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Purpose 
 
Here we give the essential recipes for working with FULLPROF in treating flipping ratios. Using 
incoming polarised neutrons into a sample, that is in a vertical magnetic field, one measures the 
ratio between the diffracted intensity of a Bragg reflection for spin-up neutrons (I+) to the same 
measured intensity when the incoming neutrons are spin-down (I-), the quantity R=I+/I- is called 
flipping ratio. No polarisation analysis is performed. The first Blume-Maleyev equation, simplified 
with the suppression of the chiral term, is the basis for the analysis. A relatively detailed description 
of the treatment of magnetisation density using polarised neutrons is given in the article “Analysis 
of charge and spin densities” by P. Coppens and P.J. Becker in the International Tables for 
Crystallography, Volume C, pp 627-645. Here we shall give only the necessary expressions to be 
known for preparing the input control file that we shall refer hereafter as the "PCR file". This part 
of FULLPROF is under test and it is highly probable that changes, in future releases, will take place. 
The most probable modifications may concern the normalisation factors in order to provide refined 
parameters that could be compared directly to those obtained with other programs. Moreover the 
inclusion of the Schwinger effect, nuclear polarisation and a tensorial approach for the local 
susceptibility (for highly anisotropic materials) are planned.  
 
The expression used to calculate the flipping ratio 
 
We shall call Ih the intensity (scattering cross-section) of the diffracted beam and, if the incident 
polarisation is noted as Pi, the equation is:  
 
Cross-section (Equation 1): 

 ( )* * * *
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Where hN is the nuclear structure factor of reflection h and hM⊥ is the magnetic interaction vector: 
perpendicular component of the magnetic structure factor to the scattering vector (Q=2π h). 
 
The particular geometry used in flipping ratio measurements allows using a scalar form for the 
vectorial quantities in the above expression.  The polarisation direction is the same as the applied 
magnetic field, along the vertical z-axis, and the magnetic structure factor hM  is also along the 
vertical z-axis ( h hM = zM ), so, if we call α the angle between the vertical axis and the scattering 
vector h, we have: 
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( )( cos )hM = h z eM α⊥ − , so that 
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So, dropping the scattering vector index, the incident polarisation dependent intensity is given by: 
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The quantity p may be lower than 1 due to the fact that the incident beam may be not fully 
polarised. In the expressions (2) the quantities  n+ and n- represent the number of neutrons with spin 
up and down, respectively, in the incident beam. Let us supposed that the incident beam is formed 
by spin-up neutrons, a flipper transforms this incoming beam into a spin-down neutron beam before 
the scattering process. We have to take into account the possibility of an inefficient flipper, calling e 
the fraction of neutrons that are effectively flipped the above expressions have to be modified as: 
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The flipping ratio is given by: 
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where we have written q2=sin2α and have called p+ and p¯ the effective polarisation for spin-up and 
spin-down of the incident beam. In the Appendix I we give a more detailed expression taking into 
account the extinction correction. 
 
What FULLPROF can do? 
 
The program FULLPROF can be used to refine, by least squares, a list of flipping ratio 
measurements. The minimised function is: 
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where the vector β  represents the list of free parameters. FULLPROF calculates the nuclear structure 
factor N from the structural model provided by the user and it is corrected for extinction. The 
magnetic structure factor is calculated in a simplified manner because it is supposed that only the 
component along the z axis is contributing, however complex forms of magnetic form factors are 
available. The simplified expression of the magnetic structure factor (without explicitly taking into 
account the symmetry) is given by: 
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The sum is extended to all atoms with unpaired electrons in the unit cell, the factor pB=reγ/2=0.2695 
allows to convert Bohr magnetons, µB, to scattering length amplitudes (in 10-12 cm). The form 
factor fj(h), Fourier transform of the unpaired magnetisation density, may depend on the scattering 
vector h (and not only on its amplitude |h|=h). The form factor contains implicitly the effective 
number of unpaired electrons (magnetic moment) in µB. The coefficients Oj and Tj are, respectively, 
the occupation factor and the Debye-Waller factor. 



   
It is supposed that the crystallographic structure and the extinction parameters have been refined at 
the same temperature as that of the flipping ratio experiment using a large number of reflections. 
The structural and extinction parameters should be fixed in the flipping ratio refinement. So the 
specific content of the β  vector depends on the particular model selected for refinement. The 
different models existing in FULLPROF correspond to different ways of calculating fj(h). The 
particular kind of form factor is accessed by giving to the atom/ion a particular reserved name that 
we will made explicit at the description of each model. The program is also able to calculate the 
flipping ratios without experimental data. We shall see that in the forthcoming paragraphs. 
 
Spherical refinements 
 
This is the simplest case, and the first to be tried, for modelling spin densities. It is supposed that 
the magnetisation density is dominated by the radial wave function of the unpaired electrons. If we 
consider that the wave function is not very much changed with respect to that of the free atom (ion) 
we can use tabulated values and refine only a small number of coefficients per magnetic atom. The 
magnetic form factor depends only of the magnitude of the scattering vector. If we use the common 
variable s=sinθ/λ, then the expression of the form factor used in FULLPROF to be inserted in the 
expression (7) is the following: 
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International Tables for Crystallography, Volume C, sect. 4.4.5) inside FULLPROF. The refinable 
parameters are the coefficients Wl. The unit of these coefficients is Bohr magnetons and W0 gives 
the value of the magnetic moment. 
The expressions of the approximations for calculating ( )lj s  are the following: 
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The coefficients Al, Bl, Cl, and Dl, can be found in the above reference or in the output file of 
FULLPROF.  An atom/ion is treated using this kind of approach if the name for its form factor is set 
to MPOL within the PCR file. Another way of doing spherical refinements is to consider a 
multipolar refinement in which we set to zero a part of the coefficients (see next paragraph). 
 
 
Multipolar refinements 
 
For this kind of refinement a local Cartesian frame is required for defining the spherical harmonics. 
By default, FULLPROF defines (when using the flipping ratio option) a Cartesian frame attached to 
the unit cell with the same origin with the x-axis aligned with the a-axis, y is in the plane (a, b) and 
z is defined as z = x × y. The local Cartesian frame, attached to each atom, to which the vectors r, 
r0, and spherical angles of the forthcoming formula are referred, can be selected by the user by a 
simple rotation of the above frame around a provided crystallographic direction. We shall see this in 
the section dedicated to the description of the input file. 
 
Density approach 
 
In cases of departure of the magnetisation density from a spherical distribution more sophisticated 
approximations to the magnetisation density have to be used. If we consider the magnetisation 
density around one atom sited in the origin, we can write it as a series of real spherical harmonics: 
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Where the unit r0 vector along r is parameterised in terms of the local spherical angles (θ, ϕ). The 
real spherical harmonics are defined as in M.Kara and K. Kurki-Suonio, Acta Cryst. A37, 201 
(1981): 
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 with 0 ≤ m ≤ l and p=±1. The Fourier transform of expression (10) is the form factor that writes: 
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where, ( )lj s  is the Fourier-Bessel transform of the radial density: 
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and jl are the spherical Bessel functions. The coefficients ,m p
lβ  are adjustable occupancies of the 

different spherical harmonics. The radial density function can be taken to be Slater-type functions: 
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The volume factors lζ can also been adjusted. An atom/ion is treated using this kind of approach if 
the name for its form factor is set to MULT within the PCR file.  
Within FULLPROF the expression used for calculating the form factor is similar to (11) except that 
two l=0 terms are allowed and the real coefficients are noted A instead of β. With the new notation 
the magnetisation density is written as: 
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If one wants to start using a spherical approach it is necessary to consider only the first (and/or the 
second) term l=0 in the expression (11), or in the transformed of the expression (13’) so that the 
form factor takes the form 0 0 0 0

0 0 0 0 0 0 0 0( ) (2 ) ( ) (2 ) ( )h h hA Bf j h A y j h B yπ π+ + + += + .  
 
Orbital approach 
 
In this approach the contribution to the magnetisation density coming form each ion can be 
described in terms of an orbital centred in that ion. This orbital is taken to have a well defined 
orbital moment (except in the case of a hybrid s-p orbital). Thus, in general: 
 
 2( ) ( )r rlm φ=       (14) 
where the orbital φl can be chosen to be a p, d or f orbital expressed in terms of real spherical 
harmonics:  
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In general, the coefficients ,m p
lA  are complex numbers ( , , ,exp{ }m p m p m p

l l lA A iφ= ), an overall phase 

is meaningless so we fix l
lφ
+ arbitrarily to zero. Each type of orbital leads to a magnetisation density 

that can be expressed in a way similar to equation (10): 
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The magnetic form factor of each magnetic ion can now be written as: 
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where, in this case, ' ( )lj s  is related to ( )lR r  by 
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The radial part is handled within FULLPROF in three different ways.  
 
The first approach consists of taking the ' ( )lj s  just, as in the case of simple spherical refinements, 
using the tabulated approximations, see equations (9). 
 
The second approach is to approximate ( )lR r  to a hydrogen-like radial function with principal 
quantum number n (n ≥ l+1), with l the same quantum number as the angular part. The form of such 
a function can be found in text books: 
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where 
0

2 effZ
na

ξ = , with a0=0.52918 Å. In this approach n can be chosen by the user (with the 

obvious restriction that n ≥ l+1) and Zeff can be adjusted. 
 
The third approach is to approximate ( )lR r  to a Slater-type radial function, written in this case as:  
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In the case of orbitals of type p, d or f, the atom/ion using this kind of approach should have the 
name for its form factor set as DIPO, QUAD or HXAP, respectively, within the PCR file.  
Another case that can also be treated is the hybrid s-p orbital. For this, it is assumed that the 
expression of the orbital has the form: 
 
   , , 0 0

1 1 0 0 0 0
,

( ) ( ) ( ) ( ) ( )r r rm p m p
s p p s

m p
R r A y R r A yφ + +

− = +∑     (20) 

In this case the expression for the magnetisation density is similar to that of equation (16) but with 
l’=0, 1, 2. If this type of orbital is chosen, ' ( )lj s  can be calculated only by assuming that Rp and 
Rs are hydrogen-like functions with the same principal quantum number n. An atom/ion is treated 
using this kind of approach if the name for its form factor is set to DISP within the PCR file.  



The selection between the three approaches for treating the radial part is selected in the PCR file by 
the value of the Radial_Model variable (see below). 
 
In the Appendix II we give the development of the magnetisation density as a function of the orbital 
coefficients. 
 
How to calculate flipping ratios in FULLPROF 
 
The format of the input control file for flipping ratio calculations is exactly the same as that for 
single crystal calculations except that the option JBT=10 is compulsory. To get the complete 
explanation of all the items appearing in the PCR file the reader is invited to consult the manual of 
the program. FULLPROF knows that flipping ratio calculations have to be performed only by reading 
the type of crystallographic data (see below) or by explicit indication in the PCR (for simulations). 
Let us start with the simulation of flipping ratios when we do not have experimental data. For doing 
such a simulation one needs only the PCR file. 
 
Simulations 
 
   For performing a flipping ratio simulation the user should put JOB=3 and CRY=4. The program 
generates reflections according to the provided 2θmin, 2θmax angles. The wavelength and other 
characteristics of the simulation are provided at end of the PCR file. The simplest way to 
understand how to perform a simulation is by looking at a simple example. 
 
   In the example given below in Panel 1, the used wavelength is 0.711 Å, the variable itypd=2 
means that the program will calculate flipping ratios from the model given in the same file. 
Polarp and Polarm are the polarisation degree for neutrons "up" and "down" respectively, 
UB_mat=1 means that the program will read the orientation matrix just below the current line.  
The same type of file serves also for calculating structure factors, instead of flipping ratios, for a 
single crystal, so if itypd=0,1 the program will calculate structure factors and the output *.int 
file will contain either the square of structure factors (itypd=0) or simply the module of structure 
factors (itypd=1). 
 
Description of atomic parameters for different models of the magnetisation density 
 
The option JBT=10 is compulsory for calculating flipping ratios, a part this point the atoms are 
described as for the usual crystallographic jobs. An atom is considered to have unpaired electrons if 
its scattering factor label has a particular selected name and its kind of atom is of type n_t=4 or 
n_t=5.  These lasts values instruct the program that the form factor for the atom is of special type.  
 
The first line of an atom having a special form factor contains the following items: 
 
Label    ScattLab   Mag    Vek    x     y    z    Biso  Occ   n_t    Spc 
 
After this line another line with the codes of refinements must be given. For flipping ratio 
refinements this line of codes must be a list of zeros. 
Where Label must start with the chemical symbol of the atom followed by the valence state. The 
program extracts from this label the scattering length for calculating the structure factor. The 
valence is needed for some of the special form factors available. 
The item ScattLab is used for select different modes of unpaired electron density, we shall 
discuss this in more detail below. 
 



 

 
 
The items Mag and Vek are not used in the case of flipping ratio calculations. These are integer 
variables; both must be fixed to zero.  The items x, y, z, Biso and Occ have the same meaning 
as in normal refinements (fractional coordinates, isotropic temperature factor and occupation 
factor).  
The item Spc is not used for flipping ratio calculations. 
 

Panel 1: Important items for simulations of flipping ratios 
 
 
The header of the PCR file adapted for single crystal simulations looks like: 
 
COMM Simulation of Flipping ratios 
! Files => DAT-file: flipr-sim,  PCR-file: flipr-sim 
!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 
   3   0   1   0   0   0   0   0   0   0   0   0   0   0   4   0   0   0   0 
! 
!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 
   0   0   1   0   1   0   0   0   0   1   0   0   0   0   4   0   0 
! 
!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 
  1  0.01  1.00  1.00  1.00  1.00     10.0000     0.1000    89.9000   0.000   0.000 
! 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Where we have emphasised in bold the needed parameters for performing a simulation. Putting 
Fou=4 (in the case of flipping ratios) instruct the program to calculate a density map, 
according to the provided model, that can be visualised using GFOURIER.  
 
This is followed by the description of the crystallographic phase under study. This part of the 
PCR file is similar to that for powder diffraction, except that more sophisticated descriptions of 
the form factors are allowed. We shall see that in the next section. 
 
The tail of the PCR file adapted for single crystal simulations. We have emphasised in bold the 
important part for performing simulations. 
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
!  Scale Factors 
!   Sc1        Sc2         Sc3         Sc4         Sc5         Sc6 
   1.000       0.000       0.000       0.000       0.000       0.000 
        0.00        0.00        0.00        0.00        0.00        0.00 
!  Extinction Parameters 
! Ext1       Ext2       Ext3       Ext4       Ext5       Ext6       Ext7   Ext-Model 
 42.0        42.0       74.0      0.000      0.000      0.000      0.000       4 
 0.00        0.00       0.00       0.00       0.00       0.00       0.00 
!     a          b         c        alpha      beta       gamma      #Cell Info 
   6.197000   6.197000   7.013000  90.000000  90.000000 120.000000 
    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000 
! x-Lambda/2  +          Not yet used parameters 
     0.03000     0.00000     0.00000     0.00000     0.00000 
        0.00        0.00        0.00        0.00        0.00 
! Parameters for Single X-tal calculations 
! Lambda   itypd    ipow    Polarp    Polarm  UB_mat 
  0.7110       2       0   0.89000   0.89000    1 
! UB_matrix 
   -0.017950    0.000610    0.188620 
   -0.042370   -0.173200   -0.003470 
    0.127620   -0.031460    0.012250 

 



The admissible (integer) values for n_t in the case of flipping ratio calculations are the following: 
 
n_t = 0 Isotropic atom without unpaired electrons. It contributes only to the nuclear structure 

factor. 
 
n_t = 2 Anisotropic atom without unpaired electrons. It contributes only to the nuclear 

structure factor. 
 
n_t = 4 Atom with unpaired electrons, for which a special form factor is given. It contributes 

to both nuclear and magnetic structure factor. The atom has only an isotropic thermal 
parameter. 

 
n_t = 5 Atom with unpaired electrons, for which a special form factor is given. It contributes 

to both nuclear and magnetic structure factor. This case allows the use of anisotropic 
temperature factors in calculating flipping ratios or structure factors of complex 
object described by different kinds of form factors. Two additional lines (one with 
β11, β22, β33, β12, β13, β23 and the other with the corresponding codes) are read for an 
atom after the reading of form factor coefficients (see below). 

 
 
Examples of the two first lines characterising an atom of the list are given in Panel 2. 
 
For flipping ratio calculations the most important part is the model for the form factor to be used. 
This is indicated to the program by the special names for the variable ScattLab (that is indicated 
in the PCR file by the name Type). Let us describe in detail the different cases available in 
FULLPROF. 
 
 

 
1:   ScattLab = MPOL 
 

Panel 2: Examples of the first lines describing atoms. 
 
Example 1: 
!Label ScattLab Mag Vek    x          y         z        Biso     Occ   n_t Spc 
N1   N          0  0    0.69232   0.12932   0.73347   0.32982   1.00000  0  0 
                           0.00      0.00      0.00      0.00      0.00 
. . .  
C1   MULT       0  0    0.69232   0.12932   0.73347   0.32982   1.00000  4  0 
                           0.00      0.00      0.00      0.00      0.00 
 
The atom N1 contributes only to nuclear structure factors. The atom C1 is described by a multipole 
expansion (the coefficients are read after these two lines, these are described below). 
 
Example 2: 
An example of complete description for an anisotropic atom contributing only to the structure 
factor is as follows:  
 
Sulf  S         0  0    0.87879   0.00620   0.74224   0.00000   1.00000  2  0 
                           0.00      0.00      0.00      0.00      0.00 
    0.01387   0.02232   0.00073   0.00064   0.00081   0.00039 <-Betas 
       0.00      0.00      0.00      0.00      0.00      0.00 



This is the simplest case corresponding to spherical atoms in which the form factor is calculated as 
linear combinations of the form given by equation (8). An example of atom for which the MPOL 
option is used is given in Panel 3. 
 

 
In the Panel 3 it is readily visible that the atom is isotropic from the point of view of the thermal 
Debye-Waller factor. In this case we have Biso≈0.098 Å2. The occupation factor is given by the 
quotient between the multiplicity of the site and the general multiplicity of the space group. The 
user can use a multiplicative factor to get more simple numbers.  
It is important to realise that the coefficients Wl can be related to the magnetic moment of the atom 
and to the orbital contribution to it. Comparing the expression given in Panel 3 with the most 
common notation in the dipolar approximation: 
    0 2 2( ) ( ( ) ( ) )Tf s j s C j sµ= +   
It is easy to calculate the orbital contribution µL=µT C2=W2 and the spin contribution (µS=µT-µL) 
µS= W0-W2 that are readily obtained from the Wl refined values. 
 
2:   ScattLab = MULT 
 
This is the most general case corresponding to a multipolar expansion of the magnetisation density 
around an atom. The form factor is calculated as linear combinations of radial functions and real 
spherical harmonics of the form given by equation (11). An example of atom for which the MULT 
option is used is given in Panel 4. 
 
Notice that the coefficients correspond to the expression (10’), where we have written in the PCR 
file the notation ,m p

lA  as A(lmp) and lζ as Zed(l). The presence of two spherical (s1 and s2) terms is 
needed for simulate hybrid s-p orbitals using the density approach. 
 
It is shown that after reading all the 32 possible free parameters characterising the multipolar 
expansion in , that there is a line for selecting the exponent of the Slater functions used to calculate 
the radial parts. 
 
After reading the exponent of the Slater functions there is another line containing the following four 
items: 
 
Rot_angle,    Rot_Direction_x,   Rot_Direction_y,   Rot_Direction_z 
 
Where is the rotation angle in degrees to be applied to the standard Cartesian frame of FULLPROF, 
see the introduction to multipolar refinements, around the axis n with components 
n=(Rot_Direction_x,   Rot_Direction_y,   Rot_Direction_z). Internally the vector 
n is normalized to be a unitary vector. 

Panel 3: In the example below an ion of uranium, U3+, is treated for flipping ratio calculations 
with a form factor of the form: 0 0 2 2( ) ( ) ( )f s W j s W j s= + . The internal tables (see equations 
9) are used and the refined parameters W0 and W2 are the two first coefficients of the list. A 
maximum of four coefficients can be refined.  
 
U3   MPOL      0  0    0.00000   0.00000   0.00000   0.09825   0.04167    4    0 
                          0.00      0.00      0.00      0.00      0.00 
   0.03596   0.06116   0.00000   0.00000   0.00000   0.00000   0.00000 <-FormFactor 
     11.00     21.00      0.00      0.00      0.00      0.00      0.00 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 



 

 
 
3:   ScattLab = DIPO, QUAD, HXAP, DISP 
 
These are the cases corresponding to the orbital approach for l=1 (p), l=2(d) and l=3(f) respectively. 
The expression used for the orbitals within FULLPROF is slightly different of expression (15). We 
use an occupation factor Ol making the complex ,m p

lA coefficients not all freely refinable.  
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An examples of this kind of approach is written in the Panel 5, for the cases p and d. The general 
input for the orbital approach can be summarised as follows. 
 
After the first two lines describing the position, thermal and occupation factors of the atom we have 
a set of pairs of lines (the second line correspond always to the refinement codes) with seven 
parameters per line ordered in the sequence: 
   ( 1) ( 1) ( 1) ( 1) 0 0, , , , , , , ,... , , ( )l l l l l l l

l l l l l l l l l l effO A A A A A Z orφ φ φ φ η+ − − − + − + − − − − + +  
 

Panel 4: In the example below a carbon atom C1 is treated for flipping ratio calculations with 
a multipolar form factor. In this particular case only an effective spherical coefficient is 
refined. Notice that n_t=5, so that the ADP's are read after all parameters characterising the 
multipolar form factor. 
 
C1   MULT      0  0    0.80030   0.03509   0.68730   0.93435   1.00000    5    0 
                          0.00      0.00      0.00      0.00      0.00 
!   A(00+)   Zed(s1)    B(00+)   Zed(s2)    A(11-)    A(10+)    A(11+) 
   0.01403   6.50743   0.00000   0.00000   0.00000   0.00000   0.00000 <-Multipole 
     11.00      0.00      0.00      0.00      0.00      0.00      0.00 
!   Zed(1)    A(22-)    A(21-)    A(20+)    A(21+)    A(22+)    Zed(2) 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
!   A(33-)    A(32-)    A(31-)    A(30+)    A(31+)    A(32+)    A(33+) 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
!   Zed(3)    A(44-)    A(43-)    A(42-)    A(41-)    A(40+)    A(41+) 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
!   A(42+)    A(43+)    A(44+)    Zed(4) 
   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00 
! Exponents of Slater Functions (ns1,ns2,n1,n2,n3,n4): 
  2  0  0  0  0  0 
! Angle and axis of rotation matrix to local orthogonal frame 
0.0 0.0000  0.0000  1.0000 

! Anisotropic displacement parameters (bet11, bet22, bet33, bet12, bet13, bet23) 
   0.01007   0.00423   0.00510  -0.00020  -0.00017   0.00181 <-Betas 
      0.00      0.00      0.00      0.00      0.00      0.00 



so that there are a maximum of 4l+2 refinable parameters. For the case of a p-orbital it is needed 
(even if not used) two set of pairs of lines because the minimum number read of form-factor 
parameters when n_t=4, 5 is 14. In the case of a hybrid sp-orbital the list of parameters is that 
shown for the C1 atom in the Panel 5. 
After the lines containing the refinable coefficients, another line containing the items Exponent 
(value of n in expressions (19) or (19’) ) and Radial_Model is read. When the value of 
Radial_Model is 0 ≤  Radial_Model < l+1, the first approach (tabulated coefficients for 
calculating 〈jl〉) for the radial function treatment is selected by the program. When 
Radial_Model > l+1 the second approach is selected, so a hydrogen-like radial function in 
which n= Radial_Model is used. When Radial_Model < 0 the third approach (Slater-type 
function as in expression (19’)) is used. 
 

 
The description of the atom finishes with a line containing the transformation to the local Cartesian 
frame as in the case of multipolar refinement based in the density approach. Of course, if n_t=5 a 

Panel 5: In the example below a vanadium ion V3+ is treated for flipping ratio calculations with 
a form factor corresponding to a d-orbital, an oxygen atom treated by using a p-orbital and a 
carbon atom using a hybrid sp-orbital. Notice the presence of a pair of lines (with zeros) that 
are needed for the p-orbital and for the hybrid-sp orbital for compatibility with other uses of 
FULLPROF when n_t=4, 5.  The values of the parameters are completely artificial and have no 
meaning; they are given only for illustration purposes. 
 
V3   QUAD      0  0    0.50000   0.00000   0.00000   0.38910   0.50000    4    0 
                          0.00      0.00      0.00      0.00      0.00 
!      Occ    A(22+)    A(22-)  Phi(22-)    A(21+)  Phi(21+)    A(21-) 
   0.01959   0.17991   0.10000   0.00000  -0.00636   0.00000   0.00557 <- d-orbital 
     11.00      0.00      0.00      0.00     21.00      0.00      0.00 
! Phi(21-)    A(20+)  Phi(20+)      Zeff 
   0.00000   0.10000   0.00000   5.17957 
      0.00      0.00      0.00      0.00 
! Exponent(n) & Radial Model : 
  3  0 
! Angle and axis of rotation matrix to local orthogonal frame 
 45.0000    0.0000  0.0000  1.0000 
O1   DIPO      0  0    0.94539   0.35284   0.68806   0.83457   1.00000    4    0 
                          0.00      0.00      0.00      0.00      0.00 
!      Occ    A(11+)    A(11-)  Phi(11-)    A(10+)  Phi(10+)      Zeff 
   0.03130   0.06429   0.42415 146.77235   0.31569  -8.48253   3.99334 <- p-orbital 
    141.00    211.00      0.00    221.00      0.00      0.00      0.00 
   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
! Exponent(n) & Radial Model : 
  2  -1 
! Angle and axis of rotation matrix to local orthogonal frame 
 24.3291    0.0000  0.0514  0.0249 
C1   DISP      0  0    0.34539   0.15284   0.28806   0.73488   1.00000    4    0 
                          0.00      0.00      0.00      0.00      0.00 
!      Occ    A(11+)    A(11-)  Phi(11-)    A(10+)  Phi(10+)     A(00+) 
   0.02140   0.01429   0.22318  49.43221   0.31569  -1.28277   0.19131 <- sp-orbital 
    141.00      0.00      0.00      0.00      0.00      0.00      0.00 
! Phi(00+)    Zeff(p)  Zeff(s) 
   0.00000   3.34000   3.10000   0.00000   0.00000   0.00000   0.00000 
      0.00      0.00      0.00      0.00      0.00      0.00      0.00 
! Exponents(np, ns) & Radial Model : 
  3  2  -1 
! Angle and axis of rotation matrix to local orthogonal frame 
 0.0000    0.0000  0.0000  1.0000 
 



further line (and its corresponding line of refinement codes set to zeros) containing the anisotropic 
displacement (temperature) parameters is needed. 
 
The experimental flipping ratios file (codfil.int) 
 
The extension of this file should be *.int as for a single crystal integrated intensity file. The 
reading of this file is activated by putting the value IRF=4 for the corresponding phase. The 
content of this file is described below line by line.  
  
1:  Title 
 
2:  Format of the input data, using Fortran syntax, without quotes 
     e.g.: (3i4,2f10.6,i4,5f8.5) 
  Notice always, at least, five real numbers (“5f”) are read even if they are of no use, so the format 
should finish with 5f8.5 or 5f10.4 instructions. In some cases it could be six numbers, so the 
instruction must be of the form 6f8.5 or whatever adequate for six real numbers (see below). 
 
3:  Lambda, itypdata, ipow, polarp , polarm, readub, ext_calc, read_strf 
     The line number 3 contains the above items that are described below. 
 
     Lambda : wavelength in Angstroms (real number) 
Itypdata : should equal to 2 for flipping ratio data (integer number) 
   ipow  : should equal to 0 for flipping ratio data (integer number) 
     polarp  : polarisation degree of up neutrons   (max=1.0, real number) 
     polarm : polarisation degree of down neutrons (max=1.0, real number) 
 readub  :  If =1 read the UB-matrix in the next line 
ext_calc :  Extinction correction of Becker-Coppens type 
 
  ext_calc = 0, The extinction correction coefficients c1, c2, c3 are read with each reflection 
                   c1=Tbar*1000*λ3/(V2 sin2θ) 
                    c2=A(θ)  Becker-Coppens coefficients 
                    c3=B(θ) 
ext_calc = 1  The extinction correction coefficients c2, c3 are calculated for Gaussian  

Becker-Coppens corrections 
  ext_calc = 2   The extinction correction coefficients c2, c3 are calculated for Lorentzian  

Becker-Coppens corrections 
 
If ext_calc = -1,-2 the coefficient c1 is also calculated from Tbar (calculated) for each 
reflection (not implemented yet, a constant value of Tbar is taken at present). In this case the UB 
matrix should be given as if readub=1. 
The effective use of extinction correction depends ultimately of the value of iextinc(iph) in 
the PCR file. Only if iextinc(iph)=2, 3 the coefficients c1, c2, c3 are used in the correction of 
the structure factors. This part of the extinction correction is still under testing. Phenomenological 
extinction correction models 1 (isotropic Shelx-like) and 2 (anisotropic Shelx-like) are more stable 
for refinement at present. 
 
read_strf : If different from zero the real an imaginary part of the nuclear structure factors are 

read in the flipping ratios file. 
 
 



If readub=1 or ext_calc < 0 then the following line is read: 
 
4: ub11, ub12, ub13, ub21, ub22, ub23, ub31, ub32, ub33 
 
Example of the header of a *.int file: 
 
Single crystal data of My_Crystal: Flipping ratios at 220K 
(3i4,2f10.6,i4,4f8.5) 
0.711  2   0  0.9998 0.9997 1 0 
0.0051992 -0.1439303 -0.0781113 -0.0020301 -0.1044526 0.1072490 -0.1893921 -0.0027108 -0.0034442 

 
The rest of lines are the indices of reflections, the flipping ratio values with the corresponding 
standard deviations, a code number, and additional items depending of the value of the variable 
readub defined above. The format of these items corresponds to that given by the user in line 2. 
 
If readub =0 the items are: 
   If  read_strf =0  
  h   k   l    flipr   sigma   code   q2  c1  c2  c3   
   If  read_strf ≠ 0  
     h   k   l    flipr   sigma   code   q2  Nreal  Nimag c1  c2  c3   
 
If readub =1 the items are 
   If  read_strf =0  
     h   k   l    flipr   sigma   code   c1  c2  c3    
   If  read_strf ≠ 0  
    h   k   l    flipr   sigma   code   Nreal  Nimag c1  c2  c3   
 
q2 is the value of sin2α, where α is the angle between the scattering vector and the applied field 
defining the polarisation direction (vertical axis). If the orientation matrix is given q2 must not be 
provided, it is calculated directly from the indices of the reflections and the UB matrix. The 
coefficients c1, c2, c3 are used only if the Becker-Coppens extinction correction is to be applied. 
 
Projects 
 
These notes may serve as the manual for FullProf for flipping ratios refinements. This is a part of 
the program that is under intensive testing, so things can change in the near future.  



Appendix I: Expression of the calculated flipping ratio taking into account the extinction 
 
In this appendix we provide the explicit expression of the flipping ratio when using the extinction 
correction. We shall decompose the expressions (4) and (5) in order to make explicit the application 
of the extinction correction within FULLPROF. 
Let us call the real and imaginary parts of the nuclear structure factor as AN and BN; for the magnetic 
structure factor we write AM and BM. Let us call the extinction correction factors yp, ym and ypm for 
the scattering processes↑↑, ↓↓ and↑↓, the expression of I+ and I- when we apply the extinction 
correction are: 
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The values of p+ and p¯ have to be provided by the user. Normally they are close to 1. 
(to be completed and detailed writing the different extinction corrections available) 
 
 
Appendix II: Multipolar development of the orbital approach 
 
In this appendix we provide the explicit expressions of the general development for the magnetic 
density when using the orbital approach for the different cases. 
 
A. p Orbital (DIPO) 
 
A general p orbital is expressed as: 
 

1 21 1 0
1 0 1 0 1 0( ) ( ) ( ) ( ) ( )r r r riph iph

p pR r a y be y ce yφ + − + = + +    (A-1) 
so that the spin density is given by 
 

2 2 , 0
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,
( ) ( ) 2( . ) ( ) 0(0) ( )r r rm p

p p
m p

R r Dpl p m y Dpl yφ + 
= + 

 
∑   (A-2) 

The following Fortran code summarises the calculations of the coefficients Dpl2 and Dpl0 as a 
function of the parameters a, b, c, ph1 and ph2 of expression A-1.      
 
real, PARAMETER ::  & 
        a01= 0.2185097040, a02= -0.2185097040, a03= -0.1261566430,  & 
        a04= 0.2523132860, a05=  0.2820947770  
 
Dpl2( 2)= a01 *a*a +a02 *b*b 
Dpl2( 1)= a01 *2.0*a*c*cos(ph2) 
Dpl2( 0)= a03 *a*a +a03 *b*b +a04 *c*c 
Dpl2(-1)= a01 *2.0*b*c*cos(ph1-ph2) 
Dpl2(-2)= a01 *2.0*a*b*cos(ph1) 
Dpl0( 0)= a05 *(a*a + b*b + c*c) 
 
B. Hybrid s-p Orbital (DISP) 
 
A general s-p orbital is expressed as: 
 



31 21 1 0 0
1 0 1 0 1 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r riphiph iph

sp p sR r a y be y ce y R r de yφ + − + + = + + +   (B-1) 
 
so that the spin density is given by 
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The following Fortran code summarises the calculations of the coefficients Dspl1, Dpl2, Dpl0 
and Dsl0 as a function of the parameters a, b, c, d, ph1, ph2 and ph3 of expression B-1.      
 
real, PARAMETER ::                                        & 
  a01= 0.2185097040, a02= -0.2185097040, a03= -0.1261566430, & 
  a04= 0.2523132860, a05=  0.2820947770 
 
  Dpl2( 2)= a01 *a*a +a02 *b*b 
  Dpl2( 1)= a01 *2.0*a*c*cos(ph2) 
  Dpl2( 0)= a03 (a*a + b*b) +a04 *c*c 
  Dpl2(-1)= a01 *2.0*b*c*cos(ph1-ph2) 
  Dpl2(-2)= a01 *2.0*a*b*cos(ph1) 
  Dpl0( 0)= a05 * (a*a + b*b + c*c) 
 Dspl1( 1)= a05 *2.0*a*d*cos(ph3) 
 Dspl1( 0)= a05 *2.0*c*d*cos(ph2-ph3) 
 Dspl1(-1)= a05 *2.0*b*d*cos(ph1-ph3) 
  Dsl0( 0)= a05 *d*d 
 
C.  d Orbital (QUAD) 
 
A general d orbital is expressed as: 
 

31 2 42 2 1 1 0
2 0 2 0 2 0 2 0 2 0( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r r riphiph iph iph

d dR r a y be y ce y de y ee yφ + − + − + = + + + +   (C-1) 
 
so that the spin density is given by 
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The following Fortran code summarises the calculations of the coefficients Ddl4, Ddl2, and 
Ddl0 as a function of the parameters a, b, c, d, e, ph1, ph2 , ph3 and ph4 of expression C-1.      
 
real, PARAMETER ::                                           & 
a01=  0.2384136320, a02= -0.2384136320, a03=  0.1685838850,  & 
a04= -0.1685838850, a05=  0.1802237630, a06= -0.1802237630,  & 
a07=  0.1560783540, a08= -0.0637187213, a09=  0.2207281290,  & 
a10=  0.0402992591, a11= -0.1611970370, a12=  0.2417955550,  & 
a13=  0.0637187213, a14= -0.1560783540, a15=  0.0901118815,  & 
a16=  0.2820947770 
 
Ddl4( 4)= a01 *a*a +a02 *b*b 
Ddl4( 3)= a03 *2.0*a*c*cos(ph2) +a04 *2.0*b*d*cos(ph1-ph3) 
Ddl4( 2)= a05 *c*c +a06 *d*d +a07 *2.0*a*e*cos(ph4) 
Ddl4( 1)= a08 *2.0*a*c*cos(ph2) +a08 *2.0*b*d*cos(ph1-ph3) +a09 *2.0*c*e*cos(ph2-ph4) 
Ddl4( 0)= a10 *a*a +a10 *b*b +a11 *c*c +a11 *d*d +a12 *e*e 
Ddl4(-1)= a13 *2.0*a*d*cos(ph3) +a08 *2.0*b*c*cos(ph1-ph2) +a09 *2.0*d*e*cos(ph3-ph4) 



Ddl4(-2)= a07 *2.0*b*e*cos(ph1-ph4) +a05 *2.0*c*d*cos(ph2-ph3) 
Ddl4(-3)= a03 *2.0*a*d*cos(ph3) +a03 *2.0*b*c*cos(ph1-ph2) 
Ddl4(-4)= a01 *2.0*a*b*cos(ph1) 
Ddl2( 2)= a07 *c*c +a14 *d*d +a06 *2.0*a*e*cos(ph4) 
Ddl2( 1)= a07 *2.0*a*c*cos(ph2) +a07 *2.0*b*d*cos(ph1-ph3) +a15 *2.0*c*e*cos(ph2-ph4) 
Ddl2( 0)= a06 *a*a +a06 *b*b +a15 *c*c +a15 *d*d +a05 *e*e 
Ddl2(-1)= a14 *2.0*a*d*cos(ph3) +a07 *2.0*b*c*cos(ph1-ph2) +a15 *2.0*d*e*cos(ph3-ph4) 
Ddl2(-2)= a06 *2.0*b*e*cos(ph1-ph4) +a07 *2.0*c*d*cos(ph2-ph3) 
Ddl0( 0)= a16 *( a*a + b*b + c*c + d*d + e*e ) 
 
D.  f Orbital (HXAP) 
 
A general f orbital is expressed as: 
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so that the spin density is given by 
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            (D-2) 
The following Fortran code summarises the calculations of the coefficients Ddl4, Ddl2, and 
Ddl0 as a function of the parameters a, b, c, d, e, ph1, ph2 , ph3 and ph4 of expression C-1.      
 
real, PARAMETER ::                                           & 
 a01=  0.2548005880, a02= -0.2548005880, a03=  0.1801712210,  & 
 a04= -0.1801712210, a05=  0.1881827120, a06= -0.1881827120,  & 
 a07=  0.1214714200, a08= -0.1214714200, a09=  0.1086473390,  & 
 a10=  0.1629710050, a11= -0.1629710050, a12=  0.1717865170,  & 
 a13= -0.1717865170, a14= -0.0443550907, a15=  0.1774203480,  & 
 a16=  0.0221775454, a17= -0.0858932585, a18=  0.2217754420,  & 
 a19= -0.0118543962, a20=  0.0711263791, a21= -0.1778159290,  & 
 a22=  0.2370879200, a23= -0.0221775454, a24=  0.0858932585,  & 
 a25=  0.0443550907, a26=  0.1517177520, a27= -0.1517177520,  & 
 a28= -0.1175200640, a29=  0.1175200640, a30= -0.2035507110,  & 
 a31=  0.0678502396, a32= -0.0678502396, a33=  0.1146878450,  & 
 a34= -0.1146878450, a35=  0.1332552280, a36= -0.0444184095,  & 
 a37= -0.0993225873, a38=  0.1025799290, a39=  0.0993225798,  & 
 a40=  0.0769349411, a41= -0.1795148700, a42=  0.0256449804,  & 
 a43=  0.1538698820, a44= -0.1025799290, a45= -0.1332552280,  & 
 a46=  0.1456731260, a47= -0.1456731260, a48= -0.0940315947,  & 
 a49= -0.1880631890, a50=  0.1486770060, a51=  0.1151647120,  & 
 a52=  0.0594708063, a53= -0.2102610470, a54=  0.1261566130,  & 
 a55=  0.1682088380, a56= -0.1486770060, a57= -0.1151647120,  & 
 a58=  0.0940315947, a59=  0.2820948060 
 
Dfl6( 6)= a01 *a*a +a02 *b*b 
Dfl6( 5)= a03 *2.0*a*c*cos(ph2) +a04 *2.0*b*d*cos(ph1-ph3) 
 Dfl6( 4)= a05 *c*c +a06 *d*d +a07 *2.0*a*e*cos(ph4) +a08 *2.0*b*f*cos(ph1-ph5) 
 Dfl6( 3)= a09 *2.0*a*g*cos(ph6) +a10 *2.0*c*e*cos(ph2-ph4) +a11 *2.0*d*f*cos(ph3-ph5) 
 Dfl6( 2)= a12 *e*e +a13 *f*f +a14 *2.0*a*e*cos(ph4) +a14 *2.0*b*f*cos(ph1-ph5) + & 
           a15 *2.0*c*g*cos(ph2-ph6) 
 Dfl6( 1)= a16 *2.0*a*c*cos(ph2) +a16 *2.0*b*d*cos(ph1-ph3) +a17 *2.0*c*e*cos(ph2-ph4) +& 
           a17 *2.0*d*f*cos(ph3-ph5) +a18 *2.0*e*g*cos(ph4-ph6) 
 Dfl6( 0)= a19 *a*a +a19 *b*b +a20 *c*c +a20 *d*d +a21 *e*e  +a21 *f*f +a22 *g*g 
 Dfl6(-1)= a23 *2.0*a*d*cos(ph3) +a16 *2.0*b*c*cos(ph1-ph2) +a24 *2.0*c*f*cos(ph2-ph5) +& 
           a17 *2.0*d*e*cos(ph3-ph4) +a18 *2.0*f*g*cos(ph5-ph6) 
 Dfl6(-2)= a25 *2.0*a*f*cos(ph5) +a14 *2.0*b*e*cos(ph1-ph4) +a15 *2.0*d*g*cos(ph3-ph6) +&  
           a12 *2.0*e*f*cos(ph4-ph5) 
 Dfl6(-3)= a09 *2.0*b*g*cos(ph1-ph6)+a10 *2.0*c*f*cos(ph2-ph5) +a10 *2.0*d*e*cos(ph3-ph4) 
 Dfl6(-4)= a07 *2.0*a*f*cos(ph5) +a07 *2.0*b*e*cos(ph1-ph4) +a05 *2.0*c*d*cos(ph2-ph3) 
 Dfl6(-5)= a03 *2.0*a*d*cos(ph3) +a03 *2.0*b*c*cos(ph1-ph2) 



 Dfl6(-6)= a01 *2.0*a*b*cos(ph1) 
 Dfl4( 4)= a26 *c*c +a27 *d*d +a28 *2.0*a*e*cos(ph4) +a29 *2.0*b*f*cos(ph1-ph5) 
 Dfl4( 3)= a30 *2.0*a*g*cos(ph6) +a31 *2.0*c*e*cos(ph2-ph4) +a32 *2.0*d*f*cos(ph3-ph5) 
 Dfl4( 2)= a33 *e*e +a34 *f*f +a35 *2.0*a*e*cos(ph4) +a35 *2.0*b*f*cos(ph1-ph5) + & 
           a36 *2.0*c*g*cos(ph2-ph6) 
 Dfl4( 1)= a37 *2.0*a*c*cos(ph2) +a37 *2.0*b*d*cos(ph1-ph3) +a38 *2.0*c*e*cos(ph2-ph4) +& 
           a38 *2.0*d*f*cos(ph3-ph5) +a39 *2.0*e*g*cos(ph4-ph6) 
 Dfl4( 0)= a40 *a*a +a40 *b*b +a41 *c*c +a41 *d*d +a42 *e*e  +a42 *f*f +a43 *g*g 
 Dfl4(-1)= a39 *2.0*a*d*cos(ph3) +a37 *2.0*b*c*cos(ph1-ph2) +a44 *2.0*c*f*cos(ph2-ph5) +& 
           a38 *2.0*d*e*cos(ph3-ph4) +a39 *2.0*f*g*cos(ph5-ph6) 
 Dfl4(-2)= a45 *2.0*a*f*cos(ph5) +a35 *2.0*b*e*cos(ph1-ph4) +a36 *2.0*d*g*cos(ph3-ph6) +& 
           a33 *2.0*e*f*cos(ph4-ph5) 
 Dfl4(-3)= a30 *2.0*b*g*cos(ph1-ph6)+a31*2.0*c*f*cos(ph2-ph5)+ a31 *2.0*d*e*cos(ph3-ph4) 
 Dfl4(-4)= a28 *2.0*a*f*cos(ph5) +a28 *2.0*b*e*cos(ph1-ph4) +a26 *2.0*c*d*cos(ph2-ph3) 
 Dfl2( 2)= a46 *e*e +a47 *f*f +a48 *2.0*a*e*cos(ph4) +a48 *2.0*b*f*cos(ph1-ph5) + & 
           a49 *2.0*c*g*cos(ph2-ph6) 
 Dfl2( 1)= a50 *2.0*a*c*cos(ph2) +a50 *2.0*b*d*cos(ph1-ph3) +a51 *2.0*c*e*cos(ph2-ph4) +& 
           a51 *2.0*d*f*cos(ph3-ph5) +a52 *2.0*e*g*cos(ph4-ph6) 
 Dfl2( 0)= a53 *a*a +a53 *b*b +a54 *e*e +a54 *f*f +a55 *g*g 
 Dfl2(-1)= a56 *2.0*a*d*cos(ph3) +a50 *2.0*b*c*cos(ph1-ph2) +a57 *2.0*c*f*cos(ph2-ph5) +& 
           a51 *2.0*d*e*cos(ph3-ph4) +a52 *2.0*f*g*cos(ph5-ph6) 
 Dfl2(-2)= a58 *2.0*a*f*cos(ph5) +a48 *2.0*b*e*cos(ph1-ph4) +a49 *2.0*d*g*cos(ph3-ph6) +& 
           a46 *2.0*e*f*cos(ph4-ph5) 
 Dfl0( 0)= a59 *( a*a + b*b + c*c + d*d + e*e  + f*f + g*g ) 


