vibrational modes are naturally much faster than the ring rotation, and necessitate much higher
energy transfers in their investigation using inelastic scattering experiments.

Vibrational spectroscopy was performed on the recently commissioned IN1-Lagrange hot neu-
tron spectrometer at ILL.[53] The spectrometer layout is shown in a sketch in Figure 4.4. The
top view on the left side of the image illustrates the selection of incident neutron energy Ei
by Bragg reflection on a crystal monochromator. The energy Ei can be varied by varying the
take-off angle and moving the secondary spectrometer along the dashed line. By additionally
using three different monochromator Bragg reflections, a large range of incident energies Ei can
be covered: Si (111): 5 meV to 22 meV; Si (311):17 meV to 70 meV; and Cu (220): 40 meV to
500 meV.

The secondary spectrometer shown in side view on the right side of Figure 4.4 contains many
small pyrolitic graphite analyzer crystals arranged on a rotational ellipsoid. The downward
scattered neutrons from the sample are selected at fixed energy Ef = 4.5 meV and focused on a
single detector, while the direct view between detector and sample is blocked by an absorber.
The scattering angles 2ϑ that are covered by the analyzer are in the range of ≈ 21° to 159°. A
typical energy resolution is 2 % to 4 % in energy transfer E = Ei − Ef depending on the selected
monochromator reflection and Ei.

4.5 Polarized neutron diffraction

Polarized neutron diffraction experiments help to separate coherent from incoherent scattering
as discussed in section 2.5. They allow to measure the static structure factor S(Q) of semi-
crystalline and amorphous polymer samples, which is a key element in the analysis in inelastic
data studying the ring rotation in ferrocene containing polymers in chapter 8. In contrast to all
other scattering methods discussed in this chapter, no energy analysis of scattered neutrons is
performed in this experiment.
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Polarized neutron diffraction was performed on the D7 diffuse scattering spectrometer at
ILL.[54] Although the instrument is in principle capable of full xyz-polarization and time of
flight analysis, it was only used as diffractometer to separate coherent from incoherent scatter-
ing in this work. The layout of the instrument is sketched in Figure 4.5. The incident neutron
wavelength of λinc = 3.12 Å is selected by a pyrolitic graphite PG (002) monochromator from a
cold neutron guide. Subsequently, only neutrons of a certain spin orientation are selected by a
polarizer. This polarizer consists of a supermirror, which uses magnetically polarized ferromag-
netic materials in a multilayer coating such that neutrons are reflected under grazing incidence
for one spin orientation, but transmitted and absorbed for the opposite spin direction. The
polarization of the incident beam can be inverted by a spin flipper, which uses a localized mag-
netic field transverse to the quantization axis in which the spins precess by 180°. The neutrons
which are scattered from the sample pass through polarization analyzers functioning similarly
to the polarizer, and are counted in multiple detectors located behind the analyzers. Two subse-
quent measurements with activated and deactivated spin flipper respectively allow to measure
the intensities of spinflip and non-spinflip scattered neutrons. These quantities are then used
determine the coherent and incoherent cross sections of the sample separately as described in
section 2.5 and Appendix B.
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5 QENS data analysis and
multiple scattering corrections

In this chapter, the general approach to data analysis in order to validate jump diffusion models
and extract parameters of the ring rotation dynamics will be presented. The quasielastic neutron
scattering data obtained using ToF and BS spectroscopy experiments presented in the previous
chapter is therefore to be analyzed in terms of the models introduced in chapter 3. Prior to
the analysis process, the raw data from the instruments is treated by standard methods to apply
several corrections, subtract empty cell scattering, and normalize the spectra. The details of raw
data reduction are discussed in Appendix B. We will focus here on the further analysis process
using physical models of the ring rotation dynamics in the sample. However, instrumental
corrections and model fitting cannot be fully disentangled due to multiple scattering corrections
that have been incorporated into the analysis process.

5.1 Construction of model functions

The central part of the model function used for the analysis of QENS data consists of the ro-
tational jump diffusion models presented in chapter 3. But for the accurate description of ex-
perimental scattering data, additional factors need to be included in the full model. Figure 5.1
shows a sketch of the typical shape of observed QENS spectra, where the elastic and quasielastic
contributions are part of the rotational jump diffusion models. Additional contributions are due
to vibrational modes, the effect of finite instrumental resolution and possible multiple scattering
processes in the sample, and will be discussed in the following.

Inelastic phonon contributions
Inelastic neutron scattering processes can create or annihilate phonons in the sample, such

that a measured spectrum contains the density of phonon states – the details have been dis-
cussed in section 2.4.1. Most of the phonon modes however lie at energies outside the region
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Figure 5.1: Sketch of the model function used for analysis of QENS data. The individual contri-
butions are discussed in the text.
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relevant for this QENS study, with exception of the librational mode discussed in the next para-
graph. The measured spectrum of the phonon density of states for crystalline Fc is shown in
Appendix C. Here, the contribution from the low energy part of the lattice vibration spectrum
can be very well approximated using the Debye density of phonon states ZD from eq. (2.32) on
page 14 with the Debye frequency ωD. The incoherent dynamic structure factor contribution
due to vibrational modes is then, according to section 2.4.1:

Svib(Q,ω) = ZD(ω)
Q2

ω

�

1+ n(ω, T )
�

=
3ωQ2

ω3
D

�

1+ n(ω, T )
�

. (5.1)

The effect on the measured energy spectra is a smooth, nearly flat background (as function
of ω) which increases with Q2 and is characterized by a single free scaling parameter ω−3

D . The
resulting value of the Debye frequency ωD has not been further interpreted or evaluated. The
Debye Waller factor is not included in eq. (5.1) as it will be a general prefactor of the model
function.

Librational mode
Another minor contribution in the full model accounts for a possible librational motion of

the Cp rings. A ‘librational mode’ corresponds to the lowest quantum mechanical oscillator
excitation of rotational motion in a potential minimum. In bulk Fc at low temperatures, a broad
inelastic peak is clearly distinguishable around E = −2.5 meV similar to the sketch in Figure 5.1
(see chapter 6 for experimental data). This peak has been interpreted as librational motion of
the Cp rings.[34] A lognormal distribution analogous to the boson peak phenomenon[55] gives
an adequate description of the observed data, which is however only an empirical modeling.
The libration peak is thus described with

S̃lib(Q,ω) =
LQ2

∆ωL
p

2π
exp

�

−

�

ln |ω| − lnωL

�2

2(∆ωL)2

�

(5.2)

and characterized by peak width ∆ωL, peak position ωL and a scaling factor L. The librational
mode is in principle a part of the vibrational density of states, thus its intensity scales with Q2

similar to the phonon contributions. Modeling of the librational mode is however not always
included in the full model function – the reasons and implications of this will be discussed at
the relevant points throughout this work.

Instrumental energy resolution
Every experimental method of spectroscopy naturally has a certain resolution limit. In neu-

tron ToF and backscattering spectroscopy, the experimental uncertainty of determining incident
and final neutron energy defines the resolution capabilities of the instrument. This leads to a
convolution of the dynamic structure factor of the sample with the resolution function.1 In all
experiments presented in this work, it is possible to determine the instrumental resolution func-
tion experimentally for each sample measurement. This is achieved by cooling the sample to 2 K
which freezes all dynamics on the sensitivity scale of any of the instruments, and the scattering
can be assumed to be purely elastic with E = 0. The measured elastic peak then corresponds to
the instrumental energy resolution, taking into account the exact orientation and geometry of
the sample. In the data evaluation of measurements at higher temperatures, the model function
is then numerically convoluted with this resolution function.

1 Strictly speaking, the resolution of ToF instruments generally depends on energy transfer, thus the resolution
smearing is not a simple convolution operation. In the case of QENS with low energy transfer and smooth
Lorentzian line broadening as discussed here, the assumption of constant energy resolution is considered to
be a good approximation.
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Multiple scattering (MS)
The description of scattering theory given in chapter 2 is based on the assumption that the

measurement of a scattered neutron under the scattering angle 2ϑ with energy transfer E = ħhω
can be ascribed to a single scattering process in the sample, and that accumulated statistics al-
lows to determine the dynamic structure factor S(Q,ω). Typical samples for neutron scattering
are usually prepared to have a total transmission of 85 % to 90 % of the incident beam. If a
scattering process takes place in the sample, there is thus a small but not necessarily negligible
probability that another scattering process takes place along the path of the neutron on its way
to the sample boundary. In that case, the final neutron direction and energy is falsified, and
it will potentially be counted in a detector and energy channel with parameters 2ϑ and E that
may be totally unrelated to any of the actual scattering processes.

While there are analytical approaches to account for multiple scattering, e.g., formulated in a
paper by Sears[56] or as used by Zorn et al.,[57] a Monte-Carlo simulation technique was chosen
here following the approach by Johnson[58] to correct for multiple scattering. This correction
has been applied in all QENS data analyses unless indicated otherwise. Essentially, the correc-
tion algorithm assumes a known scattering law S(Q,ω) and calculates multiplicative correction
factors for every scattering angle 2ϑ and energy transfer E that allow to scale the measured data
to remove the effects of multiple scattering. It is found that the multiple scattering corrections
are important especially for the detailed evaluation of the incoherent structure factors A0(Q)
and A1(Q). The implementation of the multiple scattering algorithm was a major effort, and a
more detailed presentation of the used technique and effect of the correction is discussed below
in section 5.2 and Appendix A. For now, we note the existence of correction factors R∗2ϑ(ω) that
will be part of the model function.2

Full model function
The model function that is used to analyze the QENS spectra of scattered intensity is the

combination of all above mentioned contributions. It is given as function of energy transfer
E = ħhω and scattering angle 2ϑ, and takes the following form:

Sfit(2ϑ,ω) = s0
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§

�
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�

× exp
�

ħhω
2kBT

�

+ Svib(Qel,ω)
ª

×
exp(−2W )
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⊗ Y2ϑ(ω) + bkg (5.3)

It is prepended with an overall scaling factor s0 that accounts for the absence of a strict absolute
normalization of the data. The sum of the jump diffusion model S̃jump(Qel,ω) and the libra-
tion peak S̃lib(Qel,ω) is multiplied with the detailed balance factor and added to the phonon
background Svib(Qel,ω). This sum is then multiplied with a Debye Waller factor using (see
section 2.4.1)

2W =
1
3

Q2
elu

2
0T , (5.4)

followed by division with the correction factors R∗2ϑ(ω) originating from the multiple scattering
simulation. Subsequently, the model is convoluted with the experimentally obtained instrumen-
tal resolution function Y2ϑ(ω) and a constant background is added. This constant background
accounts for any bias from systematic errors, as could be introduced, e.g., by the empty cell
subtraction.

The nonstandard transformation from scattering angle 2ϑ to scattering vector Q deserves
some detailed explanation at this point. In general, the magnitude of the scattering vector Q
2 The asterisk notation is chosen for compatibility with literature and does not imply complex values of R∗2ϑ(ω).
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Figure 5.2: Scattering vector Q for inelastic scattering of neutrons with constant incident energy
Ei = 2 meV (corresponding to λinc = 6.3 Å) as function of energy transfer E for some fixed values
of scattering angle 2ϑ.

depends on scattering angle 2ϑ and energy transfer E according to eq. (2.5). Figure 5.2 shows
this relationship for a typical incident wavelength of λinc = 6.3 Å. A physical detector located
at fixed scattering angle 2ϑ will measure energy spectra that are cuts through the (Q, E)-plane
along the colored lines. The well known relationship Qel = 4πλ−1

inc sinϑ holds only for elas-
tic scattering (dashed line). As all models are usually defined as function of Q and not 2ϑ, a
transformation needs to be performed before or during the data analysis process. This could be
achieved by rebinning the experimental data along constant-Q cuts through the (2ϑ, E)-plane
prior to model fitting. However, this would be unpractical regarding multiple scattering simu-
lations as correction factors are calculated depending on sample geometry for every scattering
angle 2ϑ. It seemed more straightforward to include the transformation from constant 2ϑ to
constant Q in these correction factors. The scattering law calculated for Qel is then transformed
to constant scattering angle 2ϑ by the correction factors R∗2ϑ(ω). The details on how these
factors are calculated will be presented in the next section.

5.2 Determination of multiple scattering correction factors

The above mentioned correction factors R∗2ϑ(ω) account for multiple scattering, sample self
absorption and the transformation of scattering angle 2ϑ to scattering vector Q. They are
obtained from a Monte-Carlo simulation based on the multiple scattering correction program
DISCUS written in Fortran by Johnson in the 1970s.[58] In the course of this work, the algorithm
was re-implemented using the free software package GNU/Octave,[59] and a number of details
of the original algorithm have been changed or extended. The entire approach to obtaining
the correction factors will be discussed in the following, where the basics are adapted from the
technical report on the original program by Johnson.[58]

In principle, hypothetical neutron fluxes are calculated for each energy channel of each de-
tector by a Monte-Carlo simulation technique. The path of a virtual neutron through the ac-
tual sample cell geometry is sampled as shown in Figure 5.3 for a hollow cylinder geometry.
Although an arbitrary number of scattering processes can be considered, the number of ran-
domized scattering events within the sample was usually limited to four. After each scattering
process, the probabilities of scattering into every energy channel of a specific detector located
under the angle 2ϑ from the incident beam are calculated. This calculation is repeated for many
randomized trajectories through the sample and averaged. The resulting hypothetical neutron
fluxes J (n)2ϑ (ω) then separately give the intensity corresponding to exactly n scattering processes
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Figure 5.3: Sketch of multiple scattering processes in a hollow cylinder sample (orange). In the
Monte-Carlo simulation, the hypothetical neutron fluxes J (n)2ϑ (ω) after n = 1,2, 3, . . . scattering
processes are calculated.

within the sample. The quantity that would be useful for comparison with model functions for
the dynamic structure factor would be the neutron flux that would have been measured if

• there was only a single scattering process in the sample, and

• neutrons would be able to pass through the sample without absorption.

This quantity can easily be calculated in the simulation as well, and will be called J∗2ϑ(ω).
In contrast to Johnson’s original algorithm, the corresponding scattering event for this flux
is weighted with the scattering law S(Qel,ω) using the elastic value of the scattering vector
Qel = 4πλ−1

inc sinϑ, even for inelastic events. The correction factors R∗2ϑ(ω) used in section 5.1
are now calculated from the ratio of the wanted flux J∗2ϑ(ω) and the experimentally observable
flux which is the sum over all J (n)2ϑ (ω):

R∗2ϑ(ω) =
J∗2ϑ(ω)

4
∑

n=1

J (n)2ϑ (ω)

. (5.5)

This construction of the correction factors allows to simply multiply the data with (or divide the
model function by) R∗2ϑ(ω) in order to remove the effects of multiple scattering, correct for sam-
ple self absorption and transform the measured spectra to constant Q. On the downside, these
correction factors can only be calculated accurately if the scattering law S(Q,ω) of the sample is
known beforehand – and not only within the (Q,ω)-region observed in the experiment, but also
beyond these limits. Therefore, the data analysis process becomes more complex, and requires
repeated model refinements and multiple scattering simulations until a self-consistent solution
has been found. This procedure will be discussed in the next section.

An important detail distinguishing the present algorithm from the DISCUS program is the spe-
cial attention to elastic scattering. As the simulation is performed with the unsmeared scattering
law S(Q,ω), the delta-shaped elastic peak poses a significant problem that needs special atten-
tion. A description of the implementation of the entire algorithm including technical details
and exemplary comparisons of data analysis with and without multiple scattering corrections
is given in Appendix A. It turns out that these corrections have a significant effect on the
linewidths of quasielastic scattering, and are especially important for the accurate extraction of
the elastic incoherent structure factor, notably at low Q.

39



model function
S(Q,ω)

experimental data
(2ϑ,ω)

initial guess
(self absorption only)

correction factors
R∗2ϑ(ω)

model parameter set
e.g. Al(Q),λ0, EA, . . .

result

(I)

(II) (III)

(IV)

least-squares
optimization

multiple scattering
simulation

(V)

Figure 5.4: Flow chart of the iterative refinement process in the analysis of inelastic neutron scat-
tering data in order to account for multiple scattering. The result is obtained after 5 iterations
of the loop (thick lines).

5.3 Model parameter refinement procedure

The inclusion of the multiple scattering simulation complicates the model refinement procedure
as indicated above. This is due to the fact that the correction factors from the simulation
are needed to perform the least-square model refinement, but the resulting model parameters
need to be known in order to calculate the correction factors. Therefore, the analysis proceeds
iteratively as illustrated in the flow chart in Figure 5.4, implemented using GNU/Octave:[59]

(I) Firstly, an initial guess for the correction factors R∗2ϑ(ω) is made by considering only
sample self absorption, that is, attenuation of the incident and scattered beam by the
sample itself. The factors are obtained either from an analytical formula for flat samples
using the infinite slab approximation as given by Sears,[56] or the multiple scattering
algorithm for hollow cylindrical samples assuming only isotropic elastic scattering.

(II) A set of refined model parameters is obtained by Levenberg-Marquardt nonlinear re-
gression of the model function to the experimental data. The correction factors and
instrumental resolution are taken into account as indicated in eq. (5.3).

(III) The multiple scattering simulation is launched with the scattering law S(Q,ω) defined
by the model function and the obtained parameter set.

(IV) The refined set of correction factors R∗2ϑ(ω) is used to repeat the model parameter fitting
by going back to item (II).

(V) The loop (II)–(IV) is repeated for a fixed number of five iterations, after which a stable
and self consistent state is usually reached. The last parameter set obtained is then taken
as final result.
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Some details of the analysis procedure deserve some further commenting and explanation.
Firstly, the nonlinear regression of the model function to the experimental data was imple-
mented as highly flexible ‘global fit’-procedure. It allows for a pool of experimental data to be
analyzed simultaneously. In the simplest case, this can be a set of energy spectra measured for
different Q. In more advanced cases, the data pool comprises sets of energy spectra for differ-
ent Q and different temperatures T . Therefore, the temperature dependent jump rates γ(T ) of
the jump diffusion models introduced in chapter 3 are replaced by Arrhenius laws of the form

γ(T ) = γ0 exp
�

EA

kBT

�

(5.6)

with activation energy EA and preexponential factor γ0, which are used as free parameters di-
rectly. The fitting algorithm also allows to pool data from different instruments or instrument
configurations, e.g., different incident wavelengths on ToF spectrometers, or the combination of
ToF and BS. As the model function can be rendered an analytical function of T with the above
mentioned substitution of the jump rates with Arrhenius laws, the analysis of elastic and inelas-
tic fixed window temperature scans (EFWS/IFWS) presented in section 4.3 is straightforward
and even allows for proper resolution smearing in these cases. Ultimately, everything can be
combined: Q-dependent energy spectra taken on different instruments at different temperatures
together with elastic and inelastic fixed window temperature scans. This can go as far as the
simultaneous analysis of data for 16 different Q-values in a total of 96 fixed window scans and
79 energy spectra combining ToF and BS spectroscopy on triclinic Fc in chapter 6, or more than
30 different Q-values in 306 energy spectra for PVFc in chapter 8, where some of these analyses
involve more than 105 individual data points. The algorithm was not extensively optimized for
speed, and usually run on a standard quad-core desktop computer (2.9 GHz) with fully par-
allelized multiple scattering simulation and partially parallelized least-square refinement. For
small data sets, one iteration of the loop in Figure 5.4 typically takes in the order of 30 seconds
to a few minutes, where most of the time is used for the multiple scattering simulation. For
very large data sets, the execution time can increase up to one hour per iteration, as numerous
individual multiple scattering simulations have to be performed for data subsets.

A second comment concerns the approach towards model validation of the rotational jump
diffusion models. In general, a comparison of the experimentally determined EISF curve A0(Q)
with the model prediction gives a very good and reliable way of confirming or dismissing a
model. For this to be possible, the EISF needs to be a free fit parameter. Therefore, the values of
A0(Q) and A1(Q) have been used as free parameters, while all remaining structure factors Al(Q)
for l ≥ 2 were fixed to A1(Q) using the ratios given by the assumed model function. However,
doing this, these parameters will be fully correlated to the overall scaling factor s0 and u2

0 in the
exponent of the Debye-Waller factor. To resolve this, s0 and u2

0 are not fitted directly. Instead,
after the least-square refinement in step (II) of the analysis loop above, the values of u2

0 and s0
are obtained from a fit of the sum over Al(Q). This step assures normalization of the structure
factors, meaning that

N−1
∑

l=0

Al(Q)
!
= 1 .

During the refinement loop, s0 and u2
0 then approach their stationary value similar to all other

parameters. An exception to this is the analysis of data that contains elastic fixed window tem-
perature scans, as their temperature dependence is characterized by the value of u2

0. In these
cases, u2

0 can be fitted directly. For Fc, where the phonon density of states Z(ω) was experimen-
tally determined, the temperature dependence of the Debye Waller factor was improved at low
temperatures by numerical integration of Z(ω). The details are discussed in Appendix C.
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The third and last important comment concerns the handling of coherent Bragg peak scatter-
ing. This is observed for crystalline powder samples of Fc and FcI3. The ToF instruments contain
a large number of detectors which are grouped to typically 20 to 30 different Qel-values for data
analysis. This grouping was adapted for each measured temperature to isolate Bragg peaks into
designated groups. Detector groups contaminated by Bragg peaks are not removed from the
data sets such that their elastic scattering within the experimentally accessed Q-range can then
be taken into account in the multiple scattering simulations. The values of the resulting final
elastic structure factors A0(Q) however will be presented without data points containing Bragg
peak scattering in order to avoid confusion. The inelastic contribution A1(Q) is not influenced
by the elastic Bragg scattering and will be shown for all detector groups. For the amorphous
sample PVFc, the coherent scattering is diffuse and will be handled by a different approach as
discussed in chapter 8.
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6 Ring rotation dynamics in bulk ferrocene
In this chapter, the first and supposedly simplest step in the study of ring rotation dynamics in
the ferrocene molecule is documented: bulk ferrocene. But as it turns out, the dynamics in the
molecular crystal of ferrocene is anything but simple. The polymorphism of ferrocene discussed
in section 1.1 is a first indication of the entanglement of structure and dynamics. In the follow-
ing, the experiments and analyses will be separated according to the three crystalline phases.
After a short explanation of the experimental details, the monoclinic high temperature phase
with dynamically disordered rings will be discussed. Subsequently, the study of the metastable
triclinic low temperature phase is presented, and a short paragraph will deal with a measure-
ment on the stable orthorhombic low temperature phase as well. In the end, the different
dynamics in all three phases of crystalline ferrocene will be discussed and summarized.

6.1 Experimental details

Ferrocene was purchased from Alfa Aesar (purity 99 %) and used without further purification.
For neutron time of flight experiments, approximately 0.7 g of sample was filled in standard flat
3× 4 cm2 aluminum samples holders of ≈ 0.5 mm sample thickness. The calculated transmis-
sion for 6.3 Å neutrons is around 85 %. For neutron backscattering experiments in the triclinic
phase, a hollow cylinder aluminum sample holder of 22 mm outer diameter and 0.5 mm sample
thickness filled with 1.45 g of ferrocene powder has been used. The calculated transmission is
80 % to 85 %.

In order to obtain the orthorhombic phase of ferrocene, attempts were made to anneal the
sample at T = 190 K for > 24 h after quenching in liquid nitrogen similar to the procedure
described by Bérar et al.[22] Transformation to the orthorhombic phase was verified by a low
resolution neutron diffractogram, but could only be achieved for a freshly sublimed sample. As
was pointed out by Bérar et al., transformation to the orthorhombic phase does not occur for
a sample containing too small crystallites (below circa 40µm). The original sample was prob-
ably broken down into small crystallites after repeated cooling and heating cycles through the
monoclinic-triclinic transition during previous experiments. The sublimation leading to larger
crystallites then re-enables the transformation to the orthorhombic phase. However, crystal-
lites may not be too large either (above circa 300µm) as they tend to disintegrate explosively
into small fragments after cooling through the monoclinic-triclinic transition.[22,25,26] The above
described procedure was performed for 231 mg freshly sublimed ferrocene in a flat 3× 4 cm2

aluminum sample holder of 0.6 mm thickness which was stored at liquid nitrogen temperature
after successful transformation.

Temperature on all experiments was controlled by a standard ILL orange cryofurnace in the
range of 2 K to 320 K. Inelastic neutron measurements on Fc were carried out on the time of
flight spectrometers IN5 and IN6, and high resolution neutron spectroscopy was performed on
the backscattering spectrometer IN16B. The mode of operation, schematics and characteristics
of these spectrometers were presented in chapter 4. For measurements on the triclinic sample,
the analyzers of IN16B were partly covered with neutron absorbing Cadmium plates in the
angular ranges under which coherent Bragg peak scattering occurs. Moreover, on IN16B, the
different modes of measurement described in section 4.3 have been used. Firstly, fixed window
scans (FWS) were used to measure the temperature dependent scattering intensity for fixed
energy transfers of 0, 1, 3, 5, 7, 9 and 11µeV. Subsequently, complete spectra as a function
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Table 6.1: Listing of sample temperatures for neutron scattering experiments on tri-
clinic/monoclinic Fc using backscattering spectroscopy (IN16B) and ToF spectroscopy (IN5/IN6).

instrument T /K

IN16B (FWSa) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IN16B 110 130 150 160

IN5 (λinc = 12 Å) 130 150 155b 160
IN5 (λinc = 6.3 Å) 160 170 190 230 290
IN6 (λinc = 5.12 Å) 200 260 320
IN5 (λinc = 3.6 Å) 190 230

a Elastic and inelastic fixed window scans with continuous heating ramp
b Measured during heating, the given temperature value is averaged

of energy transfer in the range of ±30µeV were recorded at fixed temperatures. A list of all
sample temperatures for experiments on the triclinic/monoclinic phase is given in Table 6.1.
The orthorhombic sample could only be measured once in a fixed window scan with multiple
offset energies on IN16B due to limited experimental time.

6.2 Monoclinic high temperature phase

The general shape of the obtained energy spectra on IN5 is shown in Figure 6.1. As expected, the
spectrum shows significant quasielastic scattering which broadens with increasing temperature.
In the metastable triclinic low temperature phase at T = 160 K an inelastic feature is clearly
distinguishable around E = −2.5 meV which has been attributed to the librational motion of
the Cp rings.[34] While this inelastic contribution is clearly separated from the line broadening
at T = 160 K, they merge in the monoclinic phase at higher temperatures and libration cannot
be distinguished from quasielastic broadening. In the following, a detailed data analysis in
terms of the equivalent sites 5- and 10-fold model as well as the non-equivalent 2×5-fold sites
model will be presented.

Equivalent sites 5- and 10-fold jump models
The equivalent sites 5- and 10-fold jump models do not include a contribution broad enough

in energy to adequately describe the spectra, thus the modeling of librational motion is included
for these models as discussed in chapter 5. If the librational peak is not included in the model
function, excess intensity in the spectra around −2 meV is immediately obvious. However, the
position of the libration peak had to be restricted to |ħhωL| > 1.5 meV in order to achieve a
stable model refinement. This limit value was usually attained in the process, questioning the
reliability of the modeling of the librational motion. In retrospect, even though the description
of experimental data seems much better by using the libration peak, its impact on the relevant
parameters of the equivalent sites 5- and 10-fold model turned out to be insignificant.

Apart from the restrictions concerning the libration peak, the analysis of the equivalent sites 5-
and 10-fold jump models proceeds straightforward. The results from the analysis are composed
in Figure 6.2 and 6.3 for the 5- and 10-fold model respectively. Exemplary spectra recorded on
IN5 with λinc = 3.6 Å at T = 190 K are shown in Figure 6.2b and 6.3b together with the best fit
of the respective model function and the contributions from elastic scattering (dark gray area),
the quasielastic Lorentzian broadenings (green lines), the libration peak (violet line) and the
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Figure 6.1: Energy spectra obtained by neutron time of flight spectroscopy on triclinic and mon-
oclinic ferrocene at different temperatures on IN5 with λinc = 6.3 Å, summed over all scattering
angles. At T = 160 K below the triclinic-monoclinic phase transition, a broad peak can be seen
around E = −2.5 meV caused by the librational mode of the Cp rings.

phonon background (black line). The flat background lies far below the plotted region and is not
shown. It should be stressed again at this point that the data is presented for constant scattering
angle and the given values of the momentum transfer Qel only apply to the point of elastic
scattering. The individual contributions shown in the plot include the correction factors R∗2ϑ(ω)
obtained from the multiple scattering simulation and are thus not cuts along constant Q, but
correspond to an increasing value of Q with increasing magnitude of energy transfer E. This
dependency is especially strong at low scattering angles 2ϑ, explaining the two-wing shape of
the supposedly monotonically increasing phonon background in the foremost spectra.

Figure 6.2c and 6.3c show the resulting amplitudes A0(Q) of the elastic part and A1(Q) of the
quasielastic part for all investigated temperatures in the range of 170 K to 320 K. The theoretical
curve for these parameters from the equivalent sites 5- and 10-fold jump model according to
eq. (3.13) is shown as thick red line. It can be seen in Figure 6.2c that the analysis in terms of the
equivalent sites 5-fold model results in excess elastic intensity A0 in the intermediate Q-range
below 2 Å−1 which is especially pronounced at lower temperatures. At larger Q above 2 Å−1,
the shape of the model curve shows strong disagreement with the obtained values of A0(Q).
The equivalent sites 10-fold model in Figure 6.3c is in very good agreement with the data up to
circa 1 Å−1 to 1.5 Å−1, but shows excess elastic intensity at larger Q.

Figure 6.2d and 6.3d show the resulting correlation times τ = γ−1 in an Arrhenius plot. For
easier comparison, Figure 6.3d contains the results obtained using the 5-fold model in light
gray. The correlation times extracted with the equivalent sites 5-fold jump model (Figure 6.2d,
open symbols) show serious discrepancies between different instruments and incident wave-
lengths and do not fall on a single line. While a deviation from Arrhenius type behavior might
be arguable, the resulting parameters have to be consistent for measurements at the same tem-
perature with different wavelengths. This is not the case for the points representing results
from IN5 at λinc = 3.6 Å and 6.3 Å at T = 190 K and 230 K. The two respective measurements
for both temperatures have been carried out directly after each other without any change of
sample environment. In order to achieve a more consistent analysis in terms of the equivalent
sites 5-fold jump model, each pair of the above mentioned data sets at T = 190 K and 230 K are
analyzed simultaneously yielding the correlation times shown as full diamonds. Subsequently,
all data sets are pooled in a single refinement procedure and analyzed simultaneously using

τ(T ) = τ0 exp
�

EA

kBT

�

(6.1)
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Figure 6.2: Overview of the results from data analysis using the equivalent sites 5-fold jump
model. (a) Visualization of the equivalent sites 5-fold jump model with a single correlation
time τ. (b) Energy spectra (IN5, λinc = 3.6 Å, T = 190 K) with fits of the model function.
Spectra are shown for constant scattering angle (see text). (c) Resulting incoherent structure
factors of the elastic part A0 and the quasielastic part A1 compared to the 5-fold jump model
(red line). (d) Temperature dependent correlation times τ of the jump motion. It is seen that
the Q-dependence of the structure factors in (c) is different from the model function (red line),
and measurements with different incident wavelengths lead to different correlation times in (d).
Errors are typically smaller than symbols.

to account for temperature dependence of the correlation time. Instead of directly refining
the correlation time τ (or the corresponding rate γ = τ−1), the prefactor τ0 and activation
energy EA of its Arrhenius law are now used as free parameters. All other parameters remain
independent for different temperatures. The resulting Arrhenius law is shown as solid line in
Figure 6.2d, the values of activation energy EA and τ0 are given in Table 6.3. Care must be taken
in the interpretation of the estimated standard deviations given for both of these parameters as
they are highly correlated (correlation coefficient −0.98). The amplitudes A0(Q) and A1(Q)
shown in Figure 6.2c for the 5-fold model also correspond to the analysis of all temperatures
simultaneously.

In case of the equivalent sites 10-fold jump model, the correlation times shown in Figure 6.3d
are roughly halved with respect to the equivalent sites 5-fold model due to the doubled num-
ber of sites. More importantly, the independent analysis of data from different instruments
and wavelengths is now consistent and the resulting correlation times can be approximated
with a single Arrhenius law. Thus, a simultaneous analysis of multiple temperatures is not per-
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Figure 6.3: Similar to Figure 6.2, but showing results from data analysis using the equivalent sites
10-fold jump model. The gray results in (d) correspond to the analysis using the 5-fold model
for easier comparison (cf. Figure 6.2d). The Q-dependence of the structure factors in (c) differs
significantly from the model function (red line), especially above 2 Å−1. For the 10-fold model,
the correlation times in (d) are consistent for different incident wavelengths in contrast to results
using the 5-fold model shown in Figure 6.2d. Errors are typically smaller than symbols.

formed for the equivalent sites 10-fold jump model. Activation energy and prefactor are directly
obtained from a best fit of eq. (6.1) to the obtained values of τ(T ) and given in Table 6.3.

However, concerning the incoherent structure factors A0(Q) and A1(Q), neither the equiva-
lent sites 5-fold nor the equivalent sites 10-fold model led to a consistent description of the
experimental data over the entire range of temperatures investigated.

Non-equivalent sites 2×5-fold jump model
Due to higher complexity of the non-equivalent sites model and the increased number of free

parameters, data analysis using this model must be carried out carefully. Especially the task
of refining twist angle α and population factor f requires data at large Q, as these parame-
ters define the local dynamics between neighboring sites. For this reason, this model should
preferably be fitted simultaneously to data sets containing multiple temperatures and/or inci-
dent wavelengths. In a first step, for each of the fixed temperatures T = 190 K and 230 K the
measurements using wavelengths λinc = 6.3 Å and 3.6 Å on IN5 were analyzed simultaneously.
Also, all four jump rates γ1,2,a,b are initially unconstrained. The results always show comparable
values for the 5-fold symmetry jump rates γ1 and γ2 of each ring configuration, while one of the
jump rates γa or γb always converged to zero. Moreover, the part of the energy spectrum which
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Figure 6.4: Similar to Figure 6.2 and Figure 6.3, but showing results for the non-equivalent sites
2×5-fold model. In (d) the results of the analysis using the 5- and 10-fold model are shown
in gray for easier comparison (cf. Figure 6.2d and 6.3d). Among the studied jump models,
this model shows the best agreement between data and model, especially for the incoherent
structure factors in (c). Errors are typically smaller than symbols.

required the libration peak in case of the equivalent sites 5- and 10-fold models is described by
a broad quasielastic contribution generated by a comparatively large value of γa or γb. From
these observations, constraints are introduced for the non-equivalent sites model to reduce the
number of free parameters: The libration peak was removed and not used for the extended
model, the jump rates γ1 and γ2 were forced to be equal and γb was set to zero.

After the data sets taken at T = 190 K and 230 K were analyzed, all data sets for multiple
temperatures are analyzed simultaneously. As in the case of the equivalent sites 5-fold model,
the jump rates γ1 and γa were replaced by Arrhenius laws and characterized by an activation
energy and a prefactor each.

Figure 6.4 shows the results of the analysis in terms of the non-equivalent sites 2×5-fold
model. The exemplary data set in Figure 6.4b can be well described with the model separat-
ing in a narrow contribution of 2 Lorentzians governed by the 5-fold symmetry rotations with
rate γ1 and a broad contribution consisting of 3 Lorentzians mostly governed by transitions
between the two configurations at rate γa.

The amplitudes of elastic and quasielastic contributions A0(Q) and A1(Q) are shown in
Figure 6.4c. In general, the corresponding model curve for the non-equivalent sites model
depends on the jump rates and could thus be different for each temperature, however, the
above mentioned restrictions which are applied to the model result in a temperature indepen-
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Table 6.2: Values of twist angle α and occupation probabil-
ity f using the non-equivalent sites model.

data set f α/ °

T = 190 K 0.280(5) 30.2(2)
T = 230 K 0.49(1)a 29.6(2)

all T 0.49(1)a 27.3(2)
a Limit value reached during refinement (see text)

dent form of the model curve shown as thick red line. It is in good agreement with the results,
although lower temperatures have the tendency to show slightly increased elastic intensity vir-
tually over the entire Q-range.

The results for the correlation times τ1 = τ2 and τa are shown in Figure 6.4d. Similar to the
case of the equivalent sites 5-fold model, the results from simultaneous analysis of data sets at
T = 190 K and 230 K are shown as full diamonds and the lines correspond to the analysis of
all temperatures using a T dependency similar to eq. (6.1) for τ1 = τ2 and τa. The agreement
between both these results is excellent. While the values of τ1 = τ2 are very similar to the ones
obtained for the equivalent sites 5-fold model, the value of τa is by one order of magnitude
smaller and independent of temperature within experimental accuracy. The resulting parame-
ters of the corresponding Arrhenius laws are given in Table 6.3, where activation energy and
prefactor are again highly correlated as stated for the equivalent sites 5-fold model above.

The resulting values of f and α are given in Table 6.2. Some values for f reached their
arbitrarily chosen limit value of 0.49 during the refinement procedure. This limit value was
introduced as the model shows a symmetry in the value of f with a vanishing derivative of
the squared residuals ∂χ2/∂ f at f = 0.5 which could ‘trap’ the refinement process at this
value. Within the experimental accuracy, a value of f = 0.5 meaning equal population of both
configurations can be assumed as result for the analysis of the data sets at T = 230 K and the
simultaneous analysis of all temperatures.

As further check of model reliability, the data sets for each temperature and incident wave-
length are analyzed individually in a last step. However, the values of τa, α and f are fixed to
the ones obtained in the simultaneous analysis of all data sets. The resulting values of τ1 = τ2
are then reported as open symbols in Figure 6.4d. The agreement with the prior analysis of
multiple data sets is moderate, but improved with respect to the corresponding graph obtained
using the equivalent sites 5-fold model.

Comparison of results for different models
The first point in discussing the results for the monoclinic high temperature phase is con-

cerned with technical aspects of comparison of the three different models. From the overviews
in Figure 6.2, 6.3 and 6.4 it is evident that the non-equivalent sites model gives the best de-
scription of the experimental data in terms of the incoherent structure factors A0(Q) and A1(Q).
The preference for the non-equivalent sites over the equivalent sites 10-fold model relies mostly
on the mismatch in the EISF A0 obtained for λinc = 3.6 Å for the latter model. Regarding
the equivalent sites 5-fold model, it is the measurements with short wavelength as well which
show the most prominent discrepancies. Together with the inconsistency of the obtained cor-
relation times τ for the equivalent sites 5-fold model this raises the justified question whether
the observed mismatch is an artifact of insufficient instrumental energy resolution for the 3.6 Å
measurements. The higher resolution measurements result in an average, unconvoluted FWHM
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Table 6.3: Obtained values for activation energy EA and prefactor
τ0 of the jump motion using different models.

model EA/kJ mol−1 τ0 /10−12 s method

eq. sites 5-fold 3.94(1) 0.935(5) iQENS
4.4(5) 0.8 iQENSa

5.4(5) NMRb

eq. sites 10-fold 5.2(2) 0.15(2) iQENS

non-eq. sites (τ1,τ2) 4.635(8) 0.562(2) iQENS
non-eq. sites (τa) 0.00(3) 0.359(6) iQENS

a from ref. [34] b from ref. [30]

of the quasielastic contribution of 110µeV to 160µeV at T = 190 K and 160µeV to 250µeV
at T = 230 K respectively. This value corresponds to the energy resolution of roughly 170µeV
(FWHM) at 3.6 Å and shows that resolution effects must be taken into account carefully, but
should not hinder the extraction of proper correlation times given an adequate model function.
For the above mentioned reasons, the large inconsistency in correlation times and ISFs ob-
tained using the equivalent sites 5-fold jump model is attributed to shortcomings of the model
in describing the actual motion of Cp rings in monoclinic Fc.

Comparing the equivalent sites models, the 10-fold model shows an improved consistency
in describing the experimental data concerning the ISFs and more importantly the correlation
times τ with respect to the 5-fold model. The obtained values of τ are compatible for measure-
ments with different incident wavelengths and thus different energy resolutions and Q-ranges.
Although the agreement of the EISF for Q > 2 Å−1 is largely unsatisfactory, it seems that the
increased number of sites is, loosely speaking, a step in the right direction.

The non-equivalent sites 2×5-fold model, which has been introduced due to the insufficiency
of the equivalent sites N -fold jump models, results in the best agreement in the ISFs. A small
drawback is that the individual analysis of different data sets especially at λinc = 3.6 Å results
in significantly lower correlation times τ1 than the simultaneous analysis of multiple data sets.
This apparent dependency on instrumental resolution is similar to the case of the 5-fold model,
although discrepancies for the non-equivalent sites model are much smaller. However, amongst
the three investigated models, the non-equivalent sites model gives by far the best overall de-
scription of Cp ring rotation for data collected on the monoclinic phase of Fc. This statement
fully relies on data collected for T ≤ 230 K. In fact, all data sets for T ≥ 260 K can be described
with either of the models giving a striking agreement of the ISFs with the model functions
in each case, but no data at λinc = 3.6 Å giving access to Q > 2 Å−1 was collected at these
temperatures.

Rotational dynamics of Cp rings and context of previously obtained results

The obtained value of circa 4.6 kJ mol−1 for the rotational barrier of 5-fold symmetry jumps
in case of the non-equivalent sites model is in good agreement with previously obtained results
cited in Table 6.3. As expected, it is larger than the rotational barrier measured for the free
molecule of (3.8± 1.3) kJ mol−1 using electron diffraction by Haaland and Nilsson,[27] although
care must be taken due to their large experimental error. A more detailed overview of the
potential barriers to rotation obtained by various methods is given, e.g., by Braga.[15]
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It has already become evident in early studies of the crystal structure of monoclinic Fc that the
molecules are rotationally disordered, occupying different rotational conformations.[18–20,33]

The dynamical situation is thus dramatically complicated compared to a fully ordered phase.
5-fold jumps of the rings due to the Cp symmetry are certainly possible, but the disorder may in-
troduce different potential barriers due to intermolecular interactions. Moreover, the dynamical
character of the disorder leads to transitions between different conformations depending on the
surroundings of a single ring. In an even more complicated picture, these transitions propagate
as small domains in a correlated motion through the crystal and are overlaid with librational
motion of the Cp rings.[60] All of these aspects have been attributed a great deal of attention in
numerous earlier publications on Fc, some of which will be referred to in the following.

Regarding the analysis of Cp rotational dynamics in monoclinic Fc presented here, all effects
of disorder are neglected in the picture of the equivalent sites 5-fold jump model. The additional
contribution which is added to the model accounting for ‘librational motion’ can thus cover
the effects of actual librational motion as well as transitions between conformations. When
the angle of rotation between different conformations is sufficiently small, a large amplitude
librational motion might not even be separable from such transitions.

Results obtained from the modeling of the librational motion in the equivalent sites 5- and
10-fold model are not discussed due to the empirical description and the imposed constraints
for their parameters. It should be emphasized again that even without the part describing
librational motion the parameters obtained for the equivalent sites 5- and 10-fold model are
essentially the same and show the discussed large inconsistencies.

The equivalent sites 10-fold model itself on the other hand requires some justification, as the
intramolecular part of the potential energy of the Cp ring shows only 5-fold symmetry due to
the symmetry of the single molecule. However, it has been shown by Levendis and Boeyens[32]

in lattice energy calculations involving a simplified ‘concerted rotation’ of Cp rings that, for
some types of rotation, additional minima due to intermolecular interactions can occur in the
potential energy surface of a Cp ring. These are taken into account by the equivalent sites
10-fold model, but only in a very rudimentary way. The transition rate between neighboring
sites is constant and any effects of disorder are ignored. Results from the analysis using the
equivalent sites 10-fold model show that it fails at large Q – the detailed localized dynamics can
thus not be accurately described with this model.

The simplest model which takes disorder into account is the non-equivalent sites 2×5-fold
model. It allows the ring to be in 2 distinct configurations, undertaking 5-fold rotations within
these configurations over independent potential barriers as well as transitions between both
configurations by clockwise or counterclockwise rotation. The results show that both barriers
are equally high and the transitions between the two states proceed at much higher rate, but
only over one possible route (i.e., γb = 0). The latter observation is plausible, as a high tran-
sition rate over both routes (clockwise and counterclockwise transitions from ring state 1 to 2)
would completely shadow the slower 5-fold intra-ring jumps. In the experimental data, the fast
transitions between configurations take into account the part of scattering which was modeled
as ‘libration’ in the simple N -fold models. Whether there is additional, ‘actual libration’ when
using the non-equivalent sites model cannot be deduced from the data at this point. As stated
above, libration and transitions between states might not even be clearly separable.

A certainly questionable result at this point is the apparent temperature independence of
the transition rate between configurations γa. The transitions between configurations are most
probably complicated correlated motions depending on the individual environment of the ring,
and could have a much lower activation energy than the 5-fold symmetry jumps of a single
ring. Moreover, they contribute to the incoherent scattering mostly at larger Q which were only
investigated at the two temperatures of 190 K and 230 K which does not allow for a detailed
analysis of the temperature dependence of that process.
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The way of data analysis presented here allowed for refinement of the twist angle α between
the two states of the non-equivalent sites model. The resulting value of α close to 30° proved
surprisingly robust for different, extreme starting parameters as well as for different data sets
(see Table 6.2). Moreover, it is in striking agreement with the study by Levendis and Boeyens[32]

who, in their lattice energy calculations of a ‘concerted rotation model’, found 30° rotations as
possible separators between correlated microdomains. Calvarin et al.[60] identified from their
calculations possible transitions of 29° over a small potential barrier for one ring in the molecule
to change from one configuration to another. Moreover, Brock and Fu[20] found from analysis
of X-ray diffraction data that a two ring disorder model would be separated by 22(2)° at 173 K
and 28(2)° at 298 K, Takusagawa and Koetzle[19] found circa 24° from neutron diffraction.
Given that the value obtained in this work is obtained from spectroscopic measurements using
a dynamical model, the agreement is most satisfactory and confirms the dynamical character of
ring disorder.

The versatility and the extent of information extractable from quasielastic neutron scattering
makes it a unique tool for the investigation of molecular reorientation on this timescale. To
the best of knowledge, there is only one prior study of the ring dynamics in monoclinic Fc
using neutron spectroscopy, carried out by Gardner et al.[34] on an earlier version of the same
spectrometer IN5 used in this work more than 30 years ago. Their “evidence suggests strongly
that the rings reorient in a 5-fold potential”, while they compared the equivalent sites 5- and
10-fold jump model. However, this conclusion is based on the presented analysis of the EISF
at a single temperature of 303 K in a momentum transfer range up to Q < 2.2 Å−1, and the
necessity of further measurements at higher momentum transfers was pointed out. The data
presented here shows that, in the limited range around 290 K to 320 K and within the Q-range
in question, all three studied models are in very good agreement with the observations. The
success of the non-equivalent sites model should be seen as an extension and refinement of the
established 5-fold model based mostly on measurements at large Q and T below 230 K.

6.3 Triclinic low temperature phase

Data for triclinic ferrocene obtained on IN16B summed over all detectors was shown in
Figure 4.3 on page 31, to demonstrate the relationship between quasielastic neutron scatter-
ing energy spectra (QENS) and elastic/inelastic fixed window scans (EFWS/IFWS). The Cp ring
rotation leads to broadening of the energy spectra which becomes detectable above circa 100 K.
In the elastic fixed window scan, the broadening appears as decrease in intensity with increas-
ing temperature when the reorientation process becomes faster than the time scale associated
with the instrumental energy resolution. In the inelastic fixed window scans, the broadening
leads to a peak which is disrupted at 164 K by the phase transition into the monoclinic phase.

In contrast to the monoclinic high temperature phase, the rings are ordered in the triclinic
phase,[12] such that the equivalent sites jump models can be expected to give a good descrip-
tion of the dynamics. However, due to the fact that there are two crystallographically different
ferrocene molecules in the triclinic unit cell, the existence of different potential barriers for
different rings is imaginable, as indicated by NMR experiments by Kubo et al.[30] In the follow-
ing, we will start with the analysis in terms of a simple equivalent sites model, and extend the
analysis to a two-ring model thereafter.

One-ring model
This model assumes equivalent dynamics for all Cp rings in the triclinic phase of ferrocene.

For the analysis, data from ToF and BS experiments are treated separately. The refinement is car-
ried out for each set of energy spectra obtained for different Q at fixed temperature. The result-
ing values for the mean residence time τ = γ−1 are shown in an Arrhenius plot in Figure 6.5a.
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Figure 6.5: Results of the data analysis for triclinic ferrocene using a one-ring model. (a) Mean
residence time τ of the jump motion obtained from IN5 ToF data (blue squares), IN16B BS en-
ergy spectra (red circles) and IN16B BS energy spectra and temperature scans (line). (b) Resulting
values of incoherent structure factors A0(Q) and A1(Q) for different temperatures compared to
the model function for 5-fold circular jump diffusion (line).

Subsequently, all FWS and energy spectra measured on IN16B are analyzed simultaneously,
yielding the Arrhenius law drawn as solid line with activation energy EB = 12.70(3)kJ mol−1

and prefactor τ0 = 9.2(2)× 10−15 s. The Arrhenius law is in very good agreement with the
model refinement of IN16B data at individual temperatures of 150 K and 160 K, but shows
discrepancies at lower temperatures (red circles). The mean residence times obtained from
IN5 ToF data (blue squares) are obviously inconsistent with the BS results, and seem to be
systematically shifted to smaller correlation times τ.

The resulting amplitudes of elastic and quasielastic contributions, i.e., the EISF A0(Q) and
its counterpart A1(Q), are shown in Figure 6.5b for the one-ring model. The model function
according to eq. (3.13) is shown as solid red line. While the results at 150 K and 160 K are in
moderate agreement with the model function, the results obtained for lower temperatures are
largely inconsistent with the model.

The one-ring model thus proves insufficient for a consistent description of the experimental
data, motivating the analysis using a two-ring model. In order to substantiate, strengthen and
understand the discrepancy between ToF and BS data seen in the obtained residence times, a
Fourier transformation is performed on an exemplary pair of spectra measured at T = 160 K for
Q = 0.85 Å−1 on IN5 and IN16B. The Fourier transformed spectra are divided by the respective
instrumental resolution function to yield the intermediate scattering function I(Q, t) shown in
Figure 6.6. It can be seen that the broad decay is neither entirely covered by ToF (blue squares)
nor BS data (green circles). To further demonstrate the effect of the emerging discrepancy when
analyzing each data set separately, the best fit of a Fourier transformed one-ring model to ToF
and BS data (dashed lines) is shown in Figure 6.6, ignoring any multiple scattering corrections.
Both lead to different residence times, and it can be seen that the observed overall decay is too
stretched to be modeled by a single process. However, the superposition of two processes as
described by the two-ring model gives a very good description of both data sets (solid red line
in Figure 6.6), and we will further pursue the analysis in terms of the two-ring model in the
following.

Even though the technique of Fourier transformation to the time domain provides a very
useful possibility of merging ToF and BS energy spectra, further analysis is done in the energy
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Figure 6.6: Exemplary compound Fourier transformed data from neutron time of flight (ToF)
measurement on IN5 λinc = 12 Å and neutron backscattering (BS) on IN16B for ferrocene at
T = 160 K and Q = 0.85 Å−1. The best fit of a one-ring model to each data set is shown as
broken lines, but only a two-ring model (solid line) can describe both data sets over the entire
dynamic range.

domain using S(Q,ω) rather than I(Q, t). This facilitates the application of multiple scattering
corrections obtained from Monte Carlo methods, and is notably advantageous for the treatment
of fixed energy window temperature scans. We circumvent the necessity of transforming, decon-
voluting and merging the data with the evaluation strategy of fitting the model simultaneously
to data obtained on different instruments, while still being able to use the entire dynamic range
provided by the combination of different methods.

Two-ring model
The two-ring model accounts for crystallographically different sites in the triclinic phase of

ferrocene, and the resulting possibly different energy barriers of Cp ring rotation on each of
these sites. As discussed in the end of the previous paragraph, the analysis in terms of the
two-ring model requires a dynamic range provided only by the combination of BS and ToF
techniques. Consequently, the model refinement is performed simultaneously on data from
both instruments. To enable this analysis, the IN5 ToF spectra were regrouped to match the
mean Q values of the IN16B spectra in the range Q < 0.95 Å−1 in order to describe all data with
the same set of amplitudes Al(Q).

A small excerpt of the analyzed data is shown in Figure 6.7. Fixed window scans of different
energy transfers for Q = 0.83 Å−1 are shown in Figure 6.7a together with the best fit of the
model (red solid line) and individual contributions of elastic, quasielastic and background scat-
tering. In Figure 6.7a, the background part is too small to be distinguishable. Data points above
160 K shown as open circles were excluded from the refinement due to the triclinic-monoclinic
phase transition. Exemplary energy spectra from IN16B BS and IN5 ToF (λinc = 12 Å) taken at
T = 150 K are shown in Figure 6.7c and 6.7d for different magnitudes of the scattering vector Q
together with the best fit of the model function.

The resulting Arrhenius laws for the mean residence time of ring 1 and 2 are plotted in
Figure 6.8a with the parameters given in Table 6.4. As a further check of consistency, the
refinement was also performed only for sets of energy spectra at fixed temperatures, but still
using the combination of BS and ToF at different Q. These results are shown as full diamonds in
Figure 6.8a, where each pair of data points at 130 K, 150 K and 160 K corresponds to separate
analyses. The open symbol at 130 K stands for the fact that this parameter needed to be fixed
during the refinement procedure as this process is too slow to be reliably refined using only
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Figure 6.7: Small excerpt of the data for triclinic ferrocene used in simultaneous analysis in terms
of the two-ring model. The best fit of the model function is shown as solid red line together with
its separate elastic, quasielastic and background contributions. (a) Fixed window temperature
scans with different energy offsets E at Q = 0.83 Å−1. The background contribution is too low
to be distinguishable. The shown energy spectra were obtained on IN16B BS (b) at 130 K and
(c) at 150 K, and (d) IN5 ToF (λinc = 12 Å) at T = 150 K.

data at 130 K. Nevertheless, the resulting values are in very good agreement with the Arrhenius
laws.

Figure 6.8a also shows the result obtained for the one-ring model in light gray for easier
comparison. Moreover, the times corresponding to the respective energy resolutions of the
instrumental configuration used on IN16B BS and IN5 ToF are shown as horizontal lines. Al-
though the residence times τ do not directly correspond to the width of the broadening observed
in energy spectra, the horizontal lines give a good estimate whether a particular process can be
resolved by the corresponding method or not. The slower a process is with respect to the reso-
lution limit, i.e., the further it lies above the horizontal line, the less reliable the residence time
obtained by the respective method is. This allows to observe a very interesting relationship
between the results obtained by the analysis of the one- and two-ring model: At temperatures
above 150 K, the one-ring model analysis of IN5 ToF data (gray squares) ‘sees’ only the corre-
sponding faster process of the two-ring model, while the one-ring model analysis of IN16B BS
data (gray circles) yields some average of both processes in that temperature range. At 110 K
the one-ring model analysis of IN16B BS data yields a result corresponding to the faster process
of the two-ring model, as the slower process is by far not resolvable any more considering the
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Figure 6.8: Results of data analysis for triclinic ferrocene using a two-ring model. (a) Mean resi-
dence time of jump rotation τ for ring 1 and 2, obtained by analysis of energy spectra only (full
diamonds) and spectra and fixed window scans (lines). Results of the analysis of the one-ring
model from Figure 6.5a are shown in gray for comparison. (b) Resulting values of incoher-
ent structure factors A0(Q) and A1(Q) compared to the model curve for rotational 5-fold jump
diffusion.

extrapolation of its Arrhenius law. The slower process at 110 K is then wrongfully considered
as elastic scattering in terms of the one-ring model and leads to the increase of the EISF in
Figure 6.5b with decreasing temperature. These observations further explain the discrepan-
cies in the analysis using the one-ring model and underline the necessity of using a two-ring
model considering different energy barriers of ring rotation at different Cp sites in the triclinic
ferrocene crystal.

The structure factors Al(Q) obtained by using the two-ring model are shown in Figure 6.8b.
The determined population factor of ring 1 with the larger energy barrier is f = 0.468(8). The
structure factors are in very good agreement with the model function, especially considering
that in the range between 0.8 Å−1 to 1.5 Å−1, a large fraction of analyzer surface (ranging from
20 % to 80 %) of IN16B BS was covered to avoid detection of coherent Bragg scattering. While
the shown data set is obtained from the simultaneous analysis of all data and thus independent
of temperature, the analyses of data at 130 K, 150 K and 160 K lead to similar results with
slightly different values of the ring 1 population factor f (130 K: 0.50(1); 150 K: 0.46(2);
160 K: 0.63(2)).

The slightly different population factors obtained for different temperatures are consistent
with the reasonable assumption that there are actually more than only two different energy
barriers for the 4 crystallographically different sites. However, as the analysis demonstrates,
the two-ring model already gives a very good approximation of the actual dynamics. It has
already been pointed out by Kubo et al. in NMR experiments that the spin-lattice relaxation
time T1 in the triclinic phase can only be described by the sum of two processes instead of
one.[30] However, both activation energies of 10.3(5) kJ mol−1 and 11(2) kJ mol−1 obtained by
their very basic analysis are close to the faster process of 11.74(4) kJ mol−1 observed in this
work using the two-ring model (c.f. Table 6.4). A very good agreement of the experimental
results is found in the potential energy barriers obtained from an atom-atom pairwise potential
energy calculation by Braga and Grepioni.[16] As can be seen in Table 6.4, the largest and the
smallest of their energy barriers obtained for 4 independent rings correspond very well to the
result in terms of the two-ring model from the present work.
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Table 6.4: Arrhenius law prefactor τ0 and energy barrier EB
obtained for ferrocene in different crystalline phases.

τ0 /10−15 s EB /kJ mol−1

phase QENS QENS NMRb ppec

triclinica 0.23(3) 18.3(2) 11(2) 18.4
10.9(3) 11.74(4) 10.3(5) 14.2

10.9
10

orthorhombic 26(3) —d 24.8(1) 42
a two-ring model for QENS; 4 independent Cp rings in ppe
b from ref. [30]
c atom-atom pairwise potential energy calculation, from ref. [16]
d EB fixed to value obtained from NMR

The results thus present indisputable, direct experimental evidence of the fact that the Cp
rings in the triclinic low temperature phase of ferrocene located on crystallographically different
sites have different potential barriers of rotation. The quality of the results from analysis of the
EISF provides the unique possibility of confirming that the geometry of the observed processes
are indeed consistent with 5-fold rotational jump diffusion. Finally, the combination of multiple
data sets from ToF and BS spectroscopy, energy spectra and fixed window temperature scans in
a simultaneous analysis provides a novel, highly robust and accurate way of extracting multiple
dynamic processes at the same time.

6.4 Results for the orthorhombic low temperature phase

To complete the study of dynamics in crystalline ferrocene using neutron spectroscopy, the more
exotic, stable low temperature orthorhombic phase was also investigated. Due to limited ex-
perimental time available, the orthorhombic phase could only be measured once in a FWS on
IN16B BS with multiple energy offsets during which the sample was heated above the nonre-
versible orthorhombic-monoclinic phase transition. For comparison, a second, short FWS was
performed on the same sample after storing 48 h at room temperature.

The result is shown in Figure 6.9a. During the first scan with the sample being in the or-
thorhombic phase, a broad and weak peak can be seen in the inelastic part (offset E = 3µeV)
around 160 K corresponding to a remaining small fraction of triclinic ferrocene in the sample.
The elastically scattered intensity however shows no indication of the monoclinic-triclinic tran-
sition and decreases only slightly, consistent with an increasing Debye Waller factor up to a
temperature of 250 K. Here, the sample transforms into the monoclinic phase seen as steep
decrease in elastically scattered intensity. At the same time, a peak can be seen in the inelastic
fixed window scan at 250 K, indicating a quasielastic process entering the dynamic range of the
spectrometer. In the second scan, the orthorhombic phase is not restored and the sample shows
as expected the triclinic-monoclinic phase transition both in elastic and inelastic part.

Further analysis of this data is complicated by two facts: The large activation energy of the
dynamics in the orthorhombic phase of (24.8± 1.0) kJ mol−1 as obtained from NMR[30] leads
to very slow rotation dynamics which becomes resolvable in the present experiment only close
to the phase transition. Secondly, the orthorhombic phase is easily overheated[21,22] and the
decreasing side of the peak in the inelastic scan above 250 K is most probably governed by a
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Figure 6.9: Overview of ring rotation dynamics in all three crystal phases of ferrocene: mon-
oclinic, triclinic and orthorhombic. (a) Two subsequent fixed window temperature scans with
energy offsets of 0µeV and 3µeV on a ferrocene sample initially in the orthorhombic phase.
The inelastic fixed window scans (IFWS) are scaled in intensity as indicated. (b) Obtained mean
residence times τ of ferrocene ring rotation in all three crystalline phases, combining the results
of this chapter.

decreasing fraction of orthorhombic phase rather than due to accelerating dynamics following
an Arrhenius behavior.

Due to the high symmetry of the orthorhombic phase (space group Pnma) with exactly
eclipsed D5h molecules,[23] the one-ring model can be expected to give an accurate descrip-
tion of the ring rotation dynamics as there are no crystallographically different sites. Assuming
the activation energy obtained from NMR,[30] the one-ring model is fitted to the fixed window
scan (no multiple scattering corrections) with the result shown in Figure 6.9a as solid line. Un-
fortunately, the data does not allow for an analysis to the same extent as for the triclinic phase
at this point – only the scattered intensity summed over all detectors is analyzed in the tempera-
ture range of 180 K to 250 K and only the prefactor of the Arrhenius law is refined. The resulting
parameter value is given in Table 6.4, and the resulting Arrhenius law is shown in Figure 6.9b.
This figure contains an overview of the ring rotation dynamics in all three crystalline phases of
ferrocene summarizing results from this chapter, and will be further discussed in the following
section 6.5.

6.5 Conclusion: Ring rotation dynamics in all three phases of ferrocene

To summarize the study of the ring rotation dynamics of ferrocene in all three crystalline phases
using neutron spectroscopy, the results for the mean residence time τ of the rotational jump
diffusion are combined in Figure 6.9b.

An elaborate analysis was performed for the metastable, triclinic phase forming below 164 K
covering the right part of the diagram in Figure 6.9b. Therefore, multiple energy spectra, elastic
and inelastic fixed window temperature scans from BS were combined with ToF energy spectra
and refined in a simultaneous refinement process including multiple scattering corrections. The
result clearly shows that the Cp ring rotation dynamics cannot be described by a single process in
terms of a one-ring model, but crystallographically different sites with individual energy barriers
must be considered. Here, the two-ring model with two independent rings proves sufficiently
consistent, although there are four independent rings in the triclinic structure.[12] By combining
neutron ToF and BS spectroscopy in a simultaneous analysis, it becomes possible to reliably
separate the overlapping dynamical processes of the two-ring model. The resulting energy
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barriers are in very good agreement with previous potential energy calculations.[16] Moreover
the evaluation of the incoherent structure factors allows to confirm the 5-fold geometry of the
jump motion.

The monoclinic high temperature phase above 164 K covers the lower left part of Figure 6.9b.
While the established conclusion about the equivalent sites 5-fold jump motion of the cyclo-
pentadienyl rings could only be verified for T ≥ 260 K, a non-equivalent sites 2×5-fold model
was proposed. It takes the dynamical disorder into account by allowing two distinct configura-
tions for a single Cp ring. Although it seems related to the two-ring model used for the triclinic
phase, it describes a conceptually different situation. While the two rings in the two-ring model
describe physically different Cp rings, the non-equivalent sites 2×5-fold model describes two
configurations of the same Cp ring. Compared to the equivalent sites 5- and 10-fold jump
rotation model, the non-equivalent sites model gives the most consistent description of the ex-
perimental data especially at T ≤ 230 K and large momentum transfer. Within this extended
model, the activation energy of the 5-fold reorientational jumps is found to be lower than that in
the triclinic phase, which is in accordance with the well established literature results.[15,16,30,34]

The transition rate between states is found to be mostly independent of temperature. This
latter observation, however, would need to be substantiated by additional measurements at
large momentum transfer and different temperatures. In conclusion, the non-equivalent sites
model shows that the dynamics of the Cp rings can be more adequately described by introduc-
ing 2 ring configurations twisted by approximately 30° which is in very good agreement with
previous diffraction studies and lattice energy calculations, thus underlining and evidencing the
dynamical character of disorder in monoclinic ferrocene.

The investigation of the orthorhombic phase, which is the stable one below 242 K to
250 K[21,22,26] confirms the significantly increased energy barrier of ring rotation. The result
is shown as violet line in Figure 6.9b with the gray box around 250 K indicating the transition
range from the stable orthorhombic phase to the monoclinic phase. Unfortunately, the dynamics
is too slow to be studied to the same extent as the triclinic phase on present neutron backscat-
tering spectrometers. It becomes detectable just below the phase transition which complicates
the reliability of the results. In order to study the dynamics of ring rotation in the orthorhombic
phase and verify the 5-fold geometry using the elastic incoherent structure factor, a significantly
higher energy resolution would be needed. This could be feasible using incoherent neutron
spin-echo spectroscopy, or by future backscattering techniques regarding the planned upgrade
on IN16B using prototype GaAs monochromator and analyzers.[51] Such experiments could
be complementary to deuteron-NMR spin alignment, which is capable of studying dynamics
on much slower timescales than neutron spectroscopy.[61] Nevertheless, regarding the results
obtained for the monoclinic and triclinic phase, the experiments presented in this chapter sub-
stantiate, refine and significantly extend the understanding of ring rotation in the crystalline
phases of ferrocene.
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7 Ring rotation dynamics
in ferrocenium triiodide – FcI3

In this chapter, the effect of oxidation on the ring rotation dynamics in the ferrocene molecule
will be explored. For this purpose, the ionic compound ferrocenium triiodide (FcI3), consisting
of ferrocenium cations (Fc+) and triiodide anions (I−3 ) is investigated with neutron spectroscopy.
Open questions motivating the experiments are whether the FcI3 structure shows phase tran-
sitions comparable to Fc, and how the geometry and activation energy of the ring rotation
compares to bulk, unoxidized Fc. Aspects to consider in the interpretation will involve differ-
ences of the intramolecular rotational potential in neutral Fc and ionized ferrocenium on the
one hand, and intermolecular potential barriers in the crystal structure of FcI3 on the other
hand.

7.1 Experimental details

FcI3 was obtained by stoichiometric mixing of ferrocene (Alfa Aesar, purity 99 %) and iodine
in dichloromethane and subsequent evaporation of the solvent yielding a black powder. The
sample was investigated in multiple experiments using polarized neutron diffraction on D7,
time of flight spectroscopy on IN5, and high resolution backscattering spectroscopy on IN16
and IN16B. For a description of the experimental techniques, see chapter 4. On IN16 and
IN16B, neutron absorbing cadmium plates were mounted on the crystal analyzers in the regions
where coherent Bragg peak scattering was expected in order to restrict the observed intensity
to incoherent scattering.

The FcI3 powder sample was contained in different aluminum sample cells: Flat 3× 4 cm2

of circa 0.4 mm thickness holding 757 mg of sample (D7, IN16), and of circa 0.3 mm holding
509 mg of sample (IN5); and hollow cylinders of 22 mm in diameter and 0.6 mm wall thick-
ness holding 875 mg of sample powder (IN16B). A list of all sample temperatures that were
investigated is given in Table 7.1.

Table 7.1: List of sample temperatures for neutron scattering experiments on FcI3 using backscat-
tering spectroscopy (IN16/IN16B), ToF spectroscopy (IN5), and polarized diffraction (D7).
instrument T /K

IN16B (FWSa) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
IN16B 55 65 75
IN16 60 70 80

IN5 (λinc = 12 Å) 78 92
IN5 (λinc = 6.3 Å) 78 92 120 170 230 290
IN5 (λinc = 3.6 Å) 120 170 290

D7 5 100 320

a Elastic and inelastic fixed window scans with continuous heating ramp

63



Figure 7.1: Sketch of the rhombohedral unit cell of FcI3 at 300 K,[62] centered on I−3 and Fc+

respectively. The rotational orientation around the vertical axis of the rings in the ferrocenium
cation was presumed disordered and is drawn here in an arbitrary position. (Image rendered
with VESTA[13])

7.2 Structure and phase behavior of FcI3

The first step in the analysis of experimental results obtained for FcI3 is concerned with structure
and phase behavior of the sample. The structure of FcI3 was previously investigated by Bernstein
and Herbstein[62] and found to be trigonal between 300 K and 130 K from X-ray diffraction
experiments, with probable space group R3̄m. No phase transition was observed within that
temperature range, and measurements at lower temperatures have not been performed. The
dimensions of the rhombohedral unit cell have been determined at 300 K: aR = 7.517(5)Å
and αR = 69.1(2)°. A sketch of the unit cell is shown in Figure 7.1, centered on I−3 and Fc+ ions
respectively. The rotational orientation of the rings in the ferrocenium cation around the vertical
axis could not be determined by the authors and was presumed to be rotationally disordered.

Although the triiodide complex has been reported to be the most stable ferrocenium polyio-
dide, different crystalline forms of FcIx with x from 4 to 7.5[63] and an even more iodine rich
phase of Fc3I29

[64] were observed. Under the conditions of sample preparation described in the
previous section with a mixing ratio of 1.5 of I2 to Fc, the formed compound is expected to be
ferrocenium triiodide FcI3. During the diffraction experiment aiming to determine the static
structure factor of ferrocene containing polymers (see chapter 8) using polarized neutrons, the
coherent structure factors of bulk, crystalline ferrocene and of the sample presumed to be FcI3
were determined as well to confirm this assumption. Subsequently, elastic and inelastic fixed
window scans using backscattering spectroscopy were performed on FcI3 in order to get a first
overview of the dynamics and to explore the question whether FcI3 shows a phase transition,
possibly related to ring rotation, similar to the monoclinic-triclinic transition in Fc. Both these
experiments will be presented and discussed in the following.

Structure verification of the FcI3 sample
Figure 7.2 shows the resulting static structure factors S(Q) for FcI3 at different temperatures

obtained from polarized neutron diffraction as described in section 2.5. For comparison, a
measurement on monoclinic Fc is shown in gray. Several Bragg peaks are clearly distinguishable
in FcI3 and do not seem to show any substantial temperature dependence between 5 K and
320 K. The effect of thermal expansion is visible as a slight shift to lower Q with increasing
temperature. To confirm that the sample compound is FcI3 (and not another stable compound
of the FcIx family), the unit cell parameters obtained at 300 K by Bernstein and Herbstein[62]

64



Fc:
T = 320 K

FcI3:
T = 5 K
T = 100 K
T = 320 K

{100}

{111}

{110}

{11̄0}

{211}

{111̄}

{210}

{200}

{221}

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2
Q /Å−1

S(
Q
)

Figure 7.2: Static structure factor S(Q) obtained from polarized neutron diffraction (D7) on FcI3
at different temperatures in order to verify the sample structure. For comparison, the indexed
positions of reflections of trigonal FcI3[62] are indicated by vertical lines, and the structure factor
obtained for monoclinic Fc is shown as dashed gray line.

have been used to calculate the position of the first 9 Bragg reflections {hkl}. These positions
are indicated by the vertical lines in Figure 7.2 and coincide exactly with the measured peaks at
320 K, confirming that the composition of the investigated compound is indeed FcI3. Moreover,
it can be seen that no significant amount of crystalline, unoxidized monoclinic Fc is left in
the sample, as this would lead to contribution of Bragg peaks shown as dashed gray line in
Figure 7.2 which is not the case.

Phase behavior of FcI3

In order to get a fast overview of the dynamics in FcI3, elastic and inelastic fixed window
scans were performed on IN16 and IN16B. The result is shown in the middle plot of Figure 7.3
and compared to similar scans for initially triclinic Fc. The thermal activation of ring rotation
in Fc leads to continuous decrease of elastically scattered intensity from 100 K to 164 K. In
the same temperature range, intensity moving through the inelastic window at E = 3µeV can
be observed. At 164 K, Fc transforms to the monoclinic phase which is visible as a significant
discontinuity in the inelastic scan and a very small step in elastically scattered intensity. This
phase transition can also be seen in the low resolution diffractogram which could be recorded
simultaneously with an elastic fixed window scan on IN16. The position of the {210} reflex
of Fc is shown in top of Figure 7.3, where the step at 164 K marks the phase transition to the
monoclinic structure.

The scans on FcI3 show a similar behavior with significant decrease of elastic intensity with
a simultaneous peak in inelastic intensity, both followed by a small step, but at much lower
temperatures than for Fc. The observed onset of the dynamical process is between 40 K and
50 K, and a phase transition takes place at 85 K. The thermodiffractogram recorded simulta-
neously on IN16 does not offer the possibility to analyze many different Bragg peaks, as it is
measured only for Q < 1.8 Å on high incoherent background for the protonated sample, and
two of the peaks unfortunately coincide with small gaps between the detector banks. Neverthe-
less a clear discontinuity was found in the width∆Q of the {11̄0} reflex shown in the lower part
of Figure 7.3. The discontinuity shows that at 85 K a structural phase transition takes place in
FcI3, where the reason for a larger width of the reflex below 85 K could indicate an unresolved
splitting of the Bragg peak. To the best of knowledge, this transition has not been documented
in existing literature yet.
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Figure 7.3: Comparison of elastic and inelastic fixed window scans on Fc and FcI3. The top and
bottom plots show the temperature dependence of the position of the {210} reflex in Fc and
the width ∆Q of the {11̄0} reflex of FcI3 respectively. Discontinuities corresponding to phase
transitions are marked by vertical black lines, the red horizontal lines indicate the average of the
data.

As the characteristic correlation time of the rotational motion in FcI3 moves through the same
observation window at much lower temperatures than in Fc, it can safely be assumed already
at this point that the potential energy barrier to ring rotation in FcI3 is much lower than in
Fc. Another very interesting observation in the comparison of the fixed window scans on Fc
and FcI3 is that the phase transition takes place after the decrease of elastic intensity, and cuts
the peak in inelastic intensity on its decreasing flank in both cases. This means that, although
the phase transition takes place at very different temperatures, the respective correlation times
of the dynamical processes are roughly comparable near the transition point. This strongly
indicates that the transition in FcI3 is, as it is the case for Fc,[20,26,65] closely related to the ring
rotation itself, where the structure adapts for ordered rings at low temperatures and rotational
disorder above the phase transition. The presence of rotational disorder at room temperature
was already concluded from X-ray diffraction experiments,[62] and will be further studied in
section 7.3.

The change in crystal structure at the phase transition in FcI3 is only subtle, as the static
structure factors shown in Figure 7.2 have very similar form as discussed above. It should be
noted that the diffraction data from experiments presented here does not enable a full structure
refinement. For that purpose, more suitable X-ray or neutron diffraction experiments offering
much larger Q-range and better resolution should be carried out on powder or even single crys-
tal samples. While this aspect is left for future experiments, we will instead focus on the ring
rotation dynamics which will be investigated in more detail by inelastic neutron scattering ex-
periments. With the ring rotation being intimately involved in the phase transition, the analysis
in the following section is given separately for the high temperature phase above 85 K and the
low temperature phase below 85 K.
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Figure 7.4: Inelastic spectra for FcI3 at different temperatures measured on IN5 with λinc = 6.3 Å.
A strong quasielastic broadening can be seen with increasing temperature, as well as three low
energy excitations in the spectrum at 78 K.

7.3 Results of inelastic scattering experiments

In this section, the results of inelastic neutron spectroscopy experiments on FcI3 will be pre-
sented. As indicated by the elastic fixed window scan discussed in the previous section, the
methods of choice are high resolution backscattering spectroscopy focusing on the phase below
85 K, and time of flight spectroscopy at higher temperatures.

Exemplary energy spectra summed over all detectors from neutron time of flight spectroscopy
are shown in Figure 7.4 for different temperatures. Similar to the experiments on Fc in chap-
ter 6, a quasielastic broadening is observed with increasing temperature. The temperatures of
78 K and 92 K are closely above and below the phase transition at 85 K. The dynamics slightly
below the phase transition at 78 K can still be resolved with time of flight spectroscopy. It can be
seen that the quasielastic contribution broadens significantly when heating above the transition,
indicating strong acceleration of the rotation dynamics.

Moreover, in the spectrum recorded at 78 K, three additional inelastic excitations can be
distinguished at circa −2.4 meV, −3.9 meV and −5.4 meV. In Fc, an inelastic excitation around
−2.5 meV was interpreted as librational mode[34] (see chapter 6). The excitations in FcI3 show
increasing intensity with Q and are assumed to be vibrational modes (e.g., librational motion
of the rings). The temperature dependence of their intensity should then be monotonically
increasing proportional to the Bose-Einstein factor (see section 2.4.1). But these peaks are not
distinguishable any more at 92 K, and, more importantly, the peak at −5.5 K lies at 78 K already
above the corresponding spectrum at 92 K (arrow in Figure 7.4). This concludes that the mode
corresponding to that peak does either not exist above the phase transition, or it is extremely
broadened. This aspect will be further discussed in section 7.4 in context of the results from a
more detailed analysis of the quasielastic scattering.

7.3.1 Ring rotation dynamics above 85 K: ToF

As discussed in section 7.2, the rings in FcI3 are found to be disordered at room temperature
from X-ray diffraction.[62] If this is due to a low barrier of rotation such that the dynamics cannot
be described by single, well isolated jumps between potential minima, the 5-fold jump model
cannot be expected to adequately describe the dynamics. Moreover, the environment of nearest
neighbors of the ferrocenium ion in the unit cell, consisting of triiodide ions, has threefold rota-
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Figure 7.5: Structure factor analysis for ring rotation in FcI3 in the phase above 85 K assuming a
5-fold jump model. (a) Elastic and quasielastic structure factors A0(Q) and A1(Q). Red dashed
lines show the rescaled model with an additional constant elastic contribution. (b) Structure
factors corrected for constant elastic contribution (see text). Even after rescaling, data and
model are not consistent at Q > 2 Å−1.

tional symmetry around the vertical axis which is at the same time the axis of the ferrocenium
ion’s fivefold symmetry (see Figure 7.1 right). Consequently, the intramolecular part of the rota-
tional potential for the rings has to be of 15-fold symmetry. Unfortunately, a distinction between
15-fold jumps and continuous uniaxial rotation (i.e., ‘∞-fold’) of cyclopentadienyl cannot be
made in the Q-range that was probed in the presented experiments as discussed in section 3.1.

In the following, the dynamics will be analyzed in terms of a 5-fold and 15-fold jump model,
keeping in mind that, within this analysis, the 15-fold model is indistinguishable from contin-
uous uniaxial rotation. The analysis is similar to the scheme described in chapter 5, including
iterative model refinement with repeated multiple scattering simulations.

5-fold jump model above 85 K
Despite the argumentation in the previous paragraph, the first attempt to describe the rotation

dynamics in FcI3 is made using the equivalent sites 5-fold rotational jump model (see chapter 3).
The values of the elastic and quasielastic incoherent structure factors A0 and A1 resulting from
this analysis of time of flight data taken above 85 K are shown in Figure 7.5a. The obtained
values of the EISF lie systematically above the model function (thick red line) for all tempera-
tures. Assuming that only a fraction f of the incoherent scattering is from rings that reorient
according to the model while the remaining fraction 1− f is fixed (or slowed) and scatters only
elastically, the structure factors can be rescaled according to:

Al(Q) = f A′l(Q) +

¨

1− f if l = 0 (elastic),

0 otherwise (quasielastic),
(7.1)

where A′l(Q) are the structure factors of the rotational jump model. Of course, a physical justi-
fication for this assumption and the rescaling needs to be given. But at this point, we are only
interested in whether values of f < 1 could render the model consistent with the data. Further
discussion of this aspect in context of the obtained results will be postponed to section 7.4. The
rescaling was done for each data set and temperature, and values of f were determined to min-
imize the residuals between data and model. Figure 7.5a shows the rescaled model as dashed
red lines. In Figure 7.5b the values of A′l(Q) are given, meaning that the data sets are corrected
for their respective values of f . In the latter representation, the data should coincide with the
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Figure 7.6: Similar to Figure 7.5, but assuming a 15-fold jump model (indistinguishable from con-
tinuous rotation). After rescaling in (b), data and model are consistent over the entire Q-range.

uncorrected model function, which is not the case especially at Q > 2 Å−1. The obtained values
of f are between 0.6 and 0.85 and shown in blue in Figure 7.9a. They are increasing approxi-
mately linearly with temperature, but values obtained at the same temperature depend on the
used incident wavelength and consequently on the used energy resolution on the IN5 spectrom-
eter. This dependence is also seen in the resulting correlation times τ above 85 K which are
shown in blue in Figure 7.9b. The 5-fold jump model thus does not give a consistent modeling
of the dynamics, even by adding a constant elastic fraction in the structure factors via rescaling
of the model with the factor f .

15-fold jump model above 85 K
As discussed above, the intermolecular potential for the cyclopentadienyl rings in FcI3 ac-

cording to the structure obtained from X-ray diffraction at 300 K is of 15-fold symmetry. The
structure factors resulting from the analysis of quasielastic scattering in terms of a 15-fold jump
model are shown in Figure 7.6a. Again, the EISF shows more intensity than expected for the
jump model only. However, in case of the 15-fold jump model, a rescaling with f < 1 as de-
scribed in the previous paragraph is able to superimpose model function and data. The rescaled
data points in Figure 7.6b show excellent agreement with the model function. Moreover, the
values obtained for f shown in red in Figure 7.9a are more consistent for measurements per-
formed at the same temperature, and so are the correlation times τ in Figure 7.9b. An Arrhenius
fit of the obtained correlation times results in the parameters given in Table 7.2. The value of
the activation energy is as low as EA = 1.65(9)kJ mol−1, comparable to thermal energy at a tem-
perature of EA/kB = (198± 10)K. In light of this low barrier to rotation, it is reasonable that the
15-fold model, which is indistinguishable from continuous rotation in this case, gives a better
description of the ring rotation dynamics than the 5-fold jump model in the high temperature
phase.

7.3.2 Ring rotation dynamics below 85 K: ToF & BS

A reasoning about the symmetry of the rotational potential barrier for the phase below 85 K is
complicated by missing information about the crystal structure. In the following, a comparable
analysis as for the phase above 85 K will be carried out, using the 5-fold and the 15-fold jump
model respectively. Due to the much slower dynamics, neutron backscattering and time of flight
spectroscopy will be combined.
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Figure 7.7: Similar to Figure 7.5 and Figure 7.6, but for the phase below 85 K assuming a 5-fold
jump model. After rescaling in (b), data and model are consistent.

5-fold jump model below 85 K
The resulting structure factors from the analysis using the 5-fold model are shown in

Figure 7.7a. Measurements have been carried out on the IN16 and IN16B backscattering spec-
trometer, and on the IN5 time of flight spectrometer at 78 K with two incident wavelengths. On
IN16B, elastic and inelastic fixed window scans comparable to those on Fc presented in chap-
ter 6 were evaluated as well. The structure factors resulting from the analysis are shown in
Figure 7.7a, where the analysis including all IN16B energy spectra and fixed window scans is
shown in black (‘multi-T ’). Again, all resulting EISFs lie systematically above the model func-
tion, but the rescaling introduced in section 7.3.1 using f < 1 superimposes data and model.
The rescaled values A′l(Q) are shown in Figure 7.7b. The rescaling amplifies the scatter of data
points, which seems to be underestimated by the uncertainty extracted from the refinement
process. Single outlying points could have been introduced during normalization of the raw
data, when the cadmium screens on the analyzers were not in exactly the same position during
normalization and sample measurement. The scatter of results from ToF (IN5) is as expected
much lower, and the data points show excellent agreement with the model function.

The values of the scaling factor f below 85 K are shown in blue in Figure 7.9a. Backscattering
experiments result in values of 0.7 to 0.8, while the time of flight experiments give 0.5 to 0.6.
The correlation times of the assumed 5-fold jump motion are shown in Figure 7.9b. All values
show consistent Arrhenius behavior, except the IN5 6.3 Å measurement leading to a slightly
lower value. This could be the effect of insufficient energy resolution, although the linewidth
obtained from backscattering experiments is circa 20µeV which corresponds to half the reso-
lution of 40µeV and should in principle not hinder its proper extraction. The parameters of a
fitted Arrhenius law are given in Table 7.2, where the activation energy of EA = 4.90(1)kJ mol−1

corresponding to EA/kB = 589(1)K is circa by a factor of three larger than in the phase above
85 K, and moreover is much larger than the average thermal energy in the low temperature
phase.

15-fold jump model below 85 K
The analysis of inelastic spectroscopy measurements on FcI3 in terms of the 15-fold model be-

low 85 K is short and unambiguous: At 78 K, the EISF resulting from time of flight spectroscopy
shown in Figure 7.8 is not in accordance with the model. Due to its increase between Q values
of 1 Å−1 and 1.8 Å−1, it can furthermore not be described in terms of the rescaling introduced in
section 7.3.1 using f < 1, as shown by the dashed red lines in the figure. Therefore, the 15-fold
or continuous jump rotation model is discarded for the low temperature phase.
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Figure 7.8: Structure factor analysis for ring rotation in FcI3 in the phase below 85 K assuming
a 15-fold jump model. As is obvious, even a rescaling of the model (dashed red lines) cannot
superimpose model and data.

7.4 Discussion

The results of the inelastic scattering experiments obtained in the previous section 7.3 can be
summarized as follows: The ring rotation dynamics above the phase transition at 85 K has a
very low activation energy and is closer to continuous rotation than to discrete 5-fold jumps.
At the phase transition, the temperature dependence of the correlation time of jump motion is
discontinuous. The activation energy below 85 K is circa three times larger than above the tran-
sition, and the character of the motion resembles rather 5-fold jumps than continuous rotation
or 15-fold jumps. Despite the fact that all models needed to be rescaled by adding a constant
elastic fraction, this already shows that the potential energy landscape of ring rotation in FcI3
changes dramatically at the phase transition, affecting activation energy and type of the motion.

Another indication of the change in potential was seen in the inelastic spectrum of FcI3 shown
in Figure 7.4, where three low energy excitations were distinguishable below the phase transi-
tion. It is imaginable that, presumed that these excitations are librational motions and the unit
cell of FcI3 contains independent ferrocenium cations below the phase transition or breaks its
inversion symmetry, there could be independent rings with different potentials and thus differ-
ent librational frequencies. With the lower barrier above the transition and the much higher
average thermal energy compared to barrier height, the librational motion is then not distin-
guishable any more. On the other hand, the observed excitations could also be higher oscillator
levels of the same potential, where a strong anharmonicity leads to the overtones at circa 1.6
and 2.2 times the base frequency. However, the detailed interpretation of these inelastic excita-
tions is purely speculative at this point. Their disappearance above the phase transition simply
underlines the fundamental changes in the local environment of the rings. The comprehensive
evaluation of these excitations would certainly contribute to the understanding of the local ring
environment, but for this the exact structure of the low temperature phase should be solved
first.

Knowledge of the low temperature structure would also help to interpret the presumed find-
ing of continuous rotation above and 5-fold jump motion below the phase transition. A weak-
ness of the analysis in section 7.3 using the jump rotation models is the necessity to rescale the
structure factors by adding a constant, significant fraction 1− f of elastic scattering. As can be
seen from Figure 7.9a, the obtained values are not always consistent. The 15-fold model above
85 K leads to an approximate linear dependence of f on T . This behavior does not extrapolate
to the phase below 85 K, the values found there are larger for backscattering spectroscopy and
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Figure 7.9: (a) Scaling factors f that were applied to jump rotation models to superimpose
model and data, corresponding to the addition of a constant elastic fraction 1 − f (see text).
(b) Arrhenius plot of the correlation times of jump motion obtained for FcI3 using different mod-
els. The vertical black line indicates the phase transition at 85 K. For comparison, the Arrhenius
laws obtained for monoclinic and triclinic Fc are shown in light gray (see Figure 6.9b on page 60).

smaller for time of flight spectroscopy. There are many conceivable explanations for obtaining
values of f < 1, and some will be discussed in the following: A possible explanation holding
below 85 K could be the existence of multiple dynamical processes, in case the low temperature
structure contains independent rings. If they have different activation energy, and a part of the
dynamics is slower than the corresponding experimental resolution, additional elastic intensity
would appear. In this case, the values of f would be smaller than one and depend on the
instrumental energy resolution, which is in agreement with the observations below 85 K.

Above 85 K, the values of f are consistent for different incident wavelengths and thus energy
resolutions, but depend on temperature and are significantly lower than 1. It could very well
be that the actual dynamics is more complicated than suggested by the 15-fold or continuous
uniaxial rotation model. In fact, the obtained low value of activation energy is close to the in-
tramolecular potential barrier obtained from density functional theory (DFT) calculations on a
single ferrocenium ion.[66] If we assume that the intramolecular potential is the governing part
of the observed ring motion, then both rings of the molecule have to be considered simultane-
ously in a more complex model. However, this approach and the question whether it could lead
to the observed rescaling of the 15-fold/continuous jump rotation model has not been further
considered at this point yet.

In general, a comparison of the results obtained here for the ring rotation in FcI3 to those
obtained for monoclinic/triclinic Fc in chapter 6 and literature cited therein shows many par-
allels. Similar to Fc, the high temperature phase of FcI3 shows rotational disorder of the rings
which transforms upon cooling to an ordered state showing presumed 5-fold jump rotation.
The barriers of rotation are significantly larger in the respective low temperature phases in both
cases. In Figure 7.9b, the Arrhenius laws for the jump rotation obtained for Fc are shown in
gray. Upon heating, the phase transition takes place at comparable values of the correlation
time τ. Due to the lower barrier of rotation in FcI3, this point is reached already at 85 K instead
of 164 K as in Fc. The DFT calculations mentioned above[66] indicate that, due to one missing,
bonding electron in the highest occupied molecular orbital, the ferrocenium ion has an internal
barrier to rotation which is by a factor of circa 2 to 4 lower than for the neutral Fc molecule.
This factor alone is in principle fully compatible with the ratio of the 5-fold jump barrier in
the high temperature phases of Fc and FcI3, which could mean that the disorder ‘averages out’
the intermolecular contribution to the rotational potential. But in order to unravel the type of
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Table 7.2: Obtained values for activation energy EA and prefactor τ0 of the Arrhenius law de-
scribing the jump motion in different phases of Fc and FcI3.

compound T /K crystal system model EA/kJ mol−1 τ0 /10−12 s

FcI3 > 85 trigonal 15-fold/continuous rot.a 1.65(9) 1.0(3)
< 85 (unknown) 5-folda 4.90(1) 0.0037(1)

ferroceneb >164 monoclinic non-eq. sites 2×5-fold 4.635(8) 0.562(2)
<164 triclinic 2-ring 5-fold 18.3(2) 0.23(3)

11.74(4) 10.9(3)
<250 orthorhombic 5-fold 24.8(1)c 26(3)

a rescaled model (see text) b results from chapter 6 c obtained from NMR[30]

ring motion in the low temperature phases, the intermolecular potential in the different crystal
environments would have to be taken into account as is obvious from the significantly increased
energy of activation below the transition.

7.5 Conclusion

In this chapter, the investigation of ring rotation dynamics in the ionic compound FcI3 was
presented. An up to now undiscovered phase transition has been found at 85 K which involves
crystal structure and ring rotation dynamics of the sample. It appears that the transition shows
parallels to the triclinic-monoclinic transition in Fc, with ordered rings below and rotationally
disordered rings above the phase transition. The ring rotation dynamics in FcI3 has been studied
for the first time. It turned out that the favored rotational jump model to describe the ring
rotation above 85 K is the 15-fold jump model, which matches the presumed intramolecular
potential symmetry, but is effectively indistinguishable from continuous uniaxial rotation in the
presented experiments. The assumption of continuous rotation above 85 K is supported by the
low activation energy of 1.65(9) kJ mol−1. Below 85 K, the observed motion is more consistent
with jumps between 5 equilibrium sites and shows a threefold increase in activation energy. In
all cases, a small but significant fraction of elastic scattering needed to be added to the model,
such that a more complicated type of motion and/or multiple processes cannot be excluded at
this point.
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8 Ring rotation dynamics in
poly(vinylferrocene) – PVFc

The study of the ring rotation dynamics in different crystalline phases of bulk ferrocene pre-
sented in chapter 6 has shown that the local environment of the molecules plays an important
role in the nature of the reorientation process. The influence of oxidation studied on FcI3 in
chapter 7 supports this fact, as the accelerated jump motion was interpreted as a result of mod-
ified intramolecular forces on the one hand and the different crystal structure on the other
hand. In this chapter, the ring reorientation in ferrocene will be studied in a non-crystalline
local environment, namely the macromolecular structure of poly(vinylferrocene) (PVFc).

The chemical structure of PVFc is shown in Figure 8.1a, consisting of a linear hydrocarbon
backbone with laterally attached ferrocene units on every second carbon atom. The polymer
was found to be in a glassy state at room temperature, with relatively high glass transition tem-
peratures in the range of 450 K to 500 K depending on chain length.[67,68] Due to the bonding to
the immobile chain, it can be expected that at most one ring of the ferrocene molecule is able to
perform reorientational jumps. As virtually all incoherent scattering of neutrons on PVFc is due
to the large cross section of hydrogen, the fraction f = 5/12 of hydrogen atoms situated in the
rotating ring as illustrated in Figure 8.1b will need to be accounted for in the analysis of scatter-
ing data. The experimental data will show that a quasielastic signal is found for PVFc in a broad
dynamic range on backscattering and ToF spectrometers (e.g., data for 140 K in Figure 8.4 on
page 81). This can be explained by dynamic heterogeneities in the amorphous structure of the
polymer, and it necessitates to extend the jump rotation model in terms of a distribution of po-
tential energy barriers. This rotation rate distribution model will be presented first, followed by
the analysis of neutron scattering data. In contrast to the crystalline samples Fc and FcI3 studied
in the previous chapters, the static structure factor of PVFc needs to be known beforehand to
enable a meaningful data analysis due to coherent scattering. After the static structure factor
is determined using polarized neutron diffraction, inelastic neutron spectroscopy data obtained
by time of flight and backscattering methods will be presented and analyzed in terms of the
rotation rate distribution model, followed by a discussion of the results.

(a) (b)
3 hydrogen: fixed

4 hydrogen: fixed

5 hydrogen: rotating

f = 5
3+4+5 =

5
12

Figure 8.1: (a) Chemical structure of poly(vinylferrocene) (PVFc). (b) Derivation of the frac-
tion f of hydrogen atoms which are part of the lower, free ring while the remaining ones are
considered immobilized.
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8.1 Rotation rate distribution model for PVFc

Quasielastic neutron scattering data on PVFc shows line broadening on different time scales,
indicating a broad distribution of relaxation rates. In the amorphous structure of PVFc, the local
environment of the rotating ring of each Fc unit can be different, and thus lead to a distribution
of energy barriers where the dynamics can then not be described by a single activation energy
as in a crystalline environment. This situation is very similar to the rotational reorientation
of methyl groups in glassy polymers. Methyl group dynamics have been extensively studied
in many polymers with inelastic neutron scattering, as summarized for example in a review
article by Colmenero et al.[69] A ‘rotation rate distribution model’ (RRDM) was proposed by
Chahid et al.,[70] assuming a Gaussian distribution of rotational barriers which transforms into
a distribution of jump rotation rates, which in turn allows to calculate the dynamic structure
factor S(Q,ω). In the analysis in terms of the RRDM, the temperature dependent jump rate
is characterized by the Arrhenius law preexponential factor, the average activation energy, and
additionally the width of the distribution of activation energies. The model is adapted here
to describe the reorientation of the free ring in the Fc units in PVFc. In the following, the
RRDM will be presented along the lines of Colmenero et al.[69] The full model as discussed by
these authors includes the description of quantum mechanical rotational tunneling at very low
temperatures, and its transition to ‘classical hopping’ with increasing temperature. We will only
adapt the classical part of the description, as quantum tunneling is not observed.

The starting point of the RRDM is the averaging of the incoherent dynamic structure factor
of the jump motion with a probability density distribution g(EA) of activation energies EA:

S̃jump(Q,ω) =

∫ ∞

0

dEA g(EA) S̃
jump(Q,ω, EA) . (8.1)

Here, S̃jump(Q,ω) on the left hand side is the averaged structure factor that will be used in
modeling of the scattering data, whereas S̃jump(Q,ω, EA) in the integral on the right hand side
is the rotation model as discussed in chapter 3 calculated for a single activation energy EA. In
first approximation, the distribution g(EA) of rotational barriers is assumed to be a Gaussian

g(EA) =
1

p
2πσE

exp

�

−

�

EA− 〈EA〉
�2

2σ2
E

�

(8.2)

with mean value 〈EA〉 and width σE . From the activation energy EA for a specific ring, its jump
rate γ is calculated from the well known Arrhenius law

γ= γ0 exp
�

−
EA

kBT

�

. (8.3)

The preexponential factor γ0 is assumed to be barrier independent for ‘classical hopping’,[69]

such that the Gaussian distribution g(EA) of activation energies transforms into a lognormal
distribution H(logγ) of jump rates:1

H(logγ) =
1

p
2πσ

exp

�

−

�

logγ− log γ̃
�2

2σ2

�

(8.4)

where

γ̃= γ0 exp
�

−
〈EA〉
kBT

�

(8.5)

1 The base-10 logarithm is used in H(logγ) for easier understanding of the following figures.
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Figure 8.2: Exemplary relaxation rate distributions H(logγ) of the rotation rate distribution
model for 〈EA〉/kB = 1000 K, σE/kB = 200 K and γ0 = 1 meV at different temperatures.

and

σ =
σE

kBT
log(e) . (8.6)

Note the difference between σ and σE: While σE is a measure of the temperature independent
width of the barrier distribution given in units of energy, the value of σ is temperature de-
pendent and describes the width of the resulting distribution of relaxation rates on logarithmic
scale in orders of magnitude. The typical temperature dependence of the distribution H(logγ)
is shown in Figure 8.2 for an arbitrary set of parameters. With increasing temperature, the
distribution becomes narrower as a consequence of eq. (8.6) and its maximum γ̃ approaches γ0
according to eq. (8.5).

Now, using the 5-fold jump model introduced in chapter 3, the right hand side of eq. (8.1)
can be written explicitly as

S̃jump(Q,ω) = A0(Q)δ(ω) + 2
2
∑

l=1

Al(Q)

∫ +∞

−∞
d(logγ) H(logγ)L (ω,λl) (8.7)

with the γ-dependent halfwidths λl = 2γ sin2 (πl/5) according to their definition in chapter 3,
and the γ-independent structure factors Al(Q). Effectively, the RRDM replaces the Lorentzian
functions L (ω,λl) describing the quasielastic scattering of the 5-fold jump model by aver-
ages over Lorentzians of different width, weighted with the lognormal distribution function
H(logγ). The integral in eq. (8.7) can be evaluated numerically and depends on 3 free param-
eters only: The average activation energy 〈EA〉, the width σE of the barrier distribution, and the
preexponential factor γ0.

For analysis of scattering data, the RRDM is embedded in a model for the scattering cross sec-
tion of the PVFc sample as measured in an experiment. In addition to the incoherent scattering
from the rotating ring, the incoherent scattering of the remaining hydrogen atoms is considered
elastic and isotropic, given that the experiments are carried out far below the supposed glass
transition of the polymer where the chain can be expected to be immobilized. The coherent part
of the scattering is considered elastic as well, and its Q-dependence is described by the static
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Table 8.1: Listing of sample temperatures for neutron spectroscopy experiments on PVFc.

instrument T /K

IN16 80 110 140 200 250 300 350

IN5 (λinc = 12 Å) 80 140
IN5 (λinc = 6.3 Å) 80 140 200 275a 320a 345a 350
IN5 (λinc = 3.6 Å) 200

a Measured during heating, the given temperature value is averaged.

structure factor S(Q). Moreover, a librational mode and vibrational contributions are taken into
account similar to the model functions in chapter 5, such that the full model reads as follows:

Sfit(Q,ω) = s0 exp(−2W )

�

σcoh S(Q)δ(ω) +σinc

�

�

(1− f )δ(ω) + f S̃jump(Q,ω)

+ S̃lib(Q,ω)
�

× e
ħhω

2kBT + Svib(Q,ω)
�

�

+ bkg (8.8)

where s0 is a scaling factor, the following exponential term is the Debye Waller factor with
W = Q2u2

0T/6 according to eq. (2.31), Slib(Q,ω) and Svib(Q,ω) are librational and vibrational
contributions as discussed in chapter 5, and the second exponential term is the detailed balance
factor. As shown in Figure 8.1b, only a fraction f = 5/12 of all hydrogen atoms is part of
the potentially rotating ring. Hence the jump model is scaled down by f and the remaining
fraction (1− f ) is added as additional elastic incoherent scattering. For the sake of simplicity,
the convolution with the instrumental resolution function and application of multiple scattering
correction factors is not explicitly included in eq. (8.8), but has naturally been performed as
described in chapter 5.

For the analysis of the jump rotation in Fc and FcI3 in previous chapters, the chosen approach
was to use the elastic and quasielastic structure factors A0(Q) and A1(Q) as free parameters
and compare the result to the curves predicted by the model function. In case of PVFc and the
RRDM, the broad distribution of relaxation times virtually always leads to narrow, unresolvable
quasielastic components in the spectrum that strongly correlate with the elastic part A0(Q) due
to finite instrumental resolution. Therefore, the approach taken here is to fix all incoherent
structure factors Al(Q) to the 5-fold jump model, and use experimentally determined values of
the static structure factor S(Q) from polarized neutron diffraction. Under these circumstances,
the parameters of the distribution of activation energies can reliably be determined which will
be presented in section 8.3.

8.2 Experimental details

PVFc was synthesized2 by anionic polymerization according to procedures described in
literature.[71] The weight averaged molecular weight of the sample is Mw = 20 kg mol−1 cor-
responding to an average number of 94 repeat units per molecule, with a polydispersity index
(PDI) of 1.08. For neutron scattering experiments, 396 mg of the powder sample were filled in

2 Synthesis of PVFc and its characterization with gel permeation chromatography (GPC) was performed by
Johannes Elbert and Markus Gallei (Department of Chemistry, TU Darmstadt), whose collaboration is grate-
fully acknowledged.
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Figure 8.3: Static structure factor S(Q) obtained from polarized neutron diffraction (D7) on PVFc
(in absolute units).

3× 4 cm2 flat standard Al sample holders of 0.5 mm thickness, and the calculated transmission
of the sample was circa 90 %. To determine the static structure factor, polarized neutron diffrac-
tion was performed on D7 at 200 K and 320 K, while the ring rotation dynamics was studied
in the temperature range of 80 K to 350 K with inelastic neutron spectroscopy using time of
flight measurements on IN5 and neutron backscattering on IN16. Details about the instruments
and techniques can be found in chapter 4. An overview of the temperatures at which inelastic
scattering data has been collected is given in Table 8.1.

8.3 Results

In inelastic neutron spectroscopy experiments, the line broadening presumed to be caused by
jump rotation of the Cp ring was distinguishable in a large dynamic range. Exemplary data
sets are shown in an overview in Figure 8.4 for four different temperatures from 80 K to 350 K
measured with different instrumental energy resolutions of 0.8µeV, 8µeV and 40µeV. The
fact that a quasielastic signal can be clearly seen on all time scales, e.g., at 140 K, indicates that
the barriers to rotation are broadly distributed. In the following, these data will be analyzed
in terms of the RRDM introduced in section 8.1. As a prerequisite for this analysis, the static
structure factor for PVFc needs to be determined which will be briefly presented first.

8.3.1 Static structure factor of PVFc

For the intended analysis of the ring rotation dynamics in PVFc, the elastic coherent scattering
emerging from the polymer structure must be known. In case of the crystalline samples of Fc
and FcI3 investigated in previous chapters, the elastic coherent scattering was localized in well
defined Bragg peaks. This allowed to simply remove certain data points contaminated by Bragg
peaks from the obtained elastic structure factor, such that the remaining points represented
fully incoherent scattering. Because the structure of PVFc is not crystalline, but nevertheless
shows a certain degree of short range order, the coherent scattering is neither fully localized
in Bragg peaks, nor isotropic. Using polarized neutron diffraction on D7, the coherent and
spin-incoherent parts of the scattering can be separated as discussed in section 2.5, allowing to
determine the static structure factor S(Q) of the polymer.

The resulting shape of S(Q) at 200 K and 320 K is shown in Figure 8.3. A dominant peak can
be seen at 1.12 Å−1 followed by broad oscillations towards larger Q. The two gaps in the curve
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around 3 Å−1 are due to strong aluminum Bragg peaks caused by the sample holder. In principle,
the observed shape of S(Q) is the result of the superposition of the partial correlation of different
atomic species in the sample. Further analysis and interpretation in order to unravel the local,
short range order in the polymer is generally feasible, but in itself a complex task. This is shown,
for example, in studies of the static structure factor of poly(isoprene) (PI)[72] and poly(styrene)
(PS)[73] using neutron scattering in combination with molecular dynamics simulations.

The strong correlation peak at 1.12 Å−1 in PVFc lies between the first two Bragg peaks in
monoclinic Fc (see Figure 7.2 on page 65), and corresponds to a length scale of 2πQ−1 = 5.6 Å.
This could be a reasonable average value for the distance between two neighboring Fc units,
given that the ring diameter measured on the H-atoms is 4.66 Å and the ring-ring distance is
3.4 Å.[19] On the other hand, the structure factors for PS and PI show a comparable shape with a
strong peak between 1.1 Å−1 to 1.3 Å−1 that was attributed to either main chain carbon-carbon
correlations in PI[72] or carbon-carbon correlations predominantly in phenyl rings of PS.[73]

This shows that the interpretation of features of the structure factor is not straightforward and
can be ambiguous without additional data or simulations. In the following, the experimentally
determined shape of S(Q) will only be used as essential input for the analysis of quasielastic
scattering data.

8.3.2 Ring rotation dynamics

The inelastic neutron spectroscopy data from time of flight and backscattering experiments
was analyzed in terms of the RRDM described in section 8.1. With the static structure factor
S(Q) as input, eq. (8.8) has only 9 free parameters. The intensity scaling factor s0 and the
constant background are instrument dependent parameters, while the remaining 7 parameters
have global, temperature independent character: The temperature proportionality factor u2

0 in
the Debye Waller factor, the average 〈EA〉 and width σE of the energy barrier distribution, the
Arrhenius preexponential factor γ0, a scaling factor of the phonon background in Svib(Q,ω),
and position and intensity scaling of the libration peak Slib(Q,ω). The width of the libration
peak was fixed to its low temperature value of ∆ωL = 0.45 at 80 K, as it gets swamped by
quasielastic scattering at higher temperatures and cannot be easily separated any more.

In a first step, each data set from Table 8.1 comprising multiple spectra for different Q mea-
sured for one temperature on one instrument was analyzed individually. This does not allow
the simultaneous refinement of the Arrhenius law parameters 〈EA〉 and γ0, and instead the po-
sition γ̃ of the maximum of the relaxation rate distribution on the left hand side of eq. (8.5) is
used directly. The results are shown in an Arrhenius plot in Figure 8.5 as colored boxes. The
circles indicate the position τ̃ = γ̃−1 of the maximum of the distribution, while the box ex-
tends vertically to ±σ from the former value. In order to sense the reliability of the results, the
dynamic ranges of the different instrumental setups are shown as semi-transparent horizontal
boxes which lie in the lower part of the figure. They extend from the corresponding value of the
instrumental energy resolution half width at half maximum (top end) to the maximum energy
transfer (bottom end, only relevant for IN16). The top end of the boxes is drawn smeared out
for two reasons: First, the question how far below the resolution a possible line broadening
can still be resolved is subject to interpretation and depends moreover on the strength of the
elastic contribution. Second, the value of γ = τ−1 in the 5-fold jump model corresponds only
approximately to the effective HWHM of the quasielastic part in the spectrum, the latter varies
depending on Q between 0.8 to 1.05 times γ. However, it seems clear that at 80 K the majority
of relaxation processes are too slow for either of the instruments. With increasing temperature,
the distribution shifts to lower τ, crossing the respective dynamic range of each instrument
successively. As expected from eq. (8.6), the width of the distribution becomes narrower with
increasing temperature. At temperatures above 200 K, the IN5 measurements at 6.3 Å shown
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Figure 8.4: Inelastic neutron spectroscopy data measured on PVFc at different temperatures with
multiple instrumental energy resolutions, together with the ‘multi-T ’ fit of the model function.
The shown data is only a small fraction of the 306 spectra analyzed in this procedure.
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Figure 8.5: Arrhenius plot of the rotation rate distributions obtained from inelastic neutron spec-
troscopy on PVFc. The boxes extend to ±σ from the mean value of the obtained distributions
shown as circles. The horizontal semi-transparent rectangles indicate the dynamic range of the
respective spectrometer configurations. The ‘multi-T ’ analysis (thick black line with its surround-
ing ±σ-area) assumes temperature independent Arrhenius parameters, while the ‘single-T ’ re-
sults are obtained separately for each temperature, but still combining different instruments.
The dashed boxes for IN16 above 200 K represent unreliable results due to the accelerated dy-
namics.

in blue indicate that the relaxation has become faster than the corresponding maximum energy
transfer of IN16. The analysis of the respective IN16 measurements thus leads to extremely
broadened distributions which reach an arbitrarily set upper bound of σE/kB = 103 K for this
parameter – these results are clearly unreliable and only shown with dashed boxes.

Apart from the IN16 results above 200 K, the results of analyses of individual temperatures
are in reasonable agreement with each other and the positions of the distribution maxima con-
sistently follow an Arrhenius behavior. In the next step, multiple measurements taken at the
same temperature but on different instruments are analyzed simultaneously to increase the dy-
namic range and thus the accuracy of the results. This has been done at 80 K, 140 K, 200 K and
350 K and is shown as dark gray boxes in Figure 8.5 (‘single-T ’). Finally, all data sets (except
those measured during heating, see Table 8.1) have been analyzed simultaneously by directly
using the average energy barrier 〈EA〉 and the preexponential factor γ0 as free parameters. The
resulting Arrhenius law is shown in Figure 8.5 as thick black line (‘multi-T ’) with its surround-
ing ±σ environment shadowed in light gray. Figure 8.6 shows the relaxation rate distributions
for the ‘single-T ’ evaluations (colored lines) and compares them to the idealized Arrhenius re-
sult from the ‘multi-T ’ evaluation (black dashed lines). While both methods of evaluation result
in virtually identical distributions at lower temperatures, differences are observed at 200 K and
especially at 350 K.

The obtained parameter values of the relaxation rate distributions are given in Table 8.2.
For some of the model fits like the ‘single-T ’ fit at 80 K parameter uncertainties could not be
determined, most probably due to strong correlations caused by the fact that the major part of
the relaxation rate lies outside of the dynamic range of the instruments at certain temperatures.
It is clear that certain data sets are not suited for being analyzed independently, especially
those at 80 K as well as the IN16 data sets taken above 200 K. However, they contribute to
the coherence of the results in the global ‘multi-T ’ analysis. The latter results in a rotational
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Figure 8.6: Temperature dependence of the obtained relaxation rate distribution functions
H(logγ). Semi-transparent boxes are similar to Figure 8.5. The ‘multi-T ’ analysis (dashed line)
assumes temperature independent Arrhenius parameters with preexponential factor γ0 (arrow),
while the ‘single-T ’ results are obtained separately for each temperature. The temperatures at
which the ‘multi-T ’ distributions are drawn correspond to the ‘single-T ’ analyses.

jump barrier distribution with the average height of 〈EA〉 = 9.61(2)kJ mol−1. The width of
σE = 3.12(1)kJ mol−1 roughly corresponds to one third of the average.

Within the ‘multi-T ’ evaluation, a large number of 306 spectra has been analyzed simul-
taneously. Figure 8.4 shows a selection of spectra for different temperatures and instrument
configurations, with the best ‘multi-T ’ fit of the model function and its individual contributions.
The noise in the model function visible especially at low temperatures on IN16 originates from
the convolution with the experimental resolution function. Keeping in mind the large range of
analyzed temperatures and time scales, the agreement between model and data is very good.
Slight differences are seen, e.g., in IN16 data at 350 K where the quasielastic contribution from
the RRDM model is essentially flat, but a narrow component of the line broadening is still
distinguishable in the data.

Further differences which are not shown occur in the IN5 3.6 Å measurement at Q above
2 Å−1, where the phenomenological description of the libration peak fails to describe the shape
of the spectra in the low energy inelastic region. The mixing between quasielastic scattering
and the librational mode especially at larger Q most probably also explains the much broader
relaxation time distribution obtained for IN5 3.6 Å data at 200 K (see Figure 8.5).

8.4 Discussion

First of all, the good coherence of the results as shown in Figure 8.5 and the agreement between
model and data in Figure 8.4 over the large temperature and extended dynamic range proves
the initial assumption that one ring of each ferrocene unit in PVFc is performing rotational
reorientations. Comparing the results obtained for the ring rotation dynamics in PVFc to the re-
sults on Fc and FcI3 obtained in the previous chapters, the first observation is that the dynamics
follows a single uninterrupted Arrhenius behavior in contrast to the phase transitions observed
in Fc and FcI3. The continuous behavior is what one would expect in a polymeric system far
below the glass transition temperature, where the structure is essentially frozen. The average
activation energy in PVFc of 〈EA〉 = 9.61(2)kJ mol−1 is more than twice as large as the one in
monoclinic Fc of 4.635(8) kJ mol−1, and below the smaller barrier of 11.74(4) kJ mol−1 found
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Table 8.2: Obtained values for the width σE and average value 〈EA〉 of the jump barrier distri-
bution in PVFc, and preexponential factor γ0. The latter two values are only obtained in the
‘multi-T ’ analysis, where the ‘single-T ’ analyses give the average relaxation rate γ̃ instead.

σE 〈EA〉

T /K / kBK /kJ mol−1 γ̃ /meV / kBK /kJ mol−1 γ0 /meV

single-T 80 a408 a3.40 a2.2 × 10−6

140 420(2) 3.49(2) 8.78(9)× 10−4

200 483(3) 4.01(2) 1.12(1)× 10−2

350 266(2) 2.21(1) 1.12(1)× 10−1

multi-T — 375(1) 3.12(1) 1156(2) 9.61(2) 3.91(3)
a Parameter uncertainties could not be determined (see text).

in triclinic Fc (see chapter 6). However, considering the width σE = 3.12(1)kJ mol−1, both the
values of monoclinic and triclinic Fc lie well within the distribution of potential energy barriers
in PVFc. The amorphous structure of PVFc thus causes local environments leading to different
reorientational barriers which extend beyond the differences seen between the monoclinic and
triclinic phase of bulk Fc. On the other hand, the barrier height distribution in PVFc does not
come even close to the 26(3) kJ mol−1 in the densely packed structure of orthorhombic Fc.

The obtained average barrier height is moreover within the range of those found for methyl
groups in various polymers from circa 4 kJ mol−1 to above 16 kJ mol−1.[69] Similarly, the width
of the distribution σE which amounts to circa one third of the average barrier height in PVFc
is comparable to results obtained for methyl group rotation. However, an important difference
between methyl group rotation and rotation of the ring in PVFc is the existence of an impor-
tant intramolecular contribution in the Fc unit. The superposition of inter- and intramolecular
potentials is not straightforward, as will be shown in more detail in the following.

Superposition of phase shifted inter- and intramolecular rotational potentials
The intramolecular potential in ferrocene was found to be of 5-fold sinusoidal shape from

DFT calculations.[66] In first approximation, we now consider the intermolecular potential to
be sine shaped and of 5-fold symmetry as well, corresponding to a first order Fourier series
expansion. The total potential energy E(ϕ) as function of the rotation angle ϕ of the free ring
can then be written as

E(ϕ) =
Eintra

2
sin (5ϕ) +

Einter

2
sin (5ϕ −∆ϕ) (8.9)

where Eintra and Einter are the potential barriers due to intra- and intermolecular interactions
respectively, and ∆ϕ is the relative phase between these two contributions. It is clear that
depending on the phase ∆ϕ the resulting total barrier can be a ‘constructive’ or ‘destructive’
sum of both contributions. Using basic trigonometric identities, the right side of eq. (8.9) can
be rewritten to

E(ϕ) =
Etotal

2
sin (5ϕ −ϕ0) (8.10)

where the value of ϕ0 is of no further relevance, and the total energy barrier is

Etotal =
q

E2
intra + E2

inter + 2 Eintra Einter cos∆ϕ . (8.11)
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Figure 8.7: Hypothetical 5-fold jump barrier distribution functions obtained for a fixed in-
tramolecular contribution of Eintra = 3 kJ mol−1 added at random phase to a distributed inter-
molecular contribution around 〈Einter〉 = 9.3 kJ mol−1 with different widths σinter. The obtained
QENS result can be reproduced, but non-Gaussian distributions are readily generated as well.

In order to evaluate the shape of the resulting distribution, the intramolecular part is roughly
estimated to Eintra = 3 kJ mol−1,[66] and a uniform distribution of the relative phase ∆ϕ has
been assumed. Figure 8.7 shows numerically calculated distributions of Etotal resulting from a
Gaussian distribution of Einter and a constant intramolecular part Eintra. The best agreement
with the experimental result is found for 〈Einter〉 = 9.3 kJ mol−1 and σinter = 2.26 kJ mol−1.
Thus, it seems like the measured average barrier of 〈EA〉 = 9.61(2)kJ mol−1 could correspond
nearly entirely to the average height of the intermolecular part. Superposition with the con-
stant intramolecular part at random phase could then increase the width of the distribution of
intermolecular barriers to the measured value of σE = 3.12(1)kJ mol−1. On the other hand,
Figure 8.7 also shows that the distribution can significantly change its shape for different values
of σinter, and it can be seen that smaller widths could readily lead to a bimodal distribution of
the total energy barrier.

Although this short calculation shows on the one hand that the observed energy barrier dis-
tribution can be reproduced under reasonable assumptions, it also demonstrates that the first
ansatz of a Gaussian barrier distribution in the RRDM for PVFc may need to be reevaluated.
For further conclusions on that matter, the local environment of the rings would need to be
investigated in more detail, e.g., by molecular dynamics simulations. The sinusoidal shape of
the intermolecular potential and the assumption of uniformly distributed relative phases could
then be adjusted, which would allow verification of the assumed 5-fold motion on the one hand
and potentially introduce a non-Gaussian distribution of the total energy barrier. While this is
not a trivial endeavor, these details could be a possible explanation for the small differences
that remain in the otherwise coherent agreement between model and data within the analysis
presented above.

8.5 Conclusion

This chapter focused on the ferrocene ring rotation dynamics in the glassy polymer PVFc, where
the ferrocene units are laterally attached to a polymer chain. There are two main consequences
for the ring rotation dynamics: First, only one ring per ferrocene unit is undergoing rotational
reorientation, as the other one is covalently bound to the polymer backbone. Second, it was
shown that the amorphous structure leads to a broad distribution of potential energy barriers
of the reorientational jumps. Accounting for both these points, incoherent neutron scattering
data could successfully be described in terms of the rotation rate distribution model with only
few parameters across the large temperature range from 80 K to 350 K, combining neutron
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backscattering and time of flight methods to access the dynamic range from sub-µeV to a few
meV. The obtained distribution of energy barriers to reorientational jumps lead to an average
of 〈EA〉= 9.61(2)kJ mol−1 with a width of circa one third of this value. The distribution extends
beyond the different barriers that were found for monoclinic and triclinic Fc. Further discussion
of the jump barrier distribution resulting from the superposition of intra- and intermolecular
contributions showed that the initial assumption of a Gaussian distribution may need to be
refined. This could be achieved, e.g., by molecular dynamics simulations in order to explore
the local environment of the rotating ring in the glassy polymer structure. Nevertheless, the
analysis presented here has already shown a consistent and reliable description of the ring
rotation, underlining its dynamic heterogeneity in PVFc.
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9 Vibrational spectroscopy
In the previous chapters, the focus was on the comparatively slow dynamics of ring reorien-
tation in the ferrocene molecule, and the effect of oxidation and incorporation into a polymer
structure on that process. Another possibility of studying the consequences of the changes in
local environment of the molecule is probing dynamics on a faster time scale, resolving vibra-
tional modes of the molecule. The oxidation which leads to a change in the electronic structure
of the molecule as well as bonding of the molecule to a polymer chain can be expected to signif-
icantly influence its vibrational spectrum. Vibrational spectroscopy can be performed with light
(Raman), infrared radiation (IR), or neutrons. Both former techniques provide a comparably
good energy resolution, but are sensitive only to vibrational modes which fulfill certain selection
rules accounting for the interaction with electric dipoles. Neutrons on the other hand interact
directly with the nuclei and are not subject to any selection rules, probing the entire vibrational
spectrum of the sample. In this chapter, neutron vibrational spectroscopy will be presented
for all samples in the previous chapters, namely bulk ferrocene, FcI3, and PVFc. Moreover, an
oxidized version of the redox-active PVFc, referred to as PVFcIx , will be studied, as well as fer-
rocene containing polymers which contain ferrocene as part of the polymer backbone. These
polymers are shown in Figure 9.1. In order to be able to separate scattering from methyl groups
in poly(ferrocenyldimethylsilane) shown in Figure 9.1b, a modified version of the polymer with
one methyl group substituted with a hydrogen (Figure 9.1c) has been included into the study.
After a short description of the experimental details, the vibrational spectra on all samples will
be discussed.

9.1 Experimental section

The samples of ferrocene, FcI3 and PVFc were identical to those used in previous chapters.
PFDMS[74] (16 kg mol−1 and 88 kg mol−1) and PFMS[75] (28 kg mol−1) were synthesized by
anionic polymerization according to procedures described in literature.1 In order to obtain

1 Synthesis of PFDMS and PFMS and their characterization using GPC was performed by Johannes Elbert and
Markus Gallei (Department of Chemistry, TU Darmstadt), whose collaboration is gratefully acknowledged.

(a) (b) (c)

Figure 9.1: Chemical structure of ferrocene-containing polymers investigated in this
chapter: (a) poly(vinylferrocene) (PVFc), (b) poly(ferrocenyldimethylsilane) (PFDMS), and
(c) poly(ferrocenylmethylsilane) (PFMS).
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oxidized PVFc, iodine was added to a solution of PVFc in THF. After 1 h, diethyl ether was
added to precipitate the oxidized polymer. 250 mg oxidized PVFc is obtained after washing
with diethyl ether and drying in vacuo. As the distribution and character of the iodine coun-
terions (e.g., I− or I−3 ) was not investigated further, the oxidized compound is referred to as
PVFcIx .

Vibrational spectra were recorded on the hot neutron spectrometer IN1-Lagrange described
in chapter 4. For the neutron scattering experiments the powder samples of FcI3 and PVFcIx
were packed in aluminum foil and rolled into a hollow cylinder of circa 15 mm diameter. The
remaining samples (Fc, PVFc, PFDMS16, PFDMS88, PFMS) were loaded in 3× 4 cm2 flat alu-
minum containers of 0.3 mm to 0.5 mm thickness. All experiments were performed at a sample
temperature of T = 10 K controlled by a standard closed-cycle He cryostat.

For primary data reduction, scattering from the empty cell is subtracted, and the recorded
intensity is normalized and corrected for energy dependent monitor efficiency. Subsequently,
correction factors from a water sample measurement are applied to compensate for a minor
dependency of the monitor flux on the monochromator take-off angle. The resulting intensity
is proportional to the dynamic structure factor S(Q,ω) of the sample, where the magnitude
of the scattering vector Q depends on ω and the scattering angle 2ϑ which is sampled over
the whole 2ϑ-range covered by the analyzer. Finally, from the relationship in eq. (2.33) the
density of states is calculated and will be discussed further in this chapter. It should be noted
that the density of states discussed here is the so-called generalized density of states, which
contains the sum of vibrational modes for all atomic species in the sample weighted by the ratio
of scattering cross section to atomic mass. Therefore, the symbol G(ω) is used in contrast to
Z(ω) in section 2.4.1. According to common practice in vibrational spectroscopy, the spectra
will be presented as a function of wavenumber ν̃ given in cm−1, where

E = ħhω= hcν̃

with Planck’s constant h = 2πħh and speed of light c. An energy of 1 meV thus corresponds to
8.1 cm−1.

9.2 Results & Discussion

In the following, the vibrational spectra collected in this study will be presentend. We start with
a comparison of bulk Fc in its triclinic crystalline phase and various ferrocene-containing poly-
mers. Subsequently, we will turn to the effect of oxidation and discuss the oxidized compounds
FcI3 and PVFcIx .

Ferrocene and ferrocene-containing polymers
The vibrational spectra of triclinic Fc and different ferrocene-containing polymers is shown in

Figure 9.2. Vertical lines correspond to maxima in the Fc spectrum for easier comparison. The
spectrum for Fc (shown in the bottom part of figure 9.2) exhibits collective lattice modes in the
low energy range up to 100 cm−1 as well as local molecular excitations at higher frequencies. It
compares well to previous INS measurements published by Kemner et al.,[76] where a detailed
discussion, assignment and visualization of the individual modes is given. The sketch below the
graph in Figure 9.2 indicates the displacements associated with the modes between 180 cm−1

and 595 cm−1. The broadened, intense peak structure at higher frequencies between 800 cm−1

and 1100 cm−1 is caused by several modes involving internal distortions of the Cp rings and has
been analyzed in more detail by Kemner et al.

Compared to crystalline ferrocene, the spectrum of amorphous PVFc in the middle part of
Figure 9.2 shows less detail as expected. However, for this polymer, one would expect the

88



0 200 400 600 800 1000 1200 1400

0 20 40 60 80 100 120 140 160 180

ν̃ / cm−1

G
(ω
)/

a.
u.

E /meV

180 312 390 484 500 595

bulk Fc

PVFc (20 kg mol−1)

838 894 1004 1057 1260 1420

PFDMS16 (16 kg mol−1)
PFDMS88 (88 kg mol−1)
PFMS (28 kg mol−1) 680 745

Figure 9.2: Experimental generalized density of states G(ω) for triclinic ferrocene (Fc),
poly(vinylferrocene) (PVFc), poly(ferrocenyldimethylsilane) (PFDMS) with two molecular
weights, and poly(ferrocenylmethylsilane) (PFMS). All spectra were recorded at T = 10 K. Verti-
cal lines show characteristic maxima of the Fc spectrum for easier comparison (ν̃ given in cm−1).
The sketch below the graph indicates the type of distortion associated with some fingerprint
modes of the ferrocene molecule.

vibrational spectrum to bear the most resemblance to bulk Fc as the ferrocene moieties are
attached only laterally as side chain by a single C—C bond. Indeed the modes at 390 cm−1,
484 cm−1, 500 cm−1 and 595 cm−1 are clearly distinguishable in the spectrum of PVFc, and only
the mode at 500 cm−1 shows a slight shift to higher frequencies and the mode 595 cm−1 a slight
shift to lower frequencies with respect to bulk Fc. The mode at 180 cm−1 corresponding to
ring-metal-ring bending with antisymmetric ring tilt is also slightly shifted to lower frequencies
and broadened in PVFc. The superposition of multiple modes mostly involving ring distortion
and C—H bending leading to the 4 broad peaks between 800 cm−1 and 1100 cm−1 appear even
more smeared in PVFc, but not shifted.

Interestingly, the mode at 312 cm−1 is not easily visible in the spectrum of PVFc. This mode
corresponds to ring-metal-ring stretching involving the collective oscillation of both Cp rings
towards the metal, which is here found to be significantly influenced when the Fc moiety is
attached to the polymer chain in PVFc. One could speculate that this mode is, due to its large

89



0 200 400 600 800 1000 1200 1400

0 20 40 60 80 100 120 140 160 180

ν̃ / cm−1

G
(ω
)/

a.
u.

E /meV

180 312 390 484 500 595

bulk Fc

FcI3

838 894 1004 1057 1260 1420

Figure 9.3: Experimental generalized density of states G(ω) for triclinic ferrocene (Fc), and fer-
rocenium triiodide (FcI3). All spectra were recorded at T = 10 K. Vertical lines show characteristic
maxima of the Fc spectrum for easier comparison (ν̃ given in cm−1).

collective displacement, particularly sensitive to the local environment and extremely broad-
ened in the amorphous polymer.

We now come to the polymers PFDMS and PFMS where the ferrocene complex is part of
the polymer backbone itself (see Figure 9.1). Their vibrational spectra are shown in top part
of Figure 9.2 and are scaled in intensity to overlap in the low frequency range ν̃ < 100 cm−1

and around the broad peak at 800 cm−1 to 900 cm−1. For PFDMS, two molecular weights of
16 kg mol−1 and 88 kg mol−1 were investigated. Assuming that the latter broad peak is gov-
erned by internal modes of the ferrocene complex, this corresponds to a normalization to the
number of monomer units. In this representation, it is obvious that the spectra of PFDMS16
and PFDMS88 are identical and independent of the molecular weight. The spectrum of PFMS
differs mostly in the range from 100 cm−1 to 300 cm−1 where the broad peak structure is less
intense, but of similar shape.

As the only difference in the chemical structure of PFMS and PFDMS is the number of methyl
groups per monomer, this supports the conclusion that the torsional mode of the methyl groups
contributes in this frequency region. A comparison with poly(dimethylsiloxane) (PDMS)[77,78]

shows that the mode around 140 cm−1 might be ascribed to the methyl group torsional mode,
followed by the 180 cm−1 ring-metal-ring bending mode of ferrocene which is shifted to lower
frequency.

Moreover, the spectrum of PDMS as discussed by Jayes et al.[77] helps to assign the newly
appearing peaks at 680 and 745 cm−1 (arrows in the top part of Figure 9.2) in PFDMS and
PFMS to CH3 rocking modes. However, one may expect a decreased intensity of these modes in
PFMS due to the reduced number of methyl groups which is not the case for the right peak at
745 cm−1.

Concerning the characteristic modes of the ferrocene complex, one finds for PFDMS and
PFMS instead of a single ring-metal-ring stretching mode at 312 cm−1 a symmetrically split
double peak – the same holds for symmetric ring tilt at 390 cm−1. We can imagine that the
breaking of the rotational symmetry of the Fc complex caused by inclusion in the polymer
backbone leads to a splitting of the vibrational modes.
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Figure 9.4: Experimental generalized density of states G(ω) for poly(vinylferrocene) (PVFc), and
poly(vinylferrocene) oxidized with iodine (PVFcIx ). All spectra were recorded at T = 10 K.
Vertical lines show characteristic maxima of the PVFc spectrum for easier comparison (ν̃ given
in cm−1).

At higher frequencies, the two peaks at 1004 cm−1 and 1057 cm−1 in bulk Fc merge to a single
peak in PFDMS and PFMS. They correspond to C—H bending modes in the Cp ring plane which
are expected to be strongly modified when the ferrocene molecule is bound as part of a polymer
chain.

Oxidized compounds
In addition to ferrocene and ferrocene-containing polymers, the oxidized compounds FcI3

and PVFcIx were studied in order to investigate the influence of oxidation on the ferrocene
complex. Figure 9.3 shows the comparison of bulk Fc with FcI3. Both substances are in a
crystalline phase. The low energy part of the spectrum below 100 cm−1 shows several sharp
peaks for FcI3. One can speculate that this peak structure is caused by optical phonon branches
corresponding to low energy out-of-phase vibrations of the Fc+ and I−3 molecules. The first
distinguishable peak around 45 cm−1 was already observed in ToF spectroscopy in chapter 7,
and subject to speculation whether it could be interpreted as librational mode. The remaining
modes between 180 cm−1 and 484 cm−1 differ significantly in FcI3 with respect to Fc. It is
consistent with the expectation that the weakening of the ferrocenium ion by a missing electron
leads to a shift to lower frequencies for internal modes involving the η5-complex bond. The grey
arrows in the figure give a possible assignment of the modes undergoing a shift. Modes at higher
frequencies involving deformation of the Cp rings show less differences, with the exception of
the peak at 894 cm−1. A more detailed study and phonon calculations of FcI3 could certainly
help in giving the correct assignment and interpretation of the influence of oxidation on the
vibrational spectrum of ferrocene, but has not been performed in the context of this work.

In contrast to Fc and FcI3, the comparison of the ferrocene-containing polymer PVFc and its
iodine oxidized compound PVFcIx shown in Figure 9.4 exhibits significantly less detail. For the
oxidized polymer, the background is much higher and aside from the broad ring deformation
modes above 800 cm−1 which are left mostly uninfluenced by the oxidation, only the out of
plane ring deformation mode at 590 cm−1 is distinguishable in the spectrum of PVFcIx . This
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mode is, as in the case of FcI3, not shifted with respect to the unoxidized compound. The
peak at 170 cm−1 corresponding to ring-metal-ring bending with antisymmetric ring tilt is not
distinguishable in the spectrum of PVFcIx anymore. The comparison of Fc and FcI3 has already
shown that this mode is significantly shifted to lower frequencies and is thus probably not
separable from the low energy excitations.

9.3 Conclusion

Inelastic neutron spectroscopy was used to investigate the vibrational spectrum of the ferrocene
complex in different redox-responsive ferrocene-containing polymers. When the ferrocene moi-
ety is attached as a side group as in PVFc, significant broadening of the ring-metal-ring bending
with antisymmetric ring tilt is found, and no sign of the ring-metal-ring stretching mode. With
these exceptions, no shift of the vibrational fingerprint modes in the range from 100 cm−1 to
800 cm−1 was detected. In contrast to this, a more dramatic influence on the vibrational modes
was observed when the ferrocene is part of the polymer backbone as in PFDMS. The interpreta-
tion of these data is complicated by significant contributions from methyl groups in the polymer.
However, the study of PFMS and comparison to previous results for PDMS helped in identifying
methyl group torsion contributions. In case of oxidation of the ferrocene complex, the weak-
ening of the coordination bond in FcI3 leads to a significant shift of multiple fingerprint modes
to lower frequencies. These observations could be substantiated by future DFT studies, which
would also allow an unambiguous assignment of the vibrational modes.
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10 Neutron spectroscopy under external
magnetic fields

In this chapter, the results of inelastic neutron scattering experiments on oxidized poly(vinyl-
ferrocene) (PVFcIx) under external magnetic fields will be presented. In these experiments, the
quasielastic scattering originating from the ring rotation dynamics proved to be insensitive to
the external magnetic field up to 2.5 T, but an inelastic excitation was observed in PVFcIx which
is interpreted as Zeeman splitting of the electronic magnetic moment. The field dependence
and strength of the excitation will be analyzed in more detail.

Likewise, high resolution neutron backscattering experiments under external magnetic fields
did not reveal a magnetic field dependence of the quasielastic scattering either. But with the
high energy resolution the hyperfine splitting of hydrogen in the external magnetic field is
resolvable and leads to significant broadening of the effective instrumental resolution func-
tion. Hyperfine splitting of nuclear moments is commonly used in neutron backscattering spec-
troscopy to probe the strong internal field in ferromagnetic materials,[79,80] but to the best
of knowledge, it has not been observed in comparable measurements with external magnetic
fields.

10.1 Experimental details

The same samples of FcI3 and PVFcIx as in chapter 7 and chapter 9 were used for the experi-
ments described here. Powder samples were filled in hollow cylinder aluminum sample holders
of 14 mm diameter and circa 0.5 mm wall thickness.

Neutron spectroscopy was carried out on the IN5 ToF spectrometer and the IN16 backscatter-
ing spectrometer. The sample was placed in an ILL standard superconducting cryomagnet on
both instruments, allowing for vertical magnetic fields of up to 2.5 T to be applied at the sample
position at temperatures from 2 K to 300 K. The available vertical opening of ±5° restricted
the scattering plane of observed scattered neutrons to be approximately perpendicular to the
magnetic field. On IN16 therefore only about a quarter of the analyzer height was usable. In
addition the large diameter of the sample environment made the use of the standard IN16 mul-
tidetector impossible. Instead, three single detectors were positioned to measure the scattered
and energy analyzed neutron intensity for magnitudes of the scattering vector Q of 0.85 Å−1,
1.26 Å−1 and 1.6 Å−1. This experiment was the first and only cryomagnet experiment on IN16
ever. Raw data was treated as described in Appendix B, but no multiple scattering simulations
have been performed for the analysis in this chapter. The spectra were therefore corrected for
angular dependent sample self absorption.

10.2 Zeeman splitting of electronic ground state

The neutron time of flight spectra on PVFcIx under magnetic fields revealed a very weak inelastic
peak, four orders of magnitude less intense than the elastic peak. A shift of its position with
changing field strength was observed as shown in Figure 10.1 for T = 80 K. The peak position
appears to be independent of temperature between 2 K to 140 K and even up to 300 K, but
increasing quasielastic scattering from the ferrocene ring rotation is superimposed at 300 K
complicating a reliable interpretation.
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Figure 10.1: Inelastic time of flight data (IN5) on PVFcIx under an external magnetic field
summed over all scattering angles. (a) Shift of the inelastic excitation with increasing magnetic
field. Curves are vertically shifted for clarity. (b) Fit of a spectrum at T = 80 K and B = 2.5 T
with a quasielastic Lorentzian and an inelastic Gaussian contribution.

In contrast to the more complicated model functions used in previous chapters, a simpler
approach is used here. The neutron energy gain side of the spectra summed over all detec-
tors is analyzed with a simple model function accounting for a delta-shaped elastic, Lorentzian
quasielastic and Gaussian inelastic contribution. The sum is convoluted with the experimen-
tally determined resolution function and a constant background is added, such that the model
function for the analysis of the inelastic excitation is

S(ω) = s0

�

A0δ(ω) + A1 exp
�

ħhω
2kBT

�

L (γ,ω) + CG (σex,ω+ω0)

�

⊗ Y (ω) + bkg (10.1)

where s0 is an overall scaling factor, A0 and A1 are the incoherent structure factors of nuclear
scattering, C is the intensity of the inelastic excitation, the exponential factor is the detailed
balance, L (γ,ω) a normalized Lorentzian of HWHM γ, G (σex,ω) a normalized Gaussian of
standard deviation σex, and Y (ω) the experimentally determined instrumental resolution func-
tion. An exemplary fit is shown in Figure 10.1b at T = 80 K and B = 2.5 T.

In contrast to the inelastic scattering, the quasielastic contribution was, within its uncertainty,
independent of the applied field. Thus the Lorentzian width was fixed to the value obtained
without external field in order to extract parameters of the inelastic contribution more reliably.
The field dependency of the inelastic peak position E0 = ħhω0 is found to be linear as shown
in Figure 10.2a. It is assumed here that this peak arises from transitions between Zeeman
split electronic ground state levels in the external field B caused by an unpaired electron in the
oxidized ferrocene complex. The Zeeman splitting is known to depend on B according to

E0 = ħhω0 = gµBB (10.2)

with the Bohr magneton µB and the Landé factor g. The slope of the linear fit in Figure 10.2a
is 0.1185(8)meV T−1, corresponding to g = 2.05(1). This value is only slightly larger
than the spin-only value. Moreover, it differs significantly from the anisotropic g-factors of
g‖ = 4.35(5) and g⊥ = 1.26(6) obtained from electron spin resonance for ferrocenium ions in
solution, but these experiments also found decrease of the g-factor anisotropy for substituted
ferrocenes.[81,82] In fact, the excitation observed here is broader than the instrumental resolu-
tion, and the deconvoluted width σex shows the tendency to increase with increasing field as
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Figure 10.2: Results of analysis of the inelastic excitation observed for PVFcIx in neutron time
of flight spectroscopy. Obtained parameter values for (a) energy E0, (b) unconvoluted width
σex and averaged magnetic form factor F(Q) of the inelastic excitation in PVFcIx as function of
applied magnetic field B.

shown in Figure 10.2b. This could mean that the obtained value of g = 2.05(1) is the mean
value of a remaining, unresolved g-factor anisotropy. This anisotropy would be, however, less
pronounced than in the ferrocenium ion, which could be explained by further delocalization of
the electron through the attached polymer chain.

In order to estimate the intensity of the magnetic scattering, the double differential cross
section for an uncorrelated spin-½ system in an external magnetic field is calculated. The details
of the calculation are discussed in Appendix D. The result helps in identifying the contributions
in eq. (10.1), where coherent and incoherent nuclear scattering were added:

A0 =
σcoh

4π
S(Q) +

σinc

4π
Ainc

0 (Q) +
σmag

4π
(10.3a)

A1 =
σinc

4π

�

1− Ainc
0 (Q)

�

(10.3b)

C =
σmag

4π

�

1+ exp
�

−
∆E
kBT

�

�−1

(10.3c)

with
σmag

4π
=

1
4

r2
0

�

g
2

F(Q)
�2

(10.4)

where S(Q) and Ainc
0 (Q) are the static and elastic incoherent structure factor averaged over the

probed Q-range respectively. The intensity of the inelastic excitation originating from scatter-
ing of neutrons on magnetic moments is described by the magnetic scattering cross section in
eq. (10.4) and the thermal population factor in eq. (10.3c).

A value of S(Q) = 1.45 was obtained from averaging the static structure factor of PVFcIx
which looks similar to the one shown for PVFc in Figure 8.3 on page 79. Now, the magnetic
form factor F(Q) of the oxidized ferrocene units averaged over the probed Q-range from 0.6 Å−1

to 1.7 Å−1 is the only unknown and can be calculated from the intensity of the excitation. The
resulting values are shown in Figure 10.2b. Unfortunately they are plagued by large uncertain-
ties, but the values between circa 0.6 to 0.8 could indicate that the electron is more delocalized
than expected for a Fe 3d shell. The expected form factor of a Fe 3d electron in this Q-range is
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Figure 10.3: Broadening of the elastic peak in neutron backscattering spectroscopy (IN16) ob-
served on PVFcIx at T = 2 K under external magnetic fields B. The data was analyzed with a
model accounting for hydrogen nuclear Zeeman splitting of non spinflip (↑↑+↓↓) and spinflip
scattering (↓↑ and ↑↓).

circa 0.92[83] and shown as dashed line in the bottom part of Figure 10.2b. This is in qualita-
tive agreement with studies of the electronic structure of ferrocene concluding that the highest
occupied e′2 orbital consists of the Fe dx2−y2 or dx y shell mixed with a small contribution of
the π orbitals of the cyclopentadienyl ligands.[84] Moreover, it would agree with the possible
explanation of further electron delocalization caused by the polymer chain leading to the re-
duced g-factor anisotropy. However, these results should be interpreted with great care as the
evaluation of the magnetic scattering intensity is sensitive to the fraction of oxidized ferrocene
units. They are expected to lie close to unity, but remain effectively unknown for the present
sample.

10.3 Nuclear hyperfine splitting in the external field

In high resolution neutron backscattering spectroscopy, a significant broadening of the elastic
line was observed under external magnetic fields. Figure 10.3 shows data obtained for PVFcIx
at T = 2 K at different external field strengths. The observed broadening of the elastic line is
consistent with an unresolved splitting due to hyperfine splitting of the nuclear ground state
of hydrogen in the external magnetic field. An incoherent scattering process with spinflip of
the neutron changes the orientation of the hydrogen spin relative to the quantization axis by
∆mI = ±1, thus changing its energy by a magnitude of

E0 = ħhω0 = gIµNB . (10.5)

All three processes (∆mI = 0;±1) are equally probable, and the incoherent scattering is thus
split equally between an elastic and two symmetric inelastic peaks. The scattering cross section
can be written in the form as derived by Heidemann:[79]

d2σ

dΩ dω
= s0

�

�

σcoh

σinc
S(Q) +

1
3

�

δ(ω) +
1
3
δ(ω−ω0) +

1
3
δ(ω+ω0)

�

⊗ Y (ω) + bkg (10.6)

to which an elastic coherent contribution using the Q-averaged static structure factor S(Q) was
added. For Y (ω), a Gaussian with fixed width of the experimental resolution function obtained
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Table 10.1: Resulting Landé factors of nuclear magnetic
moment gI and values used as average structure fac-
tor S(Q) for hydrogen containing samples and vanadium.

sample T /K S(Q) gI

PVFcIx 2 1.52 5.81(4)
PVFcIx 20 1.52 5.74(5)
PVFcIx 40 1.52 5.60(5)
FcI3 10 1.6 5.05(8)
Fc 2 1.81 5.96(8)
Reference value for 1H: 5.58a

Vanadium 2 0 1.1(5)
Reference value for 51V: 1.47a

a From ref. [85]

without magnetic field has been used. The incoherent part of the scattering splits up in 3 peaks
of equal intensity located at E = 0 and ±E0. With values of S(Q) obtained from a polarized
neutron diffraction experiment on D7, eq. (10.6) was fitted to the data as shown in Figure 10.3.
The refinement was performed simultaneously for spectra obtained at different fields using gI

as free parameter. The values used for S(Q) and the resulting values of gI are given in Ta-
ble 10.1. For the samples PVFcIx , FcI3 and Fc virtually all incoherent scattering originates from
hydrogen. The proximity of the results to the reference value of gI = 5.58[85] confirms that
the observed line broadening is caused by the interaction of hydrogen nuclear spins with the
external magnetic field. However, the agreement within the given uncertainties is moderate in-
dicating a larger uncertainty of systematic origin, for example field inhomogeneities. But given
that the splitting lies within the resolution function, the result is satisfactory and demonstrates
the sensitivity of the experimental high resolution technique to external magnetic fields.

Table 10.1 also shows the result obtained for a vanadium sheet. Due to the small Landé factor
of the vanadium nuclear spin the broadening is barely distinguishable in the present setup, but
the result corresponds within its large uncertainty to the reference value of gI = 1.47.[85]

10.4 Conclusion

In this chapter, the ground state splitting in external magnetic fields on electronic and nuclear
magnetic moments was observed using neutron spectroscopy experiments. The spectrum of the
oxidized redox-responsive polymer poly(vinylferrocene) showed an inelastic excitation which is
assumed to be caused by splitting of the paramagnetic electronic ground state of the oxidized
ferrocene units, with a Landé factor of g = 2.05(1). The results indicate that this could be the
averaged value of an unresolved g-factor anisotropy, which would however be less pronounced
than in the ferrocenium ion. In a second experiment, the nuclear hyperfine splitting under
external magnetic fields caused significant broadening of the elastic line in incoherent neutron
backscattering spectroscopy, where the analysis showed consistency with the nuclear gI -factors
for hydrogen and vanadium.
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11 Summary
The main topic of this thesis was the study of cyclopentadienyl (Cp) ring rotation dynamics in
the ferrocene (Fc) molecule. The molecular reorientation was studied in the different crystalline
phases of bulk ferrocene, in the salt ferrocenium triiodide (FcI3) with oxidized ferrocene cations,
and in the polymer poly(vinylferrocene) (PVFc) where the ferrocene units are laterally attached
to a polymer chain. Quasielastic neutron scattering (QENS) using time of flight (ToF) and
backscattering (BS) techniques was applied as experimental technique allowing to study the
molecular reorientation on a time scale from picoseconds to nanoseconds. Emphasis was put
on a robust approach to data analysis. The used fitting algorithm allowed for multiple scattering
corrections with a Monte Carlo simulation, and the simultaneous analysis of data for different
instruments, temperatures or Q-values, with the possibility to include fixed window temperature
scans on the backscattering spectrometer IN16B.

In bulk ferrocene, the extension of previous data to a larger temperature and Q-range refined
the picture of ring rotation dynamics in the monoclinic phase which is stable at room temper-
ature and metastable down to 164 K. It turned out that the previously favored equivalent sites
rotational jump diffusion model needs to be extended to a non-equivalent sites model, account-
ing for dynamical disorder of the rings. The analysis resulted in 5-fold rotational jump diffusion
overlaid with fast transitions between two ring configurations twisted by circa 30°. This finding
using a dynamical model corresponds surprisingly well to earlier diffraction studies and calcula-
tions of the potential lattice energy. In the ordered, metastable triclinic phase below 164 K, the
combination of ToF and BS spectroscopy enabled the separation of two dynamic components,
ascribed to crystallographically different molecules in the unit cell. The geometry of the motion
can be described with a 5-fold rotational jump diffusion model. The barrier to ring reorienta-
tion is higher than in the monoclinic phase, and changes significantly at the phase transition.
In the orthorhombic phase of crystalline Fc which is the stable one below 242 K, dynamical pro-
cesses on the time scale observable on backscattering spectrometers only occurred very close
to the phase transition. The stable, dense orthorhombic phase shows the largest barrier to ring
rotation.

In the next step of the study of ring rotation dynamics, the effect of oxidation was investigated
in the ionic compound FcI3. While bulk Fc has received a lot of attention by previous authors,
little is known about the dynamics in FcI3. A hitherto unknown phase transition was found at
85 K, with a discontinuity in the temperature dependence of the correlation time of the motion
similar to the triclinic-monoclinic transition in bulk Fc. The ring rotation in both phases above
and below 85 K showed a significantly lower rotational barrier than monoclinic and triclinic Fc.
This can be explained by different intra- and intermolecular potentials barriers. Due to the low
barrier, the motion above 85 K is indistinguishable from continuous rotation, while it is more
consistent with 5 equilibrium sites below 85 K. However, a rescaling of the model by adding
additional elastic scattering was necessary in all cases, indicating that the dynamics might not
be entirely described by the simple models.

Furthermore, a QENS study on ring rotation in the macromolecular structure of PVFc re-
vealed that the ring rotation dynamics is also active in the polymer far below its assumed glass
transition between 450 K to 500 K. As can be expected, only one ring of the molecule is rotating
as the other one is covalently bound to the main chain. It was shown that the correlation times
are broadly distributed over some orders of magnitude, meaning that the barrier of rotation
is significantly influenced by the amorphous, glassy structure of the polymer. In terms of a
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rotation rate distribution model, the local ring rotation dynamics can be very well described
over the large temperature range from 80 K to 350 K. The average barrier was determined to
9.61(2) kJ mol−1, with a distribution having circa one third of this value as second moment.

Complementary to QENS experiments focusing of the comparatively slow dynamics, a vibra-
tional study was performed on ferrocene, FcI3, and various ferrocene containing polymers. In
PVFc, where ferrocene is attached laterally to the chain, a broadening but no significant shift
of the vibrational fingerprint modes was observed. A more dramatic influence was found in
poly(ferrocenylsilanes), where the ferrocene unit is incorporated into the polymer backbone. In
the oxidized ferrocene complex, it seemed like the coordination bond weakened by one missing
electron lead to a shift of fingerprint modes to lower frequencies.

Finally, QENS experiments on oxidized PVFc were performed under external magnetic fields
to explore possible effects due to the magnetic moment of the oxidized ferrocene moiety. No
effect on the ring rotation dynamics was observable up to fields of 2.5 T, but an excitation
due to Zeeman splitting of the electronic ground state helped to determine the average Landé
factor to g = 2.05(1), with a possible residual anisotropy. In high resolution experiments,
the Zeeman splitting of the nuclear spin of hydrogen was observable in incoherent scattering.
These measurements reveal fundamental physical effects which are not commonly observed in
the way presented here, even though they are unrelated to the main topic of Cp ring rotation in
ferrocene.
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A Multiple scattering correction
The correction for multiple scattering has been performed by a Monte Carlo simulation im-
plemented using the free software package GNU/Octave,[59] and the algorithm is a modified
version of the one used in the program DISCUS by Johnson.[58] The general approach to the
correction method was presented in section 5.2. Here, more technical details about the imple-
mentation and some examples of the results will be given.

A.1 Multiple scattering simulation algorithm

The simulation takes the scattering law S(Q,ω) as input, without any resolution smearing. The
elastic peak which is analytically described by δ(ω) is implemented as narrow box function
of fixed area and finite width. However, the width is much smaller than the spacing of the
energy channels for which we aim to determine the correction factors. The simulation input
also comprises the definition of sample geometry as well as some instrument parameters like
nominal incident neutron energy, beam divergence and location and size of the detectors. The
cross sections for coherent and incoherent scattering σcoh and σinc and for absorption σabs as
well as the number density of scatterers ρ in the sample must be given. From these values, the
following relevant macroscopic cross sections denoted by Σ are calculated:1

ΣS = ρ(σcoh +σinc) (A.1a)

Σabs = ρσabs

Æ

Eabs/E (A.1b)

ΣT = ΣS +Σabs (A.1c)

where ΣS describes the macroscopic cross section for scattering, Σabs the one for absorption,
and ΣT the total cross section. The absorption part depends on kinetic neutron energy E, where
the tabulated values of σabs are usually given for Eabs = 25.3 meV. The given scattering law
S(Q,ω) should contain incoherent and coherent scattering, which is the case as Bragg peak
scattering is still contained in the data during the iterative refinement analysis as described in
section 5.3. The goal of the simulation is the generation of correction factors R∗2ϑ(ω) according
to

R∗2ϑ(ω) =
J∗2ϑ(ω)

4
∑

n=1

J (n)2ϑ (ω)

. (A.2)

For this, the hypothetical neutron fluxes J (n)2ϑ (ω) after exactly n scattering processes in the sam-
ple are calculated, as well as the ‘wanted’ flux J∗2ϑ(ω) with only one scattering process and
no absorption by the sample. These quantities are calculated by means of a Monte-Carlo Ray-
Tracing simulation, where typically up to n = 4 scattering processes are considered. Random-
ized trajectories of virtual neutrons from the incident beam through the sample towards the
detector are sampled. Along each trajectory, the probability for scattering of a real neutron is
calculated and averaged in the detector. A sketch of such a trajectory is shown in Figure 5.3 on
page 39.
1 Actually, the quantities Σ are attenuation coefficients of dimension m−1, but usually referred to as cross sec-

tions.
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Each neutron, indexed by j, is defined by the following properties:

r j position vector in real space

ṽ j unit vector of velocity direction

E j kinetic energy

p j statistical weight

The simulation is run separately for every detector and proceeds as follows:

(I) Initialize a certain number of virtual neutrons.
The positions r j of typically 5000 virtual neutrons are sampled randomly across the sam-
ple surface facing the incoming beam. The velocity directions ṽ j are sampled taking into
account an approximate, small beam divergence of the real instrument. The energies E j
are set to the nominal incident energy E0, the initial statistical weight is p j = 1, and the
neutrons have undergone n= 0 scattering events up to now.

The following steps will be repeated in a loop, up to the maximum number of scattering events:

(II) Determine the position of the next scattering event.
For each neutron, the path length d that is still lying in the sample along its flight path is
calculated. The probability for interaction with the sample somewhere along this path is

1− exp(−ΣTd) .

It would be very inefficient to have only the above small fraction of virtual neutrons
actually interact with the sample – therefore, a scattering event is forced to occur within
the sample for all virtual neutrons. The path length l ∈ [0, d] to this event is sampled
according to the probability distribution

p(l) = exp(−ΣTl)×
ΣT

1− exp(−ΣTd)

where the second term on the right hand side assures normalization of the distribu-
tion. Random numbers with this distribution are generated from a uniformly distributed
random variable ξ ∈ [0,1] using[58]

l = ln
¦

1− ξ
�

1− exp(−ΣTd)
�

©

.

The virtual neutron is then propagated to the position of the scattering event by

r j 7→ r j + lṽ j

and its statistical weight is adjusted to compensate for the forced interaction with

p j 7→ p j ×
�

1− exp(−ΣTd)
�

. (A.3)

At this position, the neutrons will undergo their next scattering event:

n 7→ n+ 1 .
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(a) n= 0 (b) n= 1 (c) n= 2

Figure A.1: Exemplary position and direction of velocity for 150 virtual neutrons for a hollow
cylinder sample in vertical projection (a) when entering the sample, (b) right before the first
scattering event, and (c) right before the second scattering event. Incident beam direction is
from the left.

For hollow cylinder sample geometry,2 the path length d inside the sample might be frag-
mented as the neutron path can exit and re-enter the sample. In that case, all fragments
of the path through the sample are calculated and collapsed into one length d, and the
randomized value of l is re-expanded accordingly such that virtual neutrons can traverse
the hollow inner part of the sample between two scattering events. An example is shown
in Figure A.1 with the initial positions of neutrons entering the simulation, and their
position and velocity direction right before the first and second scattering process.

(IIIa) Calculate the probability of scattering into the detector.
This step of the simulation does not change the state of the virtual neutrons, it only
extracts the probability of neutrons reaching the detector from their current state. The
detector center position is defined as angle 2ϑ in the horizontal plane with respect to the
incident beam axis, and the covered solid angle element is given in spherical coordinates
with polar extent ∆(2ϑ) and azimuthal extent ∆ϕ. The term ‘detector’ used here does
not necessarily refer to the actual detectors in the real instrument, but it describes the
solid angle of detection for which the present spectrum was measured. The ‘detector’ in
the simulation can thus correspond to a group of detectors (for IN6 ToF), to an integra-
tion area across a multidetector (for IN5 ToF), or to a crystal analyzer surface area in a
backscattering spectrometer (for IN16/IN16B).
Within the given solid angle element, a certain direction is randomized, and the prob-
ability for scattering along this direction into each energy channel of the detector is
determined. The energy change in this scattering process is

ħhω= E j − (E0 −ħhωD)

where ħhωD corresponds to the nominal energy transfer associated with the detector
channel. For the first scattering process with n = 1 it follows that ħhω = ħhωD, but
for n > 1 the neutron energy can have changed in previous scattering processes such
that E j 6= E0 and consequently ħhω 6= ħhωD. The value of Q is calculated for inelastic scat-
tering according to eq. (2.5) on page 8, where the scattering angle is the angle between

2 Hollow cylinder sample geometry is not supported by the original DISCUS program.
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ṽ j and the randomized direction towards the detector. The probability p′j of a neutron
reaching the detector along this trajectory is

p′j(ωD) = p j

︸︷︷︸

(1)

×
ΣS

ΣT
︸︷︷︸

(2)

×
S(Q,ω)

4π

√

√

√

E j −ħhω
E j

︸ ︷︷ ︸

(3)

×exp(−ΣTdD)

︸ ︷︷ ︸

(4)

(A.4)

where the individual factors are:

(1) statistical weight of previous trajectory,

(2) probability of this interaction being a scattering event, and no absorption,

(3) normalized scattering cross section for this scattering event corresponding to
eq. (2.21) on page 11, where the square root expression is equal to kf/ki and
the dynamic structure factor is averaged over the energy bin width of the detec-
tor channel,

(4) probability of the neutron leaving the sample without further interaction towards
the detector along the remaining path length dD inside the sample.

The hypothetical flux into the detector can now be calculated from

J (n)2ϑ (ωD) =



p′(ωD)
�

by averaging over all virtual neutrons. In the first iteration when n = 1, the flux J∗2ϑ(ω)
is additionally calculated in a similar way, with the difference that sample absorption is
set to zero in eq. (A.3) and eq. (A.4). Moreover the value of Q in eq. (A.4) is set to

Q 7→Qel = 4πλ−1
inc sinϑ

where 2ϑ is the nominal angle between detector and incident beam axis. With this
substitution, the resulting correction factors can be used to transform constant-2ϑ spectra
into constant-Q spectra.3

(IIIb) Randomize parameters of this scattering event.
In this step, the random scattering event which determines the next step of the neutron
trajectory through the sample is calculated. Although it seems natural to use S(Q,ω)
directly as probability distribution for the randomization of scattering events, this would
be an unfavorable approach. As explained by Johnson,[58] this leads to good statistics of
the simulation where S(Q,ω) gives high probability of scattering, and bad statistics for
processes of lower probability. In fact, the simulation would then very much resemble a
real scattering experiment that quickly achieves good counting statistics in high intensity
regions, and needs to run much longer to reduce the noise in low intensity regions.
Fortunately, probability of scattering and counting statistics can be easily decoupled in
numerical simulations. Therefore, in DISCUS, the scattering events are sampled with a
uniform distribution in (Q,ω)-space, and the statistical weight of the virtual neutrons
is adjusted to the probability of the event. But in the present case, where strong elas-
tic scattering occurs, a fully uniform distribution would give a very bad sampling of the
narrow elastic box function in S(Q,ω). This is resolved by adjusting the sampling distri-
bution by forcing a certain number of neutrons (typically 20 % to 30 %) to scatter in the
near elastic region with twice the width of the elastic box function to give an accurate

3 This substitution is not made in the original DISCUS program.
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sampling of the elastic peak. The physically allowed section in (Q,ω)-space is moreover
limited by Q < 3Qmax and |ω| < 2ωmax where Qmax and ωmax are the maximum values
used in the refinement procedure of the actual data.
Figure A.2 shows a typical density of scattering events in the (Q,ω)-plane for the second
scattering event in the sample. In the first scattering event, only the region marked with
the black lines is accessible because all virtual neutrons have E j = E0. In subsequent
events, E j can be larger and the accessible region in (Q,ω) grows accordingly. The high
density around ħhω= 0 is due to the above mentioned forced near-elastic scattering.
After the parameters Q and ω have been determined, the neutron direction is updated:

ṽ j 7→ ṽ′j

where the scattering angle 2ϑ = cos−1(ṽ j · ṽ′j) for this event fulfills eq. (2.5) on page 8,
and the orientation of the scattering plane is randomized. The statistical weight is then
updated as follows:

p j 7→ p j × A(Q,ω)

︸ ︷︷ ︸

(1)

×
ΣS

ΣT
︸︷︷︸

(2)

×
S(Q,ω)Q



S(Q,ω)Q
�

︸ ︷︷ ︸

(3)

where the individual factors are:

(1) weight correction accounting for the focusing of scattering events in the near-elastic
region, calculated from the ratio of accessible areas in the (Q,ω) plane,

(2) probability of this interaction being a scattering event, and no absorption,

(3) normalized scattering cross section for this scattering event. This expression dif-
fers from the one in eq. (A.4) due to the uniform density sampling in (Q,ω). The
probability of scattering is proportional to the cross section[58]

d2σ

dQ dω
=

d2σ

dΩdω
×

dΩ
dθ
×

dθ
dQ

∝
kf

ki
S(Q,ω)× 2π sinθ ×

Q
2 ki kf sinθ

∝ S(Q,ω)Q (for constant ki).

Therefore, the statistical weight is adjusted by S(Q,ω)Q and normalized by



S(Q,ω)Q
�

, where the latter is calculated as average over all sampled virtual neu-
trons.

Now, the virtual neutrons can be propagated to the location of the next scattering event
by closing the loop and going back to step (II).

After the above calculation has been iterated multiple times, the hypothetical neutron fluxes
J (n)2ϑ (ω) and J∗2ϑ(ω) are obtained and the correction factors can be calculated from eq. (A.2)
The fact that every virtual neutron is scattered into every detector channel helps to increase
the statistics of the result, but it also introduces systematic correlations between the corrections
factors of adjacent energy channels. To estimate this correlation, the calculation for a single de-
tector is repeated 25 times with different initial states for the pseudorandom number generator,
using 5000 neutrons in each run. These values were chosen such that the noise on the resulting
correction factors is reasonably small.
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Figure A.2: Typical density of randomized scattering events in the (Q,ω)-plane for the second
scattering event in the sample. The black line marks the region accessible during the first scat-
tering event for E0 = 2.08 meV, and M corresponds to the number of events per 105. Note the
increased density around the elastic line ħhω= 0.

The energy channels of the detectors in the simulation are not the same as for the exper-
imental data. The correction factors in the simulation are calculated on a coarser grid and
interpolated on the actual energy channels, where the simulation grid is adapted with a higher
channel density in the low energy transfer region. The special treatment of the elastic peak
introduces a discontinuity in the correction factors at ω = 0. When the resulting correction
factors are applied in the model function in eq. (5.3) on page 37, the correction factor for the
elastic simulation channel is applied to the elastic δ(ω)-scattering only, while inelastic simula-
tion channels are interpolated. The subsequent convolution with the experimental resolution
function then leads to proper correction of elastic and inelastic intensity in the resulting model
function.

Technically, the above described method is only suited for direct geometry spectrometers,
meaning that the incident neutron energy Ei is constant. Backscattering spectroscopy on the
other hand is an indirect technique, where the final neutron energy Ef is constant and the
incident energy Ei is modulated. However, the energy transfers relevant in BS are so small that
the energy dependence of the absorption cross section can be neglected, such that the correction
algorithm can be used for either experimental technique.

A.2 Extrapolation of the jump rotation model function

For the multiple scattering simulation, the scattering law should ideally be known in the entire
(Q,ω)-plane extending beyond the region observed in the experiment. To give the best possible
extrapolation for the jump rotation models discussed in this work, the variable ratio f of ap-
parently rotating to apparently fixed hydrogen atoms discussed in section 7.3 is always used in
the intermediate step of the iterative data analysis. This ratio shifts the balance between elastic
and quasielastic contributions and was necessary to achieve a continuous extrapolation for all
models.

This approach is fully justified, as the multiple scattering simulation should use a structure
factor S(Q,ω) which describes best the actual sample, even if it is not consistent with the
imposed model function in the analysis routine. Of course this only works up to a certain degree.
Figure 7.5 on page 68 for example shows that the rescaling using f < 1 cannot superimpose the
EISF of the 5-fold jump model with the results from the data analysis in FcI3 above 85 K, and
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Figure A.3: Typical results of the multiple scattering simulation corresponding to the data set
analyzed with the non-equivalent sites model shown in Figure 6.4b on page 50. (a) Simulated
neutron flux for n = 1 to 4 scattering processes in the sample for scattering angle 2ϑ = 49.7°
(Qel = 1.47 Å−1). Results are shown for each of the 25 independent simulations and their aver-
ages (dashed black line). (b) Resulting correction factors R∗2ϑ(ω) for use in the model function.
The values of the elastic channel are emphasized by the black line, their apparent strong noise
compared to the inelastic channels is due to coherent Bragg peak scattering.

there will be a discontinuity in A0(Q) in the extrapolation of these data. However, the multiple
scattering correction does neither cause nor can it cure such large inconsistencies between
model and data shown in this figure. As will be shown in the next section, the low-Q end
is much more affected by the correction factors than the high-Q region.

A.3 Example of the effect of multiple scattering corrections

A typical example of the resulting hypothetical fluxes J (n)2ϑ (ω) and J∗2ϑ(ω) of a multiple scattering
simulation is shown in Figure A.3a. All 25 independent runs for a certain detector and n = 1
to 4 scattering processes in the sample can be seen separately. While the result for n = 1 is
highly reproducible in every run, the noise increases significantly with increasing n. The dashed
black lines show the averages which are used for further calculations, and the hypothetical flux
J∗2ϑ(ω) is represented by the blue line. It diverges from J (1)2ϑ (ω) with increasing magnitude of
energy transfer, primarily due to the increasing differences between the value of Qel and the
actualω-dependent Q value. This divergence is much stronger at smaller scattering angles than
the one shown in Figure A.3a.

Figure A.3b shows the final correction factors R∗2ϑ(ω) calculated according to eq. (A.2) for
all 28 detector groups. At low scattering angles 2ϑ, the ω dependence is very pronounced
due to the strong constant-Q correction mentioned above. With increasing scattering angle
the correction factors increase as well, especially for the last detector groups which are close
to the slab direction of the flat sample. While the correction factors are generally a smooth
function of energy transfer ħhω and scattering angle 2ϑ, they show a discontinuity in the elastic
energy channel due to the corresponding discontinuity in the simulated scattering law S(Q,ω)
at ω = 0 and its special treatment in the simulation. The correction factors obtained for the
elastic channel are emphasized by the black line. Compared to the smooth inelastic energies, the
2ϑ dependency of the elastic channel seems to contain significant noise. However, the observed
oscillations are not a side effect of badly conditioned simulation parameters, but due to strongly
localized coherent scattering from Bragg peaks contained in the scattering law S(Q,ω). This
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Figure A.4: Exemplary comparison of the multiple scattering (MS) corrections on the incoher-
ent structure factors A0(Q) and A1(Q) obtained for the analysis of IN5 data on ferrocene
at T = 230 K with λinc = 3.6 Å and 6.3 Å using the non-equivalent sites 2×5-fold model
(cf. Figure 6.4c on page 50). The red line shows the model prediction. A significant effect
of multiple scattering corrections is observed at Q < 1 Å−1. Grey boxes show channels contami-
nated by Bragg peak scattering, which affects only the obtained values of A0(Q).

leads to discontinuities in the 2ϑ dependency of the elastic scattering and consequently to the
observed discontinuities of the elastic correction factors and is not an artifact of the calculation.

Figure A.4 shows an example of the influence of the multiple scattering corrections on the
obtained values of the incoherent structure factors A0(Q) and A1(Q). The Monte-Carlo simu-
lation has been performed in both cases in order to correct for sample self absorption and the
transformation of scattering angle to scattering vector, but the maximum number of simulated
scattering processes was set to n = 1 (without MS correction) and n = 4 (with MS correction).
In contrast to all figures showing EISFs in the main part of this work, the data points in A0(Q)
containing Bragg peaks have not been removed for visualization in Figure A.4 and are empha-
sized by gray bars. It can clearly be seen that Bragg peaks lead to outliers with significantly
increased intensity in A0(Q), but as expected no influence on A1(Q) is observable. The multiple
scattering correction has a significant influence on the obtained structure factors for Q < 1 Å−1.
The localized influence on the low-Q part can be explained as follows: Already after two scatter-
ing processes, the contribution from multiple scattering is essentially isotropic and quasielastic.
At low Q, where the scattering is expected to be essentially elastic as A1(Q) tends to zero, the
multiple scattering contribution is more important than at larger Q where it superimposes with
the already existing quasielastic scattering. The figure shows that this correction is significant
and must be considered to be an important part of the data evaluation process.

Finally, Figure A.5 shows a typical evolution of parameters during the iterative analysis pro-
cess described in section 5.3. In the zeroth iteration, the initial guess for the correction factors
is used (sample self absorption only, no multiple scattering or constant-Q correction). From
the first iteration on, the Monte-Carlo simulation is used to obtain the correction factors, by
limiting the maximum number of scattering processes to n = 1 (without MS correction) and
n = 4 (with MS correction). It can be seen that the multiple scattering correction not only
affects the above mentioned structure factors, but also the linewidth τ−1

1 of quasielastic scatter-
ing by more than 10 %. In the bottom right graph in Figure A.5, the reduced sum of squared
residuals χ2

red between data and model is shown. The significance of the absolute value is not
immediately clear and probably differs slightly from the usual meaning of χ2

red, as the model
function itself contains small statistical noise from the Monte-Carlo simulation and from the
convolution with the experimental model function. This noise has not been accounted for in
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Figure A.5: Typical evolution of model parameter values during the iterations of the analysis
process when considering up to four scattering events in the simulation (with MS correction)
compared to consideration of only one scattering event (without MS correction). The shown
data set corresponds to the one in Figure A.4. For the nomenclature of parameters, see chapter 3
and chapter 6. In the lower right, the normalized sum of squared residualsχ2

red of the fit is shown
(see text for details). The analysis process is usually run only up to five iterations (dashed line).

the calculation of χ2
red, but the difference between χ2

red > 6 without MS correction and χ2
red < 3

with MS correction clearly underlines the improvement of consistency in the data description
when multiple scattering processes are properly accounted for.
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B Raw data correction
The raw data which is collected on all instruments is treated by standard methods prior to any
further evaluation, partly using data reduction scripts in the software LAMP[86] and the program
SQW[87] provided at the ILL, and self-written, similar reduction scripts in GNU/Octave.[59]

The latter have been used for the instruments IN16B and IN1-Lagrange where experiments
have been performed shortly after or even during the commissioning phase and a standardized
treatment was not established yet. Here, a brief description of the manipulations performed
on the raw data is given for ToF, backscattering and polarized diffraction experiments. Data
handling for the vibrational spectroscopy on IN1-Lagrange is straightforward and contained in
chapter 9.

ToF data reduction
For the IN5 and IN6 ToF instruments, spectra from different detectors are added or integrated

over the multidetector to obtain a set of spectra for different scattering angles. On IN5, the
flight time differences due to the cylindrical detector geometry are being corrected for as well.
Normalization to a beam monitor then corrects for fluctuations in the incident intensity. The
neutrons which are counted in the detector have different kinetic energies, such that another
correction is made for energy dependent detector efficiency using an analytical formula. An
empty sample cell background measurement was always performed and subtracted from the
measured intensity Imeas as follows:

Icorr = Imeas − T Iempty (B.1)

with the angular dependent transmission factors of the sample T that are calculated analytically
for flat samples using

T =
1
2

�

exp
�

−
ΣTd

cos
�

2ϑ0 − π/2− 2ϑ
�

�

+ exp
�

−
ΣTd

cos
�

2ϑ0 − π/2
�

�

�

(B.2)

where d is the thickness of the sample, 2ϑ0 the direction of the slab and ΣT the macroscopic
cross section corresponding to the attenuation coefficient of the sample as defined in eq. (A.1).
In this formula, it is assumed that the scattering on the sample cell is caused in equal parts by
the first and by the second wall as sketched in Figure B.1. In eq. (B.2), the average attenuation
along the red paths by the sample in the cell is calculated, and in eq. (B.1) the measured empty
cell intensity is scaled by this attenuation before being subtracted from the sample data. For
hollow cylindrical sample geometry, the values of T are approximated by a modified version of
the Monte Carlo simulation described in Appendix A where the sample attenuation is averaged
over randomized trajectories by assuming scattering on every sample boundary in equal parts.
This approach assumes that all background scattering from Iempty is attenuated by the sample.
On IN5, additional measurements with Cadmium inside the sample holder were performed to
further separate the background scattering. Cadmium is a strong absorber (see Table 2.1 on
page 17) and allows to measure the background ICd which did not pass through the sample
volume. Equation (B.2) is then extended to

Icorr =
�

Imeas − ICd

�

− T
�

Iempty − ICd

�

. (B.3)
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Figure B.1: Sketch to estimate the attenuation of scattering from the cell (blue) by the sample
(grey) for infinite slab geometry.

To correct for varying detector efficiency and achieve relative and possibly absolute normaliza-
tion of the energy spectra, a normalization measurement on a vanadium sheet is indispensable
in every experiment. Vanadium is a good incoherent isotropic scatterer, and easy to obtain in a
well defined thickness. The empty cell scattering is subtracted from the vanadium measurement
similar to the method above, and moreover it is corrected for self absorption by using correction
factors from a multiple scattering simulation as described in Appendix A. Finally, the sample
measurement can be transformed into a differential cross section by

d2σ

dΩdEf
=

Icorr;sample

Icorr;vana
×
σvana

inc

4π
×

mvana Msample

Mvana msample

where m is the total vanadium and sample mass, and M the weight per formula unit. The
data then enters the data analysis process described in chapter 5. Correction for sample self
absorption has been intentionally omitted here, because it is a part of the multiple scattering
corrections during data analysis.

BS data reduction
Raw data from all IN16 experiments was treated using the program SQW, which in principle

performs corrections as described above, but uses more elaborate formulas for the subtraction
of the empty cell scattering. For the backscattering instruments IN16 and IN16B, no energy de-
pendent detector efficiency needs to be corrected as all neutrons have the same energy selected
by the analyzer. Also, they possess a much smaller number of detectors (around 20), such that
no grouping was performed. The fact that some neutrons pass through the sample a second
time after reflection from the analyzer crystals has been ignored.

Polarized neutron diffraction data reduction
The polarized neutron diffraction experiment on D7 is in principle treated similar to the

above method of empty cell subtraction and normalization, with an additional correction for the
efficiency of the beam polarizer and analyzer. The latter is achieved by additional measurement
of a quartz glass standard (SiO2), a material that scatters purely coherent leading to only non-
spinflip scattering. The measured and normalized spinflip and non-spinflip intensities of the
sample corrected for empty cell scattering and polarizing efficiency are then transformed into
coherent and incoherent cross sections using

d2σinc

dΩdEf
=

3
2

�

d2σ⊥↑↓

dΩdEf

�

and
d2σcoh

dΩdEf
=

�

d2σ⊥↑↑

dΩdEf

�

−
1
2

�

d2σ⊥↑↓

dΩdEf

�

what follows from eq. (2.35) on page 15.
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C Debye Waller factor
temperature dependence

The temperature dependent form of the Debye Waller factor used in the model function in
eq. (5.3) on page 37 is

exp(−2W ) = exp
�

−
1
3

Q2
elu

2
0T
�

.

For analysis of data at a single or multiple temperatures, u2
0 is used as free parameter together

with the scaling factor s0 in eq. (5.3) to normalize the sum of the amplitudes Al(Q) in the
circular jump diffusion models. In order to estimate the accuracy of the linear temperature
dependence of the exponent and possibly give a better modeling for low temperatures, the
measured density of states G(ω) can be used to calculate the Debye Waller factor. The shape
of G(ω) was extracted from IN6 ToF data at T = 80 K by standard methods and is shown
in Figure C.1a. The temperature dependence of the Debye Waller factor is then calculated
numerically from eq. (2.31) on page 14 by using Z(ω) 7→ G(ω), where ħhωm = 20 meV is the
maximum phonon energy considered. The result is then put into the form

exp(−2W ) = exp
�

−
1
3

Q2
elũ

2
0 ν(T )

�

where ũ2
0 is used as free parameter to compensate for missing absolute intensity normaliza-

tion and for another important approximation which is made by this method: The density of
states G(ω) in eq. (2.31) should be the vibrational density of states of the hydrogen atoms in
the sample, while the one actually used is the measured generalized density of states containing
the sum over all species (C, H and Fe) weighted by the ratio of neutron scattering cross section
and mass. However, due to the strong dominance of scattering from hydrogen, both densities
can be assumed to be of comparable shape in the relevant energy range. This approximation is
considered sufficient for the present purpose.

The resulting function ν(T ) describing the temperature dependence of the mean square dis-
placement in Fc is shown in Figure C.1b, and it can be seen that the linear approximation holds
well above circa 50 K.
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Figure C.1: (a) Generalized phonon density of states Z(ω) of triclinic ferrocene obtained at 80 K
using neutron ToF spectroscopy on IN6. A possible Debye approximation of the low energy
region is shown. (b) Resulting ν(T ) from numerical integration of Z(ω) with approximation of
linear temperature dependence at higher T .
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D Spin-1/2 system in external magnetic field
Here, the magnetic neutron scattering cross section for a spin-1/2 system in an external magnetic
field will be calculated for the experiments in chapter 10. The magnetic field lifts the degeneracy
between the spin up |↑〉 and the spin down state |↓〉, and the magnetic moment can be flipped in
an inelastic scattering process. The starting point for the calculation is the inelastic cross section
for magnetic moments from ref. [39, eq. (7.27)], where only the self part of the correlation is
considered:1

d2σ

dΩdEf
= r2

0

kf

ki

�

1
2

gF(Q)
�2∑

α,β

�

δαβ − Q̃αQ̃β
�

×
∑

νi,νf

pνi
〈νi|Ŝα|νf〉〈νf|Ŝβ |νi〉 δ(ħhω+ Eνi

− Eνf
) (D.1)

where

r2
0 is the basic magnetic cross section defined in section 2.6,

g is the Landé factor of the magnetic moments,

F(Q) is the form factor of the magnetic moments,

α,β are summation indices over spatial directions {x , y, z},

Q̃α are the components of the normalized scattering vector Q̃= Q/Q,

νi,νf are the possible initial and final sample spin states ↑ or ↓,

pνi is the thermal population of the initial state,

Ŝα are the components of the sample spin operator S̃,

Eνi , Eνf are the energies of the initial and final sample spin state.

The energy difference between the spin states in an external magnetic field of strength B is

∆E = E↓ − E↑ = gµBB

with the Bohr magneton µB. The next step is the explicit calculation of all terms of the sum in
eq. (D.1). As stated in section 10.1, the observed scattering was approximately perpendicular
to the external field. Therefore, when the z-direction is chosen as magnetic field direction and
the incident beam is along x , the direction of the scattering vector lies in the xy-plane as can
be parametrized as

Q̃=





cosη
sinη

0



 .

1 The self correlation is extracted from ref. [39, eq. (7.27)] by setting l = l ′ and d = d ′.
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With the common definition of the ladder operators

Ŝx =
1
2
(Ŝ+ + Ŝ−)

Ŝy =
1
2i
(Ŝ+ − Ŝ−)

and their effect on the spin states Ŝ+|↓〉 = |↑〉, Ŝ+|↑〉 = 0, etc., all matrix elements in eq. (D.1)
can easily be calculated. The result is then simplified to

d2σ

dΩdEf
= r2

0

kf

ki

�

1
2

gF(Q)
�2 1

4

�

δ(ħhω) + p↑δ(ħhω+∆E) + p↓δ(ħhω−∆E)
�

. (D.3)

The thermodynamic population of both states is

p↑ =
1
Z

exp
�

∆E
2kBT

�

=

�

1+ exp
�

−
∆E
kBT

�

�−1

p↓ =
1
Z

exp
�

−
∆E

2kBT

�

=

�

1+ exp
�

∆E
kBT

�

�−1

where the partition function is

Z = 2cosh
�

∆E
2kBT

�

.

In the notation of section 10.2, the neutron energy gain part (i.e. ħhω ≤ 0) of eq. (D.3) can be
rewritten as

d2σ

dΩdEf
=
σmag

4π

�

δ(ħhω) +δ(ħhω+∆E)

�

1+ exp
�

−
∆E
kBT

�

�−1�

(D.4)

where the δ-shaped inelastic contribution is ultimately replaced by a Gaussian to allow for finite
width of the experimentally observed excitation in section 10.2.
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