Depth resolved vector magnetometry on D17 with Endurance upgrades

Thanks to everyone directly and indirectly involved in the D17 project from its beginning until today and in the future.

Thomas Saerbeck D17 Polarised Neutron Reflectometer Institut Laue-Langevin, Grenoble saerbeck@ill.fr

28/03/2024

Saerbeck@ILL.eu

THE EUROPEAN NEUTRON SOURCE

Polarized neutron reflectometry in a nutshell

28/03/2024

Saerbeck@ILL.eu

NEUTRONS

Science covered

The D17 polarized neutron reflectometer

Requirements:

- Diverse topics = versatile sample environment
- Adapted to scientific question = flexible resolution
- Kinetics + fast measurements = high flux
- Few data corrections = high polarization efficiency
- High sensitivity = large Q-range
- High signal-to-noise ratio = low background

```
28/03/2024
```


Flattening bent or facetted surfaces

Magnetization vector depth profiling of hard/soft magnetic exchange springs

Volker Neu

Finding application in:

- ✓ Exchange coupled composite recording media
- ✓ Read head structures and sensors
- Improved permanent magnets for motors and magneto-mechanics
- ✓ Logic circuits

SmCo₅/Fe exchange springs

Combine hard and soft magnetic materials
 Fe: low H_c, high M_S; SmCo₅: high H_c, low M_S

2.0

1.0

0.5 E ^{0.0}

-0.5

-1.0 -1.5

-2.0

⊶ 0 nm ⊸ 6.3 nm → 12.6 nm ⊸ 19.0 nm

MaO

 $\mu_0 H$

μ₀Η (T)

in plane easy axis

S. Sawatzki et al. Journal of Applied Physics 109, 123922 (2011).

-2

28/03/2024

on Camera Length Acquisition Dal

Fe

THE EUROPEAN NEUTRON SOURCE

Extract: Depth dependent magnetization
 Spring nucleation, extension, vector rotation

SmCo₅/Fe: Depth profile at saturation

Sample 7x7 mm²: MgO(001) / Cr (70 Å) / SmCo₅ (200 Å) / Fe (100 Å) / Ta (20 Å)

Birefringent spin-flip scattering

External field: 0.3 T

External field: 0.1 T

THE EUROPEAN NEUTRON SOURCE

FOR SOCIETY

28/03/2024

Saerbeck@ILL.eu

SmCo₅/Fe: Springs in 0.1T & 0.3T @ 184°

Field reduced OT

 \vec{a} -axis

- Sample rotated 90° or 180°
- Field increased to 0.1T or 0.3T

Leibniz Institute

for Solid State and

 \vec{c} -axis

 \succ M_x || Field ; M_y \perp Field

28/03/2024

12

Quantifying magnetic domain textures

✓ biosensor devices

- $\checkmark\,$ self-organization of molecules
- ✓ template for magnetically active polymers

Lab-on-a-chip

UNIKASSEL VERSITAT

Enhanced efficiency of Particle

- > Transport
- Interaction
- > Washing
- Label binding
- Concentration
- Detection

Full motion control

(a)

28/03/2024

U N

V E KASSEL

S

D. Holzinger et al. ACS Nano 9, 7323 (2015). R. Huhnstock et al. Scientific Reports 11, 21794 (2021).

Saerbeck@ILL.eu

THE EUROPEAN NEUTRON SOURCE

15

Magnetic domain patterning

Structural integrity from specular fits

Quantifying lateral domain textures

Polarized off-specular scattering

Size dependent off-specular scattering

19

20

FOR SOCIETY

- Odd order: spin-flip dominated
- Even order: non-spin-flip dominated
- Spin-asymmetry in non-spin-flip and spin-flip
- Only reproduced with domain wall of
- $\checkmark\,$ precise width (± 0.1 $\mu m)$
- ✓ magnetization directions (± 2°)

21

Hysteresis measurements

Hysteresis measurements

Summary

D17

with upgrades:

- ✓ Diverse topics
- ✓ Fast measurements
- $\checkmark\,$ Adapted to experiment
- \checkmark High sensitivity
- ➤ ... lower the background
- … more to come …

Magnetic depth profiles

Magnetic domain textures

THE EUROPEAN NEUTRON SOURCE

FOR SOCIETY

Mixing different domain orientations

S. Sawatzki et al., Journal of Applied Physics 109, 123922 (2011).
A. Ehresmann et al., Advanced Materials 23, 5568 (2011).
M. Seifert et al., New Journal of Physics 15, 013019 (2013).
R. Cubitt et al., Journal of Applied Crystallography 48, 2006 (2015).
N. Zingsem et al., J. Phys. D-Appl. Phys. 50, 9, 495006 (2017).
T. Saerbeck et al., Journal of Applied Crystallography 51, 249 (2018).
I. Koch et al., Adv. Opt. Mater. 6, 8, 1800133 (2018).
T. Saerbeck et al., Nanomaterials 10, 752 (2020).
R. Huhnstock et al. Scientific Reports 11, 21794 (2021).

INSTITUT LAUE LANGEVIN

NEUTRONS FOR SOCIETY