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(This is a working document in which we write the basic equations and algorithms needed for the 

project) 

 

(Some pictures and formulae – sections 2, 3 and 4 – presented in the document have been taken from the 

manual of D10 by Garry McIntyre, that are also a simplified summary of the first part of the W.R. 

Busing and H.A. Levy article at Acta Cryst (1967) 22, 457. We follow the same conventions at those 

adopted in the manual of D10) 

 

1: Simulation of single crystal data collection with 2D detectors 

 

The purpose of the project is to write a general program (based on CrysFML) in which a visualisation of 

the diffraction pattern is obtained dynamically by manually orienting a crystal (using a 4C orienting 

device or another kind of cradle) through dials controlling the values of the orienting angles.  

The single crystal diffraction pattern can be taken with monochromatic or white radiation. The crystal 

structure is considered to be known. 

 

Steps 

 

- Define completely the geometry: use the instrument structure of CrysFML. 

- Define the limiting wavelengths as well as the incident spectrum in order to calculate properly 

the intensities 

- Read the crystal structure and calculate structure factors and indices of all reflections contained 

in the volume of a sphere of radius equal to 2/min. 

- Read the position of the detector: (D, D) of the flat detector centre, or D of the highest angle for 

a banana detector. It is supposed that the dimensions of the detector surfaces are known. In the 

case of a banana one needs to know the angular span of the horizontally curved detector and the 

detector height. From this information one has to deduce the  (min, max) and (min, max) 

- Given an orientation matrix of the crystal (or orienting manually the crystal through three angles 

(x, y, z) fixing the crystal in the goniometric device: three dials can be created for this purpose. 

The value of the angles determines the orientation matrix. It is supposed that the initial position 

of the crystal has its Cartesian frame coincident with the fixed laboratory frame) and particular 

values of the orienting angles (,,) calculate the z4 vectors of all possible accessible 

reflections (d* up to 2/min) 
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- Given the position of the 2D detector calculate all s1L vectors (unitary vectors along the 

diffracted beams) 

1 4 0 s z s 

 

- Determine the interception of the diffracted beam with the surface of the 2D detector calculating 

the coordinates and the intensity 

- Make a picture of the detecting surface with all the visible spots 

 

 

2: Diffractometer angles 

 

The conventions of Busing and Levy (1967) are followed closely, but not in every detail.  Much of this 

section has been extracted from their paper. 

 

The instrument arrangement is illustrated schematically in Fig 1, which shows the instrument axis as 

vertical.  Perpendicular to this axis, and passing through the instrument centre is the horizontal 

equatorial plane.  The incident beam lies in this plane, and is directed at the sample, which is situated at 

the instrument centre.  The detector rotates about the instrument axis to make an angle in the horizontal 

plane m with the incident-beam direction.  The crystal goniometer (an Eulerian cradle or a tilt 

goniometer) can be rotated independently about the same axis.  Thus the  axis, which lies in the 

equatorial plane, is positioned to make an angle  with the incident-beam direction.  The  shaft is 

supported by the  ring which permits the  axis to be set at an angle  from the vertical axis.  The 

sample is assumed to be attached to the  shaft so that it can be turned about this axis by an angle . 

 

 
 

Figure 1 

 

The diffractometer with all angles set to zero is shown schematically if Fig. 2.  The senses of m, ,  

(all left-handed), and  (right-handed) are defined in Fig. 1, which shows the instrument with these 



angles in the first quadrant.  The zero position for  is chosen arbitrarily.  Fig 2 also shows the 

laboratory system of axes xL, yL, zL fixed with respect to the incident beam. 

 
Figure 2 

 

The angle conventions on D10 are the same as those on D9 and D19 even though the detector moves 

anticlockwise when viewed from above while those on D9 and D19 move anticlockwise when viewed 

from above.  To have the same sense the laboratory axes on D10 are upside-down compared to those of 

D9 and D19.  Thus 2,  and  turn clockwise for positive movements when viewed from below, and  

turns clockwise for positive movements when looking from the monochromator to the detector. 

 

 

3: Instrument-coordinate transformations 

 

Let v be the column vector (components v1, v2, v3) describing some physical vector v’ in terms of the 

reciprocal lattice vectors bi (commonly denoted a*, b* and c*) so that: 
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Let vc be the description of such a vector in terms of the crystal Cartesian axes which are attached in 

some way to the reciprocal lattice.  If we choose the x-axis to be parallel to b1, the y-axis to be in the 

plane of b1 and b2, and the z-axis perpendicular to that plane, then: 

v B v
c
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where B is given by: 
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Here the bi’s and the i’s are the reciprocal-lattice cell dimensions and angles respectively. 

 

Let vl be the description of a vector in terms of the laboratory system of axes, when all the instrument 

angles are set to zero.  Let U be the orthogonal matrix which relates a vector expressed in the crystal 

Cartesian system to the description in the laboratory system when all the instrument angles are zero, so 

that, 

 

1v U vc       (3.4)  

  

U is called the orientation matrix since it depends on the way in which the crystal has been mounted, and 

also on the arc settings if a goniometer head is used. 

 

Now suppose we rotate the crystal (and hence the vector) by the Eulerian angles ,  and .  We wish to 

know the new coordinates of the vector referred to the same laboratory axes.   The vector is transformed 

by a  rotation to: 

2 1 v Φ v       (3.5) 

 

where, 
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A  rotation will transform the vector as follows: 

3 2v Χ v       (3.7) 

where, 
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Finally, a rotation about the  axis will give 

4 3v Ω v       (3.9) 
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We shall retain the use of numerical subscripts as applied here, i.e. subscript 4 for a vector in a general 

position oriented by ,  and ; 3 for a vector oriented by  and   only; 2 for a vector oriented using  

alone; and 1 for a vector position when all angles are zero.  The exception to this convention is the use 

of s0 and s1 to denote the incident and diffracted beams respectively. 

 

4: The diffraction condition 

 

If h, k and l are the Miller indices of a reflecting plane, then the corresponding column vector in the 

reciprocal lattice system is: 
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Figure 3 

The length q of this vector, which is the reciprocal of interplanar spacing in Ångströms, is readily found 

from its components in any one of the Cartesian descriptions.  For example: 
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where, 

1v U B h        (4.3) 



 

(We shall use the convention that vij denotes the j’th component of the vector vi)  The Bragg equation is 

then, 

sin / 2 q       (4.4) 

  

In the Ewald construction of Fig. 3 the locus of the tip of the scattering vector h is a sphere of radius 

q = 2sin ( = wavelength).  The intersection of this sphere with the Ewald sphere of radius 1/ is the 

bold-lined circle, called the circle of observation.  Diffraction from the planes with indices hkl can occur 

when the tip of h lies at any point on this circle.  Hence the instrument angles (,  and ) can be 

adjusted so that the diffracted beam occurs anywhere on the cone with semi-angle 2 about the incident 

beam. 

 

For a particular diffraction setting, h = OP in Fig. 4, the angular coordinates defining the diffracted beam 

are p in the equatorial plane and  measured vertically out of the plane, with positive  in the direction 

zL. 

 

The diffraction condition can be written: 
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where S0 and S1 are vectors along the incident-beam and diffracted-beam respectively, of length 1/  (in 

Fig. 4, where S0 = AE, and S1 = EP).  When expanded this gives: 
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The instrument angles which orient h can be solved from the basic diffractometer equation: 
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The U and B matrices are usually determined together, and given as a single product UB = U.B, as 

above. 



 
Figure 4 

 

5: Determination of reciprocal lattice vectors referred to the Laboratory System from measured 

peaks for different diffractometers geometries.   

 

If we dispose of a set of centred unknown reflections hi, characterized by their centres in the detector (xi, 

zi)D and the values of the angles of the orienting device we can deduce from the wavelength of the 

radiation and the geometry of the diffractometer a set of reciprocal vectors referred to the laboratory 

system z1i. These vectors are affected by errors and whatever algorithm that manipulates them in order 

to deduce a unit cell and an orientation matrix should take care of that. 

 

5.1 Getting the vector z1 from the measured peak position 

 

Knowing the orienting angles (we suppose for the moment an Eulerian cradle) one has just to invert the 

following equation: 
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The angles  and  can be obtained from the diffraction geometry. In the case of a limited orienting 

device (normal beam geometry, for instance) one can consider, for instance that we have only available 

the angle , or the angle , with =0. Let us consider two cases a flat detector positioned by two angles 

D and D and a cylindrical detector positioned by a single arm D. The geometry of diffraction is 

represented schematically in the following figure: 



 
 

Figure 5 

 

The vector OP, representing the diffracted beam, has as polar angles in the L-system (,) These angles 

should be deduced from the coordinates (xP, zP)D and the angles (D, D), knowing the distance d=OOD 

between the sample and the centre of the detector. The impact point P when the detector is at zero angles 

has coordinates in the laboratory system OP0=(xP, d, zP)L. This point is moved to the diffraction position 

by applying two rotations to the vector OP0. The first rotation is of angle D around xL (positive: 

anticlockwise when seen from the positive xL axis) and the second rotation is of angle D around the zL 

axis (here positive is clockwise when seen from the positive zL axis), the corresponding matrices are:  
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The final components of OP in the L-system are given by: 
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The unitary vector along the diffracted beam in the laboratory system is: 
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The corresponding reflection vector in the laboratory system is:  
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The modulus of the OP vector is the modulus of the vector v= (xD, d, zD), so if we define the unitary 

vector:  
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 The diffraction vector z1 can be obtained with the matrix product: 
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So, knowing the setting angles (,,) and the coordinates of the diffracted beam on the detector and the 

characteristics of the detector (distance to the sample, dimensions, curvature, etc) one can calculate the 

vectors z1 (reciprocal lattice vectors of the crystal referred to the laboratory system when all setting 

angles are set to zero). 

If we are interested in shifts in reciprocal space and how they translate to detector space when the 

detector and the orienting device are fixed, the equation (5.8) simplifies as follows: 
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So, in terms of reciprocal space shift vectors, we obtain: 
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Figure 6: Idealized image of the detection surface of a rectangular 

or a curved detector as observed from the sample position. See 

text for explanations of symbols. 



In case of a small motion of detector and orienting device, one has to calculate the differences between 

two expressions derived from equation (5.8). The most usual case is a coupled omega and gamma scans, 

so: 
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Let us make explicit some of the calculations related to different geometries and orienting devices. 

 

5.2 Flat detector and four circles (F2D-4C)  

This is the case discussed up to now. In practice the detector has its own calibration device and internal 

reference frame. If we consider a rectangular detector with detecting units along xD that we call 

“cathodes”, the detecting units along zD are called “anodes” and we can think on that, without loss of 

generality, as a series of vertical (cathodes) and horizontal (anodes) wires that are numbered in some 

way. The coordinates of an impact point P can be provided in pixel coordinates (real numbers that 

become integers when the position coincide exactly with the crossing of two wires) or in “mm”. For 

calculations we have to use length units. Passing from pixel (nCA, nAN) units to length units (xD, zD) can 

be performed if the starting numbering origin (O1, O2, O3, O4 in the figure), the separation between 

cathodes and anodes (dCA and dAN) and the centre of the detector (cCA, cAN) are known.  

 

Suppose that we use the origin O1 (internal system) as starting point for numbering the cathodes and 

anodes (starting from the index 0). The x-axes coincide in direction but the z-axis of the internal system 

is opposite to the z-axis of the detector system. 

 

Pixel coordinates in the internal system of the centre of detector system (cCA, cAN)       

Pixel coordinates in the internal system of the impact point P (nCA, nAN)       

Length coordinates in the internal system of the centre of detector system (X0, Z0) 

Length coordinates in the internal system of the impact point P (XCA, XAN)       

 (X0, Z0)     =  (dCA  cCA, dAN  cAN) 

(XCA, ZAN) = (dCA  nCA, dAN  nAN)    (5.9) 

 

The transformation of coordinates between the internal system and the detector system is given by the 

following relations for the origin at O1: 
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  For the case of O2 we have: ( ); ( )D CA CA CA D AN AN ANx d n c z d n c       

  For the case of O3 we have: ( ); ( )D CA CA CA D AN AN ANx d n c z d n c      (5.11) 

  For the case of O4 we have: ( ); ( )D CA CA CA D AN AN ANx d n c z d n c     

 

Once we have the coordinates of a spot in the detector system (xD, zD) and the setting angles of the 

detector (D, D) we can develop the above matrix equations and we obtain 
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    (5.15) 
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The values (xD, d, zD) as well as the setting angles (, , , D, D) are supposed to be the “true” ones. In 

fact these “true” values are obtained from the values provided by the instrument (written with an 

additional o-index) minus a zero-shift. The zero-shifts are common to all measured reflections and can 

be determined by least-squares refinement. Some of the shifts are redundant or strongly correlated. One 

can consider with a very good degree of approximation that only the following parameters are affected 

by a zero-shift:   
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The origin of the angle is irrelevant and the shifts on the setting angles (D, D) of the detector when they 

are small can be absorbed in ( , )o ox z  . We have not considered a tilt of the detector that is generally 

negligible when the size of the detector is small.  

 

In any case a series of tilts can be considered by relating the internal reference frame to the ideal 

detector frame through a product of three small rotations around the xD, yD and zD axes of angles (in 

radians) x  , y  and z. The rotation matrix up to first order is:  
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The simplified equation relating the cathode-anode coordinates in the form of a 2D matrix equation can 

be written in the general case (once the macroscopic rotation of the two frames is done) up to first order 

as (case O1): 
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5.3 Horizontally curved 2D-detector and four circles (C2D-4C)  

 

The difference between this case and the previous one is that normally we are using a big banana 

detector so that the centre of the detector is not considered the important parameter. Looking from the 

sample we can see the cathodes and anodes as in the previous case for a flat detector in figure 6. The 

difference with the flat detector is that the distance of whatever point of the surface to the zL-axis is 

fixed and equal to the radius of the cylinder. A 3D scheme of the detector is seen in figure 7. 

   The zD coordinate of a reflection in the detector is always related to the radius R and the latitude angle 

as: 

 
 

Figure 7: Scheme of a 2D banana detector of radius R. The origin of the 

curved detector is OCD and the numbering of cathodes and anodes start at O3.  



tan tanD
D D

D

z
z R

R
        (5.21) 

On the contrary the xD coordinate depends on the gamma arm of the banana and the origin choice. Many 

options can be considered. The option represented in the figure 7 provides the value of the coordinate (in 

a flattened picture) in mm as:  

( )D D Dx R         (5.22) 

In which the angles are expressed in radians. The relation with the internal coordinates of the detector is 

similar to that of a flat detector except that the separation between adjacent “cathodes” is expressed as 

the product of a small subtended angle by the radius of the detector: dCA = CARD. With the particular 

case of figure 7 we have: 

0;

; ( )

D CA D AN

D CA CA CA D CA D AN AN AN

x X z Z Z

x d n R n z d n c

  

   
   (5.23) 

 

An important geometry relevant for Laue diffractometers is that of a complete cylindrical surface 

surrounding the crystal at the origin of the laboratory system with its axis coinciding with the zL-axis. In 

such a case the origin for the detector system is taken at impinging position of the transmitted beam, so 

that if the total surface of the detector is cut, opened and flattened, the image of the detector surface is 

the same as that in figure 6 in which the separation of the “cathodes” is, as before, dCA = CARD. The 

language used for referring the position of the wires is that of pixels or raster units instead of cathodes 

and anodes, if we replace the indices CA by H (for horizontal) and AN by V (for vertical) the expression 

for such a cylindrical detector, and taking the origin O1, are: 
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  In the above expressions the numbers n and c are integers corresponding to horizontal and vertical 

pixels, the factors HRD and dV serve to convert to coordinates in mm.    

 

5.4 Static flat 2D-detector in a general position and orientation with respect to the laboratory system 

 

All the above calculations for flat detectors correspond to a flat detector that is perpendicular to the 

vector position going from the centre of the laboratory system to the centre of the rectangular surface. 

There are other cases in which the detector is rotated with respect to this position. The most general case 

can be considered as follows: the surface of the detector coincides with the plane xDzD and the reference 

system of the detector (OD, xD, yD, zD) coincides with the laboratory system in its initial position. The 

active surface is that oriented towards the incoming beam, the other side is not active. We have to take 

into account this fact when considering a general orientation. We consider three active rotations applied 

to the reference system of the detector in the following order: 

1- Rotation of angle Dz around the zL axis: positive rotation starting from positive xL going towards 

positive yL (anti-clockwise when seen from positive zL axis) 

2- Rotation of angle Dy around the yL axis: positive rotation (anti-clockwise when seen from 

positive yL axis) 

3- Rotation of angle Dx around the xL axis: positive rotation (anti-clockwise when seen from 

positive xL axis) 



 

The total active rotation moving the detector system with respect to the laboratory system is given by the 

following product: 
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This matrix when applied to the components of a vector (in column form) in the L-system, gives the 

components of the transformed vector in the L-system. The columns of the matrix RD represent the 

coordinates of the unitary vectors of the transformed reference frame (the detector frame) with respect to 

the L-system. 
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'
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The transpose of this matrix, when applied to the components of a vector in the L-system provides the 

components of the same vector with respect to the D-system 
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A vector, in the D-system, having the coordinates (xD, yD, zD) has the coordinates (xL, yL, zL) in the 

laboratory system given by the equation: 
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(5.28) 

 

Up to now the origin of the detector coincides with the origin of the L-system, if the origin of the 

detector system is translated to the position rOD = (xOD, yOD, zOD) (coordinates in the L-system), the 

coordinates in the L-system of a point (xD, yD, zD) in the D-system are given by: 
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0 cos sin 0 1 0 sin cos 0
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In some circumstances it is more convenient to use other system of rotations, for instance it may be 

more convenient to start with a rotation around the yL-axis, followed by a rotation around the xL-axis and 

finally around the zL-axis. 

  

Let us consider few common special cases 

 

a) Flat detector in forward direction, at a distance d from the sample, with the incident beam 

impinging the centre of the detector. In such a case RD=I and only the vector rOD = (0, d, 0) is 

active for calculating the coordinates in the laboratory system of a spot. The point P (xD, 0, zD) 

has coordinates PL = (xD, d, zD) in the laboratory system, so the scattering vector corresponding 



to this spot is given by: 
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(5.30) 

The spherical angles (,) of the scattered beam can be obtained easily: 
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  (5.31) 

 

b) Flat detector in backward position, at a distance d from the sample, with the incident beam 

passing through the centre of the detector. In such a case, for detecting the spots in backward 

scattering, the active surface of the detector should be rotated 180° around zL before translating it 

up to the point rOD = (0, -d, 0) 
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The point P (xD, 0, zD) has coordinates PL = (-xD, -d, zD) in the laboratory system, so the 

scattering vector corresponding to this spot is given by: 
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The spherical angles (,) of the scattered beam can be obtained easily: 
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c) Flat detector with origin at position rOD = (d sinD, d cosD, zOD) with zD axis parallel to zL and 

active surface perpendicular to PD= (d sinD, d cosD, 0). This is the position of a detector 

forming part of a multidetector of a polygonal shape approximating a vertical cylindrical 

detector. The distance d is the distance between the two parallel axes zD and zL. In the formalism 

described above this position can be reached by using the matrix: 
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The point P (xD, 0, zD) has coordinates in the laboratory system given by 
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  (5.36) 

 



The spherical angles (,) of the scattered beam can be easily obtained: 
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d) The case shown in Figure 5 can be treated using the general formalism. The detector placed in 

the origin of the L-system should be rotated first an angle Dx=D around xL-axis and then an 

angle Dz=-D around the zL-axis (the sense of this rotation is opposite to Dz), followed to a 

translation to the position rOD = d (cosD sinD, cosD cosD, sinD). The point (xD, 0, zD), with 

coordinates given in the detector system, has the following L-system coordinates (notice that we 

have emphasized the used reference frame with a subscript in the column vectors): 
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It can be easily verified that the coordinates of the point P in (5.4), obtained using another 

method, gives the same result: 
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Notice that the coordinates of the vector to which the matrices are applied are given here with 

respect to the L-system and not with respect to the detector system.  

e) Let us consider now the same case as in c) but doing first a small rotation around the yL-axis to 

the detector, The RD matrix is then: 
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  We have then: 
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(5.41) 

Let us now calculate the centre of a reflection, rD, in the detector reference frame. We suppose we have 

the following data: the rotation matrix RD providing the orientation of the detector, the vector position of 

the centre of the detector rOD and the polar angles (,) of the diffracted beam. For calculating rD we 

need to use the equation: 

( )r R r -r
T

D D L OD      (5.42) 



We need to calculate the coordinates of the impact point in the laboratory system rL. For that we 

calculate the intersection point of the straight line with unitary vector u(,) with the plane of the 

detector surface. 

The expression of the unitary vector and the equation of the plane are: 

 

( , ) (cos sin , cos cos , sin )

( ) 0

u

r-r nOD

      

 
   (5.43) 

The normal to the plane is n=yD and its components with respect to the L-system constitute the second 

column of the matrix RD: n= RD(: , 2). The impact point rL = pu(,) should satisfy the equation of the 

plane, this gives us the value of the distance, p,  between the sample position (origin of L-system) and 

the impact point, we obtain:  

( ) 0
r n r n

r -r n u n=r n r u
u n u n

OD OD
L OD OD Lp p

 
        

 
        (5.44) 

The detector coordinates of the reflection spot is then given by: 

( )
r n

r R u-r
u n

T OD
D D OD





    (5.45) 

 

For calculating the angular limits (,) of the detector in an arbitrary position, we should be careful with 

the gamma-angles that varies in the range [-180°, 180°] with periodic boundary conditions. We have to 

consider separately negative gammas (n) and positive gammas (p). For instance, a flat detector in 

backscattering position have negative gamma in the range [-180°, n(max)] and for positive values 

[p(min), 180°]. Nu-angles do not have to be considered in this way. To determine with care the angular 

limits, one can use a conservative approach adding and subtracting the maximum angle subtended by the 

vector position of the centre of the detector rOD = d (cosD sinD, cosD cosD, sinD), when the detector 

is perpendicular to this vector, with the vector position of one of the corner to the angles (D, D). Once 

we have these angles we have to consider different options depending on the values of D and D. 

 

5.5 Static cylindrical 2D-detector in a general position and orientation with respect to the laboratory 

system 

 

Let us consider a cylindrical 2D detector, o vertical 

dimension V(mm) and perimeter H(=2R mm).  A 

Cartesian coordinate system is adopted with the zC-axis 

along the cylinder axis; the origin is in the centre of the 

cylinder. See figure 8 for details. This Cartesian system is 

supposed to coincide with the L-system (this has been our 

implicit hypothesis in previous paragraphs referred to 

cylindrical detector shapes); in practice the detector may 

be tilted (slightly or not) and displaced with respect to the 

origin of the L-system. We have to find the relation 

between the coordinates read in the surface of the detector 

and the position in the L-system.  The equations 5.25 to 

5.29 can be used without change (except for the index C of 

the Cartesian system attached to the cylinder). In practice 

the coordinates of a spot in the detector surface (xD, zD), 

 
Figure 8: Cartesian system attached 

to a cylindrical detector. 



should be transformed to the vector OCP=rP=(xP, yP, zP) in order to use the equation 5.29 for obtaining 

the coordinates of the spot in the L-system. The coordinate zD coincide with the coordinate zP. The 

coordinate xD= D R is the quantity provided (when transformed from pixels to mm) by the detection of 

peaks in the image file. The equation 5.29 with the specified notation and taking into account that we 

need only two tilt angles (the tilt with respect to the z-axis is immaterial) reads as: 
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   (5.46) 

 

The vector of a spot in the cylinder system is:   

( , , ) ( sin , cos , ) ( sin , cos , )r D D
P P P P D D D D

x x
x y z R R z R R z

R R
      (5.47) 

 

The most frequent case corresponds to the inverse problem: knowing the orientation of the detector (RD 

matrix), the vector position of the centre of the detector rOC and the polar angles (,) of the diffracted 

beam, determine the spot coordinates (xD, zD). For calculating rP we need to use the equation (5.42), 

which with the cylinder notation becomes: 

( )r R r -r
T

P D L OC      (5.48) 

The vector position of the impact point rL = pu(,) has the unknown quantity p that has to be 

determined using the constraints in rP (it must satisfy the equation of the cylinder in the C-system). We 

have the following relation that must serve to determine p: 2 2 2

P Px y R  . Once p determined, using the 

resolution of a second degree equation, the combination of equation 5.47 and 5.48 allows the 

determination of (xD, zD). Explicitly we can write the following equations: 
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  (5.49) 

 

From the last equation p is determined and one has to decide what of the two solutions is the adequate to 

the problem. This can be done looking at the signs of the (,) angles, but probably a safe way is to get 

the maximum value of the two solutions (e.g. p=max(p1,p2)). With the appropriate value of p, we obtain 

immediately the value of the zD coordinate (second line of eqs. 5.49). The value of xD is obtained 

combining the third line of 5.49 with the equation 5.47: 
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D D
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  (5.50) 

 

 

 



6. Indexing 

 

After an experiment for searching reflections we dispose of a set of reflections characterised by the 

vectors z1i (i = 1, 2 … N). The method used by AJM Duisenberg (J. Appl. Cryst. 25, 92 (1992)) consists 

of supposing that there are various sets of lattices (due to twinning or to spurious phases) or simply 

several spurious reflections among the true ones. The principle of the program DIRAX is to search for 

one-dimensional periodicity in directions perpendicular to triplets of reflections. 

(To be developed) 

 

 

7. Laue patterns 

 

For calculating a Laue pattern one can use the fact that for a fixed position of the crystal (we suppose 

that the orientation matrix U is known) there is always a set or lattice points within the two limiting 

Ewald spheres. Each lattice point “selects” its own wavelength between min and max. We dispose also 

of an orienting device with three angles that allows exploring all orientations of the crystal. For instance 

we can suppose that the crystal may be reoriented by applying three rotations like with an Eulerian 

cradle. The matrices corresponding to the angles can be called R(α1), R(α2), R(α3) and the particular 

expression of the matrices depends on the orienting device. The reflections that can contribute to the 

Laue pattern, if the orientation of the crystal can be varied at will, are those within the resolution sphere 

of radius Rres=2/min. To obtain the Cartesian components of a reflection h in the laboratory frame we 

have: 
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h R R R UB M UB h    (7.1) 

If we consider the construction of Fig 3, the reflection hL=(x, y, z) should be in the surface on one Ewald 

sphere corresponding to the wavelength . So that from the equation of the sphere in the laboratory 

frame we obtain: 
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   (7.2) 

 

Where dh is the d-spacing of the reflection h. The y coordinate of hL should be negative! 

If the calculated  is outside the interval (min, max) the reflection will not contribute to the Laue pattern. 

If the reflection has the appropriate , the unitary vector corresponding to the diffracted beam is given 

by: 

1 0(cos sin , cos cos , sin ) (0,1,0) ( , , )s s hL L L x y z             (7.3) 

The L-system coordinates of all reflections hL=(x, y, z) are easily calculated from the orientation matrix 

and the matrices of the orienting device, the angles γ and ν are calculated from: 

sin tan
1

x
z

y


  


 


    (7.4) 



For a cylindrical detector, or radius RD and height 2H, surrounding the sample the γ –angle is not limited 

in principle (in practical cases – γmax<γ< γmax, with γmax<180
o
), but the absolute value of the latitude 

angle ν should be smaller than 

maxtan
D

H

R
       (7.5) 

 

 

7.1 Determination of the orientation matrix using one or several Laue patterns. 

 

In Laue diffractometers the orienting device is limited to a single angle (spindle) that corresponds to  

(or ) angle (with =0) in the Eulerian cradle, so that the general equation for a flat detector with the 

centre in the horizontal plane (ND=I): 

   1 0 0 0

1 1
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T T T T T T
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           (7.6) 

reduces to: 
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z Φ Γ u s Φ s s
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D L L L
 

       (7.7) 

In a Laue pattern the wavelength of the spots is not known a priori. From the coordinates of the centre of 

a spot we can determine only the vectors zLaue=  z1, so only the directions of reciprocal vectors are 

directly determined. For indexing/orienting a crystal from a Laue pattern we have to know the unit cell 

parameters and compare the relative angles between spots and those of calculated angles of a series of 

generated reflections from the known cell parameters. The expression of the zLaue vectors for a flat 

detector is given by: 
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z z  (7.8) 

For the case of a cylindrical detector we can apply the general equation of the direction for the scattering 

vector: 
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remembering that 

tanD D

D D

x z

R R
       (7.10) 

The above equations, using raw positions of spots and the known values of spindle angle and detector, 

provides a list of unitary vectors that can be used to compare with calculated ones and start the indexing 

and consequently the determination of the orientation of the crystal. 

 

7.2 Algorithms for indexing when the unit cell is approximately known 

 

For obtaining the most prominent Laue spots using the experimental images one can either use a GUI 

for clicking in the selected spots or automatically detect the positions of spots having intensity above a 

prescribed threshold. For the second algorithm described below this last method is important because a 



mask can be generated from the experimental image and compared with a calculated mask directly to 

determine the proper orientation matrix. 

 

 

Indx-Algorithm 1 

Step 1: Let us consider that we have a series of spots measured in a single or different Laue images. 

Each spot is characterized by the value of the coordinates (x, z) and spindle angle Those with the 

same spindle angle belong to the same image. The user selects two or three nodal spots, put on top of the 

list, used for starting the procedure.  

The input list is: 

x1, z1, 1 ;  x2, z2, 2 ;  x3, z3, 3 .......  xn, zn, n  (Indx-A1-1)   

 

Step 2: From the above list, using the appropriate equations, one can calculate the Bragg angles and the 

vectors zLaue,i in the laboratory system. So that: 

,

cos 2 cos sin

( 1,2,... )z UB h

i i i

Laue i i i n
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



  
   (Indx-A1-2)  

The polar angles (i, i) are deduced from the coordinates (xi, zi) and the geometry of the diffractometer. 

For the vectors, the known quantities are those of the left.  

 

Step 3: Calculate the angles between the vectors pair(s): α1={zLaue,1, zLaue,2},  α2={zLaue,1, zLaue,3}, 

α3={zLaue,3, zLaue,2} 

 

Step 4: Generate a series of nodal reflections (co-prime hkl indices) up to a maximum index. Calculate 

pair of angles that match the above ones. Calculate first two reflections that match the first angle. If 

solutions are found we can stop here because the orientation matrix U can be calculated (three free 

parameters) already. From the indices and the Bragg angle one can calculate the wavelength and hence 

the vectors z1,1=zLaue,1 /  and z1,2=zLaue,2 /. Now the U matrix can be calculated using the algorithm 

proposed by Busing and Levy for obtaining an orthogonal matrix. 

 

One can continue looking for another reflection in order to be sure that the good solution is found. From 

the list of possible solutions (satisfying the first angular constraint) search a third reflection in the rest of 

generated reflections that satisfy the two additional angles. If the reflection is found we can proceed as 

before but with a more reliable solution. 

 

Step 5: With the solution(s) found, calculate the indices of the rest of given reflections in the list. 

 

Step 6: Once an initial orientation matrix is determined one can use the whole set of reflections for 

refining the orientation matrix, the unit cell (maintaining constant the volume) the shift, tilts and 

distortion parameters using least-squares. 

 

Indx-Algorithm 2 

 

This algorithm is based in the attribution of indices to a single noticeable nodal spot in a single image. It 

is always supposed that the unit cell is already known. 

 

Step 1: The list of the most intense spots in a single image is provided. The input list is: 



x1, z1;  x2, z2;  x3, z3.......  xn, zn  

 

Step 2: The prominent nodal spot is selected (xp, zp) and low indices are attributed. The unitary 

reciprocal vector u= zLaue,p/| zLaue,p | is calculated. The Bragg angle and wavelength are calculated.  

 

Step 3: An appropriate rotation of the whole set of reflections, in the standard orientation of the crystal: 

the laboratory system coincides with the internal Cartesian frame of the crystal, is performed in order to 

put the direction of the prominent nodal spot coincident with the experimental one. The spherical angles 

of ust are calculated and a rotation matrix putting ust in coincidence with u is derived. We have 

determined here two of the three angles determining the orientation matrix U. 

 

Step 4: We make simulations of the Laue pattern obtained by rotating the crystal in such a way as 

maintaining the prominent spot fixed in the experimental position. The correct orientation is obtained 

when the correlation index is maximal. One can calculate this correlation index as the sum of the 

product of the experimental image mask (a matrix with zeros everywhere except in pixels close to the 

Laue spots with values equal to 1) with a calculated mask according to the calculated position of Laue 

spots.  

 

Indx-Algorithm 3 

 

This algorithm is a variant of the previous one but many images can be used simultaneously. It is always 

supposed that the unit cell is already known. 

 

Step 1: As in algorithm 1 

 

Step 2: As in algorithm 1 

 

 

Step 3: From the list of vectors zLaue,i  (i=1,2 ... n), calculate the observed “star” of unitary vectors:  

, ,{ }:{ / | | ( 1,2,... )}u u z zo oi Laue i Laue i i n      (Indx-A3-1) 

 

Step 4: Calculate the spherical angles (oi, oi) of these vectors and construct a rectangular matrix 

indexed with a coarse grid on spherical angles and equal to zero everywhere except at angular positions 

closest to the observed peaks are, for which the value are set to 1. For fixing ideas we can consider 

angular steps of 1 degree, in such a case and disregarding instrumental angular limitations, the matrix 

dimension are (0:179, 0:359) and let us call the set of observed angles {,}o in which we have taken the 

near integer angle to the observed ones. The observed angular matrix is then defined as: 

, ,:{ 0 | ( , ) { , } ; 1| ( , ) { , } }Ao o ij o o ij oA if i j A if i j        (Indx-A3-2)  

Step 5: Generate a series of nodal reflection vectors (co-prime hkl indices) up to a given maximum 

index. Calculate the Cartesian components with respect to the L-system of these reflections for the 

standard orientation (Cartesian crystallographic system coincident with the L-system). Calculate the 

corresponding “star” of unitary vectors for the standard orientation: 

, 1, 1,{ }:{ / | | ( 1,2,... )}u u z zs s j j j j m    (Indx-A3-3) 



and the corresponding spherical angles {,}s ={s,j,s,j | j=1,2 ... m}. Different orientations can be 

obtained by systematic applying a common rotation matrix to the above set of unitary vectors that can be 

compared with the observed set. 

 

Step 6: Generate a rotation matrix R corresponding to the spherical angles {,}R obtained from a 

first rotation around the yL-axis of angle  followed by a rotation of angle   around the zL-axis. When 

applied to the unitary vector {us}, the matrix R provides a new orientation of the crystal. This is 

equivalent to changing all the calculated spherical angles as follows: 

, , , ,{ , } { , } ( 1,2,... )s j s j s j s jR j m         (Indx-A3-4) 

From this set of spherical angles we can obtain a calculated angular matrix Ac(,) with the same 

procedure, using the same dimensions, as in step 4. The action of the rotation matrix R on the star 

{us} is then equivalent to generate an angular matrix Ac(,).  

 

Step 7: Once the angular matrix has been constructed the correlation coefficient between the observed 

and calculated matrices (using a step of 1 degree) is calculated as: 
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   (Indx-A3-5) 

 

The obtained value is compared with a previous calculated value, rmax, and if it is greater the values 

(,)o are stored together with the new maximum rmax. 

 

Step 8: The steps 6 to 7 are repeated until a pre-selected grid of (,) is exhausted. Or a maximisation 

procedure is applied. The orientation of the crystal with respect to the laboratory system is obtained at 

the end, so the orientation matrix corresponds to rmax and (,)o. 
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U  (Indx-A3-6) 

With this orientation matrix we can attribute indices to the observed reflections and multiplying by the 

B-matrix, the UB matrix is determined. 

 

 



 

Appendix A 

 

Detection of reflections in diffraction position for a monochromatic diffractometer equipped with 

a 2D detector 

 

We consider a simplified model of mosaicity for which each lattice point of the reciprocal space is a 

sphere of radius r = 1/2  s, where  is the 

mosaic spread expressed in radians and s is 

the modulus of the reciprocal vector s. The 

wavelength spread is in the interval 

between min=- and max=+. In 

terms of x=/ the interval is [(1-x), 

(1+x)]. The horizontal divergence of the 

incoming beam can be represented by a 

small rotation around the zL axis of h and 

the vertical divergence by a rotation of v 

around the xL axis. For a reciprocal lattice 

vector that, in Cartesian components with 

respect to the laboratory system, is denoted 

by the vector z4=   z1, a beam can be 

detected if the diffraction domain intersect 

the Ewald spheres at some point. See the 

above figure to see the effect of mosaic 

spread and wavelength dispersion. The 

conditions for getting some intensity diffracted by the lattice point z4, are easily deduced from the 

figure: 
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The vector u is along the direction of v joining the centre of the Ewald sphere to the centre of the 

lattice point. It joints a point of the surface of the Ewald sphere (u-vector) to the centre of the lattice 

point. We will have diffracted intensity if the condition: 

 

C1: |u | < 1/2  |z4|     

 

is satisfied. The u vectors can be calculated for the central wavelength, for min and for max. If for 

some of these calculations we satisfy C1 there is diffracted intensity. 

 

We can take into account the effect of horizontal and vertical divergence by applying the condition C1 

also to the eight vectors:  

 
Figure: Ewald spheres corresponding to a lambda 

spread of / and a mosaic spread represented by 

spherical lattice points 



  Rz(h)z4,  Rz(-h)z4,  Rx(v)z4,  Rx(-v)z4,  Rx(-v)Rz(-h)z4,  Rx(v)Rz(-h)z4 

Rx(-v)Rz(h)z4,  Rx(v)Rz(h)z4 

 

A more simple calculation can be done by considering an average divergence  that may be added 

quadratically to the mosaic spread. This provides an effective mosaic spread:  

        2 2

eff     

 

The condition C1 may be satisfied by more than a single vector, depending on the purpose of the 

calculations we can label the different conditions if required. For calculating the characteristics of the 

diffracted beam we have to use the reciprocal vector: 

0S
s u


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that can be calculated from the equations above.  


