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The object of this document is to summarise the formulae for treating the measured intensities using the 
Laue technique. This step is absolutely necessary for refining a crystal or magnetic structure.  
 
One can use two methods: the first one consists on extracting the structure factors from the measured 
intensities using the intrinsic redundancy of the way we collect data in the Laue technique and the 
second one models directly the raw intensities. Instead of extracting the structure factors form the 
measured intensities (as done by LAUENORM or LAUE4) one can model directly the intensity in the 
refinement program. In the future we will implement this method within FullProf in order to avoid the 
necessity of coming back to the normalisation when one realises that something has gone wrong. This 
method is much more flexible; it uses all the available Laue spots and allows also extracting the 
structure factors as a sub-product if one uses the squares of structure factors of independent reflections 
as free variables using a method similar to the Le Bail or Pawley fits in powder diffraction.  
 
For the moment we have used the first method in the new program Normalize_Laue, so that the 
extracted structure factors can be used in a conventional single refinement program like SHELX (of 
course also with FullProf in conventional mode). 
 
A high degree of redundancy is needed for properly refine all the free parameters contained in the pre-
factors of the structure factor squared. 
 
The general expression of the diffracted intensity in a Laue diffraction pattern may be written as: 

3 2( ) ( , ) ( , ) ( , , ) ( , , , ) ( , ) ( ,| ( ) |, ) ( , ) [1]h p p h p h p h pxz ff abs g ext sI s Lp E x z A x z G E F Fφθ ϕ λ λ λ λ λ= Φ
  

In the above expression h, represent the scattering vector and F2(h,ps) is the square of the structure 
factor (or the square of the magnetic interaction vector M⊥

2(h,ps)) of the current reflection that depends 
on the structural parameters represented by the vector ps. The (x, z) variables are the coordinates of the 
spot in the 2D detector used to collect the diffraction pattern. Here we have included the term λ3 that 
comes from the reflectivity of the sample. This term may be included within the flux factor but we will 
keep it explicitly in the expression of the integrated intensity. 
In many cases a single observation contains several reflections. In such a case the total observed 
intensity can be written as: 
 

3 2( , ) ( , ) ( , , ) ( , , , ) ( , ) ( ,| ( ) |, ) ( , ) [2]p p h p h p h pxz i i ff i i abs i g i i ext i s
i

I s Lp E x z A x z G E F Fφθ ϕ λ λ λ λ λ= Φ∑
 

 
The quantity s is a constant scale factor. Additional scale factors have to be considered for different 
images if they have been measured in different conditions. The list of contributing factors is described 
below. 
 
 



	

Page 2 of 6	
	

The Lorentz and Polarisation factor 
 
The coefficient ( , )Lp θ ϕ  is reduced to the Lorentz factor in neutron diffraction and contents a 
polarisation factor for X-ray diffraction. The combined coefficient is given by: 

2 2

2

1 1 cos 2 cos2 sin 2( , ) [3]
sin 2

Lp θ τ ϕ θ
θ ϕ
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+ −

=  

This is valid for synchrotron radiation. The variable ϕ is the azimuth angle and τ is the degree of 
polarisation. It may be written as τ = sinρ because τ verifies -1 ≤ τ ≤ 1. Only the first factor (1/sin2θ) is 
operative in neutron diffraction. 
 
 
Incident spectrum 
 
It is described by the factor: ( , )pφλΦ . It may be given as a histogram or modelled by a Maxwellian 
function (idealised case in neutron scattering) or, better, parameterized using Chebychev polynomials as 
given, for instance, in Z. Ren and K. Moffat (J. App. Cryst. 28, 461 (1995)): 
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The normalization wavelength is such that when λ=λr, the flux is ( , ) 1pr φλΦ = . It may be selected 
arbitrarily between λmin and λmax. The best is to select λ=λr for which the number of measured 
reflections is the higher.  
 
 
Efficiency of the detector 
 
The coefficient ( , , , )pff EE x zλ should be determined or modelled. In general, what is determined is the 
combined effect ΦEff. However one can use a geometrical term depending on the angle between the 
scattered beam (along u) and the normal to the detector in the impact point (n) together with the 
absorption cross section of the neutron detecting element σ(λ). The expression of the efficiency can be 
written as: 

                        ( )( , , , ) ( , , ) 1 exp{ } [6]p p
nu

E
ff E ff E cyl

pE x z E σ λ
λ λ ν= = − −     

The function σ (λ) depends on the material of the detector and may be modelled read from a table for 
each λ. For a cylindrical detector nu=cosν. In the above expression the parameter pE represents the 
thickness of the absorbing element. If the expression of σ (λ) or the tables are not available, one can use 
a two parameter efficiency correction using the expression: 
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(1) (2)( , , ) 1 exp{ } [7]nu p
nu

E E
ff E
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+
= − −  

 
Absorption 
 
It is described by the factor ( , , , )pabsA x zλ . One can use simplified expressions for spheres or cylinders 
as approximate models for absorption. The only free parameter is µR. The expression given in the ITC 
Vol. C for the transmission factor is: 
 

0 1
1 1

( , , ) exp{ ( )( ) } exp{ ( )( ) } [8]p
M M

m m
abs m m

m m
A K R K a aλ θ θ µ θ λ

= =

= − = − +∑ ∑  

 
The coefficients ( )mK θ  are known for discrete values of θ but can be determined and interpolated. 
Another possibility is to consider an approximation similar to that used in XABS2 (S. Parkin et al., J. 
Appl.Cryst. 28, 53 (1995)) for monochromatic single crystal experiments: 

 
6 4 2

1 2 3 4( , ) sin sin sinpabsA a a a aθ θ θ θ= + + +    [9] 
 
For Laue data, a dependency of the coefficients ai on λ should be introduced. This has to be explored 
more deeply. 
 
However the general case is quite complicated because it depends on the shape of the crystal, the path in 
air, screens in the cryostat, etc. In any case we can consider that the final correction for a particular 
image depends on a generalized path pg (see J. App. Cryst. 28, 461 (1995)) and use Chebychev 
polynomials for its modelling. We can use the following expression generalising that given by Ren & 
Moffat: 
 

3 4( , , , ) exp{ ( ) ( , , )}p pabs g absA x z A B C D p x zλ λ λ λ= − + + −    [10] 
 
For neutrons C=D=0.0 and for X-rays B=0.0. The generalised path pg can be written as: 
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The primed variables are obtained with a normalisation expression similar to that of the wavelength 
distribution. 
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Geometrical or undetermined corrections 
 
The coefficient ( , )h pgG represents undetermined corrections to the intensity that come from systematic 
errors of different origins that cannot be determined with precision. We will consider only some 
expressions given by Ren & Moffat that may be fixed to 1 in practical cases.  
 
The so called anisotropic scale factor: 

2 2 2
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1 2 9
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=
   [12] 

may be used, with caution, to take into account radiation damage (or event a part of the absorption) 
 
Secondary extinction 
 
It is described by the factor ( ,| ( ) |, )h pextE Fλ . A simplified model, as those used in SHELX or FullProf, 
can be used. The isotropic version of the model corresponds to the expression: 
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The anisotropic version of the model corresponds to the expression: 
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Notice that the structure factor is considered here without its dependence with respect to structural 
parameters. 
 
 
Extracting structure factors using the first method as implemented in Normalize_Laue 
 
In the program Normalize_Laue we use a least squares two-step method: we assume an initial value of 
the correction parameters and we use the set of equivalent reflections measured at different conditions 
(different wavelength, positions in the detector, etc.) to extract the square of the structure factors of the 
independent reflections. 
 
 
Least squares refinements for implementing the second method in FullProf 
 
In least squares (LSQ) refinement one considers to minimise the following cost function: 
 



	

Page 5 of 6	
	

2 2
, ,

1 1
{ ( )}α

p
p obsN N

p p p
n obs n calc n

p n
w I Iχ

= =

= −∑∑  

with respect to the P unknown parameters α=( pφ, pE, pabs, pg, pext, ps)=(α1,... αP). The index p makes 
reference to a particular image and the number n indexes a single observation. The weight factors are 
normally the inverse of the variance of the observation, but different weight schemes can be used. The 
expression of the calculated intensity for a single observation is given by: 
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After data reduction, the wavelength and geometrical parameters of each reflection are known. For 
finding an improvement of the initial parameters α0, (α1 = α0 + δ) one has to solve the LSQ linear 
equations: 
 

0 0( ) ( )A b=α αδ       

where the components of the P x P matrix A(α0) and vector b(α0) in the Gauss-Newton algorithm are 
given by the expressions: 
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For calculating the derivatives with respect to a particular group of parameters of type H (H being one of 
the factor functions: Φ, Eff, A, ...), in the case of a single reflection contributing to ,

p
calc nI  we have: 

 

, 0 , 0 0
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All derivatives can be calculated easily from the expressions given above. In the case of several 
reflections contributing to the same observation this factorization cannot be used and the calculation 
should be done explicitly. Some examples are given below 
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etc. 
 
In FullProf we use the following notation (not finished!): 

2
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