



ILL in focus

Beamtime access news

Just a week after the end of 2025 reactor operations, in early November, the ILL welcomed on site the members of the subcommittees of the ILL Scientific Council responsible for assessing experiment proposals, as well as the ILL Scientific Council itself. In this round, 369 proposals were accepted, corresponding to 393 experiments and a total of 1539 days of neutrons (to be delivered in parallel by the over 40 instruments in ILL's instrument suite). The next proposal submission deadline is 15 February 2026. As a reminder, this date concerns standard beam time access requests – specific access modes are available for fast access, namely DDT and EASY. More information can be found [here](#).

Next proposal submission deadline: 16 February 2026. **Fast access mode** available all year round.

End of 2025 operations

The ILL concluded 2025 operations at the end of October. The High-Flux Reactor restarted in early May and operated for 126 days, divided equally into two cycles of 63 days. In total more than 1800 scientists came on site to perform close to 1400 experiments. With the official conclusion of the Endurance upgrade programme in 2024, the last instruments and systems are now coming into operation - see '2025 operation highlights' below. The High-Flux Reactor will restart in late March 2026 for a year with 3 reactor cycles in the programme.

2025 operation highlights

A huge advance for high-resolution neutron crystallography of large proteins

In October 2025, a completely new neutron-sensitive cylindrical image plate detector was built and installed on the DALI instrument at the ILL. This is a major upgrade that significantly improves instrument performance. Built in the framework of the ILL upgrade programme Endurance (2016-2024), DALI is a multi-wavelength diffractometer designed for high-resolution studies of large proteins. [Read more](#)

PorTo: new high-resolution neutron tomograph for micro-imaging

The ILL's new cold neutron micro-tomography instrument - PorTo - has just been commissioned, marking a significant expansion of the Institute's neutron imaging capabilities. PorTo is designed to deliver high-resolution 3D imaging for a broad range of applications, from materials science and engineering to life sciences. In its first week of operation, PorTo joined MoTo and NeXT in running user experiments simultaneously for the first time. PorTo alone welcomed nine experiments spanning cultural heritage, energy storage, and next-generation battery materials, with users coming from 15 different academic and research institutes. [Read more](#)

MARMOT in full swing

During the last cycle, the MARMOT system was successfully tested and validated on a prototype (with seven detection channels). The next step will more than triple the detector's active surface area, making MARMOT even more efficient. MARMOT is the latest major technical breakthrough in neutron spectrometers. Designed and built in-house at the ILL, it offers a new way to analyse the energies of neutrons across a wide range of angles. It is based on an innovative bent silicon crystal technology, which enables new designs for monochromators and analysers specifically tailored to enhance inelastic neutron scattering experiments. [Read more](#)

SHARP and D007 welcome their first users

Two other instruments welcomed their first teams of users to perform experiments: SHARP, during the first cycle, and D007, during the second cycle. The first user measurements on SHARP were performed with PhD student Phillip Eckstein, working on a joint PhD project between the ILL and the Institute of Frontier Materials of the German Aerospace Center (DLR) - see dedicated news item [here](#). On D007, diffraction data obtained on powders and single crystals were visualised and processed using algorithms developed using the Mantid software, and at least one publication has already been submitted to a scientific journal. [Read more](#)

A powerful tool to explore new magnetic states and quantum phenomena

Neutrons are the ideal probe to explore matter under the extreme conditions in which new magnetic or quantum states emerge. A neutron diffraction experiment down to the unprecedented low temperature of 160 mK under a pressure of 20 GPa has been made possible by novel in-house developments in cryogenic and high-pressure techniques at the ILL. [Read more](#)

Recent science news

Life in the cold: How microbes thrive—and die—at extreme temperatures

Life on Earth has evolved in response to environmental conditions. In particular, many species have adapted to very cold or very hot environments. A new study based on neutrons provides valuable insights into the thermal vulnerability of different bacterial families. It shows that organisms adapted to very low temperatures are also surprisingly fragile: even a slight rise in temperature can be lethal, long before any structural damage appears. Such studies are key to informing strategies for food preservation, bioremediation, and the sustainable use of cold-adapted microbes in biotechnology. [Read more](#)

Neutrons reveal how the human body processes plant proteins

A recently published study makes an important contribution to the understanding of the physiological processing of plant-based foods. The results can be used to optimise production, improving the digestibility of plant proteins and thus the nutritional value of vegetarian and vegan dishes. The basic idea was to simulate a human stomach "on a laboratory bench" and to observe what happens to plant-based products during digestion in an acidic environment. [Read more](#)

New insights into ion transport in next-generation solid electrolytes

Mixed-anion materials are chemical compounds that contain positive ions and more than one kind of negative ion within a single crystal structure. This offers great tunability of their physical and chemical properties. The most widely studied class are oxyhydrides, containing both oxide ions (O^{2-}) and hydride ions (H^-). Using density functional theory calculations, researchers from the ILL and Chalmers University of Technology (Sweden) modeled how hydride ions diffuse under different conditions. Their results provide design principles for tailoring the hydride ion conductivity in oxyhydrides. By engineering the degree of electron localisation, materials scientists may be able to fine tune ionic transport properties to meet specific technological needs in catalysis and solid-state energy devices. [Read more](#)

Bacteria can be surprisingly resistant - neutron-based techniques show why.

Some bacteria survive extreme heat, cold, pressure or acidity thanks in part to special membrane molecules called bolaamphiphiles. A France-USA research team, including ILL scientists, used advanced microscopy and neutron scattering (SANS and NSE) to uncover how these molecules alter membrane thickness, flexibility and structure. They found that bolaamphiphiles mix into membranes at all pH levels, thinning them and changing their rigidity in pH-dependent ways. The mixtures also formed striking new shapes, such as tubules and nested vesicles. These results shed light on how early cell membranes may have gained resilience and responsiveness to their environment. [Read more](#)

Neutrons for the energy transition

The removal of CO_2 from methane-rich (CH_4) gas streams is key in the purification of varied biogas sources, an alternative to fossil-derived natural gas that can play an important role in the energy transition. Metal-organic frameworks, or MOFs, have recently been brought under the spotlight by the 2025 Nobel Prize in Chemistry. A study now published demonstrates that incorporating MOF decorated with biological building units as amino acids in a polymer membrane significantly enhances CO_2/CH_4 separation performance. Neutron scattering measurements at the ILL instrument IN1/Lagrange were key to unravelling the reasons behind this. [Read more](#)

Breathing together: The potential of multidisciplinary collaboration

Neutron reflectometry has provided new insights into pulmonary surfactants, advancing the development of therapies for surfactant-deficient lung disorders. In collaboration with the Complutense University of Madrid, researchers used the ILL's FIGARO instrument to study the key surfactant proteins SP-B and SP-C, which prevent alveolar collapse. The results, published in the Journal of Colloid and Interface Science, revealed that SP-B drives the formation of multilayered lipid reservoirs essential for breathing, while SP-C plays a supportive role - marking a major step towards novel therapeutic materials. [Read more](#)

How batteries breathe

Scientists used neutron imaging on ILL's NeXT instrument to study lithium-sulfur (Li-S) batteries under real time. Li-S batteries promise high performance but face challenges under "lean electrolyte conditions," which improve energy density but shorten battery life. The study revealed that electrolyte wetting inside the battery is uneven "breathing." The breathing effect redistributes the electrolyte solution and explains why battery life is reduced. Neutron imaging, highly sensitive to lithium and hydrogen, provides unique insights into battery processes and paves the way for designing longer-lasting, next-generation batteries. [Read more](#)

Neutrons reveal the human body processes plant proteins

A recently published study makes an important contribution to the understanding of the physiological processing of plant-based foods. The results can be used to optimise production, improving the digestibility of plant proteins and thus the nutritional value of vegetarian and vegan dishes. The basic idea was to simulate a human stomach "on a laboratory bench" and to observe what happens to plant-based products during digestion in an acidic environment. [Read more](#)

New insights into ion transport in next-generation solid electrolytes

Mixed-anion materials are chemical compounds that contain positive ions and more than one kind of negative ion within a single crystal structure. This offers great tunability of their physical and chemical properties. The most widely studied class are oxyhydrides, containing both oxide ions (O^{2-}) and hydride ions (H^-). Using density functional theory calculations, researchers from the ILL and Chalmers University of Technology (Sweden) modeled how hydride ions diffuse under different conditions. Their results provide design principles for tailoring the hydride ion conductivity in oxyhydrides. By engineering the degree of electron localisation, materials scientists may be able to fine tune ionic transport properties to meet specific technological needs in catalysis and solid-state energy devices. [Read more](#)

Bacteria can be surprisingly resistant - neutron-based techniques show why.

Some bacteria survive extreme heat, cold, pressure or acidity thanks in part to special membrane molecules called bolaamphiphiles. A France-USA research team, including ILL scientists, used advanced microscopy and neutron scattering (SANS and NSE) to uncover how these molecules alter membrane thickness, flexibility and structure. They found that bolaamphiphiles mix into membranes at all pH levels, thinning them and changing their rigidity in pH-dependent ways. The mixtures also formed striking new shapes, such as tubules and nested vesicles. These results shed light on how early cell membranes may have gained resilience and responsiveness to their environment. [Read more](#)

Neutrons for the energy transition

The removal of CO_2 from methane-rich (CH_4) gas streams is key in the purification of varied biogas sources, an alternative to fossil-derived natural gas that can play an important role in the energy transition. Metal-organic frameworks, or MOFs, have recently been brought under the spotlight by the 2025 Nobel Prize in Chemistry. A study now published demonstrates that incorporating MOF decorated with biological building units as amino acids in a polymer membrane significantly enhances CO_2/CH_4 separation performance. Neutron scattering measurements at the ILL instrument IN1/Lagrange were key to unravelling the reasons behind this. [Read more](#)

Breathing together: The potential of multidisciplinary collaboration

Neutron reflectometry has provided new insights into pulmonary surfactants, advancing the development of therapies for surfactant-deficient lung disorders. In collaboration with the Complutense University of Madrid, researchers used the ILL's FIGARO instrument to study the key surfactant proteins SP-B and SP-C, which prevent alveolar collapse. The results, published in the Journal of Colloid and Interface Science, revealed that SP-B drives the formation of multilayered lipid reservoirs essential for breathing, while SP-C plays a supportive role - marking a major step towards novel therapeutic materials. [Read more](#)

How batteries breathe

Scientists used neutron imaging on ILL's NeXT instrument to study lithium-sulfur (Li-S) batteries under real time. Li-S batteries promise high performance but face challenges under "lean electrolyte conditions," which improve energy density but shorten battery life. The study revealed that electrolyte wetting inside the battery is uneven "breathing." The breathing effect redistributes the electrolyte solution and explains why battery life is reduced. Neutron imaging, highly sensitive to lithium and hydrogen, provides unique insights into battery processes and paves the way for designing longer-lasting, next-generation batteries. [Read more](#)

Neutrons reveal the human body processes plant proteins

A recently published study makes an important contribution to the understanding of the physiological processing of plant-based foods. The results can be used to optimise production, improving the digestibility of plant proteins and thus the nutritional value of vegetarian and vegan dishes. The basic idea was to simulate a human stomach "on a laboratory bench" and to observe what happens to plant-based products during digestion in an acidic environment. [Read more](#)

New insights into ion transport in next-generation solid electrolytes

Mixed-anion materials are chemical compounds that contain positive ions and more than one kind of negative ion within a single crystal structure. This offers great tunability of their physical and chemical properties. The most widely studied class are oxyhydrides, containing both oxide ions (O^{2-}) and hydride ions (H^-). Using density functional theory calculations, researchers from the ILL and Chalmers University of Technology (Sweden) modeled how hydride ions diffuse under different conditions. Their results provide design principles for tailoring the hydride ion conductivity in oxyhydrides. By engineering the degree of electron localisation, materials scientists may be able to fine tune ionic transport properties to meet specific technological needs in catalysis and solid-state energy devices. [Read more](#)

Bacteria can be surprisingly resistant - neutron-based techniques show why.

Some bacteria survive extreme heat, cold, pressure or acidity thanks in part to special membrane molecules called bolaamphiphiles. A France-USA research team, including ILL scientists, used advanced microscopy and neutron scattering (SANS and NSE) to uncover how these molecules alter membrane thickness, flexibility and structure. They found that bolaamphiphiles mix into membranes at all pH levels, thinning them and changing their rigidity in pH-dependent ways. The mixtures also formed striking new shapes, such as tubules and nested vesicles. These results shed light on how early cell membranes may have gained resilience and responsiveness to their environment. [Read more](#)

Neutrons for the energy transition

The removal of CO_2 from methane-rich (CH_4) gas streams is key in the purification of varied biogas sources, an alternative to fossil-derived natural gas that can play an important role in the energy transition. Metal-organic frameworks, or MOFs, have recently been brought under the spotlight by the 2025 Nobel Prize in Chemistry. A study now published demonstrates that incorporating MOF decorated with biological building units as amino acids in a polymer membrane significantly enhances CO_2/CH_4 separation performance. Neutron scattering measurements at the ILL instrument IN1/Lagrange were key to unravelling the reasons behind this. [Read more](#)

Breathing together: The potential of multidisciplinary collaboration

Neutron reflectometry has provided new insights into pulmonary surfactants, advancing the development of therapies for surfactant-deficient lung disorders. In collaboration with the Complutense University of Madrid, researchers used the ILL's FIGARO instrument to study the key surfactant proteins SP-B and SP-C, which prevent alveolar collapse. The results, published in the Journal of Colloid and Interface Science, revealed that SP-B drives the formation of multilayered lipid reservoirs essential for breathing, while SP-C plays a supportive role - marking a major step towards novel therapeutic materials. [Read more](#)

How batteries breathe

Scientists used neutron imaging on ILL's NeXT instrument to study lithium-sulfur (Li-S) batteries under real time. Li-S batteries promise high performance but face challenges under "lean electrolyte conditions," which improve energy density but shorten battery life. The study revealed that electrolyte wetting inside the battery is uneven "breathing." The breathing effect redistributes the electrolyte solution and explains why battery life is reduced. Neutron imaging, highly sensitive to lithium and hydrogen, provides unique insights into battery processes and paves the way for designing longer-lasting, next-generation batteries. [Read more](#)

Neutrons reveal the human body processes plant proteins

A recently published study makes an important contribution to the understanding of the physiological processing of plant-based foods. The results can be used to optimise production, improving the digestibility of plant proteins and thus the nutritional value of vegetarian and vegan dishes. The basic idea was to simulate a human stomach "on a laboratory bench" and to observe what happens to plant-based products during digestion in an acidic environment. [Read more](#)

New insights into ion transport in next-generation solid electrolytes

Mixed-anion materials are chemical compounds that contain positive ions and more than one kind of negative ion within a single crystal structure. This offers great tunability of their physical and chemical properties. The most widely studied class are oxyhydrides, containing both oxide ions (O^{2-}) and hydride ions (H^-). Using density functional theory calculations, researchers from the ILL and Chalmers University of Technology (Sweden) modeled how hydride ions diffuse under different conditions. Their results provide design principles for tailoring the hydride ion conductivity in oxyhydrides. By engineering the degree of electron localisation, materials scientists may be able to fine tune ionic transport properties to meet specific technological needs in catalysis and solid-state energy devices. [Read more](#)

Bacteria can be surprisingly resistant - neutron-based techniques show why.

Some bacteria survive extreme heat, cold, pressure or acidity thanks in part to special membrane molecules called bolaamphiphiles. A France-USA research team, including ILL scientists, used advanced microscopy and neutron scattering (SANS and NSE) to uncover how these molecules alter membrane thickness, flexibility and structure. They found that bolaamphiphiles mix into membranes at all pH levels, thinning them and changing their rigidity in pH-dependent ways. The mixtures also formed striking new shapes, such as tubules and nested vesicles. These results shed light on how early cell membranes may have gained resilience and responsiveness to their environment. [Read more](#)

Neutrons for the energy transition

The removal of CO_2 from methane-rich (CH_4) gas streams is key in the purification of varied biogas sources, an alternative to fossil-derived natural gas that can play an important role in the energy transition. Metal-organic frameworks, or MOFs, have recently been brought under the spotlight by the 2025 Nobel Prize in Chemistry. A study now published demonstrates that incorporating MOF decorated with biological building units as amino acids in a polymer membrane significantly enhances CO_2/CH_4 separation performance. Neutron scattering measurements at the ILL instrument IN1/Lagrange were key to unravelling the reasons behind this. [Read more](#)

Breathing together: The potential of multidisciplinary collaboration

Neutron reflectometry has provided new insights into pulmonary surfactants, advancing the development of therapies for surfactant-deficient lung disorders. In collaboration with the Complutense University of Madrid, researchers used the ILL's FIGARO instrument to study the key surfactant proteins SP-B and SP-C, which prevent alveolar collapse. The results, published in the Journal of Colloid and Interface Science, revealed that SP-B drives the formation of multilayered lipid reservoirs essential for breathing, while SP-C plays a supportive role - marking a major step towards novel therapeutic materials. [Read more](#)

How batteries breathe

Scientists used neutron imaging on ILL's NeXT instrument to study lithium-sulfur (Li-S) batteries under real time. Li-S batteries promise high performance but face challenges under "lean electrolyte conditions," which improve energy density but shorten battery life. The study revealed that electrolyte wetting inside the battery is uneven "breathing." The breathing effect redistributes the electrolyte solution and explains why battery life is reduced. Neutron imaging, highly sensitive to lithium and hydrogen, provides unique insights into battery processes and paves the way for designing longer-lasting, next-generation batteries. [Read more](#)

Neutrons reveal the human body processes plant proteins

A recently published study makes an important contribution to the understanding of the physiological processing of plant-based foods. The results can be used to optimise production, improving the digestibility of plant proteins and thus the nutritional value of vegetarian and vegan dishes. The basic idea was to simulate a human stomach "on a laboratory bench" and to observe what happens to plant-based products during digestion in an acidic environment. [Read more](#)

New insights into ion transport in next-generation solid electrolytes

Mixed-anion materials are chemical compounds that contain positive ions and more than one kind of negative ion within a single crystal structure. This offers great tunability of their physical and chemical properties. The most widely studied class are oxyhydrides, containing both oxide ions (O^{2-}) and hydride ions (H^-). Using density functional theory calculations, researchers from the ILL and Chalmers University of Technology (Sweden) modeled how hydride ions diffuse under different conditions. Their results provide design principles for tailoring the hydride ion conductivity in oxyhydrides. By engineering the degree of electron localisation, materials scientists may be able to fine tune ionic transport properties to meet specific technological needs in catalysis and solid-state energy devices. [Read more](#)

Bacteria can be surprisingly resistant - neutron-based techniques show why.

Some bacteria survive extreme heat, cold, pressure or acidity thanks in part to special membrane molecules called bolaamphiphiles. A France-USA research team, including ILL scientists, used advanced microscopy and neutron scattering (SANS and NSE) to uncover how these molecules alter membrane thickness, flexibility and structure. They found that bolaamphiphiles mix into membranes at all pH levels, thinning them and changing their rigidity in pH-dependent ways. The mixtures also formed striking new shapes, such as tubules and nested vesicles. These results shed light on how early cell membranes may have gained resilience and responsiveness to their environment. [Read more](#)

Neutrons for the energy transition

The removal of CO_2 from methane-rich (CH_4) gas streams is key in the purification of varied biogas sources, an alternative to fossil-derived natural gas that can play an important role in the energy transition. Metal-organic frameworks, or MOFs, have recently been brought under the spotlight by the 2025 Nobel Prize in Chemistry. A study now published demonstrates that incorporating MOF decorated with biological building units as amino acids in a polymer membrane significantly enhances CO_2/CH_4